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Abstract: Plant-model mismatch is a major challenge in the implementation of real time
optimisation approaches. Various methods have been proposed to correct for this mismatch
based on online data, however there is still little work in the experimental validation and
comparison of methods. This work focuses on the experimental implementation and validation of
some recently proposed methods to account for plant-model mismatch in a real time optimisation
context: output modifier adaption, Gaussian processes, and Gaussian process output modifier
adaptation.
These methods are implemented on an experimental rig, designed to emulate gas-lifted oil
wells drawing from the same reservoir. All the methods are, on average, able to improve upon
the baseline performance, with Gaussian process output modifier adaptation showing the best
performance. A major challenge was to tune the methods to be robust against the process noise.
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1. INTRODUCTION

Real time optimisation (RTO) seeks to enhance the per-
formance of a process by finding operating points that
maximise some economic objective while satisfying con-
straints, typically related to quality and safety. Most RTO
methods use online measurements and a process model
to solve an optimisation problem at each iteration to find
these operating points. In the traditional approach (Chen
and Joseph, 1987) a rigorous steady state process model
is developed, and at each iteration the parameters of the
model are updated based on steady state measurements to
compute the new operating point. Many variations of this
approach have been proposed, mainly differing in how the
online measurements are used.

Despite its potential, RTO is not widely used in indus-
try. Significant challenges that prevent widespread RTO
adoption are 1) the need to identify and wait for steady
state, and 2) plant-model mismatch. Plant-model mis-
match refers to the existence of some discrepancy be-
tween the model and plant predictions. If certain model-
adequacy conditions are met, then with appropriate ad-
justment of model parameters the optimum computed by
the model will match the plant optimum. Unfortunately,
these conditions are difficult to verify for realistic systems
(Forbes et al., 1994). A group of methods for overcoming
these difficulties rely on augmenting the model using on-
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line measurements, e.g. Integrated System Optimization
and Parameter Estimation (ISOPE) (Roberts, 1995), and
modifier adaptation (MA) (Marchetti et al., 2009). This
work focuses on the experimental implementation and vali-
dation of recently proposed variants of modifier adaptation
on an experimental lab rig.

Modifier adaptation aims to estimate a correction term
from online data and include this in the optimisation
problem to overcome plant-model mismatch (Marchetti
et al., 2009). Under mild assumptions this approach allows
convergence to a point satisfying the Karush-Kuhn-Tucker
(KKT) conditions of the plant despite model mismatch. In
the most variants of modifier adaptation, these corrections
are linear terms that are either added to the objective
and constraint functions (the “classic” approach) or to the
model equations (output modifier adaptation) (Marchetti
et al., 2009).

Unfortunately, modifier adaptation requires an accurate
estimate of the process gradients which can be extremely
challenging in practice due to process noise. Many variants
of modifier adaptation have been proposed (Marchetti
et al., 2016), most of which aim at improving the method’s
robustness to noise and/or efficiency (Marchetti et al.,
2010; François and Bonvin, 2014; de Avila Ferreira et al.,
2018; Marchetti et al., 2016).

A recently proposed approach is to use Gaussian processes
to model the plant model mismatch, and either include the
Gaussian processes in the RTO optimisation or to use them



to calculate the modifiers used in a modifier adaptation
approach (de Avila Ferreira et al., 2018; del Rio Chanona
et al., 2019, 2021). Gaussian processes were proposed
as they are a well-established, non-parametric modelling
approach that inherently account for noise, while providing
an estimate of uncertainty in their predictions.

Despite the extensive theoretical and in-silico results there
is very little work on the experimental implementation of
modifier adaptation and its variants. Here, we implement
and compare the performance of three methods, 1) output
modifier adaption, 2) Gaussian processes embedded in
real time optimisation, and 3) Gaussian process output
modifier adaptation, on an experimental lab rig emulating
a gas-lifted oil well system. To the authors’ knowledge,
the Gaussian process approaches (de Avila Ferreira et al.,
2018; del Rio Chanona et al., 2019, 2021) have not been
previously implemented on real, experimental systems.

2. BACKGROUND

2.1 Real time optimisation (RTO)

In an RTO approach we would like to solve the following
steady state optimisation problem at each iteration:

min
u∈U

ϕ(u, xp(u)) (1a)

s.t. g(u, xp(u)) ≤ 0 (1b)

where ϕ is the objective function, usually related to process
economics, u ∈ U ⊆ Rnu are the decision or input
variables, and xp(u) are the steady state plant states
corresponding to input u. Typically the plant mapping,
fp : Rnu → Rnx , is not known and instead some model,
f : Rnu → Rnx , is used in the related optimisation
problem:

min
u∈U

ϕ(u, f(u)) (2a)

s.t. g(u, f(u)) ≤ 0 (2b)

In general the model will not be able to capture the plant
behaviour exactly, e.g. due to modelling simplifications.
Thus, a solution of problem (2) may not correspond to
a solution of (1). Instead it may even be infeasible for
the true process, with some violation of a safety critical
constraint. Under some hard to verify model adequacy
conditions the model parameters can be updated to allow
for convergence to the plant optimum (Chen and Joseph,
1987; Forbes et al., 1994). This is not true in general,
because it requires the optimality conditions of the model
to coincide with that of the plant.

2.2 Modifier adaptation

In a modifier adaptation strategy zeroth (ϵ) and first
order (λ) correction terms are introduced to the opti-
misation problem such that the optimisation problem’s
necessary conditions of optimality match the plant opti-
mum (Marchetti et al., 2009). Note that in contrast to
traditional RTO (Chen and Joseph, 1987) the model pa-
rameters are not updated at each iteration. In the standard
modifier adaptation approach these corrections are applied
directly to the cost functions and constraints (Marchetti
et al., 2009),

ϕMA(u, f(u)) = ϕ(u, f(u)) + ϵϕk + λϕ
k
′(u− uk)

gMA(u, f(u)) = g(u, f(u)) + ϵgk + λg
k
′(u− uk) (MA)

but, they can also be applied to the outputs of the model
(Marchetti et al., 2009),

fMA(u) = f(u) + ϵk + λ′
k(u− uk) (MAy)

where the subscript k refers to the kth iteration of the
modifier adaptation algorithm. The latter approach is
termed output modifier adaptation (MAy) and will be
considered in this work. In MAy the modifiers represent a
linear correction to the process model, with the modifiers
calculated from the plant states by:

xp(uk) = f(uk) + ϵk (3a)

λk =
dxp(uk)

du
− df(uk)

du
(3b)

Note that xp(u) are the noise-free plant states, not mea-
surements.

A commonly recommended approach is to filter the mod-
ifiers and/or the input variables (Marchetti et al., 2016):

ϵk = (I −Kϵ)ϵk−1 +Kϵ (xp(uk)− f(uk)) (4a)

λk = (I −Kλ)λk−1 +Kλ

(
dxp(uk)

du
− df(uk)

du

)
(4b)

uk = (I −Ku)uk−1 +Kuu
∗
k (4c)

where u∗
k are the inputs found by solving the optimisation

problem, uk are the actual inputs used, and K• are
scalar filter values or filter matrices, typically defined
as K• = diag(k1, . . . , kn•), ki ∈ (0, 1]. By filtering
one indirectly incorporates prior data into the algorithm
which allows for greater robustness to noisy measurements,
as each iteration cannot change the modifiers/set point
as significantly. Another potential approach is to use a
trust-region strategy instead of a filtering strategy (del
Rio Chanona et al., 2019, 2021).

2.3 Obtaining plant derivatives

A key challenge in the successful implementation of mod-

ifier adaptation schemes is the need to estimate
dxp(u)

du , as
typically only noisy measurements of xp are available. Let
the plant measurement equation be:

yp(u) = xp(u) + η(u) (5)

where η models the noise (stochasticity) component of the

system. A possible approach to approximate
dxp(u)

du is to
use a finite difference approximation, e.g. the first order
forward finite difference, assuming nu = nx = 1 is:

dxp(u)

du
≈ yp(u+ h)− yp(u)

h
, h > 0 (6)

where h is a step size in the input. This approach has two
main disadvantages: 1) one requires at least nx perturba-
tions of the plant around the operating point, which can
be extremely costly and time-consuming, 2) this approach
can be extremely sensitive to noise.

This sensitivity to noise can be shown by decomposing the
error of the finite difference approximation (6):



∣∣∣∣dxp(u)

du
− yp(u+ h)− yp(u)

h

∣∣∣∣ ≤∣∣∣∣dxp(u)

du
− xp(u+ h)− xp(u)

h

∣∣∣∣+ ∣∣∣∣η(u+ h)− η(u)

h

∣∣∣∣ (7)

The first term is the truncation error which decreases
with h , while the second term is due to solely to the
noise component, and has a variance which increases with
decreasing h. Note also that for most reasonable choices
of h, the variance of the noise term will be larger than

the variance of η(u). Furthermore, when
dxp(u)

du is small
relative to the noise (e.g. near an unconstrained optima),
the noise term will dominate the error. Thus, noise is a

serious challenge in estimating
dxp(u)

du .

An important note is that in the approach above, mea-
surements from previous iterations are not incorporated
in the calculations of the modifiers. Instead, previous mea-
surements are only used indirectly in the filter equations.
Thus, any large instance of noise can significantly impact
the modifiers at an iteration, leading to calculating an
unsuitable set point, unless aggressive filter values are
chosen. Various authors have proposed adaptions that
make use of previous measurements, including dual MA
methods (Marchetti et al., 2010), fitting a model to the
mismatch data (Gao et al., 2016; de Avila Ferreira et al.,
2018), and the use of stochastic optimisation approaches
(Rivas, 2021).

2.4 Gaussian processes

Gaussian processes were proposed to be used to cre-
ate a model of the plant-model mismatch, as typically
show good performance in low-data regimes, and by de-
sign account for the influence of noise and uncertainty
(de Avila Ferreira et al., 2018). A brief description of
the pertinent points of Gaussian processes is below, for a
detailed introduction see Rasmussen and Williams (2005)
or Gramacy (2020).

Gaussian processes are a non-parametric supervised learn-
ing approach for multiple-input single-output functions,
widely used in machine learning and surrogate optimi-
sation (Rasmussen and Williams, 2005; Gramacy, 2020).
A Gaussian process is defined by a mean function, m(u)
(often a zero mean function) and a covariance or kernel
function, k(u, u′), which describe a joint Gaussian distri-
bution of a finite set of random variables (Rasmussen and
Williams, 2005).

The kernel function identifies the closeness of points, and
is a user choice when designing the Gaussian process. The
characteristics and performance of Gaussian processes are
heavily dependent on the choice of kernel functions (Ras-
mussen and Williams, 2005). A common choice of kernel
function, for infinitely differentiable approximations, is the
squared exponential kernel:

k(ui, uj) = σk exp

{
− (ui − uj)

2

l2

}
(8)

where l is the length scale, and σk is the signal variance.
Note that if the inputs are far from each other the function
will be small (low correlation), while if they are close to
each other the function will be larger (highly correlated).
So, if ui were a known data point, then uj will be

influenced by it if it is “close enough”. This degree of
closeness is strongly determined by l and σk which are
typically found by maximum likelihood or maximum a
posteriori estimation.

Consider some real valued function f(u) : Rn → R, and
the task of predicting the output at a vector of points,
U∗, given noisy observations, Yd, of the function at a
vector of points, Ud. Additionally, assume that these noisy
observations are due to additive independent identically
distributed (i.i.d.) Gaussian noise with variance σn. Then
by definition, the joint distribution of the Gaussian process
describing this is:[

Yd

Y∗

]
∼ N

([
m(Ud)
m(U∗)

]
,

[
Kdd + σnI Kd∗

K∗d K∗∗

])
(9)

whereN (µ, σ2) denotes a normal distribution with mean µ
and variance σ2, Kij is a matrix with elements k(Ui, Uj),
and I is the identity. Note that σn, the noise variance,
enters the joint distribution as an additive term to the
variance of the training points. The distribution of the
predicted outputs, p(Y∗), conditioned on the data (i.e. the
predictive posterior distribution) is given by:

p(Y∗|Ud, Yd, U∗) = N (µ,Σ) (10a)

µ(U∗) = m(U∗) +Kd∗[Kdd + σnI]
−1(Yd −m(Ud)) (10b)

Σ(U∗) = K∗∗ −K∗d[Kdd + σnI]
−1Kd∗ (10c)

where µ(U∗) represents the expected value at the points
(U∗), and Σ describing the associated uncertainty for the
predicted µ’s. To gain some insight to equations eq: GP-
predictive-equation, note that if there is no noise σn = 0,
and the prediction points match the observations points,
Ud = U∗, then µ = Yd with Σ = 0, i.e. the output
prediction will be the training data. Having σn ̸= 0 means
that the GP will instead return a “filtered” version of the
input, as it assigns some of the input-output variation as
due to noise.

2.5 Gaussian processes and real time optimisation

Gaussian processes can be used in a real time optimisation
scheme, where µ(u) is used to describe the plant-model
mismatch, either by 1) correcting the cost functions and
constraints,

ϕGP (u) = ϕ(u) + µ(u), (GP-RTO-1)

2) correcting the model,

fGP,i(u) = fi(u) + µi(u), (GP-RTO-2)

or 3) to estimate the first order modifiers

fGP,i(u) = fi(u)+µi(uk)+
dµi(uk)

du
(u−uk). (GP-MAy)

As GPs have scalar outputs, in GP-RTO-2 and GP-MAy
one needs to define a separate GP for every plant output,
which is shown by the i subscript in the equations. Note
that GP-MAy, has a linear correction term, while the
other formulations have a non-linear correction. The linear
correction only attempts to correct the model locally,
while the non-linear correction attempts to correct the
model over the whole input space. This also means that
the corrected model may fail to meet model adequacy
conditions, in which case it may not yield converging
iterates. Furthermore, this linear correction uses GPi(uk)
to correct the model bias instead of the measured bias



Fig. 1. Schematic of the gas lift lab rig, reproduced from
Matias et al. (2022).

yp(uk) − f(uk), as the GP gives an estimate of the true
plant state xp(uk).

Gaussian processes were first introduced in the context
of RTO under model mismatch in the GP-RTO-1 form
(de Avila Ferreira et al., 2018). Later authors considered
constructing trust regions from the GP variance estimate
(del Rio Chanona et al., 2019), the use of acquisition
functions in the optimisation (del Rio Chanona et al.,
2021), and distributed optimisation variant of this scheme
(Andersson et al., 2020).

3. CASE STUDY

In this work we examine the performance of MAy, GP-
MAy, GP-RTO-2 on a gas lift lab rig, originally introduced
and described in detail in Matias et al. (2022). A brief
description of the system follows, however we refer to this
work for further details.

3.1 Experimental rig

A schematic of the experimental set up is shown in Figure
1. The rig is designed to emulate the production of oil from
three wells, with different production characteristics, that
draw from the same reservoir. In the streams from each
“well” gas can be injected to increase the production rate.
The change in production rate is because increasing the
amount of gas, decreasing the bulk fluid density, and hence
the hydrostatic pressure due to the vertical riser. The
pressurised reservoir is represented by the tank and pump
system, which is controlled to have constant outlet pres-
sure. To emulate the different production characteristics
of the wells the valves CV101-CV103 are given different
openings. For example, the decreasing of a well’s produc-
tivity with time due to well depletion could be represented
by decreasing the valve opening. Finally, the liquid flows
after the riser are recycled back to the reservoir tank to
form a closed loop. In the experimental set up we use water
and air as the liquid and gas respectively, instead of the
oil and natural gas used with an offshore system. Although
these fluids are different, we are still able to see that gas-lift
effect, and hence are able to study this phenomenon, and
its role in resource allocation for production optimisation.

Table 1. Valve openings during experiment.

Scenario
Description 1 2 3

Time Span [s] 0-1200 1200-1800 1800-2400
CV-101 0.8 0.3 0.3
CV-102 0.4 0.4 0.4
CV-103 0.6 0.6 0.25

We consider real time optimisation of the experimental rig
with the gas injection in the wells as the input variables,
u (sensors FIC104-FIC106 in Figure 1, L/min at standard
conditions for temperature and pressure), the liquid flow
rates as the states, Q (sensors FIC101-FIC103, L/min),
and the valve openings as measured disturbances, vw
(CV101-103). The objective is to maximise a weighted sum
of liquid flow rates subject to total gas handling constraint,
and bounds on the gas injection.:

max
u

20Q1(u1, v1) + 10Q2(u2, v2) + 30Q3(u3, v3) (11a)

3∑
w=1

uw ≤ 7.5 L/min (11b)

1 L/min ≤ uw ≤ 5 L/min w = 1, 2, 3 (11c)

0 ≤ vw ≤ 1 w = 1, 2, 3 (11d)

The weightings in the objective function reflect the opera-
tional situations where the wells produce different hydro-
carbons, such that they require different processing and
contribute differently to the economics. Likewise, the con-
straint on total gas lift is a common industrial constraint
based on operational limitations.

A mechanistic model of the experimental rig has been
developed (Matias et al., 2022), however to consider opera-
tion with significant plant-model mismatch we use a simple
quadratic model to describe the flow rate from each well:

Q̂w = θw,1 + θw,2uw + θw,3vw + θw,4u
2
w + θw,5v

2
w (12)

where w indexes the well, Q̂w is the predicted liquid flow
rate, and θw is a vector of model parameters with values
shown in Table 2. Note that in the notation from section
2, Q̂w is the model prediction of the x variable.

As in a real production system the gas lift is used as a
manipulated variable. However, this cannot be manipu-
lated directly. Instead, flow controllers are used to adjust
valves to maintain the gas lift at the calculated set point
(labelled air injection valves in Figure 1). This means that
in addition to noise in the outputs, there is also noise in
the process inputs. Instead of including noise in the inputs
in the GP model, we instead use a time-averaged process
input as the measured input variable, noting also that the
noise in the inputs is significantly less than that of the flow
rate measurements.

To compare the experimental performance of the MAy,
GP-MAy, GP-RTO-2 methods we also consider using the
quadratic model without any adaptations as a baseline
method. During the experimental runs we change the
choke valve openings to give three operating scenarios,
as shown in Table 1. This is to model changes in the
reservoir characteristics that may occur during operation.
Note that this is treated as a measured disturbance for all
the methods.



3.2 Implementation details

The approaches are implemented with the use of Lab-
VIEW, MATLAB (R2020b), the GPML toolbox (v4.2)
(Rasmussen and Nickisch, 2016), CasADi v3.5.5 (Anders-
son et al., 2019), and IPOPT (Wächter and Biegler, 2006).

As all the methods require the plant to reach steady state,
we perform each change in the inputs u at intervals of
90 seconds. This is significantly longer than the settling
time of the system, and ensures that we are only providing
steady state data when calculating the mismatch. In
addition to reduce the influence of noise we provide the
methods the average measurement of the gas lift and
corresponding flow rates over the last 45 seconds. This was
done as it was found that not taking the average severely
impacts the performance of all the methods.

To find suitable parameters for the methods, we performed
several tests and chose the best combination of parameters
for each method. For the filter parameters in the MAy
approach, equations 4a-c, we use scalar filters Ku = 0.8,
Kλ = 0.3, and Kϵ = 0.7. The aggressive filter values for
the first order modifiers is due to the significant impact
of noise on the finite difference gradient approximation,
for which we use h = 0.2. In GP-RTO-2 method we only
filter the inputs (Ku = 0.6) as we rely on the GP to reject
the plant noise. With GP-MAy, we do not filter u or the
modifiers, and instead restrict the maximum change in the
inputs at each iteration to be 0.75.

For both of the GP approaches we consider corrections to
the quadratic model using zero-mean Gaussian processes
with squared exponential covariance functions. The covari-
ance functions have separate length scales for uw and vw.
The hyperparameters to estimate are the noise variance
σn,w, and the length scales lu,w, lv,w. We do not optimise
for lv,w and instead set these to lv,w = 0.01. The reason for
doing so is that each valve has at most two different valve
openings during the run (see Table 1) which means that
these length scales cannot be meaningfully optimised due
to the lack of data. Instead in they are set to a relatively
small value, which ensures that the GP will treat any
change in the valve opening as a significant change to the
system as the kernel functions will return very small values
(see equation 8 and the discussion below).

Furthermore, to improve the robustness of the hyper-
parameter optimisation we perform maximum a posteriori
estimation, with a Gaussian prior used for lu,w, with mean
and variance of 0.1. This is equivalent to regularising
the optimisation by introducing a penalty proportional
to (lu,w − 0.1)2. Without these considerations the hyper-
parameters are too sensitive to the data when the number
of measurements are small, leading to repeated runs of the
experiments giving very different results.

Lastly we consider the initialisation of the methods. All
the approaches begin with uniform gas lift assignment
and the constraint on total gas lift active, i.e. u1 = u2 =
u3 = 2.5. This is not an optimum allocation for plant or
quadratic model. For the GP approaches there is first an
initial probing period where data is gathered with gas lift
allocations of 1.5 and 4.5 (see Figure 3), before starting
the algorithms with uniform gas lift assignment.

Table 2. Parameters for quadratic model

Well θw,1 θw,2 θw,3 θw,4 θw,5

1 0.246 0.150 9.656 -0.008 -7.169
2 -0.411 0.689 30.153 -0.056 -21.956
3 -1.104 0.775 26.641 -0.080 -19.643

Fig. 2. Average objective value (45 seconds) of the methods
compared the average profit achieved by using the
quadratic model without modifications (base profit).
Different scenarios are separated by vertical green
lines.

4. EXPERIMENTAL RESULTS

The online performance of the different methods are shown
in Figure 2, with average objective values in Table 3,
and corresponding manipulated inputs in Figure 3. The
average objective includes the initialisation of three data
points for the GP methods, and a section without starting
MAy (to allow for synchronisation of the step changes
in the valves). We note that although the improvement
in average objective values is small (Table 3), this is
of similar magnitude to the expected gain for industrial
implementations (∼ 1− 4%) (Foss et al., 2018).

Except for GP-RTO-2 in the scenario 1, the methods
improve over the baseline performance for all the scenarios,
as shown in Table 3, despite finding different inputs
(Figure 3). Despite the difference in input values, all
three methods prioritise gas lift to well 2 the least in
sections 1 and 2. This is the expected behaviour as well
2 has the lowest weight in the cost function, and a low
productivity due to the small valve opening in first two
scenarios (Table 1). In section 3 MAy performs the worst,
and prioritises Well 1 over the others. In contrast both
GP methods perform better, although GP-RTO-2 has
significant oscillations in the allocation of well 2 and
3. However, despite the oscillations GP-RTO-2 actually
performs the best in Section 3 (clearly shown in Figure
2). Upon examining the changes in the fitted GPs from
iteration to iteration, these oscillations appear to be due
to the high level of noise hampering the identification of
the true system states.

The best performing method on average across the three
sections is GP-MAy. Furthermore, note that from a op-
erations point of view the input profile of this method is
good, with less perturbations than MAy, and seeming to
settle to fixed values in each section, unlike GP-RTO-2.
Based on these two points, the results suggest GP-MAy
as the most promising method.



Table 3. Average objective value in each sec-
tion and the across all sections.

Section Avg.
Method 1 2 3

Base 432 393 313 379
MAy 435 402 320 386
GP-MAy 436 402 322 387
GP-RTO-2 431 397 325 384

Fig. 3. Inputs used by the different algorithms. In all
subplots the blue, red and green lines are for wells 1,
2, and 3 respectively. GP-MAy and GP-RTO2 include
an initial probing period, see section 3.2.

5. CONCLUSIONS

We demonstrate the use of output modifier adaption and
two methods of incorporating GPs in RTO on an exper-
imental set up. All methods are able to improve upon
the base case on average, despite significant system noise.
GP-MAy gave the most consistent performance across the
experiments (Table 3). For all methods, averages of the
measurements had to be provided for reasonable perfor-
mance, and filters or constraints had to be introduced to
reduce the impact of noise. For reasonable performance all
the methods required tuning of their parameters, including
setting priors for the GP parameters, based on the system
characteristics. Further work could include comparisons
with other methods for RTO under model-mismatch, the
use of stochastic optimisation methods, and the introduc-
tions of constraints on the system outputs.

REFERENCES

Andersson, J.A., Gillis, J., Horn, G., Rawlings, J.B., and
Diehl, M. (2019). Casadi: a software framework for non-
linear optimization and optimal control. Mathematical
Programming Computation, 11(1), 1–36.

Andersson, L.E., Bradford, E.C., and Imsland, L. (2020).
Gaussian processes modifier adaptation with uncertain
inputs for distributed learning and optimization of wind
farms. IFAC-PapersOnLine, 53(2), 12626–12631.

Chen, C.Y. and Joseph, B. (1987). On-line optimization
using a two-phase approach: An application study. In-
dustrial & engineering chemistry research, 26(9), 1924–
1930.

de Avila Ferreira, T., Shukla, H.A., Faulwasser, T., Jones,
C.N., and Bonvin, D. (2018). Real-time optimization
of uncertain process systems via modifier adaptation
and gaussian processes. In 2018 European Control
Conference (ECC), 465–470. IEEE.

del Rio Chanona, E.A., Graciano, J.A., Bradford, E.,
and Chachuat, B. (2019). Modifier-adaptation schemes
employing gaussian processes and trust regions for real-
time optimization. IFAC-PapersOnLine, 52(1), 52–57.

del Rio Chanona, E.A., Petsagkourakis, P., Bradford, E.,
Graciano, J.A., and Chachuat, B. (2021). Real-time op-
timization meets bayesian optimization and derivative-
free optimization: A tale of modifier adaptation. Com-
puters & Chemical Engineering, 147, 107249.

Forbes, J., Marlin, T., and MacGregor, J. (1994). Model
adequacy requirements for optimizing plant operations.
Computers & chemical engineering, 18(6), 497–510.

Foss, B., Knudsen, B.R., and Grimstad, B. (2018).
Petroleum production optimization–a static or dynamic
problem? Computers & Chemical Engineering, 114,
245–253.

François, G. and Bonvin, D. (2014). Use of transient
measurements for the optimization of steady-state per-
formance via modifier adaptation. Industrial & Engi-
neering Chemistry Research, 53(13), 5148–5159.

Gao, W., Wenzel, S., and Engell, S. (2016). A reliable
modifier-adaptation strategy for real-time optimization.
Computers & chemical engineering, 91, 318–328.

Gramacy, R.B. (2020). Surrogates: Gaussian process mod-
eling, design, and optimization for the applied sciences.
Chapman and Hall/CRC.

Marchetti, A., Chachuat, B., and Bonvin, D. (2010). A
dual modifier-adaptation approach for real-time opti-
mization. Journal of Process Control, 20(9), 1027–1037.
doi:https://doi.org/10.1016/j.jprocont.2010.06.006.
ADCHEM 2009 Special Issue.

Marchetti, A., Chachuat, B., and Bonvin, D. (2009).
Modifier-adaptation methodology for real-time opti-
mization. Industrial & engineering chemistry research,
48(13), 6022–6033.

Marchetti, A.G., François, G., Faulwasser, T., and Bonvin,
D. (2016). Modifier adaptation for real-time optimiza-
tion—methods and applications. Processes, 4(4), 55.

Matias, J., Oliveira, J.P., Le Roux, G.A., and Jäschke,
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