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Abstract 

Automatic detection of steady state periods is a necessary step for many tasks related to 

real time operation of a process. Based on the insight that the time series of a controlled 

process variable at steady state resembles a mean reverting process, we fit a first order 

auto-regressive model to a window of data and use the Dickey-Fuller test to test for this 

mean reverting property. We compare the proposed approach on two synthetic data sets 

and one experimental data set and find that the method performs well in comparison to 

methods in the literature. As the method is computationally inexpensive, only requires 

two parameters, and is interpretable, we suggest that this is an effective steady state 

detection tool. 
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1. Introduction 

The identification of steady state periods in industrial process operations is an essential 

initial step for many typical tasks, e.g. parameter estimation, abnormal event 

identification, and real time optimization. Incorrect identification of steady state can 

severely impact operation, e.g., updating a steady state model with dynamic data can lead 

to reduced profits and/or unstable operation. Although steady state can be reliably 

identified by human operators (in low-dimensional data), the automatic identification of 

steady state, especially with substantial amounts of online data in high dimensions, is still 

challenging.  In this work we use the Dickey-Fuller test to identify steady state time 

windows, and demonstrate it’s effectiveness in comparison to other methods in the 

literature based on a their perforance on experimental and synthetic data.  

 

Most approaches in for steady state detection in the process engineering literature use 1) 

a statistical test, or 2) a classification based machine learning method. In this work we 

focus on the former due to their interpretability, and simple transfer between applications 

due to their relatively small amount of tuning parameters. Methods relying on statistical 

tests either tend to perform this test on characteristic values of the system or parameters 

of a model fitted to online data (Rhinehart, 2013). A key difference between such methods 

is in the construction of the statistical test, i.e. whether steady state is the null or alternate 

hypothesis. Although most methods have steady state as the null hypothesis, 

identification of steady state by the alternate hypothesis is a statistically stronger claim 

(Rhinehart, 2013). 

 

In this work we fit an auto-regressive (AR) model and use the Dickey-Fuller test to test 

the null hypothesis that the process is transient. The method is simple to tune, having only 
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two parameters: the size of the time window and the significance level used in the 

statistical test. In process engineering, the Dickey-Fuller test has been used in fault 

detection, however to the authors knowledge it has not been applied to steady state 

detection. 
 

2. Background literature 

We briefly outline three methods from the steady state detection literature that make use 

of a statistical test. In all these methods some quantity based on recent measurements is 

determined (e.g. a slope), and a statistical test is performed on this quantity (Rhinehart, 

2013).  Furthermore, in the first two methods we consider a rolling time-window of N 

recent measurements. 

 

2.1 Method 1: Slope of a line 

The simplest approach to steady state detection is to fit a linear model to the data: 

𝑦𝑘 = 𝑚𝑡𝑘 + 𝑐 (1) 

where y is a measured process variable, tk is the kth time point, m is a slope, and c the 

intercept. After fitting this line by linear least squares, one can check the null-hypothesis 

of steady state by testing if the slope is zero using a t-test at some significance level. 

However, this approach violates some assumptions, in particular the y variables at 

different time points are not independent, i.e. yk+1 depends on yk, and yk-1 and so on.  

2.2 Method 2: Kelly and Hedengren 

In this approach, we test if the process can be described as being at some value, and 

subjected to independent, identically distributed white noise (Kelly and Hedengren, 

2013). As before, we consider the linear model in equation 1. To estimate the parameters 

averages of the intercept, c, and gradient, m, are used. Note that if there is gradient is zero 

then the intercept is the mean value. If the data is sampled uniformly in time by Δt, then 

these are given by: 

𝑚 =
1

𝑁Δt
∑ 𝑦𝑘 − 𝑦𝑘−1

𝑁

𝑘=2

 

(2) 

𝑐 =
1

𝑁
(∑ 𝑦𝑘 − 𝑚Δ𝑡

𝑁

𝑘

) 

(3) 

The standard deviation of the noise, 𝜎𝑛, can then be estimated as: 

𝜎𝑛 = √
∑ (𝑦𝑘 − 𝑚𝑡𝑘 − 𝑐)2𝑁

𝑘

𝑛 − 2
 

(4) 

Lastly, steady state identification is performed pointwise by checking if the deviation of 

the data point from the intercept is within a factor of the standard deviation of the noise. 

This cut-off point is given by a Student’s critical value, tcrit, at some significance level 

and degree of freedom N: 

𝑠𝑘 = {
1  if |𝑦𝑘 − 𝑐| ≤ 𝑡𝑐𝑟𝑖𝑡𝜎𝑛

0 else
 

(5) 

𝑆 =
1

𝑁
∑ 𝑠𝑘

𝑁

𝑘=1

 

(6) 
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where S represents the fraction of time in the window “at steady state”. If 𝑆 ≥ 0.5, then 

the entire window is at steady state.  

 

2.3 Method 3: Cao and Rhineheart 

This method relies on the idea that the ratio of two different estimates of the time series’ 

variance at the same time point should be close to one when the process is at steady state 

(Cao & Rhinehart, 1995). The first estimate of the variance at tk, 𝜎1,𝑘
2 , is given by the 

filtered squared difference between the process measurement, and a filtered value of the 

measurement, 𝑦𝑓,𝑘. First the filtered measurement is calculated, and used to calculate a 

filter of the mean square deviation, 𝑣𝑘
2: 

𝑦𝑓,𝑘 = 𝜆1𝑦𝑘 + (1 − 𝜆1)𝑦𝑓,𝑘−1 (7) 

𝑣𝑘
2 = 𝜆2(𝑦𝑘 − 𝑦𝑓,𝑘)

2
+ (1 − 𝜆2)𝑣𝑘

2 (8) 

Assuming the process is at steady state and the measurements are uncorrelated, then the 

variance, 𝜎1,𝑘
2 , can be directly estimated as (Cao & Rhinehart, 1995):   

𝜎1,𝑘
2 =

2 − 𝜆1

2
𝑣𝑘

2 
(9) 

The second estimate of the variance, 𝜎2,𝑘
2 , is given by filtering the difference between two 

consecutive measurements: 

2𝜎2,𝑘
2 = 𝜆3(𝑦𝑘 − 𝑦𝑘−1)2 + (1 − 𝜆3)2𝜎2,𝑘−1

2  (10) 

Lastly, the ratio of these two variances are taken to calculate an R statistic: 

𝑅𝑘 =
𝜎1,𝑘

2

𝜎2,𝑘
2  

(11) 

The null hypothesis is that the process is steady, corresponding to a ratio close to 1. If 𝑅𝑘 

is greater than some critical value, 𝑅𝑐𝑟𝑖𝑡 then the null hypothesis is rejected.  

 

3. Proposed method  

The proposed method is based on the insight that the time series of a controlled process 

variable at steady state, subject to stochastic disturbances, resembles that of a mean 

reverting process, i.e. it tends to some mean point despite the stochasticity of the system. 

In the example of a controlled process unit, this would be due to the relevant controllers 

rejecting disturbances, or the system settling to a new operation point. 

 

The first step in the appraoch is to find the mean value in the time window, 𝜇, and subtract 

this from each data point: 

𝑦̃𝑘 = 𝑦𝑘 − 𝜇 (12) 

Then we consider the first order auto-regressive (AR) model: 

𝑦̃𝑘+1 = 𝑝𝑦̃𝑘 + 𝑛𝑘 (13) 

where 𝑦̃𝑘  is the transformed measurement at time 𝑡𝑘, 𝑛𝑘 is some random variable with 

mean zero and finite variance, and 𝑝 is a variable estimated by linear least squares on the 

data in the time window. A value of |𝑝| < 1 means that the process is mean reverting, as 

as the absolute disturbance from the mean will deterministically decrease at each iteration. 

After estimating  𝑝̂, we then perform a one-sided confidence test on the null-hypothesis 

that |𝑝| = 1, i.e. the process is in a transient state, by calculating the test statistic 𝜏: 
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𝜏 = (𝑝̂ − 1)√
(𝑁 − 2) ∑ 𝑦̃𝑘

2𝑁
𝑘=2

∑ (𝑦̃𝑘 − 𝑝̂ 𝑦̃𝑘−1)2 𝑁
𝑘=2

 

(14) 

If the test statistic is less than the critical value from the Dickey-Fuller distribution then 

the null hypothesis is rejected, i.e. the process is at steady state.  The critical values can 

be found from response surfaces fit to the distribution (MacKinnon 2010). The asymptotic 

results of this test do not require assumptions of normality or homoscedasticity 

(MacKinnon 2010). Lastly, note that if the process variable is controlled off-set free to 

some set-point, then one could use the set-point instead of calculating the mean value. 

4. Results 

We compare the proposed method (DF) against the line slope, Cao & Rhinehart (CR, 

1995) and Kelly & Hedengren (KH, 2013) methods on two synthetic data sets and one 

experimental data set.. For brevity these acronyms are used throughout this section. For 

these data sets we label steady state and transient periods based on 1) knowledge of when 

the system inputs are changing and 2) inspection of the data in the time windows. For the 

methods with time windows and significance level as hyper-parameters we use a time 

window of 30 seconds, and significance level of 95%. For the method of Cao & Rhinehart 

(1995) we use the recommended values of 𝜆1 = 0.2, 𝜆2 = 𝜆3 = 0.1, 𝑅𝑐𝑟𝑖𝑡 = 2. 

 

4.1 Low level of normally distributed noise 

We first consider a synthetic example with a low level of Gaussian noise. This is an easier 

task than the others and therefore serves to give a baseline of the methods performance. 

The results are summarized in Figure 1. From a visual inspection, the proposed DF 

method performs the most consistently, with the worst performance by the slope method. 

For all the methods the primary source of error is due to the delay that occurs when the 

system goes from transient to steady state (around 180s, 360s, and 540s in Figure 1). In 

contrast, the transition from steady to transient state is captured without a significant 

delay. The transition to steady state is harder to detect due to the presence of the transient 

in the time window, as this heavily influences the fit of the models and the filtered 

variance. Note that if the DF method is used with a set-point instead of the mean then this 

delay would be reduced, i.e. the delay for this approach comes from taking the mean of 

the data.  

 

4.2 Moderate level of t-distributed noise 

In this comparison we consider the same process as in section 4.1, but now use t-

distributed noise, with a larger variance, instead of Gaussian noise. The t-distribution has 

heavier tails than the normal distribution leading to a high probability of “high-

magnitude” noise, leading to  a more challenging classification. The experiment is 

summarized in Figure 2, with “spikes” due to change in distribution clearly shown in 

Figure 2a. The aim of using this distribution is 1) to test the methods against higher noise 

levels, 2) to test against non-normally distributed noise.  

 

Apart from the general decrease in performance, the clearest difference when comparing 

Figure 2b vs 1b is that DF, KH, and CR have a higher rate of false identification of steady 

state. This does not occur with slope method, as this approach is extremely sensitive to 

noise. As in section 4.1 the DF method has the best performance.  
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a b 

Figure 1: Synthetic data with low levels of Gaussian noise and identified steady state periods 

(A), and steady state predictions (B). In A and B, a steady state flag of 1 indicates steady state. 

The shaded red regions in B indicate a mismatch between the predicted and true system state 

 

  
a b 

Figure 2: Synthetic data with moderate levels of t-distributed noise and steady state periods (A), 

and steady state predictions (B). 

 

  
a b 

Figure 3: Experimental data with steady state periods (A), and steady state predictions (B) 

4.3 Experimental data 

Lastly, we consider the steady state algorithms applied to real experimental measurements 

from a lab rig with the experiment summarized in Figure 3, and Table 1. 
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Table 1: Summary statistics of the steady state detection algorithms applied to the experimental 

data, shown in Figure 3. The bolded entries indicate the best method for a statistic 

STATISTIC DF KH CR SLOPE 

PRECISION 0.85 0.83 0.81 0.86 

RECALL 0.90 0.78 0.89 0.44 

F1 SCORE 0.87 0.81 0.85 0.58 

𝝓 COEFFICIENT 0.60 0.46 0.51 0.29 

 

This is a real system with a relatively large amount of noise, leading to worse performance 

compared to the synthetic results by all the methods. In addition there are two step 

changes between 500 and 600 seconds, which results poorer performance in this section, 

as shown in Figure 3. A positive aspect of the CR and DF methods are that they are more 

consistent as they have much less false flags within the SS and transient periods. 

Summary statistics of the methods on this data set are shown in Table 1 and serves as 

quantitative evidence of the visually better performance of the DF method in Figure 3. 

Precision is the fraction of correct SS predictions over all SS predictions, while recall is 

the fraction of correct SS predictions over all true SS periods. The F1 score is the 

harmonic mean of precision and recall. Lastly the 𝜙 coefficient is a balanced metric that 

requires reliable performance in both SS and TS prediction. In general, the proposed DF 

method performs the best, except for the precision metric where the simple line slope 

method performs similarly due to rarely identifying steady state, as shown in Figure 3. 

 

5. Conclusions 

In conclusion, we present the application of the Dickey-Fuller test for use in steady state 

detection and compare it with other methods in the literature on a range of examples. 

Based on summary statistics of these methods, the Dickey-Fuller test performs the best 

overall. The method is simple to implement and only requires two-hyperparameters.  

Further work could extend the approach to multivariet system using approaches suggested 

in the literature (Rhinehart, 2013, Kelly and Hedengren, 2013). 
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