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Abstract 

Subsea pump systems are subject to many possible faults and monitoring typically relies 

on the measurements of key process variables. However, the measurements themselves 

may be subject to faults like e.g., bias. In this work, a method that combines fault detection 

and isolation, observability analysis and state estimation is presented and tested on a 

simulated pump system. The results indicate that a state estimator with correct 

information about which sensor has drifted gives lower estimation error than a state 

estimator that does not consider bias. Furthermore, we show that it is impossible to 

estimate the bias on all sensors simultaneously due to observability issues of the 

augmented system.  
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1. Introduction 

Subsea pumping systems operate in harsh environments for long periods, 

making the maintenance of these pumps challenging and costly. Condition monitoring is 

crucial to keep these subsea pumps running for long periods and to reduce the possibility 

of accidents. The pumps are subject to several potential faults, and it is desirable to use 

measurements to detect if something is going wrong. However, the sensors that provide 

these measures are also susceptible to faults (e.g., gross errors). These gross errors arise 

from sensors malfunctioning and can significantly impact the monitoring and controlling 

of the subsea pump.  

Given the long operation times of subsea pumps, the long-term faults (e.g., bias) 

are more challenging to detect than other abrupt changes. It is desirable to detect and 

isolate these biases as soon as possible and, if practicable, estimate their magnitude. 

Approaches to deal with these sensor biases can be classified as passive or active. The 

passive methods apply robust estimators like M-estimators, robust Kalman Filter (KF), 

and robust Moving Horizon Estimation (MHE) (Siddhartha et al., 2022). Passive methods 

efficiently handle gross errors, but no information about the bias's location and size is 

generated. The location of the gross errors is a valuable information for maintenance and 

process monitoring. On the other hand, active methods try to estimate these biases, 

usually representing the bias as a new time-dependent continuous parameter on the state 

estimation problem (Gatzke & Doyle III, 2002). However, observability problems usually 

arise (Gatzke & Doyle III, 2002).  
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In this paper, we propose to combine fault detection and isolation (FDI) 

methods, observability analysis and state estimators in the context of a subsea pump 

system. In our methodology, i) FDI is used to identify sensors with bias. ii) Then an 

observability analysis is performed to check if it is possible to estimate that bias, and iii) 

then the state estimator is extended with a bias parameter to be estimated. The FDI 

reduces the number of biases to be estimated, and the observability analysis assurances 

that the bias can be estimated without worsening the state estimator's performance. This 

illustrates how attempting to estimate sensor bias without any a priori information of 

which sensors are failing is impractical and how combining FDI with state estimators can 

improve the estimation significantly. Furthermore, a Monte Carlo analysis is performed 

to show the advantages and limitations of that approach in multiple scenarios. 

2. Case study: Subsea pump system 

We consider a simple subsea booster pump system, as shown in Figure 1. A 

mixture of oil and water comes from the reservoir at pressure 𝑝1. The pump runs with a 

variable speed drive (VSD) at 𝜔 rpm, which produces a specific head, 𝐻. Given the 

density of the fluid, 𝜌, one can calculate the pressure at the outlet of the pump, 𝑝2. The 

pressure 𝑝3 is determined by downstream facilities (oil platform). The choke valve has an 

opening of 𝑍 %. The three pressures are measured, and a Venturi flowmeter measures the 

pressure drop over an internal orifice (not shown). 

 

Figure 1: The subsea booster pump with its installed sensors. FT is a Venturi flowmeter. 

2.1. Pump model 

Sensor bias is a phenomenon that typically takes place in the timescale of months 

and years. The pressure and density changes in the reservoir are on the same timescale, 

and we assume the pressure on the oil platform has the same trend as the reservoir 

pressure. On the other hand, phenomena such as transient flow regimes happen almost 

instantly in the timescale of seconds. This motivates the use of a quasi-steady state model, 

where changes in the reservoir and 𝑝3 are modelled dynamically and the pump is modeled 

in steady-state (and therefore the time-subscript is 𝑘 + 1 on both sides of the equality sign 

in (4)-(6)). It is assumed that 𝑝1 and 𝑝3 decreases at the same rate, hence, they have the 

same parameter 𝜃𝑃,1. The faultless system is described by: 

𝑝1,𝑘+1 = 𝑝1,𝑘 + 𝜃𝑃,1Δ𝑡 + 𝑤𝑝1,𝑘   (1) 

𝜌𝑘+1 = 𝜌𝑘 + 𝜃𝜌Δ𝑡 + 𝑤𝜌,𝑘 (2) 

𝑝3,𝑘+1 = 𝑝3,𝑘 + 𝜃𝑃,1Δ𝑡 + 𝑤𝑝3,𝑘   (3) 

𝑝2,𝑘+1 = 𝑝1,𝑘+1 + 𝜌𝑘+1𝑔𝐻𝑘+1 + 𝑤𝑝2,𝑘 (4) 
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𝑞𝑘+1 = 𝐶𝑣𝑍𝑘+1√
𝑝2,𝑘+1 − 𝑝3,𝑘+1

𝜌𝑘+1

 + 𝑤𝑞,𝑘  
(5) 

where the head at time 𝑘, 𝐻𝑘, is found by using the so-called pump curve. 

𝐻𝑘+1 = 𝜃𝐻0
𝜔𝑘+1  + 𝜃𝐻1

𝑞𝑘+1𝜔𝑘+1  + 𝜃𝐻2
𝑞𝑘+1

2  (6) 

 The states are 𝒙𝑘 = [𝑝1,𝑘 , 𝑝2,𝑘 , 𝑝3,𝑘 , 𝜌𝑘 , 𝑞𝑘]
𝑇
 and the state-propagation equations 

(1)-(5) can be written in the form of 𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝒖𝑘+1, Δ𝑡) + 𝒘𝑘. The stochastic process 

noise is defined as 𝒘𝑘 = [𝑤𝑝1,𝑘 , 𝑤𝑝2,𝑘, 𝑤𝑝3,𝑘 , 𝑤𝜌,𝑘 , 𝑤𝑞,𝑘]
𝑇

∼ (𝟎, 𝑸𝑘). The process noise 

distribution is assumed to be constant at 𝒘𝑘 ∼ 𝒩(𝟎, 𝑸) where 𝑸 = 10−5𝑰. The parameter  

values are 𝜽 = [𝜃𝑃,1, 𝜃𝜌, 𝜃𝐻0
, 𝜃𝐻1

, 𝜃𝐻2
, 𝑔, 𝐶𝑣] = [−5.0,5.0,3.51 × 10−5, 3.29 ×

10−4, −0.01, 9.8𝑚/𝑠2, 47.50 𝑚3/ℎ]𝑇,where 𝑔 is the gravitational constant and 𝐶𝑣 is the 

valve constant. The remaining parameters describe the evolution of pressure and density 

in time. The initial conditions for all the simulations were 𝒙0 =
[50.0 𝑏𝑎𝑟, 64.5 𝑏𝑎𝑟, 51.0 𝑏𝑎𝑟, 700 𝑘𝑔/𝑚3, 136.6 𝑚3/ℎ]𝑇 and 𝒖0 =
[65 %, 3500 𝑟𝑝𝑚]𝑇. When there is no bias in the sensors, the sensor equations are: 

𝒚𝑘 = 𝒉(𝒙𝑘) + 𝒗𝑘 = [𝑝1,𝑘 , 𝑝2,𝑘 , 𝑝3,𝑘 ,
𝜌𝑘(1 − 𝛽4)

2
(

4𝑄𝑘

𝜋𝑑2𝐶𝜖
)

2

]

𝑇

+ 𝒗𝑘  
(7) 

where 𝐶 = 1.01 is the flow coefficient, 𝜖 = 1 is the expansibility factor, 𝑑 = 0,0525𝑚𝑚 

is the Venturi throat diameter, 𝐷 = 0,154𝑚 is the internal pipe diameter and 𝛽 = 𝑑/𝐷. 

The measurement noise is distributed as 𝒗𝑘 ∼ 𝒩(𝟎, 𝑹), where 𝑹 =
𝑑𝑖𝑎𝑔([0.1035, 0.1035, 0.1035, 𝑅𝑣𝑒𝑛𝑡𝑢𝑟𝑖]). 

2.2. Pressure sensor bias  

Sensor bias is a constant systematic error in measurement and sensor drift is a 

time-varying bias in the sensor. Hence, the measurement equation (7) must account for 

these biases and drift in the following manner, where 𝒚𝑘
𝑑 is the bias/drift value at time 𝑘 

and 𝒚𝑘
′  is the measurement equation with bias/drift: 

𝒚𝑘
′ = 𝒚𝑘 + 𝒚𝑘

𝑑 = 𝒉(𝒙𝑘) + 𝒗𝑘 + 𝒚𝑘
𝑑 (8) 

 To estimate the bias/drift, we augment the state vector and model the bias/drift 

as a random walk. The augmented model is now given by 

𝒙𝑘+1
𝑎 = [𝒙𝑘+1, 𝒚𝑘+1

𝑑 ]
𝑇

= [𝒇(𝒙𝑘, 𝒖𝑘+1, Δ𝑡), 𝒚𝑘
𝑑]

𝑇
+ [𝒘𝑘 , 𝒘𝑦𝑑,𝑘]

𝑇
 (9) 

where 𝒘𝑦𝑑,𝑘 ∼ 𝒩(𝟎, 𝑸𝒚) is the distribution describing the steps of the random walk. 

3. Combining fault detection and observability analysis to state and bias 
estimation. 

The simultaneous estimation of states and biases in all the sensors 

simultaneously can make the system non-observable. To avoid these problems, this work 

combines FDI methods and observability analysis with state estimation. Figure 2 

illustrates the methodology. The first step consists of the residual generation. The 

measurement (𝑦𝑘
′ ), which may have a bias or drift, is compared to the model’s predicted 

measurement (𝑦̂𝑘). Then this residual is evaluated by a statistical test that is aimed in 
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deciding if the system is fault-free or which sensor has drifted. After that, an observability 

analysis is performed to evaluate if the identified bias can be estimated. In the positive 

case, a new term is included on the state estimator as described in section 2.2 to track the 

bias/ drift on the failing sensor. Otherwise, the standard state estimation is performed 

without adding additional bias terms. 

 

Figure 2: Conceptual flowsheet of how FDI-technique is used to update the structure of the state 

estimator. 

3.1. Residual evaluation for bias detection 

  Three residuals are made, one for each pressure sensor, which consists of the 

difference between the model prediction and the measurement. Assuming a perfect 

model, it is possible to identify a bias in the pressure measurements since these residuals 

should be zero mean in a normal operating condition and different from zero when a bias 

occurs. To evaluate if the residuals are different from zero, the statistical method called 

cumulative sum control chart (CUSUM) was used (Blanke, 2016).  A Gaussian 

distribution was assumed to represent the residual distribution (𝒩(𝟎, 𝑹)), and any 

deviation higher than five times the standard deviation would correspond to a fault. 

3.2. State estimation and Observability analysis 

We used the Unscented Kalman filter (UKF) to obtain the optimal estimate of 

the true state and bias (Simon, 2006, ch. 14). The bias terms were included on the UKF 

as time-dependent continuous parameter as described in section 2.2. The concept of 

observability tells us if we can uniquely determine the state given some measurements, 

which is a requirement for state estimators to work. For linear systems, observability can 

be checked by verifying if the observability matrix has full rank. See Simon (2006, ch. 

1.7.2) for a definition of the observability matrix and a discussion about observability for 

linear systems. In our work, we linearized the model and checked the rank of the 

observability matrix for the linearized model. If the (augmented) system is not observable, 

we did not include the bias term in the state estimator and used the fault-free estimator as 

Figure 2 shows. 

4. Results  

The results section is divided into two parts. First, in section 4.1, an illustrative 

simulation shows how a previous bias detection and isolation step can improve the state 

estimation process. Then, in section 4.2, a Monte Carlo analysis is performed to evaluate 

the method's performance in different scenarios. 
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4.1. Estimator with information of bias location 

 

Figure 3- Comparison of true state (black), pressure measurements (red) and the estimates using 

UKFb (blue) and UKFfdb (green). Bias was introduced on the measurements of sensor PT1. 

The model described in Section 2 was solved for a time window of 40 samplings. 

After 20 samples, a constant bias of 2 bar is added to the pressure sensor one (PT1). Two 

methodologies are compared in this scenario; first, the UKF with bias estimation (UKFb), 

where the estimators try to estimate the bias on the three sensors since the beginning of 

the window. Hence, the augmented state dimension is 5 + 3 = 8 through the entire time.  

Second, our proposed method described in Section 3 is applied (UKFfdb). Here, 

the state dimension is 5 before sampling time 20 and after a successful FDI and 

observability procedure it is 6. The results of the simulation is presented in Figure 3. The 

results indicate that the observability problems of adding new bias parameters to be 

estimated arise even for a small system like the subsea pump. UKFb fails to estimate the 

states and bias in all three sensors, even before the bias is added to the measurements on 

sensor PT1. In fact, the observability analysis showed that the states are non-observable 

when three bias terms are included on the estimator.  

However, when just one bias term is included on the estimator, the states and the 

bias are observable. This explains why the UKFfdb could obtain a good estimate of the 

states and the bias on sensor PT1. UKFfdb had a slight delay in detecting the bias on sensor 

PT1. After that, the observability is verified, and the information on which sensors are 

failing is sent to the state estimator. 

 

4.2. Monte Carlo analysis 

   In order to perform a comprehensive analysis of the methodology, a Monte Carlo 

analysis was performed. This study compared three approaches: UKFb, UKFfdb and the 

“standard” UKF without bias estimation. All the simulations started from the same initial 

condition, with 100 samplings as a time window. Three hundred random samples of 

different simulation features were used: time to insert the bias (between 10 and 80 

samples), the magnitude of the bias (-2 bar to 2 bar), control profile (pump speed and 
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valve opening), sensor location of the bias (sensor 1, 2 or 3) and bias or drift. The results 

of the simulations are summarized in Table 1.  

The results show that the UKFb has poorer performance than the UKF. The 

system's observability must be checked before including new bias parameters to be 

estimated. The standard UKF is the best option in cases of non-observable states. 

However, when a fault detection and isolation method is applied, there is no need to 

include a bias term in the UKF for each sensor. Instead, only after the bias is detected a 

new term can be added to the UKF. The UKFfdb had a better performance in terms of state 

estimation. Besides that, it can also provide a reasonable estimate of the bias in the 

sensors, which is a valuable information for pump system monitoring. 

Table 1: Root-mean-square error states and bias over 300 simulations. * is “sampling instances”. 

 RMSE  
Bias 

correctly 

Located 

[%] 

Average 

delay 

 

[*] 

bias 

 

 

[bar] 

p1 

 

 

[bar] 

p2 

 

 

[bar] 

p3 

 

 

[bar] 

ρ 

 

 

[kg/m3] 

Q 

 

 

[m3/h] 

H 

 

 

[m] 

UKF - - - 0.74 0.77 0.75 24.97 2.54 3.15 

UKFb - - 4.89 2.32 3.57 1.92 273.61 2.40 3.08 

UKFfdb 86.00 14.96 0.52 0.42 0.41 0.44 10.86 2.58 3.21 

5. Conclusion  

An approach to monitor and estimate sensor bias on subsea booster pump system 

was numerically evaluated. The results suggest that estimating sensor bias without any a 

priori information about which sensors are failing is impractical. Therefore, combining 

fault detection and observability analysis techniques with sensor estimators can improve 

the estimation significantly and provide helpful information for system monitoring. A 

more thorough structural and local observability check should be applied in future works.  
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