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Abstract 

The PID controller is widely used, and several methods have been proposed for choosing 

the controller parameters to achieve good performance. The controller tuning problem is 

set up as a semi-infinite program (SIP), with the integrated squared error (ISE) or the H∞ 

norm of the frequency domain error function (|𝐸(𝑠)|∞) as the objective function, and H∞ 

constraints for robustness and noise attenuation. Previous authors considered discrete 

points to enforce the H∞ constraints, however this is an outer approximation that does not 

guarantee a feasible point. When a feasible point can be found, it may require multiple 

iterations with a finer and finer discretisation. Here, the SIP is solved using a global 

optimisation algorithm. Several numerical experiments show that the proposed 

formulation converges quickly (<10 seconds) and gives sensible controller tuning values 

without the need to apply expert knowledge to the tuning problem. These results suggest 

that this is an attractive method for automated controller tuning.  
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1. Introduction 

The PID controller has found widespread use in industry and there are many methods in 

the literature to tune PID parameters. Typically, tuning involves a trade-off between 

rejecting disturbances and robustness to uncertainty (Åström and Hägglund, 2006).  

Finding parameters by trial and error is time-intensive, which has led to the formulation 

of tuning rules, e.g. the Ziegler-Nichols tuning rule and SIMC, see Åström and Hägglund 

(2006) for an overview. An alternative to tuning rules, is to find controller parameters by 

solving an optimisation problem. Optimisation-based tuning is a powerful tool, especially 

when system complexity, non-standard parameterisations, or requirements on 

performance and robustness mean that tuning rules are ill-suited (Grimholt and 

Skogestad, 2018; Åström and Hägglund, 2006).  

 

Balchen (1958) presented the first “modern” formulation of the PID optimisation 

problem, that explicitly included a performance and robustness trade off. Since then, 

various authors have proposed different formulations, see e.g. Soltesz et al. (2017). Here, 

we place constraints on the H∞ norm of transfer functions, i.e. the constraints should be 

satisfied for all considered frequencies (𝑤 ∈ Ω ⊂ ℝ+), which means there are an infinite 

number of constraints (Grimholt, and Skogestad, 2018; Soltesz et al. 2017).   
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Previous authors (Grimholt, and Skogestad, 2018; Soltesz et al. 2017) discretised the 

frequencies to form a finite problem, e.g., Grimholt, and Skogestad (2018) used 10 000 

points. This is an outer approximation that does not guarantee a feasible point. It also 

raises the problem of how to select the discretisation frequencies. If we consider the PID 

tuning problem as one in which the constraints must be satisfied, then this means that 

multiple iterations with a finer discretisation or the use of expert knowledge to choose a 

good prior discretisation may be necessary. 

In this work we use the global optimisation algorithm proposed by Djelassi and Mitsos 

(2017) to solve the semi-infinite PID tuning problem. This algorithm iteratively solves 

discretised subproblems, where at each iteration a new discretisation point is added at the 

frequency that results in the largest constraint violation at the incumbent solution. To 

facilitate the global optimisation algorithm, we use an objective function in the frequency 

domain. Initial results show that the proposed formulation converges in reasonably quick 

computation times (<10 seconds) and gives sensible controller tuning values without the 

need to apply expert knowledge to the tuning problem. 

 

1.1. System 

We consider the closed loop 

linear system in Figure 1, 

with disturbances at the plant 

input and output (du and dy), 

and noise (𝑛) entering the 

system at the measurement 

output. The system is 

represented by the following 

transfer functions (Åström 

and Hägglund, 2006): 

𝑆(𝑠) =
1

1 + 𝐺(𝑠)𝐾(𝑠)
,          𝑇(𝑠) = 1 − 𝑆(𝑠),                𝑇𝐹(𝑠) = 𝑇(𝑠)𝐹(𝑠),  

𝐺𝑆(𝑠) = 𝐺(𝑠)𝑆(𝑠),                𝐾𝑆(𝑠) = 𝐾(𝑠)𝑆(𝑠),            𝐾𝐹𝑆(𝑠) = 𝐾(𝑠)𝐹(𝑠)𝑆(𝑠), 

where 𝑠 is the complex frequency (𝑠 = 𝑖𝑤), and 𝑆(𝑠) and 𝑇(𝑠) are the sensitivity and 

complementary sensitivity functions, respectively. Here, we consider the case of pure 

error feedback (𝐹 = 1). The controller error, 𝐸, is the difference between the measured 

output (𝑦) and setpoint (𝑦𝑠): 

−𝐸(𝑠) = 𝑦 − 𝑦𝑠 = 𝑆(𝑠)𝑑𝑦 + 𝐺𝑆(𝑠)𝑑𝑢 − 𝑇(𝑠)𝑛. (1) 

In this work we consider PID controllers that are parameterised in the linear form: 

𝐾(𝑠) = 𝑘𝑝 +
𝑘𝑖

𝑠
+ 𝑘𝑑𝑠, (2) 

where 𝑘𝑝, 𝑘𝑖, and 𝑘𝑑 are the tuning parameters. In this form the optimiser can selected a 

PID subtype, e.g. setting 𝑘𝑑 to zero yields a PI controller. 

 

Figure 1. Block diagram of closed loop system. K(s) is the 

controller, G(s) is the process and F(s) is the filter. 
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1.2. Objective  

We wish to pick control parameters that minimise the error after some disturbance. 

Various performance indices have been proposed, with the most widely used measure 

being the integral absolute error (IAE): 

𝐼𝐴𝐸 =  ∫ |𝑒(𝑡)|
∞

0

𝑑𝑡. (3) 

This formulation requires the error function in the time domain (𝑒(𝑡)). Finding the time 

domain error function generally involves explicit simulation or taking the inverse Laplace 

transform. Balchen (1958) proposed the use of a performance index in the frequency 

domain that approximates the IAE. The rationale behind the approximation is that 

|𝑒(𝑡)| = 𝑒(𝑡)
|𝑒(𝑡)|

𝑒(𝑡)
, where if 𝑒(𝑡) is oscillatory then the fraction defines a square wave. 

The IAE can then be approximated by introducing a sine wave with free parameters 𝑤 

and 𝑎, that are chosen to maximise the integral, i.e. reduce the approximation error. This 

allows one to write the objective in the frequency domain: 

𝐼𝐴𝐸 =  ∫ |𝑒(𝑡)|
∞

0

𝑑𝑡 ≈ max
a,w

∫ 𝑒(𝑡)sin (𝑤𝑡 + 𝑎)
∞

0

𝑑𝑡 (4) 

= max
𝑤

|𝐸(𝑖𝑤)| = |𝐸(𝑠)|∞ = 𝐻𝐼𝐸,  

where |⋅|∞ is the H∞ norm. For convenience, we shall refer to this as the H-infinity error 

(HIE). The HIE is bounded by the integral error (IE) and IAE: 𝐼𝐸 ≤ 𝐻𝐼𝐸 ≤ 𝐼𝐴𝐸. If the 

system is well-dampened, then 𝐼𝐸 ≈ 𝐻𝐼𝐸 ≈ 𝐼𝐴𝐸. Using Parseval's theorem, the integral 

squared error can be (exactly) represented in the frequency domain: 

𝐼𝑆𝐸 =  ∫ 𝑒(𝑡)2
∞

0

𝑑𝑡 =
1

𝜋
∫ |𝐸(𝑖𝑤)|2𝑑𝑤

∞

0

. (5) 

1.3. Robustness 

We enforce robustness by constraining the maximums in the sensitivity and 

complementary sensitivity functions MS and MT, where 

𝑀𝑆 = |𝑆(𝑖𝑤)|∞,                          𝑀𝑇 = |𝑇(𝑖𝑤)|∞.     

The magnitude of MS and MT, describe the sensitivity of the system to process uncertainty 

or change, e.g., MS gives the worst-case amplification of a disturbance and, on a Nyquist 

plot, is the distance from the loop transfer function to the point (-1,0).  

 

Constraining the magnitude of MS and MT defines circles on the Nyquist plot that the loop 

transfer function must lie out of. A combined sensitivity constraint can be defined that 

covers both excluded regions. For 𝑀 = 𝑀𝑆 = 𝑀𝑇 , this constraint is a circle on the Nyquist 

plot with centre (C, 0) and radius R given by (Åström and Hägglund, 2006): 

𝐶 =  −
2𝑀2 − 2𝑀 + 1

2𝑀2 − 2𝑀
,                               𝑅 =  −

2𝑀 − 1

2𝑀2 − 2𝑀
.  
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1.4. Noise attenuation 

It is also desirable to limit control usage due to noise. This can be performed by bounding 

the noise amplification ratio, 
𝜎𝑢

2

𝜎𝑛
2 , where 𝜎𝑢

2 and 𝜎𝑛
2 are the variances of the control and 

noise respectively.  Let 𝜙𝑛(𝑤) be the unknown spectral density of the (unclassified) 

noise, and 𝑄 be the transfer function from noise to the control signal (𝑄 = −𝐾𝐹𝑆, see 

Figure 1). The following inequality holds (Soltesz, et al. 2017): 

𝜎𝑢
2 ≤ |𝑄|∞

2 𝜎𝑛
2. (6) 

Thus, the constraint |𝑄|∞ ≤ 𝑀𝑄 conservatively constrains the noise amplification ratio. 

This inequality can be written in the form: 

|𝐾𝐹(𝑖𝑤)| − 𝑀𝑄|1 + 𝐿(𝑖𝑤)| ≤ 0,        ∀𝑤 ∈ Ω ⊂ ℝ+, (7) 

where Ω defines the range of frequencies considered.  

1.5. Optimisation problem 

Semi-infinite programs are optimisation programs with a finite number of variables, and 

an infinite number of constraints. In the PID problem we have an infinite number of 

constraints as the constraint must hold for all considered frequencies (𝑤 ∈ Ω ⊂ ℝ+). The 

optimisation problem for some performance index (PI) in the frequency domain is: 

min
𝑘𝑝,𝑘𝑖,𝑘𝑑

𝜂  (8.a) 

𝑃𝐼(𝑖𝑤) − 𝜂 ≤ 0,        ∀𝑤 ∈ Ω ⊂ ℝ+, (8.b) 

𝑅2 − |𝐶 − 𝐿(𝑖𝑤)| ≤ 0,        ∀𝑤 ∈ Ω ⊂ ℝ+, (8.c) 

|𝐾𝐹(𝑖𝑤)| − 𝑀𝑄|1 + 𝐿(𝑖𝑤)| ≤ 0,        ∀𝑤 ∈ Ω ⊂ ℝ+, (8.d) 

where the constraints are explicitly parameterised by the frequency. 

2. Numerical examples 

This work is coded in Julia and with the use of the global optimisation package EAGO.jl 

(Wilhelm and Stuber, 2020), GLPK (Makhorin, 2008), IPOPT (Wächter and Biegler, 

2006), and the JuMP modelling language (Dunning, et al. 2017).  

2.1. First order process with time delay 

Consider the system from Grimholt and Skogestad (2018) with transfer functions: 

𝐺(𝑠) =
exp(−𝑠)

𝑠 + 1
                                     𝐹(𝑠) =

1

0.001𝑠 + 1
 

To compare with the published results, we use the same weighted cost of the error from 

a step disturbance in 𝑢 and 𝑦: 𝜂 =
1

1.56
𝐻𝐼𝐸𝑑𝑦 +

1

1.42
𝐻𝐼𝐸𝑑𝑢. We enforce constraints on the 

sensitivity and complementary sensitivity with  𝑀𝑆 = 𝑀𝑇 = 1.3 and only consider 

frequencies 𝑤 in the interval  [0.01 100]. No constraint is used for the input usage.  
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The optimiser finds the parameters [0.51, 0.54, 0.23] in 2.6 seconds, with the Nyquist 

plot shown in Figure 2a. This closely matches the reported solution of [0.52, 0.53, 0.22], 
despite the use of HIE instead of the IAE (Grimholt, and Skogestad, 2018).  

 

For comparison, introducing a constraint on input usage (𝑀𝑄 = 1.0) and using the 

combined circle constraint gives the control parameters [0.32 0.28 and 0.01], with the 

Nyquist plot shown in Figure 2b. 

 

2.2. Third order process with inverse response 

Consider the system process transfer functions: 

𝐺(𝑠) =
1 − 0.2𝑠

(𝑠 + 1)3
, 𝐹(𝑠) = 1. 

We consider a constraint on the maximum combined sensitivity (≤ 1.3) and error 

function 𝐸(𝑠) = 𝐺𝑆(𝑠)𝑑𝑢. We consider frequencies in the interval  [0.01 100], and 

bounds on controller parameters of 0.0 and 2.0. 

 

The optimisation is performed with HIE and ISE as the objective, giving parameters of 

[1.58, 1.00, 1.73] and [1.54, 1.05, 1.87] respectively, in less than 5 seconds each. The 

system response using the HIE parameters is shown in Figure 3.  

 

2.3. Discussion 

Despite the potential for HIE to go to zero, this did not occur in the above examples. 

Numerical experiments have shown that this generally occurs with oscillatory systems or 

large upper bounds on the control parameters and no constraint on input usage. Providing 

good bounds on the control parameters (e.g. by using a tuning rule) can improve the speed 

of optimisation. If the bounds could ensure that the control system is well-dampened, then 

𝐻𝐼𝐸 ≈ 𝐼𝐴𝐸. The proposed SIP formulation can be readily extended to other linear fixed-

order controllers.  

 

 

(a) (b) 

Figure 2: Nyquist plots of first order process with time delay. Left plot has constraints on maximum 

sensitivity and complementary sensitivity. Right plot has constraints on combined sensitivity and 

noise attenuation. 
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3. Conclusions 

We demonstrate that the robust PID tuning problem can be formulated and solved as a 

semi-infinite program, entirely in the frequency domain, using the HIE or ISE as objective 

functions. Robustness is enforced via H∞ constraints on the sensitivity and complementary 

sensitivity functions, or an H∞ constraint on the combined sensitivity. Control usage is 

restricted via an H∞ constraint on the noise amplification ratio. On a range of systems, 

sensible controller parameters were found, typically in less than 10 seconds. Potential 

further work could include an extension to multiple output systems, or other controllers. 
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(a) (b) 

Figure 3: Step response and Nyquist plot for third order process with inverse response. 

HIE is used as the objective with no constraint on input usage. 

        

    

    

    

    

    

        

 
 
 
   
 
 
 

             


