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Abstract

This paper aims at reducing the conservativeness of the robust and computationally effi-
cient sensitivity assisted multistage nonlinear model predictive controller. The approach
uses a hyperbox over-approximation for the parametric uncertainty set that often results
into conservativeness. We propose the use of principal component analysis (PCA) on
available process data to extract more information to tighten the approximation of the
parametric uncertainty set. It is approximated by a polytope whose vertices lie on the
principal components. Then we define the multistage nonlinear problem with a linear
transformation of the uncertain parameters. This transformation ensures consistency with
the required conditions for sensitivity assisted multistage MPC algorithm used for sce-
nario tree pruning. Finally, the method was implemented on a case study of a system of
four tanks and the controller exhibited reduced conservativeness and fast computational
performance.
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1. Introduction

Model predictive control (MPC) is a model based control strategy that reoptimizes a non-
linear process system with respect to a control objective subject to constraints at each sam-
pling time. MPC includes constraints for online decision making, and has good control
performance even when the system is disturbed away from the desired reference trajectory
(Rawlings & Mayne, 2009). Although MPC has inherent robustness against uncertainty,
the property may break when there are significant disturbances, causing infeasibilities. As
a result, robust MPC approaches have been developed. One of them was proposed by
Lucia et al. (2013) and is known as the multistage MPC.

1.1. Multistage MPC

Multistage MPC explicitly considers a selection of possible future scenarios along a pre-
diction horizon to formulate its optimization problem. The scenarios are determined by
propagating from the current state to the end of the prediction horizon, a finite number
of uncertain parameter realizations using a scenario tree. When the prediction horizon is
long the number of scenarios in the scenario tree increases exponentially resulting into an
intractable problem. Lucia et al. (2013) proposed a robust horizon where the scenario tree
branching is stopped before the end of the horizon, and the uncertain parameters are kept
constant until the end of the prediction horizon. The robust horizon makes the problem
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practically feasible to solve but can still be expensive, especially for nonlinear problems,
leading to a significant computational delay. In order to reduce the computational cost and
computational delay of the multistage MPC, Thombre et al. (2020) proposed the sensi-
tivity assisted multistage MPC. It has an algorithm to prune irrelevant scenarios from the
scenario tree using NLP sensitivities in order to speed up computations. The sensitivity
assisted multistage MPC is discussed further in Section 2.

1.2. Motivation

Even though multistage MPC is robust against constraint violations, it is rather conserva-
tive, resulting into performance loss. The conservativeness is highly dependent on how
uncertainty set is represented. So far, its implementation has mainly been done using a
hyperbox over-approximation of the uncertainty set. The over-approximation is often very
poor if the true uncertainty set is ellipsoidal. Although the computational delay of multi-
stage MPC can be reduced by the sensitivity assisted algorithms (Thombre et al., 2020), it
has been implemented with an over-approximation of the uncertainty set leading to conser-
vative control performance. However, in combination with statistical data analysis meth-
ods used for uncertainty identification, one can significantly reduce the conservativeness.
Krishnamoorthy et al. (2018) suggested that detailed information on process uncertainty
could be extracted via statistical data analysis to obtain more representative scenarios.
Moreover, Shang & You (2019) rigourously present on calibration of approximate un-
certainty sets for a scenario-based stochastic MPC in linear systems using support vector
clustering with stability guarantees based on some mild assumptions. The contribution of
this paper is to demonstrate how principal component analysis can be specifically applied
to the sensitivity assisted multistage MPC framework in order to reduce conservativeness
and retain its computational efficiency.

1.3. Notation

We assume a nonlinear system model zi+1 = f(zi, νi, di) that predicts the evolution of the
states zi from time tk+i with control actions νi and uncertain parameters di. Let us define
the notation used in this manuscript. The time index k ≥ 0 corresponds to sampling time
tk. A perfect state measurement is always assumed, and the state at time tk is denoted
by xk. The time index of a model prediction is denoted by i ∈ Z+ which corresponds to
sample time tk+i. The nominal parameters are denoted as d0i such that the nominal model
becomes z0i+1 = f(z0i , ν

0
i , d

0
i ). For a nonlinear system we obtain a nonlinear optimization

problem (NLP) resuling inot a class of MPC known as nonlinear MPC (NMPC).

2. Sensitivity assisted multistage NMPC

The algorithm for the sensitivity assisted multistage NMPC (samNMPC) that performs
online critical scenario selection based on NLP sensitivities was first developed by Holtorf
et al. (2019). This selection is done by solving the NMPC problem for the nominal sce-
nario together with a lower level optimization problem (LLP) that gives the parametric
realizations that maximize the inequality constraints. This gives the constraints that are
most likely violated. However, when the inequalities are interval bounds there exists a
trivial solution to the LLP that lies on the vertices of the uncertainty hyperbox. Assume
that the constraints are monotonically increasing or decreasing in the uncertain parame-
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ter space. The multistage MPC problem is parametric in the disturbances thus the online
critical scenarios selection is based on parametric NLP sensitivities from the nominal sce-
nario. This algorithm determines the realization most likely to violate a constraint using
the sign of the parametric sensitivity. It formulates a pruned scenario tree with only the
critical scenarios and the nominal, leading to a smaller NMPC problem that is cheaper to
solve. The stability and recursive feasibility properties of the samNMPC were established
by Thombre et al. (2020). A sensitivity assisted multistage NMPC problem at time tk is
written as follows:

V sam
N (xk) = min

zc
i ,ν

c
i

c∈Ĉ∪{0}

∑
c∈Ĉ∪{0}

ωc

(
ψ(zcN , d

c
N−1) +

N−1∑
i=0

ℓ(zci , ν
c
i , d

c
i )
)
+

∑
c∈C̄

ωc

(
ψ(z0N +∆zcN , d

c
N−1) +

N−1∑
i=0

ℓ(z0i +∆zci , ν
0
i +∆νci , d

c
i )
) (1a)

s.t. zci+1 = f(zci , ν
c
i , d

c
i ), i = 0, . . . , N − 1 (1b)

zc0 = xk, z
c
N ∈ Xf , (1c)

νci = νc
′

i , {(c, c′) | zci = zc
′

i } (1d)
dci−1 = dci , i = NR, . . . , N − 1 (1e)

zci ∈ X, νci ∈ U, dci ∈ D,∀ c, c′ ∈ Ĉ ∪ {0} (1f)

where the sets Ĉ and C̄ are the critical and noncritical scenario index sets, respectively and
{0} repesents the nominal scenario. D ∈ Rnd is the uncertain parameter set containing a
finite number of realizations, X ∈ Rnx , U ∈ Rnu are the feasible sets for states and inputs,
respectively and Xf represents the terminal set. N is the prediction horizon length and
NR is the robust horizon. zci and νci are the predicted state and control variable vectors for
scenario c at time tk+i, respectively. The stage cost function is given by ℓ, terminal cost is
denoted by ψ, and ωc represents the weights on scenario c to the objective function. The
variables and constraints in problem (1) are only those associated with critical constraints,
thus making the problem smaller than that of the ideal multistage NMPC with a robust
horizon.

3. Data driven sensitivity assisted multistage NMPC

This section presents the main idea which is to integrate principal component analysis
(PCA) and samNMPC in order to reduce its conservativeness, hence enhancing its perfor-
mance. The goal is to achieve that while retaining the computational speed of samNMPC.

3.1. Principal component analysis

Principal component analysis (PCA) is a multivariate data analysis tool that reveals hidden
information from data. This method evaluates the variability in the data set and identifies
principal components (PC) which are the unit directions that explain the total variation
in the data. As a result, PCA fits a hyperellipsoid to the data with the principal compo-
nents corresponding to the ellipsoids axes. The principal components are listed in order of
decreasing component variance.
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Assume we have a data set with ns samples for each uncertain parameter and the data set
is a represented by a matrix D ∈ Rns×nd . Before decomposition, the data set must be
mean centered and scaled because PCA is sensitive to scale differences. Let the scaled
and mean centered data corresponding to D be denoted as D0 ∈ Rns×nd . PCA on D0

results in the linear model D0 = ΛC⊤ where Λ ∈ Rns×np is a matrix with the scores
corresponding to each data sample. The scores are a projection of the data points onto the
principal components directions. The matrix C ∈ Rnp×np is made up of the weights on
the original samples required to obtain the component score.

3.2. Algorithm for scenario selection using both data and NLP sensitivities

This algorithm combines PCA that determines the maximum and minimum scores in the
principal component directions with the samNMPC algorithm presented by Thombre et al.
(2020). In order to use the samNMPC algorithm with data, we make a linear transforma-
tion of the uncertain parameters in the optimization problem using the PCA matrix. The
algorithm has the following steps

(a) Scale or normalize and mean-center the data set D to obtain D0.
(b) Perform PCA on D0 to determine the principal component scores Λ and the corre-

sponding principal component matrix C.
(c) Transform the uncertain parameter vectors dci into the new orthogonal space using the

matrix C, such that, dci = Cd
c

i + d0i where d
c

i are the transformed parameters.
(d) Substitute the transformation from step (c) above in problem (1) to obtain an NLP in

terms of the transformed parameters.
(e) At the current time tk, determine critical scenarios Ĉ and non-critical scenarios C̄ with

respect to the transformed parameters using the samNMPC algorithm.
(f) Generate a pruned scenario tree with only the critical scenarios and the nominal sce-

nario and then solve the transformed problem (1).

4. Case study

Consider the quadtank problem with a four tank configuration from Raff et al. (2006). The
levels of water in the four tanks are described by the following set of differential equations:

ẋ1 = − a1
A1

√
2gx1 +

a3
A1

√
2gx3 +

γ1
A1

u1 ẋ3 = − a3
A3

√
2gx3 +

1− γ2
A3

u2

ẋ2 = − a2
A2

√
2gx2 +

a4
A2

√
2gx4 +

γ2
A2

u2 ẋ4 = − a4
A4

√
2gx4 +

1− γ1
A4

u1

where the states xi are the tank levels, the inputs ui are pump flow rates, and the uncertain
parameters are the valve coefficients γ1 and γ2. The controller tracks setpoint levels x1
and x2 with minimum input usage such that the objective is ℓ = (x1−x∗1)2+(x2−x∗2)2+
r1u

2
1 + r2u

2
2. There are constraints on x3 and x4 and the system experiences predefined

pulses in x1 as described by Thombre et al. (2020).

4.1. Data analysis

The uncertain parameters have a process data cloud shown in the left plot of Figure 1.
PCA on the data gives C = [0.6571, −0.7538; 0.7538, 0.6571]. The red circled points
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Figure 1: PCA on process data. Left shows original data, right shows the PCA scores.

Figure 2: Comparing the control performance of the data-driven samNMPC with stan-
dard (nominal) NMPC, multistage, sensitivity-assisted multistage NMPC in the quadtank
problem.

are the data points corresponding to the extreme scores on each principal component. The
scores in the principal components are shown in plot on the right of Figure 1.

4.2. Results

The uncertain parameters γ1 and γ2 are random values generated from the multivariate
distribution of the process. Then simulations were performed for both standard NMPC,
multistage NMPC, samNMPC and the data-driven samNMPC. It was done for 150 iter-
ations and the results for robust horizon NR = 2 are shown in Figure 2. The tracking
performance of the samNMPC is improved by the data transformation. Data-driven sam-
NMPC tracks closer to the set point hence it is less conservative than original samNMPC
and multistage NMPC. It is also robust against constraint violations for x3 and x4. To
show the improvement of the tracking performance, we computed the accumulated cost
in the simulation as shown in the bar chart on the right of Figure 3. For robust horizons
lengths 1 to 3, data-driven samNMPC shows a slightly better setpoint tracking perfor-
mance than the standard NMPC. It also shows a significant improvement from the original
samNMPC tracking performance. In terms of computational efficiency, Figure 3 shows
that the data-driven samNMPC is as fast as the original samNMPC.
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Figure 3: Comparing tracking costs (left - absolute scale) and the average computation
time (right - logarithmic scale) for different robust horizons (NR).

5. Conclusions

We have demonstrated how analysis on process data can extract more information on the
uncertainty set used to formulate the sensitivity assisted multistage MPC problem. The in-
tegration of data with samNMPC requires transforming the uncertain parameters into new
variables corresponding to the principal components. As a result, the samNMPC becomes
less conservative while still being computationally efficient. A caveat to the method is that
the uncertainty set representation is an under-approximation using a polytope whose ver-
tices are the maximum and minimum PCA scores. There is still a chance that the process
may be outside the polytope especially when a dominant principal component does not ex-
ist. However, we expect such cases to be rare and we include soft constraints on the state
bounds with penalties to avoid the infeasibilities. Future work would be investigating how
scaling up to a higher-order system with more uncertain parameters affects the method’s
performance.
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