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Abstract
Mathematical programs with complementarity constraints (MPCC) can arise in process models
that contain discrete decisions such as switches, phase changes, and flow reversal. Path-following
methods are an important part of advanced-step nonlinear model predictive control (NMPC) due
to the ability to deal with changes in the active-set of constraints. In this work, we introduce a
path-following algorithm for parametric MPCC demonstrated on a flash tank case study. We show
that this algorithm can successfully track the solution without the need for fine discretization or
identifying the exact points where active-set changes occur, which are important properties for
NPMC implementation.
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1. Introduction

Nonlinear model predictive control (NMPC) is a process control method that formulates and re-
peatedly solves an optimization problem using a nonlinear dynamic model representation of the
process as constraints. When configuring an NMPC problem, it is important to have a model
that can describe the process as accurately as possible within a defined range of the process vari-
ables, and that calculations can be performed during the time between two measurements, i.e.,
the optimization problem needs to be rapidly solved. Systems with switches, phase changes, or
flow reversal, for example, result in models with nonsmooth decisions, which make optimization
problems with dynamic models challenging to solve, especially with a limited time frame. For
representing such processes, complementarity constraints can be used: they specify the relation-
ship between two variables, enforcing that at least one of them must be at its bound (Biegler,
2010). Optimization models with this type of constraint are called mathematical programs with
complementarity constraints (MPCC). These models are inherently non-convex and fail to satisfy
the Mangasarian–Fromovitz constraint qualification due to the complementarities, requiring re-
formulation strategies to handle these constraints with standard NLP solvers (Baumrucker et al.,
2008).

Advanced-step NMPC (asNMPC) is a control technique that uses a prediction of the next state
variables based on the current control action as the initial values (here they can be seen as pa-
rameters) to solve the optimal control problem in advance between the sampling times. When the
new sample is available, the solution is updated based on the sensitivity at the optimal solution
with respect to the initial state (Zavala and Biegler, 2009). Hence, computational delay between
sampling and implementing the control action is reduced. A limitation of the original asNMPC is
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the assumption that the active-set of constraints does not change from the optimal to the updated
solutions. Path-following algorithms can be employed to handle this issue, since change in the
active-set can be detected by discretizing the difference between the predicted and sampled states
or by using an active-set identification method (Kungurtsev and Jaschke, 2017; Jäschke et al.,
2014).

Literature on path-following of parametric MPCC (PMPCC) is scarce; to the best of the authors’
knowledge, the only investigation on the topic was conducted by Kungurtsev and Jäschke (2019).
They propose two algorithms: one is based on a penalty-term reformulation for MPCC (Baum-
rucker et al., 2008), while the other traces active-set bifurcations that stem from bi-active comple-
mentarity constraints, assuming that a reliable active-set method is available.

In general, PMPCCs pose a number of formidable challenges for numerical solution, arising from
the inherent combinatorical nature of the problem and the interaction with the parameter depen-
dence. Herein, we vastly simplify the problem by means of two key assumptions:

i due to the nature of NMPC, the exact locations of active-set changes are not required but
only determination of the solution at successively given values of a scalar parameter; and,

ii that we are considering MPCC such that each complementarity constraint can only be non-
simple (bi-active) at a small number of discrete points.

These two assumptions permit a much more straightforward handling of the problem yet still apply
to a selection of practical problems. For example, the second assumption will be valid for most
physical systems, whereby active-set changes occur only at a few discrete points (e.g. when phase
transitions occur). We focus on the demonstration of this method with a flash tank case study, in
which we obtain solutions for relevant points along the optimal path.

2. Background
In this section we present relevant definitions and concepts necessary for the algorithm described
in the next section. We begin with the definition of complementarity constraint, roughly following
the exposition in (Scheel and Scholtes, 2000). Consider a matrix-valued function F : Rn→ Rl×q,

F(w) :=

F11(w) . . . F1q(w)
...

. . .
...

Fl1(w) . . . Flq(w)

 (1)

with w ∈ Rn. A general complementarity constraint can be expressed as

F1k ⊥ F2k ⊥ . . .⊥ Flk, Fik ≥ 0, for i = 1, . . . , l and k = 1, . . . ,q (2)

i.e., at least one entry of each column in F is zero with the remaining assuming nonnegative values.
In practice, l is often equal to 2 and Fik mostly represent variable bounds.

A parametric MPCC (PMPCC) is an extension of traditional parametric NLP optimization models
in the sense that it contains at least one complementarity constraint and can be solved as a function
of one or multiple parameters. For a parameter vector p : R→Rr, we can define PMPCC(p(t)) as

min
w(p(t))

ϕ(w(p(t)), p(t)) (3a)

s.t. h(w(p(t)), p(t)) = 0 (3b)
g(w(p(t)), p(t))≥ 0 (3c)
F1k(w(p(t)), p(t))⊥ . . .⊥ Flk(w(p(t)), p(t)) for k = 1, . . . ,q (3d)

Fik ≥ 0, for i = 1, . . . , l and k = 1, . . . ,q (3e)
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where ϕ : Rn×Rr→R, h : Rn×Rr→Rs, g : Rn×Rr→Rq, and F : Rn×Rr→Rl×q are smooth
functions. Dropping explicit notation for dependence on t, the Lagrangian for Eqs. (3) is

L (w(p), p,λ ) := ϕ(w(p), p)−µ(p)T h(w(p), p)−ν(p)T g(w(p), p)−Γ(p)F(w(p), p) (4)

where λ = (µ,ν ,Γ) is arranged in the natural manner by reshaping the matrix Γ columnwise into
a vector. Γ(p)T F(w(p), p) is the inner product of the corresponding Γ with the F matrix.

The reason we define parametric optimization models is that we wish to map some interval It =
[ta, tb] to the solution curve (w∗(p(t)),λ ∗(p(t))), t ∈ It of PMPCC(p(t)) by calculating a piecewise
homotopy along t. Locally, this requires calculating the sensitivity of w∗ along t.

For the inequality and complementarity constraints, we define the corresponding g and F active-
sets at some point w(p) as Ag(w(p)) := {i : gi(w(p)) = 0} and AF(w(p)) := {(i, j) : Fi j = 0}.

Mirroring terminology used in eigenvalue analysis, a complementarity constraint F· j is considered
simple at point w if only one constraint in that column F· j is active. It is nonsimple if more than
one constraint in F· j is active. This latter situation is often termed ‘bi-active’ in the case of two
active constraints.

A point w(p) feasible to PMPCC(p(t)) is termed weakly stationary if there exists multipliers λ

such that, where ◦ is the Hadamard (elementwise) product,

∇wL (w(p), p,λ ) = 0 (5a)
ν(p)≥ 0 (5b)

ν(p)T g(w(p), p) = 0 (5c)
Γ(p)◦F(w(p), p) = 0. (5d)

A point w(p) which satisfies Eqs. (5) and further satisfies that Γik ≥ 0 if there exists some j ̸= i
such that Fik(w(p), p) = Fjk(w(p), p) = 0 is termed strongly stationary. In plain language, this
condition is stipulating that if F·k is simple then there is no restriction on the associated Lagrange
multiplier whereas if it is nonsimple then the associated Lagrange multipliers must be nonnegative.
Thus, we see that for strongly stationary points, a simple complementarity constraint behaves akin
to an equality constraint. The strongly active-set for g is defined as A+

g (w(p)) := {i ∈ Ag(w(p)) :
∃ νi > 0 satisfying Eqs. (5)}.

We now describe how we obtain the sensitivity of PMPCC(p(t)) with respect to t by reduction
locally to a parametric nonlinear program (PNLP). For t ∈ It , we assume that the F constraints
are nonsimple or strong complementarity of the inequality constraints fails only at a (small) fi-
nite number of discrete points so that It = {ta}∪ I1 ∪ I2 ∪ ·· · ∪ {tb}, say, where each Ii ⊂ It is an
open interval. Within each Ii, the complementarity constraints can then be considered as equality
constraints and strong complementarity of g holds, so the PMPCC reduces to a PNLP, which is
more amenable to known solution methods. Therefore, within each Ii, A+

F (w(p)) = AF(w(p)) and
A+

g (w(p(t))) is invariant. For PNLP(p(t)), t ∈ Ii, assume that ϕ(·, ·), h(·, ·), g(·, ·), and F(·, ·) are
twice continuously differentiable in a neighborhood of w∗(p(t)) satisfying the first-order optimal-
ity conditions, and that the linear independence constraint qualification (LICQ) and strong second
order sufficient condition (SSOSC) hold. For PNLP(t)|t=t0 , LICQ implies that the dual space is
a singleton (Kyparisis, 1985), i.e., the multipliers are unique. By taking the total derivative with
respect to t of the stationarity conditions and active constraints of PNLP, we obtain the following
linear system

∇2
wwL ∇wh ∇wgA ∇wFA

(∇wh)T 0 0 0
(∇wgA)

T 0 0 0
(∇wFA)

T 0 0 0


︸ ︷︷ ︸

M(w(p(t)),p(t))

[
ẇ
λ̇

]
︸︷︷︸
v̇(p(t))

=−


(∇2

wpL )ṗ
(∇ph)ṗ
(∇pgA)ṗ
(∇pFA)ṗ


︸ ︷︷ ︸
b(w(p(t)),p(t))

(6)
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where ṗ= dp
dt , ẇ=(∇pw)ṗ, λ̇ =(∇pλ )ṗ, gA includes only strongly active inequalities, Fa includes

only (simple) active F constraints, and parameter dependence has been omitted for brevity.

3. Methodology

For the algorithm, we require access to a robust active-set identification method; we used an adap-
tation of a method in (Oberlin and Wright, 2006) along with some custom heuristics. The essential
feature of the algorithm is to calculate a piecewise approximant v(p(t)) = [ w(p(t)) λ (p(t)) ]T

to the solution v∗(p(t)) by numerically integrating along the solution curve between active-set
changes. In the canonical formulation of a first-order initial value problem, this can be expressed
as v̇(p(t)) = f (t,v(p(t)) for v(p(t0)) = v0 where v0 is a known initial point. From Eq. (6) and
M(p(t)) invertible, f (t,v(p(t)) = v̇(p(t)) = M(w(p(t)), p(t))−1 b(w(p(t)), p(t)); in practice, a
linear solve is used to calculate f (t, ·). In our implementation, we used an adaptive stepsize
Runge–Kutta integrator, which maintains the truncation error within a predetermined bound by
adjusting the stepsize. Event detection is used periodically to check whether an active-set change
has occurred within the last integration step; this should not happen too often since the active-set
identification is a comparatively expensive calculation. If an active-set change has occurred then,
for the current t(k) held fixed, equality-constrained Newton iterations are performed with the new
active-set until the error in the approximant v(p(t)) is sufficiently small; the number of elements
in λ , and hence v, may also change if the cardinality of the active-set changes. The integration step
can loosely be considered a ‘predictor’ step whereas the Newton iterations are a ‘corrector’ step.
However, the error is nominally controlled by the adaptive stepsize numerical integration. Note
that if the active-set identification encounters a nonsimple complementarity constraint, by assump-
tion we can perturb t(k) by some small ε > 0 to again obtain simple complementarity constraints.
This ensures the algorithm can always calculate the sensitivity.

Algorithm 1 Path-following for PMPCC(t) for t ∈ It = [ta, tb]

τ is set to maximum active-set recalculation interval
t(0)← ta, ṽ(0) = [ w̃(0) λ̃(0) ]

T ← va where va is in a neighbourhood of the initial solution
Calculate A+

g,(0) = A+
g (w̃(0)) and A+

F,(0) = A+
F (w̃(0))

v(0)← Newton(ṽ(0),A
+
g,(0),A

+
F,(0))

k← 0, tAS← t(0)
repeat

k← k+1
Perform predictor integration step to obtain approximate (t(k), ṽ(k))
if t(k) > (tAS + τ) then

repeat
Calculate A+

g,(k) and A+
F,(k)

if A+
F,(k) nonsimple then
t(k)← t(k)+ εt

end if
until A+

F,(k) is simple
v(k)← Newton(ṽ(k),A

+
g,(k),A

+
F,(k)), tAS← t(k)

else
v(k)← ṽ(k)

end if
until t ≥ tb

It is immediately apparent that the relationship between integration stepsize t(k)− t(k−1) and the
active-set identification interval τ is important because it determines whether there will be any
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transient ‘overshoot’ of an incorrect solution.

4. Case Study

We use the same case study presented in Kungurtsev and Jäschke (2019), in which a flash tank
with a 3-component feed flow Q ∈ R and composition z ∈ R3 is simulated. We seek to analyze
how the split between vapor V ∈R and liquid L ∈R products with composition y ∈R3 and x ∈R3

respectively vary with temperature T ∈ R for a fixed pressure P ∈ R. For that, we set up the
following optimization model

min
1
2
(aQ−V )2dt (7a)

s.t. ∑
i∈C

zi(Ki−1)
1+at(Ki−1)

= 0 (7b)

Ki =
Psat

i
P

=
yi

xi
for i ∈ C (7c)

log10(psat
i ) = Ai−

Bi

T +Ci
for i ∈ C (7d)

L+V = Q (7e)
Lxi +V yi = Qzi for i ∈ C (7f)
a− sV + sL−at = 0 (7g)
0≤ sV ⊥V ≥ 0 (7h)
0≤ sL ⊥ L≥ 0 (7i)
0≤ a,x,y≤ 1 (7j)

K, psat ≥ 0. (7k)

Constraint (7b) is the Rachford–Rice equation, which calculates the fraction of the feed that goes
to the vapor phase, V/Q, represented by at ∈ R. K ∈ R3 is determined by Raoult’s law, given
by constraint (7c). Psat

i (T ) ∈ R is the vapor pressure of the pure component i ∈ C = {1,2,3} at
temperature T calculated using Antoine’s equation (7d), where Ai ∈ R, Bi ∈ R and Ci ∈ R are
constants for each compound i. Constraints (7e) and (7f) correspond to the total and component-
wise mass balances respectively. Constraints (7g)-(7j) are necessary to ensure that V/Q ∈ [0,1].
The Rachford–Rice equation results in negative values and values greater than one for at if T is
lower than the mixture’s bubble point or larger than its dew point respectively, which would be
physically impossible. Therefore, complementarity constraints (7h) and (7i) are considered; in the
form of Eq. (2), F11 = sV , F21 =V , F12 = sL and F22 = L. sL ∈R and sV ∈R are slack variables that
represent how much at is lower than 0 and larger than 1 respectively. Variable a ∈ R represents
the actual ratio V/Q, which is enforced by constraints (7g) and (7j). Note that a = V/Q is not
enforced as a hard constraint and, instead, is used as the objective function to be minimized. In
this problem, temperature is the only parameter; we use T (ta) = 380 and T (tb) = 400.

5. Results

For the results presented here, the following values were used: Q = 1 kmol/s, z = [0.5, 0.3, 0.2]T ,
P = 5 bar, A = [3.98; 4.00; 3.93]T , B = [1065; 1171; 1183]T , and C = [-41.14; -48.83; -52.53]T .
In Fig. 1a, the solution paths of primal variables L and V are shown. The maximum integration
stepsize and τ in this run was set small, at 0.1, so the active-set changes are detected almost
immediately after they happen. The corresponding complementarity slack variables sl and sv are
shown in Fig. 1b. For a larger maximum stepsize of 5.0, there is less certainty where the actual
active-set change happened and a jump is clearly visible, see Fig. 1d.
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(a) Solution paths of V and L (small path-following steps). (b) Solution paths of sl and sv (small path-following steps).

(c) Solution paths of V and L (large path-following steps). (d) A local region of (c) to show jump after active-set
change (large path-following steps).

Figure 1: Top row, stepsize of 0.1: (left) L (blue) and V (red) solution paths; (right) sl and sv paths.
Bottom, stepsize of 5.0: (left) as above; (right) zoomed-in to region showing jump. Active-set
changes indicated in vertical dashed lines (yellow).

6. Conclusion
We have demonstrated on the flash tank case study that the presented algorithm is a suitable
method for path-following PMPCC. Since it does not require the identification of the exact lo-
cation of active-set changes and that relatively coarse discretization can be used, this algorithm is
a promising candidate for use in advanced-step NMPC of models with complementarities.
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