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Abstract: Solving the optimisation problem associated with nonlinear model predictive control
(MPC) on-line when considering uncertainty is often infeasible due to the large computational
times. One approach is to avoid the online optimisation by using an imitation learning approach
where a neural network or other approximator is trained on offline solutions of the MPC problem.
This can be computationally costly as the potential system behaviour must be fully represented
in the data, which requires many MPC solutions.
In this work we propose a new method to train a neural feedback controller in closed loop
for problems with uncertainty in parameters and/or the initial conditions. Our method does
not require solving MPC problems off-line to generate training data, instead we optimise the
neural network directly on the MPC objective in a single shooting approach, with expectations
evaluated in their Koopman expectation form using a quadrature algorithm. The proposed
method is demonstrated on three problems. The optimised controllers for these problems show
good performance, and have an average evaluation time of less than 4 µs.

Keywords: Optimisation under uncertainty, Neural network controller, Optimal control,
Explicit MPC

1. INTRODUCTION

Model predictive control (MPC) is a widely used opti-
misation technique to control a system, given a model.
The model takes in the current system state and is used
to predict the short term system response, allowing for
an optimisation problem to be solved to find the control
inputs that minimise some objective, while satisfying con-
straints. Uncertainty may be addressed in various robust
MPC formulations, typically at a significant increase in
computational expense. The need to solve the (robust)
MPC optimisation problem on-line is a major issue, as
this can be infeasible for some processes due to the com-
putational complexity.

In this work we propose to parametrise the control by
a neural network, and train this network (off-line) using
the expectation of the MPC objective function, and a
joint probabilistic constraint, i.e. without solving robust
MPC problems to generate training data. This results in
a control law that can be cheaply evaluated on-line, while
taking into account parametric uncertainty.

Previously it has been proposed to avoid solving the MPC
optimisation problem online by pre-computing an explicit
control law. After optimisation this control law can then
simply be evaluated on-line. For a linear system, without
uncertainty, and with a quadratic cost function the optimal
control law is known to be a piecewise affine function on
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polytopes which can be computed in advance (Bemporad
et al., 2002). The number of regions defining the piecewise
control law rapidly increases with system complexity, thus
computing and using this explicit control law can be
computationally intractable for large systems (Chen et al.,
2018).

Another approach is to define an approximate control law,
that is cheap to evaluate and feasible to optimise. As
neural networks are universal approximators, and cheap to
evaluate after training, numerous authors have proposed
the use of a neural network to approximate the control
law (a neural control law) with a recent work showing
that bounds can be calculated for the neural network
size necessary to exactly represent an explicit MPC law
(Karg and Lucia, 2020). Neural control laws have been
optimised by 1) using MPC solutions evaluated at various
points (imitation learning) (Hertneck et al., 2018; Karg
and Lucia, 2020), 2) reinforcement learning, 3) using a
neural differential equation approach where the loss is the
MPC objective (Rackauckas et al., 2020; Sandoval et al.,
2021) or 4) a mixture of approaches, e.g. (Karg and Lucia,
2021).

The imitation learning (1) approach can be very costly,
as the data set containing MPC solutions needs to fully
describe the system behaviour, which requires solving an
MPC problem many times, although this can be done off-
line. We note that there are various approaches to generate
the data for imitation learning, including algorithms to
generate “rich” training data, to aid in the scaling of the



method to higher dimensions (Bonzanini et al., 2021).
An important advantage of imitation learning is that one
can approximate a robust (stationary) controller, e.g. a
controller robust to input disturbances (Hertneck et al.,
2018) or a multi-stage NMPC (Karg and Lucia, 2021;
Bonzanini et al., 2021).

In the reinforcement learning approach (2) the neural
network parameters are updated on-line based on the
state of the system and its response to control outputs.
A variation of this approach is to optimise the network
off-line using a system model (Chen et al., 2018). This
is similar to training the network in a neural differential
equation approach (3), where instead of a loss defined by
data, the MPC objective function is used at discrete time
points (Rackauckas et al., 2020; Sandoval et al., 2021). In
the control literature, this later approach is essentially an
indirect, single shooting method (Biegler, 2010).

In this work, we build on approach (3) to train a robust
neural controller, for problems with parametric uncertain-
ties, without solving a robust MPC problem. We train the
neural network via single shooting, where the expectation
of the constraint and objectives are evaluated in their
Koopman expectation form, using a quadrature algorithm.

2. BACKGROUND

2.1 Nonlinear model predictive control

Consider the general nonlinear dynamic system,
ẋ(t) = f(x(t), u(t), p) (1)

where t is time, x ∈ Rnx are the states, u ∈ Rnu are the
control inputs, p ∈ Rnp are parameters, and f describes
the dynamics.

The goal of nonlinear model predictive control (NMPC)
is to compute the optimal state and control trajectories
(x = [x1, . . . , xNk

] and u = [u0, . . . , uNk−1
]) for a given

prediction horizon. NMPC requires the initial state of the
system, which we assume is available. Typically, the MPC
problem takes the discretised form:

min
x,u

J = min
x,u

Nk−1∑
k=0

l(xk, uk, p, k) + V (xNk
) (2a)

xk+1 = fd(xk, uk, p), ∀k = 0, . . . , Nk − 1 (2b)
0 ≥ g(xk, uk, p), ∀k = 1, . . . , Nk (2c)

xlbd ≤ xk ≤ xubd, ∀k = 1, . . . , Nk (2d)
ulbd ≤ uk ≤ uubd, ∀k = 0, . . . , Nk (2e)
xk=0 = xinit (2f)

where J is the objective function, Nk the prediction
horizon points, l the stage cost, V the terminal cost, fd the
discretised dynamics, g a vector of nonlinear constraints,
and xinit denotes the initial conditions. Bounds (xlbd, xubd,
ulbd, uubd) are defined for the state and controls. In this
formulation constraints are enforced at the discrete time
points.

2.2 NMPC with parametric uncertainty

Consider the NMPC problem, but where p and/or xinit
are uncertain, and described by some probability density

functions. We assume that the uncertain parameters are
not time varying. Thus, uncertainty in the parameters
and initial conditions are equivalent, i.e. if we augment
the system equations with the parameter vector (with no
dynamics) then there will only be uncertainty in the initial
states.

Given probability density functions for the parameters πp
and initial state πxinit

we can write the stochastic MPC
problem, where the objective is given as an expectation:

min
x,u

Ep,xk=0
[J(x,u, p)] , p ∼ πp, xk=0 ∼ πxinit

(3)

If desirable we could also include the variance of the cost
V[J ] in the optimisation, noting that V[J ] = E[(J−E[J ])2].

We define a joint chance constraint that the probability of
g, the vector function of constraints, being satisfied at all
time points of the discretisation is greater than 1− ε:

Pp,xk=0

(
Nk⋂
k=0

g(xk, uk, p) ≤ 0

)
≥ 1− ε, 0 ≤ ε ≤ 1 (4)

where P is the probability. If possible, specifying ε = 0
can significantly increase the cost (Eq. 3) as it is highly
conservative. The chance constraint can be written as an
expectation by defining an indicator function (I):

I(xk, uk, p) =

{
1 g(xk, uk, p) ≤ 0

0 else
(5)

Ep,xk=0
[I(xk, uk, p)] = P

(
Nk⋂
k=0

g(xk, uk, p) ≤ 0

)
(6)

Ignoring the uncertainty and picking a nominal p can lead
to a controller that performs poorly, despite feedback from
the system (Kothare et al., 1996). Solving the original
NMPC problem (2) can be difficult, and under uncer-
tainty the problem becomes even more computationally
expensive. Various formulations have been proposed for
nonlinear and linear MPC under uncertainty including:
solving a worst-case objective function (Kothare et al.,
1996), multi-stage MPC (Lucia et al., 2017) and tube-
based MPC (Mayne et al., 2011). In general, treating the
uncertainty in an online optimisation (as in multi-stage
MPC) is very costly. On the other hand this computational
cost can be moved off-line by training a neural network,
which can lead to practically the same performance with
negligible on-line computational cost.

3. OPTIMISATION OF THE NEURAL NETWORK
CONTROL POLICY

3.1 Overview of the method

We combine the closed loop simulation of the neural
network policy, the evaluation of the expectation, and
the optimisation as shown in Figure 1. At each iteration
of the method we take neural network parameters θk
and evaluate the expectation of the (penalised) objective.
This expectation is evaluated in an inner loop wherein
we adaptively sample p and xk=0 from πxinit

and πp.
For each sample we perform a closed loop simulation of
the control policy, in which the value of the constraints
and cost function are evaluated. The adaptive sampling is
performed until the expectation is evaluated to a specified
tolerance.



Optimiser

NN Policy

Model

Closed loop simulation

u(t) x(t)

xk=0, p, θk

J(θ, p, xk=0),

θk

Ex0
, ∇Ex0

θ0 θ
∗

Evaluate NN parameters under
given uncertainties

πxinit
, πp

g(θ, p, xk=0)

Expectation
evaluation

Cost and
constraints

Fig. 1. Block diagram of the training process of the neural
network control policy.

The main features of the workflow are that 1) the network
is optimised via closed loop simulations and 2) that the
network is optimised on the expectations of the system,
which are evaluated by “pulling back” the uncertainty
by applying the Koopman operator. These two steps are
described in detail below.

3.2 Closed loop simulation of the control policy

To avoid solving an NMPC problem with uncertainty
in real time, we focus on optimising an off-line control
law given by a neural network (NN), with parameters θ:
u(x) = fNN (x|θ), i.e. a neural network policy. Neural
networks can be used in to approximate the control law
as from the universal approximation theorem, they can
approximate any function to a desired tolerance, under
mild conditions. Historically, Parisini and Zoppoli (1995)
first proposed the use of neural networks to approximate
an MPC law. More recently, Karg and Lucia (2020) showed
that neural networks can exactly represent the explicit
MPC law for linear time-invariant systems.

There are various network architectures, and in this work
we chose to use deep, fully connected, feedforward neural
networks. Such a network has the form:

fNN (x|θ) = βL+1 ◦ fL+1 ◦ βL ◦ fL . . . β1 ◦ f1(x) (7)
where L is the number of hidden layers. Each hidden layer,
l, consists of a nonlinear activation function, gl and an
affine function, fl, given by:

fl = Wlζl−1 + bl (8)
where Wl and bl are the weights and biases of the affine
function, and ζl−1 is the output from the previous layer
(ζ0 = x). Common choices for βl include rectified linear
units, sigmoid functions, and hyperbolic tangent functions.
For convenience we define θ to be a vector containing the
weights and biases, i.e. θ = [W1, b1, . . . , WL, bL].

To explain how the network parameters are optimised,
consider a dynamical system with no uncertainty (Equa-
tion 1). Given a neural network policy, this means the
dynamics are given by the neural differential equation
(Rackauckas et al., 2019):

ẋ(t) = f(x(t), fNN (θ), p) (9)

Consider the deterministic MPC objective with only a con-
straint to enforce the dynamics (equations 2a-b). Given θ,
p, and the initial conditions, xinit, we can find the sequence
xk and uk simply by integrating the neural differential
equation (i.e. the block “Closed loop simulation” in Figure
1) which enforces the constraint 2b. After integration, the
sequence xk and uk can then be used to evaluate the
objective function (equation 2a).

The gradient with respect to network parameters is given
by the chain rule, e.g. dJdθ = dJ

dxk

dxk

dθ , and can be evaluated
via automatic differentiation on the integrator. This allows
the use of any gradient based optimiser for finding the
network parameters.

In the control literature this formulation of the optimi-
sation problem is essentially a single shooting, optimal
control problem (Biegler, 2010), where the manipulated
variables are the unconstrained network parameters. The
suggested parametrisation of the control policy, u(x) =
fNN (x|θ), is known as a state feed-back neural policy in
the reinforcement learning literature. However, here the
optimisation is performed entirely off-line as in Sandoval
et al. (2021). We note that this approach does have dif-
ficulties with unstable systems, however first training the
network on a nominal control profile and then proceeding
with the optimisation is a potential approach to overcome
this (Sandoval et al., 2021).

In this approach the control law is optimised in a closed
loop manner. Once optimised, the network defines a con-
trol law that is a function of the current state and in
online operation can simply be evaluated, similar to an
explicit MPC. In comparison to an explicit MPC, the
memory requirements for a neural network control law can
be significantly smaller (Karg and Lucia, 2020).

3.3 Expectation evaluation

Assume we have a control law u = fNN (x|θ), and that
uncertainties in the parameters have been transformed to
uncertainties in the initial state, i.e. we define

x0 =

[
xinit
p

]
(10)

The Koopman operator provides a way to evaluate the
expectations that occur in optimisation under uncertainty
(equation 3 and 4) in a relatively efficient manner (Gerlach
et al., 2020). The main idea is that if the dynamics
of a system are deterministic, then the probability of a
distribution in the future is solely dependent on the initial
distribution, i.e. the uncertainty can be “pulled back”.

Let x0 be the uncertain initial state, described by a valid
probability density function π0, and xT be the uncertain
state at some future time T , described by the probability
distribution function πT . Let h(x) be some real valued
function of the state space, (e.g. the constraints 2c-2e),
that we wish to evaluate, and S be the mapping of the
system from t = 0 to some time T , S : Rnx → Rnx .
Assuming that S is measurable and non-singular, and that
h is continuously differentiable and has compact support,
then the following are equivalent (Lasota and Mackey,
1994):



ExT
[h(xT )|xT ∼ πT ] = Ex0 [h(S(x0))|x0 ∼ π0] (11)

=

∫
Ω

h(S(x))π0(x)dx (12)

where Ω is the state space. The right-hand side of equation
11 is known as the Koopman expectation, which is explic-
itly written as an integral in equation 12. Equation 11
uses the adjoint property of the Koopman and Frobenius-
Perron operators. For more information on these operators
we direct the reader to Lasota and Mackey (1994) (Chap-
ter 1 and 3) or Leonard (2019), and the references therein,
for a focus on the Koopman operator in optimisation
problems.

Equation 11 states that determining the expectation at
time T , given the corresponding probability distribution
(πT ), is equivalent to using the initial probability distribu-
tion (π0) and the system mapping. Note that the mapping
does not have to be known, only its evaluation. This is
significant as we typically know the system uncertainty at
its initial state.

To evaluate E[h(xT )|xT ∼ πT ] we could take samples
from the initial distribution, π0, and push them through
the system dynamics, forming a Monte Carlo estimate of
πT . Using the estimate of πT one could then evaluate
E[h(xT )|xT ∼ πT ]. Forming this estimate of πT is typically
computationally expensive as many samples are needed.

However, there are various benefits to evaluating the
Koopman expectation form (Eq. 12) instead (Meyers
et al., 2019; Gerlach et al., 2020). As we know π0, and
can evaluate h(S(x)), the integral can be evaluated by
any numerical integration technique, e.g. multidimensional
quadrature, (quasi-) Monte Carlo integration. If an adap-
tive integration procedure is used, then realisations of
the uncertain parameters will be selected to evaluate
E[h(S(x0))|x0 ∼ π0] to a desired tolerance (Gerlach et al.,
2020). In other words, instead of fixing the location or
number of samples we specify the desired tolerance di-
rectly.

In this work the integration is performed via a multidimen-
sional h-adaptive quadrature (Genz and Malik, 1980). In
this type of quadrature the integral is evaluated by adap-
tively subdividing the integration volume into smaller vol-
umes, while applying the same fixed-order quadrature rule
within each sub-region. Quadrature can be very efficient in
low dimensions (here the number of uncertain parameters
and states), however it is known to scale exponentially
with the number of dimensions. An alternative choice for
high dimensional problems are adaptive quasi-Monte Carlo
integration algorithms, e.g. see the CUBA library (Hahn,
2005). Note that the point at which quasi-Monte Carlo
algorithms are more efficient that quadrature algorithms
depends on both the dimensionality and the behaviour of
the integrand – see Schürer (2003) for a comparison.

Regardless, by evaluating the expectation in the Koopman
form the computational costs can be significantly reduced
compared to forming the Monte Carlo estimate of πT
(Meyers et al., 2019; Gerlach et al., 2020). Using this
approach the overall cost of performing optimal control
under uncertainty can be significantly reduced (Meyers
et al., 2019).

3.4 Remarks on the Implementation

As discussed, uncertainty in the parameters and/or initial
state can be considered, by evaluating the expectation of
the cost (equation 3) using Eq. 11. We note that πx0

could
describe both the uncertainty in initial conditions of a
batch process, or the operating region of the state space
(e.g. estimated from data). In both of these cases πx0

could
be a complex multi-dimensional probability distribution,
especially when there are constraints on the states. It
should be noted that the controller is not trained only on
state space given by πx0

, i.e. the closed loop optimisation
means that the controller will be receive state values, based
on the controller outputs. Due to this approach, important
regions of the space will be heavily sampled if the horizon
used in the controller optimisation is long enough.

When performing the optimisation, box constraints on the
input u can be treated in the network design, e.g. use a
sigmoid activation on the final layer to limit the output
between 0 and 1. To enforce state constraints we use a
penalty approach, where we define the penalised objective
φ:

min
θ

Ex0 [φ(θ, x0)] = min
θ

Ex0 [J(θ, x0)+

ρQ(I(θ, x0))] (13)
where I is the indicator function, ρ is an adjustable penalty
parameter and Q is a penalty function. We remind that x0

is the augmented vector with parameters as states.

Common choices for Q include the l1 and l∞ norms,
and the quadratic penalty function, Q(x) = x2. Using
the norms gives an exact penalty function, which means
that minimization with some ρ∗ will give the same so-
lution as the constrained problem, under some assump-
tions (Biegler, 2010). One may then iteratively evaluate
E[I(θ, p, x0)] and increase ρ until the desired satisfaction
is met. Although the quadratic penalty is not exact it is
still commonly used for numerical convenience.

An alternative choice that is also not equivalent to the con-
strained optimisation is to penalise the extent of constraint
violation, e.g. using a quadratic penalty:

Q(g) =

Ng∑
i=0

Nk∑
k=0

(max(gi(xk, uk, p), 0.0))2 (14)

Ultimately, the choice of penalty function depends on the
system considerations that apply.

In summary, we perform gradient-based optimisation to
find the parameters of a neural network feedback policy for
a system with uncertainty in the parameters and/or initial
conditions, using the expectation of the penalised cost
E[φ], as the objective function, evaluated in the Koopman
expectation form via quadrature. As is standard, hyperpa-
rameters of the formulation, e.g. network layer width, can
be set by Bayesian optimisation or similar by performing
the proposed workflow in an “inner-loop”.

An alternative approach is to estimate E[φ] using a small
number of samples, and use a stochastic optimisation
algorithm. The advantage of taking a small number of
samples is that the expectation evaluations will be less
costly. The estimate of the expectation may be inaccurate
due to the number of samples, however if it is unbiased



Fig. 2. Neural network control for the double integrator
system

then the stochastic optimiser will converge. Thus, such
an approach will trade off faster iterations, due to the
low number of samples, with slower convergence of the
optimiser (Bottou and Bousquet, 2012). We note that it
would be feasible to begin with a stochastic optimisation
approach and then switch to using the proposed approach.

The proposed workflow is coded in Julia (Bezanson et al.,
2017), and applied to three case studies, using the fol-
lowing packages: DifferentialEquations (Rackauckas and
Nie, 2017), DiffEqFlux (Rackauckas et al., 2019),DiffE-
qUncertainty (Gerlach et al., 2020), Flux (Innes et al.,
2018), ForwardDiff (Revels et al., 2016), HCubature, and
NLopt (Johnson, 2014). We note that this combination of
packages supports the automatic differentiation of equa-
tion 13. The neural networks are initialised with Glorot
initialisation (Glorot and Bengio, 2010). The case studies
were performed on an Intel i5-10310U CPU.

4. CASE STUDIES

4.1 Double integrator

Consider the double integrator, with uniform uncertainty
in the initial condition, xinit = [U(−15, 15), U(−6, 6)], and
no parametric uncertainty:

dx1

dt
= x2 (15)

dx2

dt
= u (16)

The objective is to control the system to the origin, with
constraints −1 ≤ u ≤ 1, and stage cost:

l(x, u, t) = x(t)2 + 0.1u(t) (17)
One can find the explicit MPC for this system, as in
Bemporad et al. (2002), using the ranges x1 ∈ [−15, 15]
and x2 ∈ [−6, 6].

The control horizon used for optimising the neural network
is 5 seconds, with the objective calculated at time points

Fig. 3. Multiple state trajectory of the double integrator
system from different initial conditions, controlled by
the trained neural network.

of 1 second intervals. The network has 2 hidden layers of
10 nodes each, without bias nodes, tanh as the activation
functions and the control constraints are satisfied by a
“hard tanh”. Optimisation is performed with LBFGS (Liu
and Nocedal, 1989).

Quadrature for the expectation is performed with an ab-
solute tolerance 10−3. The trained neural network control
law is shown in Figure 2. Using the neural controller, the
expected cost over a 40 second period is 851 while for an
explicit MPC (with 7 regions) it is 873. Examples of the
controlled trajectory of x1 is shown in Figure 3. Note that
the control is mostly at its constraints which is responsible
for the slow response seen in Figure 3. Performance is
improved by increasing the bound on the control.

After training the mean and median execution time of
the neural network is 2.576 µs (10−6s) and 2.171 µs
respectively.

4.2 Linear angular positioning system

This is a linear model of an angular positioning system
described in Kothare et al. (1996):

dθ1

dt
= θ2 (18)

dθ2

dt
= αθ2 + κu (19)

|u| ≤ 2 (20)
where θ are the states (rad), κ = 0.787 (rad−1V−1s−2)
and α (s−1) is an uncertain parameter, assumed to be
uniformly distributed between 0.1 and 10. The objective
is to return an initially disturbed state to the origin, with
the stage cost:

l(θ, u, t) = θ1(t)2 + 10−5u(t)2 (21)

To parametrise the controller we use a neural network
with three layers of eight neurons each, and no bias nodes.
Rectified linear units are used as activation functions, and
the constraint on the control is enforced by a “hard tanh”.
The network is trained on a 4 second time range, with the
objective evaluated at 0.1 intervals, and the initial point
fixed to xinit = [0.05, 0.0]. Optimisation is performed with



Fig. 4. State trajectories of the controlled angular po-
sitioning system, with parameter α drawn from its
distribution.

Fig. 5. Profile of θ1 and control output for the angular
positioning system with randomly time varying α

LBFGS (Liu and Nocedal, 1989). Quadrature is performed
with an absolute tolerance of 10−5.

The state profile of the trained system is shown in Figure
4. In this plot each trajectory corresponds to a closed loop
simulation of the system with a different realisation of
the parametric uncertainty. Figure 5 shows a closed-loop
simulation with the uncertain parameter varying in time.

After training the mean and median execution time of the
neural network is 3.620 µs and 3.188 µs respectively, with
an estimated memory requirement of 8.20 KiB.

4.3 Nonlinear CSTR

The proposed approach is demonstrated on a nonlinear
continuous stirred tank reactor (CSTR) based on the
implementation of Lucia et al. (2017), with uncertainty
in the states and parameters. The CSTR model is given
by the following equations:

(a)

(b)

Fig. 6. State trajectories of the controlled CSTR, using
parameters drawn from their distributions, after op-
timisation of the neural controller. Temperature con-
straint marked in red, in (a). Constraint satisfaction
is 100%.

dCA
dt

= F (CA,0 − CA)− k1CA − k3C
2
A (22a)

dCB
dt

= FCB + k1CA − k2CB (22b)

dTR
dt

=
k1CAHR,1 + k2CBHR,2 + k3C

2
AHR,3

−ρcP
+ (22c)

F (Tin − TR) +
KwAR(TR − TK)

ρcPVR
dTK
dt

=
Q+ kwAR(TR − TK)

mkCP,k
(22d)

with kinetic expression:

k1 = βk0,1 exp

(
−EA,1

TR + 273.15

)
(23)

k2 = k0,2 exp

(
−EA,2

TR + 273.15

)
(24)

k3 = k0,3 exp

(
−αEA,3

TR + 273.15

)
(25)

where parameters α and β are normally distributed,
N (1., 0.02) and N (1., 0.05), with the distributions trun-
cated at 1± 0.05 and 1± 0.1 respectively. The four states



are the concentrations of A and B (CA, CB , mol/L), with
bounds [0.1, 2.], and the temperatures of the reactor and
cooling jacket (TR, TK , ◦C) with bounds [50, 140]. The
initial condition is given by independent normal distri-
butions: πx0

= [N (0.7, 0.05), N (0.6, 0.05), N (135, 1.5),
N (130, 2.5)]. These distributions are truncated at the
mean ±0.1 mol/L for the concentrations, ±3◦C for TR,
and ±5◦C for TK .

The feed (F , L/h) and heat flow (Q, kW) are control in-
puts, with bounds of [5., 100.] and [−8500, 0.] respectively.
Other parameter values are listed in Lucia et al. (2017).
Note that in the above time (t) is in hours. We consider
the stage cost:

l = (CB(t)− 0.6)2 + 0.1(CA(t)− 0.706)2 (26)
+ 0.001

(
(TR(t)− 135)2 + (TK(t)− 133)2

)
As the objective function we use the expectation of the
penalised cost plus two times the variance, i.e.

min
θ

Ep,x0
[φ] + 2Vp,x0

[φ] (27)

where the penalised cost is defined as in Eq. 13.

A neural network with two hidden layers of six nodes
each is used, with tanh as the activation functions, and
with control constraint satisfaction enforced by a sigmoid
function. We use normalised states and control outputs for
the network due to the differences in magnitude in these
variables. The network is trained using a 0.1875 hours
(11.25 minutes) time interval, with data recorded every
0.025 hours (1.5 minutes).

Optimisation is performed by LBFGS (Liu and Nocedal,
1989). Quadrature is performed with an absolute tolerance
of 10−4. We use a penalty approach, aiming for a joint
chance constraint of 100% satisfaction.

250 trajectories of the controlled system are shown in
Figure 6. The controller is able to stabilise the states,
with 100% constraint satisfaction. State profiles of the
controlled system with randomly varying parameters is
shown in Figure 7. Despite the varying parameters the
controller is able to keep the states near their set points.

After training the mean and median execution time of the
neural network is 1.91 µs and 1.86 µs respectively, with an
estimated memory requirement of 3.86 KiB.

5. CONCLUSION

We have shown that neural networks can be optimised to
give an explicit control law for systems with uncertainty in
the parameters and/or initial state. The optimisation was
performed with expectations evaluated in their Koopman
expectation form, for the numerical benefits described in
(Meyers et al., 2019; Gerlach et al., 2020).

In comparison to an explicit MPC law of 7 regions for
double integrator example, the neural policy gives a sim-
ilar solution. The use of a neural policy to ensure near
complete probabilistic constraint satisfaction is shown on
a nonlinear example. The use of neural networks in this
context is interesting as after training they are fast to
evaluate, with all evaluation times in this paper being

(a)

(b)

(c)

Fig. 7. State trajectories of the controlled CSTR, with
randomly varying parameters, after optimisation of
the neural controller are shown in (a) and (b). The
parameter were randomly drawn from their respective
distributions at 0.02 h intervals as shown in (c).



less than 4 µs. Future work could include a comparison
to other training approaches, such as imitation learning,
and a comparison of different approaches to evaluating
the expectations, e.g. polynomial chaos expansion and the
unscented transformation.
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