Designing optimal control models of fed-batch bioreactors based on dynamic flux balance analysis *

Caroline S. M. Nakama* Johannes Jäschke*

* Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract: Model-based control of bioprocesses based on dynamic flux balance analysis (dFBA) are an interesting strategy due to the possibility of accounting for wider ranges of cellular behaviour and operation conditions than those based on unstructured models. These control models are bi-level optimization problems, since dFBA contains a linear programming (LP) model. They can be solved with a nonlinear programming solver by replacing the LP model with its first-order optimality conditions (KKT conditions) and employing a nonlinear programming solver (NLP). When following this approach, it is important to carefully design the optimization problem considering properties of the selected solver. In this work, we show that we can formulate and solve model-based control models with dFBA for fed-batch bioprocesses by using the KKT conditions of the LP model, relaxing the inequality-multiplier complementarities that arise from these conditions and employing a line search interior point solver. We demonstrate this process in a case study to seeks to the maximize growth of *Escherichia coli* on glucose and discuss fundamental steps that one should carefully evaluate, such as constraint dependence, handling complementarities and model initialization.

Keywords: Bioprocess control, dynamic flux balance analysis, mathematical programming with complementarity constraints, bilevel optimization, dynamic optimization

1. INTRODUCTION

Model-based control of bioprocesses is an important strategy that can improve production efficiency and satisfaction of quality requirements (Pörtner et al., 2017). Implementation of this type of control is often uses unstructured models, which are based on specific growth rate and fixed yield parameters, and are usually only valid for narrow ranges of process conditions and cellular behaviour (Jabarivelisdeh et al., 2020). Dynamic flux balance analysis (dFBA) is a modeling technique based on the metabolic network of the microorganism and can account for changes in the active metabolism of the cell. It consists of a set of ordinary differential equations (ODEs) describing the mass balance of substances external to the microorganism, and a static linear programming (LP) model that determines the flux distribution of the metabolic network (Mahadevan et al., 2002). Although cellular metabolism is subject to complex nonlinear dynamics, dFBA is able describe a wider range of behaviours and may be seen as a compromise between mathematical complexity and model comprehensiveness, as opposed to complex kinetic models.

In context of bioprocess model-based control, employing the dFBA model leads to a bi-level optimization model. Two methods have been mainly explored in this context, one is the direct approach (DA), which calls an LP solver for each step calculation (Jabarivelisdeh et al.,

¹ e-mail: johannes.jaschke@ntnu.no

2020; Scott et al., 2018), while the other replaces the LP model with its first-order optimality conditions, i.e., the Karush-Kuhn-Tucker (KKT) conditions (Hjersted and Henson, 2006; Chang et al., 2016). LP solvers are efficient and, therefore, the DA is computationally fast. However, integrating the solver for the outer optimization or an integrator with the LP solver can potentially generate wrong results, for example, if an attempt step calculation returns an infeasible point (Ploch et al., 2020). Using the KKT conditions does not present this problem, but may be challenging to solve due to the inequality-multiplier complementarities.

When the corresponding KKT conditions substitute the LP model, the optimization problem can be discretized and nonlinear programming (NLP) solvers can be used. An issue associated with this problem formulation is that the optimization model is often ill-posed. Solvers that use active-set selection to handle inequalities, such as CONOPT (Drud, 1985), can be well suited to deal with that; however, they can become inefficient when the numbers of inequalities and degrees of freedom are large. Line search interior point solvers, e.g. IPOPT (Wächter and Biegler, 2006), can efficiently handle many degrees of freedom and inequalities, but convergence can be compromised when the model is ill-posed (Wan and Biegler, 2017). Therefore, formulating a well-posed model and understanding limitations of the NLP solver used is important.

Since industrial bioprocess are predominantly operated as batch and fed-batch, the effort in developing model-

^{*} The authors acknowledge financial support from the Norwegian Research Council through FRIPRO Project SensPATH.

based control of bioprocess is directed to these types of bioreactors. Two strategies can be used, open-loop and closed-loop approaches, and both have been reported in literature (Jabarivelisdeh et al., 2020; Chang et al., 2016; Hjersted and Henson, 2006). While the optimization model resulting from the open-loop control approach can be solved off-line, closed-loop control models is better suited to handle disturbances and model mismatch (Tebbani et al., 2008).

In this work, we analyze optimization models for control of fed-batch processes based on the metabolic network of microorganisms derived from both open and closed-loop control approaches. We use the dFBA model to describe the process and focus on methods that formulate a single NLP problem using the first-order optimality conditions of the embedded LP model and orthogonal collocation to handle the dynamic constraints and solve it using IPOPT. Although there are few control applications of this approach reported in literature (Hjersted and Henson, 2006; Chang et al., 2016), not much attention is directed to how to successfully formulate and solve these optimization models and the mathematical challenges they present. We focus on these aspects and discuss how we can deal with common straightforward issues associated with them.

2. OPTIMAL CONTROL BASED ON DYNAMIC FLUX BALANCE ANALYSIS

In this section we show how we can formulate an optimal control model for fed-batch bioreactors using dFBA to describe the metabolism of the microorganism and the dynamics of the process. The optimization model for the process is the same for both open-loop and closedloop strategies; the difference lies on how the model is used to control the process. In the open-loop approach, the optimization problem is solved and the trajectories obtained for the manipulated variables are implemented in the process. For the closed-loop strategy, we consider a shrinking horizon, which starts with the length of the total batch time, $T \in \mathbb{R}$, and is discretized into $n_T \in \mathbb{N}$ finite elements. As the process progress, at each time step $t_i \in \mathbb{R}$ of length $h_i = T/n_T$, the optimization model is solved and the values of the manipulated variables at the current step is implemented, while the remaining trajectories are discarded.

The optimization model is of the form

$$\max_{u} \quad \Phi(x(t), u(t), v(t)) \tag{1a}$$

s.t.
$$\frac{du}{dt} = f(x(t), u(t), v(t))$$
(1b)
$$v_B(t) = q(x(t))$$
(1c)

$$v(t) \in \underset{w}{\operatorname{argmin}} \left\{ -c^T w | Aw = 0, \ v^{\text{lb}} \le w \le v^{\text{ub}} \right\}$$
(1d)

where $u(\cdot) \in \mathbb{R}^{n_U}$ is a vector with $n_U \in \mathbb{N}$ manipulated variables, $x(t) \in \mathbb{R}^{n_S}$ is a vector with $n_S \in \mathbb{N}$ state variables, which usually correspond to the volume of the reactor and external concentrations, $v(t) \in \mathbb{R}^{n_R}$ is a vector with $n_R \in \mathbb{N}$ internal fluxes in the metabolic network, which correspond to the algebraic variables, $v_B(t) \in \mathbb{R}^{n_B}$ is a sub-vector with $n_B \in \mathbb{N}$ boundary fluxes, i.e., those that exchange matter with the media, $c \in \mathbb{R}^{n_R}$ is a weight vector for the fluxes that determine cellular growth, $A \in \mathbb{R}^{n_M \times n_R}$ is the stoichiometry matrix of internal metabolites, $v^{\text{lb}} \in \mathbb{R}^{n_R}$ and $v^{\text{lb}} \in \mathbb{R}^{n_R}$ are, respectively, vectors with lower and upper bounds for the fluxes, $\Phi : \mathbb{R}^{n_S} \times \mathbb{R}^{n_U} \times \mathbb{R}^{n_R} \to \mathbb{R}$ is the economic objective function, $f : \mathbb{R}^{n_S} \times \mathbb{R}^{n_U} \times \mathbb{R}^{n_R} \to \mathbb{R}^{n_S}$ is a vector function representing the mass balance of the state variables, and $q : \mathbb{R}^{n_S} \to \mathbb{R}^{n_B}$ is a vector function that governs the boundary exchanges between the microorganism and the media. The set of constraints corresponds to the dFBA model, which includes a LP model, making (5) a dynamic bi-level optimization problem.

Since we seek to solve the presented optimization problem using the NLP solver IPOPT, we need to reformulate the dynamic bi-level optimization model into an NLP problem, as interior point solvers cannot directly handle differential algebraic system of equations (DAEs) or LP models as constraints. Considering that, we replace (1d) with its first-order optimality conditions and discretize the model using orthogonal collocation with n_T finite elements and $n_C \in \mathbb{N}$ collocation points Biegler (2010). The problem is then described by

$$\max \quad \Phi(x, u, v) \tag{2a}$$

s.t.
$$x(t_i) = x(t_{i-1}) + \sum_{k=1}^{N \cup i} h_i \omega_k f(x(t_{ik}), u(t_i), v(t_{ik}))$$

$$v_B(t_{ij}) = q(x(t_{ij})) \tag{2c}$$

$$A^{I} \lambda_{ij} - y_{ij} + z_{ij} - c = 0$$
 (2d)

$$Av(\iota_{ij}) = 0 \tag{2e}$$
$$z_{i}(v^{up} - v(t_{ij})) = 0 \tag{2f}$$

$$q_{ii}(v(t_{ii}) - v^{\rm lo}) = 0 \tag{2g}$$

$$v^{\rm up} - v(t_{ij}) \ge 0 \tag{2h}$$

$$v(t_{ij}) - v^{\rm lo} \ge 0 \tag{2i}$$

$$z_{ij}, y_{ij} \ge 0 \tag{2j}$$

for
$$i = 1, ..., n_T; \quad j = 1, ..., n_C$$

where $t_{ik} = t_{i-1} + h_i \tau_k$ with $\tau_k \in \mathbb{R}$ corresponding to interpolation points within the finite element, $\omega_k \in \mathbb{R}$ is a quadrature weight that depends on the method and number of collocation points, $\lambda_{ij} \in \mathbb{R}$ is the Lagrange multiplier corresponding to the equality constraints of the LP for t_{ij} , and $y_{ij} \in \mathbb{R}$ and $z_{ij} \in \mathbb{R}$ are the Lagrange multipliers for the inequalities representing the lower and upper bounds for $v(t_{ij})$ respectively. From this point onward, we drop the explicit notation for time-dependency and define, for example, $x_i := x(t_i)$ and $x_{ij} := x(t_{ij})$, the latter being the value of x in the j^{th} collocation point within the i^{th} finite element.

2.1 Model analysis

When using IPOPT, it is important to assess whether the optimization model has dependent equality constraints, since they may result in convergence issues or even failure, and address them if possible. These dependencies can be categorized into two types: global and local. In the former, the constraints are redundant and, therefore, dependent at every iteration of the solver. The latter can be an inherent problem of non-linear problems as the linearized constraints can become dependent at some iterates depending on the point being evaluated (Wan and Biegler, 2017).

Even though global dependencies do not change the optimal solution, they are associated with naive modeling and should be removed (Wan and Biegler, 2017). When working with models based on the stoichiometry matrices of metabolic networks, we can have globally dependent constraints, for example, when all metabolites involved in a closed cycle are present. Ideally we should identify these groups of metabolites and remove one of them, as any result involving the removed metabolite can be calculated from the others. The presence of global dependent constraints in this context will be further discussed in the Results and discussion section demonstrated on the case study.

Employing the KKT conditions of an LP model as constraints, as in (2), results in the optimization model becoming an mathematical programming with complementarity constraints. These constraints fix the relationship between two variables by enforcing that at least one of them must be at its bound. They are usually represented as

$$0 \le a \perp b \ge 0,\tag{3}$$

where $a, b \in \mathbb{R}^n$ with $n \in \mathbb{N}$, but they can also be written as $a_i b_i = 0$ for $i = 1, \ldots, n$ or $a^T b = 0$ with $a, b \ge 0$. These type of constraints are locally dependent at any feasible point (Wan and Biegler, 2017), and interior point solvers cannot directly handle this non-smoothness, and, therefore, MPCC models are usually reformulated into a NLPs. There are essentially two approaches one can follow for to derive this reformulation. One consists in relaxing the complementarity constraints, e.g, by replacing (3) with $a_i b_i \le \epsilon$ for $i = 1, \ldots, n$, and a small constant $\epsilon \in \mathbb{R}$, while the other uses the penalty approach, which removes $a^T b = 0$ from the constraint set and adds a penalty term of the form $\pi a^T b$ to the objective function, where $\pi \in \mathbb{R}$ is a large enough positive constant (Leyffer et al., 2006).

Baumrucker et al. (2008) discuss different strategies to solve MPCCs and conclude that IPOPT performs well with both reformulation approaches and Leyffer et al. (2006) prove convergence for both methods combined with an interior point algorithm. While the relaxation approach guarantees that the complementarity is met to a certain precision, the penalty reformulation is more general and gives more flexibility to the model. Whether one approach is better suited for employing dFBA as the control model will also be discussed in the Results and discussion section.

3. CASE STUDY

We base our discussion on the case study of a fed-batch process in which we wish to maximize the mass of *E. coli* at the end of the cultivation time. This problem is presented in Scott et al. (2018) with an open-loop formulation to evaluate their proposed method of handling dFBA problems as DAEs or implicit ODEs. The metabolic network of the core metabolism consists of $n_m = 72$ internal metabolites and $n_r = 95$ fluxes (Orth et al., 2010). The dFBA model is given by

$$\frac{dV}{dt} = F \tag{4a}$$

$$\frac{dX}{dt} = v_B X - X \frac{F}{V} \tag{4b}$$

$$\frac{dS}{dt} = 0.18v_S X - (S_F - S)\frac{F}{V} \tag{4c}$$

$$v_s = -v_{S,\max} \frac{S}{S + K_S + S^2/K_I} \tag{4d}$$

$$v \in \underset{w}{\operatorname{argmin}} \left\{ -c^T w | Aw = 0, \ v^{\text{lb}} \le w \le v^{\text{ub}} \right\}$$
(4e)

where $V \in \mathbb{R}$ is the culture volume in L, $X \in \mathbb{R}$ is biomass concentration in g/L, $S \in \mathbb{R}$ is glucose concentration in g/L, $F \in \mathbb{R}$ is the feed rate in L/h and glucose concentration $S_F \in \mathbb{R}, v_S \in \mathbb{R}$ and $v_B \in \mathbb{R}$ are entries of v and correspond, respectively, to the glucose uptake rate and the growth rate in mmol/(gDW·h), $v_{S,\max} \in \mathbb{R}$ is the maximum glucose uptake rate, and $K_S \in \mathbb{R}$ and $K_I \in \mathbb{R}$ are affinity and inhibition constants for the substrate in g/L. Equation (4d) is a Michaelis-Menten equation describing glucose uptake taking substrate inhibition into account; this is the only boundary exchange considered.

To build the optimization model for the control problem, we discretize (4) and replace the LP problem with its KKT conditions, as done in (2), resulting in

$$\max_{F} \quad \Phi = (XV)|_{t_f} \tag{5a}$$

s.t.
$$V_i = V_{i-1} + \sum_{k=1}^{n_C} h_i \omega_k F_i$$
 (5b)

$$X_i = X_{i-1} + \sum_{k=1}^{n_C} h_i \omega_k \left(v_{Bij} X_{ij} - X_{ij} \frac{F_i}{V_{ij}} \right) \quad (5c)$$

$$S_i = S_{i-1} + \sum_{k=1}^{n_C} h_i \omega_k \left(0.18 v_{Sij} X_{ij} - (S_F - S_{ij}) \frac{F_i}{V_{ei}} \right)$$
(5d)

$$= -v_{S,\max} \frac{S_{ij}}{Q_{ij} + V_{ij} + Q_{ij}^2 + V_{ij}}$$
(5e)

$$v_{Sij} = -v_{S,\max} \frac{S_{ij}}{S_{ij} + K_S + S_{ij}^2/K_I}$$
(5e)

Eq.
$$(20) - (2j)$$

for
$$i = 1, ..., n_T; \quad j = 1, ..., n_C.$$

For this case study, we consider a batch time of 12 hours, and the initial values for the dynamic variables are $V_0 = 1$ L, $X_0 = 1$ gDW/L, and $S_0 = 2$ g/L. For simulating the process, the parameter values are $S_F = 100$ g/L, $v_{S,\text{max}} = 10$ mmol/(gDW·h), $K_S = 1$ g/L, and $K_I = 10$ g/L. Process simulation is also performed using IPOPT with the objective function containing only the penalty terms for the complementarities. For the control model, we introduce model mismatch by reducing K_I by 15 %.

4. METHODOLOGY

In this work, we discuss relevant mathematical aspects when formulating and solving optimization models derived from control problems based on dFBA using an interior point line search filter solver, such as IPOPT. We analyze two types of control problems, open-loop and closedloop models. The former is the basis for studying the influence of globally dependent constraints on convergence of the model, while the latter model is employed to analyze the influence of the reformulation approach used to solve MPCC models with NLP solvers. Since dependent constraints result in ill-conditioned linear systems during the step calculation in line search algorithms, solvers need a way of dealing with this situation. We discuss how the regularization method used in IPOPT can influence convergence when common redundancies in models based on metabolic networks are present.

Constraints (2f)-(2j) in the optimization model (5) describe the complementarity relation between the inequalities and the corresponding Lagrange multipliers of the LP in the dFBA model (1d). We apply both reformulations discussed in Section 2.1, the penalty-term and the relaxation approaches, to turn (5) into an NLP. For that, we can define two slack variables for the inequalities, $sl_{ij}^{up} := v^{up} - v_{ij}$ and $sl_{ij}^{lo} := v_{ij} - v^{lo}$. The penalty-term approach rewrites (5) as

$$\max_{F} \quad \Phi = (XV)|_{t_{f}} - \pi \sum_{i=1}^{i=n_{T}} \sum_{j=1}^{j=n_{C}} (sl_{ij}^{up} z_{ij} + sl_{ij}^{lo} y_{ij}) \quad (6a)$$

Eq. (5b) - (5e)
Eq. (2d), (2e), (2h) - (2j)

where $\pi \in \mathbb{R}$ is a weight parameter for the penalty term. The relaxation approach relaxes the equality constraints (2f) and (2g) turning them into inequalities, leading to

$$\max_{F} \quad \Phi = (XV)|_{t_f} \tag{7a}$$

$$sl_{ij}^{\mathrm{up}} z_{ij} \le \varepsilon$$
 (7b)

$$sl_{ij}^{lo}y_{ij} \le \varepsilon$$
Eq. (5b) - (5e)
Eq. (2d), (2e), (2h) - (2j)
for $i = 1, ..., n_T; \quad j = 1, ..., n_C.$
(7c)

where $\varepsilon \in \mathbb{R}$ is a small threshold.

When solving the problems posed by the open-loop and the closed-loop approaches, the main difference here is that, for the closed-loop method, we repeatedly solve the optimization model in (5) at each time step with a shrinking horizon during the process, while the open-loop approach requires it to the be solved only once beforehand. Because of that, closed-loop problems need to be solved fast enough and accurate enough, which depends on the process. We discuss the influence of those reformulation approaches for MPCC on these aspects for this bioprocess control problem with a closed-loop setting.

Implementation of both open-loop and closed-loop control models was done in Julia with JuMP (Dunning et al., 2017) as mathematical programming language, and using $n_T = 12$ finite elements and $n_C = 3$ collocation points based on Radau roots were used. The open-loop problem was solved using the penalty-term reformulation.

5. RESULTS AND DISCUSSION

In this section we present the results of both control models applied to the case study described in the previous sections. First, it is important to emphasize that an MPCC problem reformulated into an NLP is nonconvex; therefore, all results presented here are local solutions. We begin by showing that globally dependent equality constraints can be present in dFBA models and that they can significantly influence convergence based on the results of the open-loop control model. Then, we analyze the role of the most common reformulation approaches in handling MPCC models on closed-loop control models based on dFBA and discuss the importance of a good initialization for the variables of the optimization model in this context.

5.1 Globally dependent constraints

The stoichiometry matrix for the E. coli core metabolism considered in the case study is 72×95 ; however, its rank is 67. This means that 5 rows are redundant, i.e., there are 5 metabolites that any result associated to them can be derived from other metabolites. For example, adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) are well-known molecules involved in the energy cycle of a cell, being ATP responsible for providing energy to processes in the metabolism. When energy is consumed by a process, ATP loses one or two phosphate atoms and becomes ADP or AMP respectively. Since they are simultaneously present in reactions involving energy exchange, they result in linear dependent rows in the stoichiometry matrix. If the complete matrix is used in the dFBA model, those rows give rise to globally dependent constraints, which, as discussed in section 2.1, may negatively influence convergence of IPOPT.

We compared the results for the open-loop control problem using the complete stoichiometry matrix, A, and the reduced full-rank matrix, Ar, after ADP and other four redundant metabolites were removed. Because the starting point and weighting parameter π can greatly influence convergence, we used four different initial guesses and varied $\log_{10} \pi$ from 0 to 3 for both problems built with A and Ar. When the complete matrix was used, out of the 16 combinations of initial guess and π , 15 failed to converge and one converged to a stationary point in which no growth was observed. Using the full-rank matrix, the solver was able to converge to a local solution in every case; 11 combinations converged to the results shown in Figure 1, while the other five reached different points and predicted lower biomass concentration at the end of the batch.

These results corroborate the discussion in Wan and Biegler (2017). Primal-dual interior point methods, such as the one implemented in IPOPT, use inefficient regularization strategies to handle ill-conditioned KKT systems originated from dependent constraints. In this case, the globally dependent constraints stemmed from the rankdeficient stoichiometry matrix did not allow for the problem to converge, which highlights the importance of building a well-posed model.

5.2 MPCC reformulation

Both the penalty-term and relaxation formulations for handling the complementarity constraints from the dFBA model were able to solve the closed-loop problem and they converged essentially to the same local minimum, from which the main results are shown in Figure 2, for all

Fig. 1. Best results for the open-loop control problem formulation for maximizing biomass at the end of the batch obtained using the reduced full-rank stoichiometry matrix.

weighting parameter π and threshold ε values considered. As expected, since we introduced a mismatch in the control model, the MPC approach is able to reach larger biomass production at the end of the batch. The results presented here were obtained with the reduced full-rank stoichiometry matrix.

Fig. 2. Results for the closed-loop control model using both the penalty-term and the relaxation reformulation of mathematical program with complementarity constraints.

For the optimization model using the penalty-term approach for reformulating the complementarities, we considered 4 values for the weighting parameter π , 1, 10, 100 and 1000, and, for the model with the relaxed constraints, the values used as threshold were 10^{-4} , 10^{-5} , 10^{-6} , and 10^{-7} . Figure 3 presents the calculated values for the complementarities and time consumed to solve the NLP problems at each time step for both reformulation approaches.

Consider a vector $d \in \mathbb{R}^{2 \cdot n_R \cdot n_T \cdot n_C}$ with all the complementarity expressions given by (2f) and (2g); the top plot in

Fig. 3. Top plot: maximum complementarity value of the model that is solved at each time step. Bottom plot: run time for solving the model at each time step.

Figure 3 shows the maximum entry in d from the optimization model solved at each time step. Since the optimization model always converged to a local minimum, when the relaxation reformulation is used, the relaxed constraints are, as expected, always lower then the adopted threshold value. However, for the penalty-term reformulation, d only varies with the value of the weighting parameter π in the first optimization model and, during the process, the maximum complimentarity is kept at 10^{-5} .

The bottom plot of Figure 3 shows that the running times of the models are very similar at each time step, with the relaxation approach showing a slightly larger variation with threshold ε . Since the closed-loop control model is implemented with a shrinking horizon, the optimization model solved at each time step decreases, requiring less time to be solved, as it can be seen by the decreasing trend in the plot.

These results show that both reformulation approaches can satisfactorily be used for the bioprocess control problem formulated in this work. They resulted in the same trajectory for the manipulated variable and available biomass at the end of the batch regardless the value considered for π or ε . In addition, in both cases, the reactions rates that were not at a corresponding boundary had the same optimal values; while the remaining entries in v varied slightly with the complementarity tolerance, they could easily be identified. Regarding the solve time, bioprocesses commonly present slow dynamics, and, for this case, the longest run time to solve an optimization model was about 15 seconds, which can be considered a negligible delay for an one-hour interval.

Another aspect that is worth discussing is importance of model initialization, i.e., from which point NLP solvers start. Starting values usually have great influence on convergence, so it is important to have a good initial guess for all variables. To illustrate this, Figure 4 shows the run time for solving the optimization model at each time step without providing a starting point to the solver, which uses its default values. In every case, the solver was able to converge the same results as shown in Figure 2; however, run time was greatly increased, especially when the relaxation reformulation was used.

Fig. 4. Run time for solving the model at each time step without initialization.

For closed-loop control models, we can use the results from the previous iteration as starting point. When implementing a shrinking horizon, at each time step, the model is solved from the current time point t_i until the end of the batch at t_F ; the results from t_{i+1} to t_T can be saved to be used as initial guess for the optimization model in the next time step. This starting point is usually close to the solution; however, for interior point solvers, issues can arise when variables start at their bounds. To deal with variable bounds, such as $x \ge 0$, IPOPT uses a barrier term in the objective function of the form $\mu \log x$, where $\mu \in \mathbb{R}$ is the barrier parameter, which starts at 10^{-1} by default and gradually decreases as the calculation progresses. If x is set to start at 0, IPOPT changes its value to start within the barrier, so it can decrease gradually with μ . When starting close to a solution that contains variables at their bounds, they are changed by the solver and the starting point can be altered to a "bad" initial guess. In our case study, when the penalty-term reformulation was used with $\pi = 10^2$, the solver failed to converge when starting from the results from the previous time step. This issue can be handled by changing the initial value of μ ; for the results presented in this section, μ was set to start at 10^{-6} .

6. CONCLUSION AND FUTURE WORK

We have shown that model-based control of bioprocesses employing dFBA can be successfully formulated and solved by line search interior point solvers. However, it is important to understand its limitations and carefully design the problem to avoid issues that may arise. Checking for dependent constraints, selecting a reformulation technique and associated parameter value to handle the complementarity constraints, initializing the model are important steps that should not be overlooked. For this case study, the main goal was maximizing biomass at the end of the batch and, therefore, the active metabolism does not change during the process. For future work, we will investigate the challenges associated with changes in the active set of the dFBA model, as well as expanding this application to genome-scale metabolic networks.

REFERENCES

- Baumrucker, B., Renfro, J.G., and Biegler, L.T. (2008). Mpec problem formulations and solution strategies with chemical engineering applications. *Computers & Chemical Engineering*, 32(12), 2903–2913.
- Biegler, L.T. (2010). Nonlinear programming: concepts, algorithms, and applications to chemical processes. SIAM.
- Chang, L., Liu, X., and Henson, M.A. (2016). Nonlinear model predictive control of fed-batch fermentations using dynamic flux balance models. *Journal of Process Control*, 42, 137–149.
- Drud, A. (1985). Conopt: A grg code for large sparse dynamic nonlinear optimization problems. *Mathematical* programming, 31(2), 153–191.
- Dunning, I., Huchette, J., and Lubin, M. (2017). Jump: A modeling language for mathematical optimization. SIAM Review, 59(2), 295–320.
- Hjersted, J.L. and Henson, M.A. (2006). Optimization of fed-batch saccharomyces cerevisiae fermentation using dynamic flux balance models. *Biotechnology progress*, 22(5), 1239–1248.
- Jabarivelisdeh, B., Carius, L., Findeisen, R., and Waldherr, S. (2020). Adaptive predictive control of bioprocesses with constraint-based modeling and estimation. Computers & Chemical Engineering, 135, 106744.
- Leyffer, S., López-Calva, G., and Nocedal, J. (2006). Interior methods for mathematical programs with complementarity constraints. SIAM Journal on Optimization, 17(1), 52–77.
- Mahadevan, R., Edwards, J.S., and Doyle III, F.J. (2002). Dynamic flux balance analysis of diauxic growth in escherichia coli. *Biophysical journal*, 83(3), 1331–1340.
- Orth, J.D., Fleming, R.M., and Palsson, B.Ø. (2010). Reconstruction and use of microbial metabolic networks: the core escherichia coli metabolic model as an educational guide. *EcoSal plus*, 4(1).
- Ploch, T., von Lieres, E., Wiechert, W., Mitsos, A., and Hannemann-Tamás, R. (2020). Simulation of differential-algebraic equation systems with optimization criteria embedded in modelica. *Computers & Chemical Engineering*, 140, 106920.
- Pörtner, R., Barradas, O.P., Frahm, B., and Hass, V.C. (2017). Advanced process and control strategies for bioreactors. In *Current Developments in Biotechnology* and *Bioengineering*, 463–493. Elsevier.
- Scott, F., Wilson, P., Conejeros, R., and Vassiliadis, V.S. (2018). Simulation and optimization of dynamic flux balance analysis models using an interior point method reformulation. *Computers & Chemical Engineering*, 119, 152–170.
- Tebbani, S., Dumur, D., and Hafidi, G. (2008). Openloop optimization and trajectory tracking of a fedbatch bioreactor. *Chemical Engineering and Processing: Process Intensification*, 47(11), 1933–1941.
- Wächter, A. and Biegler, L.T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. *Mathematical* programming, 106(1), 25–57.
- Wan, W. and Biegler, L.T. (2017). Structured regularization for barrier nlp solvers. *Computational Optimization* and Applications, 66(3), 401–424.