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Abstract: Model-based control of bioprocesses based on dynamic flux balance analysis (dFBA)
are an interesting strategy due to the possibility of accounting for wider ranges of cellular
behaviour and operation conditions than those based on unstructured models. These control
models are bi-level optimization problems, since dFBA contains a linear programming (LP)
model. They can be solved with a nonlinear programming solver by replacing the LP model with
its first-order optimality conditions (KKT conditions) and employing a nonlinear programming
solver (NLP). When following this approach, it is important to carefully design the optimization
problem considering properties of the selected solver. In this work, we show that we can formulate
and solve model-based control models with dFBA for fed-batch bioprocesses by using the KKT
conditions of the LP model, relaxing the inequality-multiplier complementarities that arise from
these conditions and employing a line search interior point solver. We demonstrate this process
in a case study to seeks to the maximize growth of Escherichia coli on glucose and discuss
fundamental steps that one should carefully evaluate, such as constraint dependence, handling
complementarities and model initialization.
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1. INTRODUCTION

Model-based control of bioprocesses is an important strat-
egy that can improve production efficiency and satisfaction
of quality requirements (Pörtner et al., 2017). Implementa-
tion of this type of control is often uses unstructured mod-
els, which are based on specific growth rate and fixed yield
parameters, and are usually only valid for narrow ranges of
process conditions and cellular behaviour (Jabarivelisdeh
et al., 2020). Dynamic flux balance analysis (dFBA) is a
modeling technique based on the metabolic network of the
microorganism and can account for changes in the active
metabolism of the cell. It consists of a set of ordinary
differential equations (ODEs) describing the mass balance
of substances external to the microorganism, and a static
linear programming (LP) model that determines the flux
distribution of the metabolic network (Mahadevan et al.,
2002). Although cellular metabolism is subject to complex
nonlinear dynamics, dFBA is able describe a wider range
of behaviours and may be seen as a compromise between
mathematical complexity and model comprehensiveness,
as opposed to complex kinetic models.

In context of bioprocess model-based control, employing
the dFBA model leads to a bi-level optimization model.
Two methods have been mainly explored in this context,
one is the direct approach (DA), which calls an LP
solver for each step calculation (Jabarivelisdeh et al.,
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2020; Scott et al., 2018), while the other replaces the
LP model with its first-order optimality conditions, i.e.,
the Karush-Kuhn-Tucker (KKT) conditions (Hjersted and
Henson, 2006; Chang et al., 2016). LP solvers are efficient
and, therefore, the DA is computationally fast. However,
integrating the solver for the outer optimization or an
integrator with the LP solver can potentially generate
wrong results, for example, if an attempt step calculation
returns an infeasible point (Ploch et al., 2020). Using the
KKT conditions does not present this problem, but may
be challenging to solve due to the inequality-multiplier
complementarities.

When the corresponding KKT conditions substitute the
LP model, the optimization problem can be discretized
and nonlinear programming (NLP) solvers can be used.
An issue associated with this problem formulation is
that the optimization model is often ill-posed. Solvers
that use active-set selection to handle inequalities, such
as CONOPT (Drud, 1985), can be well suited to deal
with that; however, they can become inefficient when the
numbers of inequalities and degrees of freedom are large.
Line search interior point solvers, e.g. IPOPT (Wächter
and Biegler, 2006), can efficiently handle many degrees of
freedom and inequalities, but convergence can be compro-
mised when the model is ill-posed (Wan and Biegler, 2017).
Therefore, formulating a well-posed model and under-
standing limitations of the NLP solver used is important.

Since industrial bioprocess are predominantly operated
as batch and fed-batch, the effort in developing model-



based control of bioprocess is directed to these types of
bioreactors. Two strategies can be used, open-loop and
closed-loop approaches, and both have been reported in
literature (Jabarivelisdeh et al., 2020; Chang et al., 2016;
Hjersted and Henson, 2006). While the optimization model
resulting from the open-loop control approach can be
solved off-line, closed-loop control models is better suited
to handle disturbances and model mismatch (Tebbani
et al., 2008).

In this work, we analyze optimization models for control
of fed-batch processes based on the metabolic network of
microorganisms derived from both open and closed-loop
control approaches. We use the dFBA model to describe
the process and focus on methods that formulate a single
NLP problem using the first-order optimality conditions
of the embedded LP model and orthogonal collocation
to handle the dynamic constraints and solve it using
IPOPT. Although there are few control applications of
this approach reported in literature (Hjersted and Henson,
2006; Chang et al., 2016), not much attention is directed to
how to successfully formulate and solve these optimization
models and the mathematical challenges they present. We
focus on these aspects and discuss how we can deal with
common straightforward issues associated with them.

2. OPTIMAL CONTROL BASED ON DYNAMIC
FLUX BALANCE ANALYSIS

In this section we show how we can formulate an optimal
control model for fed-batch bioreactors using dFBA to
describe the metabolism of the microorganism and the
dynamics of the process. The optimization model for
the process is the same for both open-loop and closed-
loop strategies; the difference lies on how the model is
used to control the process. In the open-loop approach,
the optimization problem is solved and the trajectories
obtained for the manipulated variables are implemented
in the process. For the closed-loop strategy, we consider a
shrinking horizon, which starts with the length of the total
batch time, T ∈ R, and is discretized into nT ∈ N finite
elements. As the process progress, at each time step ti ∈ R
of length hi = T/nT , the optimization model is solved
and the values of the manipulated variables at the current
step is implemented, while the remaining trajectories are
discarded.

The optimization model is of the form

max
u

Φ(x(t), u(t), v(t)) (1a)

s.t.
dx

dt
= f(x(t), u(t), v(t)) (1b)

vB(t) = q(x(t)) (1c)

v(t) ∈ argmin
w
{−cTw|Aw = 0, vlb ≤ w ≤ vub}

(1d)

where u(·) ∈ RnU is a vector with nU ∈ N manipulated
variables, x(t) ∈ RnS is a vector with nS ∈ N state
variables, which usually correspond to the volume of the
reactor and external concentrations, v(t) ∈ RnR is a
vector with nR ∈ N internal fluxes in the metabolic
network, which correspond to the algebraic variables,
vB(t) ∈ RnB is a sub-vector with nB ∈ N boundary
fluxes, i.e., those that exchange matter with the media,

c ∈ RnR is a weight vector for the fluxes that determine
cellular growth, A ∈ RnM×nR is the stoichiometry matrix
of internal metabolites, vlb ∈ RnR and vlb ∈ RnR are,
respectively, vectors with lower and upper bounds for the
fluxes, Φ : RnS×RnU×RnR → R is the economic objective
function, f : RnS ×RnU ×RnR → RnS is a vector function
representing the mass balance of the state variables, and
q : RnS → RnB is a vector function that governs the
boundary exchanges between the microorganism and the
media. The set of constraints corresponds to the dFBA
model, which includes a LP model, making (5) a dynamic
bi-level optimization problem.

Since we seek to solve the presented optimization problem
using the NLP solver IPOPT, we need to reformulate the
dynamic bi-level optimization model into an NLP problem,
as interior point solvers cannot directly handle differential
algebraic system of equations (DAEs) or LP models as
constraints. Considering that, we replace (1d) with its
first-order optimality conditions and discretize the model
using orthogonal collocation with nT finite elements and
nC ∈ N collocation points Biegler (2010). The problem is
then described by

max
u

Φ(x, u, v) (2a)

s.t. x(ti) = x(ti−1) +

nC∑
k=1

hiωkf(x(tik), u(ti), v(tik))

(2b)

vB(tij) = q(x(tij)) (2c)

ATλij − yij + zij − c = 0 (2d)

Av(tij) = 0 (2e)

zij(v
up − v(tij)) = 0 (2f)

yij(v(tij)− vlo) = 0 (2g)

vup − v(tij) ≥ 0 (2h)

v(tij)− vlo ≥ 0 (2i)

zij , yij ≥ 0 (2j)

for i = 1, . . . , nT ; j = 1, . . . , nC

where tik = ti−1 + hiτk with τk ∈ R corresponding to
interpolation points within the finite element, ωk ∈ R
is a quadrature weight that depends on the method and
number of collocation points, λij ∈ R is the Lagrange
multiplier corresponding to the equality constraints of the
LP for tij , and yij ∈ R and zij ∈ R are the Lagrange
multipliers for the inequalities representing the lower and
upper bounds for v(tij) respectively. From this point
onward, we drop the explicit notation for time-dependency
and define, for example, xi := x(ti) and xij := x(tij), the
latter being the value of x in the jth collocation point
within the ith finite element.

2.1 Model analysis

When using IPOPT, it is important to assess whether the
optimization model has dependent equality constraints,
since they may result in convergence issues or even failure,
and address them if possible. These dependencies can be
categorized into two types: global and local. In the former,
the constraints are redundant and, therefore, dependent



at every iteration of the solver. The latter can be an
inherent problem of non-linear problems as the linearized
constraints can become dependent at some iterates de-
pending on the point being evaluated (Wan and Biegler,
2017).

Even though global dependencies do not change the op-
timal solution, they are associated with naive modeling
and should be removed (Wan and Biegler, 2017). When
working with models based on the stoichiometry matrices
of metabolic networks, we can have globally dependent
constraints, for example, when all metabolites involved in
a closed cycle are present. Ideally we should identify these
groups of metabolites and remove one of them, as any
result involving the removed metabolite can be calculated
from the others. The presence of global dependent con-
straints in this context will be further discussed in the
Results and discussion section demonstrated on the case
study.

Employing the KKT conditions of an LP model as con-
straints, as in (2), results in the optimization model becom-
ing an mathematical programming with complementarity
constraints. These constraints fix the relationship between
two variables by enforcing that at least one of them must
be at its bound. They are usually represented as

0 ≤ a ⊥ b ≥ 0, (3)

where a, b ∈ Rn with n ∈ N, but they can also be written
as aibi = 0 for i = 1, . . . , n or aT b = 0 with a, b ≥ 0.
These type of constraints are locally dependent at any
feasible point (Wan and Biegler, 2017), and interior point
solvers cannot directly handle this non-smoothness, and,
therefore, MPCC models are usually reformulated into a
NLPs. There are essentially two approaches one can follow
for to derive this reformulation. One consists in relaxing
the complementarity constraints, e.g, by replacing (3) with
aibi ≤ ε for i = 1, . . . , n, and a small constant ε ∈ R,
while the other uses the penalty approach, which removes
aT b = 0 from the constraint set and adds a penalty term
of the form πaT b to the objective function, where π ∈ R
is a large enough positive constant (Leyffer et al., 2006).

Baumrucker et al. (2008) discuss different strategies to
solve MPCCs and conclude that IPOPT performs well
with both reformulation approaches and Leyffer et al.
(2006) prove convergence for both methods combined with
an interior point algorithm. While the relaxation approach
guarantees that the complementarity is met to a certain
precision, the penalty reformulation is more general and
gives more flexibility to the model. Whether one approach
is better suited for employing dFBA as the control model
will also be discussed in the Results and discussion section.

3. CASE STUDY

We base our discussion on the case study of a fed-batch
process in which we wish to maximize the mass of E.
coli at the end of the cultivation time. This problem
is presented in Scott et al. (2018) with an open-loop
formulation to evaluate their proposed method of handling
dFBA problems as DAEs or implicit ODEs. The metabolic
network of the core metabolism consists of nm = 72
internal metabolites and nr = 95 fluxes (Orth et al., 2010).
The dFBA model is given by

dV

dt
= F (4a)

dX

dt
= vBX −X

F

V
(4b)

dS

dt
= 0.18vSX − (SF − S)

F

V
(4c)

vs = −vS,max
S

S +KS + S2/KI
(4d)

v ∈ argmin
w
{−cTw|Aw = 0, vlb ≤ w ≤ vub} (4e)

where V ∈ R is the culture volume in L, X ∈ R is biomass
concentration in g/L, S ∈ R is glucose concentration
in g/L, F ∈ R is the feed rate in L/h and glucose
concentration SF ∈ R, vS ∈ R and vB ∈ R are entries of
v and correspond, respectively, to the glucose uptake rate
and the growth rate in mmol/(gDW·h), vS,max ∈ R is the
maximum glucose uptake rate, and KS ∈ R and KI ∈ R
are affinity and inhibition constants for the substrate
in g/L. Equation (4d) is a Michaelis-Menten equation
describing glucose uptake taking substrate inhibition into
account; this is the only boundary exchange considered.

To build the optimization model for the control problem,
we discretize (4) and replace the LP problem with its KKT
conditions, as done in (2), resulting in

max
F

Φ = (XV )|tf (5a)

s.t. Vi = Vi−1 +

nC∑
k=1

hiωkFi (5b)

Xi = Xi−1 +

nC∑
k=1

hiωk

(
vBijXij −Xij

Fi

Vij

)
(5c)

Si = Si−1 +

nC∑
k=1

hiωk

(
0.18vSijXij

− (SF − Sij)
Fi

Vij

)
(5d)

vSij = −vS,max
Sij

Sij +KS + S2
ij/KI

(5e)

Eq. (2d)− (2j)

for i = 1, . . . , nT ; j = 1, . . . , nC .

For this case study, we consider a batch time of 12 hours,
and the initial values for the dynamic variables are V0 = 1
L, X0 = 1 gDW/L, and S0 = 2 g/L. For simulating
the process, the parameter values are SF = 100 g/L,
vS,max = 10 mmol/(gDW·h), KS = 1 g/L, and KI = 10
g/L. Process simulation is also performed using IPOPT
with the objective function containing only the penalty
terms for the complementarities. For the control model,
we introduce model mismatch by reducing KI by 15 %.

4. METHODOLOGY

In this work, we discuss relevant mathematical aspects
when formulating and solving optimization models derived
from control problems based on dFBA using an interior
point line search filter solver, such as IPOPT. We analyze
two types of control problems, open-loop and closed-
loop models. The former is the basis for studying the
influence of globally dependent constraints on convergence
of the model, while the latter model is employed to



analyze the influence of the reformulation approach used
to solve MPCC models with NLP solvers. Since dependent
constraints result in ill-conditioned linear systems during
the step calculation in line search algorithms, solvers need
a way of dealing with this situation. We discuss how
the regularization method used in IPOPT can influence
convergence when common redundancies in models based
on metabolic networks are present.

Constraints (2f)-(2j) in the optimization model (5) de-
scribe the complementarity relation between the inequal-
ities and the corresponding Lagrange multipliers of the
LP in the dFBA model (1d). We apply both reformu-
lations discussed in Section 2.1, the penalty-term and
the relaxation approaches, to turn (5) into an NLP. For
that, we can define two slack variables for the inequalities,
slupij := vup − vij and slloij := vij − vlo. The penalty-term

approach rewrites (5) as

max
F

Φ = (XV )|tf − π
i=nT∑
i=1

j=nC∑
j=1

(slupij zij + slloijyij) (6a)

Eq. (5b)− (5e)

Eq. (2d), (2e), (2h)− (2j)

where π ∈ R is a weight parameter for the penalty term.
The relaxation approach relaxes the equality constraints
(2f) and (2g) turning them into inequalities, leading to

max
F

Φ = (XV )|tf (7a)

slupij zij ≤ ε (7b)

slloijyij ≤ ε (7c)

Eq. (5b)− (5e)

Eq. (2d), (2e), (2h)− (2j)

for i = 1, . . . , nT ; j = 1, . . . , nC .

where ε ∈ R is a small threshold.

When solving the problems posed by the open-loop and
the closed-loop approaches, the main difference here is
that, for the closed-loop method, we repeatedly solve
the optimization model in (5) at each time step with a
shrinking horizon during the process, while the open-loop
approach requires it to the be solved only once beforehand.
Because of that, closed-loop problems need to be solved
fast enough and accurate enough, which depends on the
process. We discuss the influence of those reformulation
approaches for MPCC on these aspects for this bioprocess
control problem with a closed-loop setting.

Implementation of both open-loop and closed-loop control
models was done in Julia with JuMP (Dunning et al.,
2017) as mathematical programming language, and using
nT = 12 finite elements and nC = 3 collocation points
based on Radau roots were used. The open-loop problem
was solved using the penalty-term reformulation.

5. RESULTS AND DISCUSSION

In this section we present the results of both control
models applied to the case study described in the previous
sections. First, it is important to emphasize that an MPCC
problem reformulated into an NLP is nonconvex; therefore,
all results presented here are local solutions.

We begin by showing that globally dependent equality
constraints can be present in dFBA models and that they
can significantly influence convergence based on the results
of the open-loop control model. Then, we analyze the role
of the most common reformulation approaches in handling
MPCC models on closed-loop control models based on
dFBA and discuss the importance of a good initialization
for the variables of the optimization model in this context.

5.1 Globally dependent constraints

The stoichiometry matrix for the E. coli core metabolism
considered in the case study is 72 × 95; however, its rank
is 67. This means that 5 rows are redundant, i.e., there
are 5 metabolites that any result associated to them can
be derived from other metabolites. For example, adeno-
sine triphosphate (ATP), adenosine diphosphate (ADP)
and adenosine monophosphate (AMP) are well-known
molecules involved in the energy cycle of a cell, being
ATP responsible for providing energy to processes in the
metabolism. When energy is consumed by a process, ATP
loses one or two phosphate atoms and becomes ADP or
AMP respectively. Since they are simultaneously present
in reactions involving energy exchange, they result in lin-
ear dependent rows in the stoichiometry matrix. If the
complete matrix is used in the dFBA model, those rows
give rise to globally dependent constraints, which, as dis-
cussed in section 2.1, may negatively influence convergence
of IPOPT.

We compared the results for the open-loop control problem
using the complete stoichiometry matrix, A, and the
reduced full-rank matrix, Ar, after ADP and other four
redundant metabolites were removed. Because the starting
point and weighting parameter π can greatly influence
convergence, we used four different initial guesses and
varied log10 π from 0 to 3 for both problems built with
A and Ar. When the complete matrix was used, out of
the 16 combinations of initial guess and π, 15 failed to
converge and one converged to a stationary point in which
no growth was observed. Using the full-rank matrix, the
solver was able to converge to a local solution in every
case; 11 combinations converged to the results shown in
Figure 1, while the other five reached different points and
predicted lower biomass concentration at the end of the
batch.

These results corroborate the discussion in Wan and
Biegler (2017). Primal-dual interior point methods, such
as the one implemented in IPOPT, use inefficient regular-
ization strategies to handle ill-conditioned KKT systems
originated from dependent constraints. In this case, the
globally dependent constraints stemmed from the rank-
deficient stoichiometry matrix did not allow for the prob-
lem to converge, which highlights the importance of build-
ing a well-posed model.

5.2 MPCC reformulation

Both the penalty-term and relaxation formulations for
handling the complementarity constraints from the dFBA
model were able to solve the closed-loop problem and they
converged essentially to the same local minimum, from
which the main results are shown in Figure 2, for all



Fig. 1. Best results for the open-loop control problem
formulation for maximizing biomass at the end of the
batch obtained using the reduced full-rank stoichiom-
etry matrix.

weighting parameter π and threshold ε values considered.
As expected, since we introduced a mismatch in the
control model, the MPC approach is able to reach larger
biomass production at the end of the batch. The results
presented here were obtained with the reduced full-rank
stoichiometry matrix.

Fig. 2. Results for the closed-loop control model using
both the penalty-term and the relaxation reformula-
tion of mathematical program with complementarity
constraints.

For the optimization model using the penalty-term ap-
proach for reformulating the complementarities, we consid-
ered 4 values for the weighting parameter π, 1, 10, 100 and
1000, and, for the model with the relaxed constraints, the
values used as threshold were 10−4, 10−5, 10−6, and 10−7.
Figure 3 presents the calculated values for the complemen-
tarities and time consumed to solve the NLP problems at
each time step for both reformulation approaches.

Consider a vector d ∈ R2·nR·nT ·nC with all the complemen-
tarity expressions given by (2f) and (2g); the top plot in

penalty

penalty

penalty

penalty

relaxation

relaxation

relaxation

relaxation

Fig. 3. Top plot: maximum complementarity value of the
model that is solved at each time step. Bottom plot:
run time for solving the model at each time step.

Figure 3 shows the maximum entry in d from the optimiza-
tion model solved at each time step. Since the optimization
model always converged to a local minimum, when the
relaxation reformulation is used, the relaxed constraints
are, as expected, always lower then the adopted threshold
value. However, for the penalty-term reformulation, d only
varies with the value of the weighting parameter π in
the first optimization model and, during the process, the
maximum complimentarity is kept at 10−5.

The bottom plot of Figure 3 shows that the running times
of the models are very similar at each time step, with
the relaxation approach showing a slightly larger variation
with threshold ε. Since the closed-loop control model is
implemented with a shrinking horizon, the optimization
model solved at each time step decreases, requiring less
time to be solved, as it can be seen by the decreasing trend
in the plot.

These results show that both reformulation approaches can
satisfactorily be used for the bioprocess control problem
formulated in this work. They resulted in the same trajec-
tory for the manipulated variable and available biomass
at the end of the batch regardless the value considered
for π or ε. In addition, in both cases, the reactions rates
that were not at a corresponding boundary had the same
optimal values; while the remaining entries in v varied
slightly with the complementarity tolerance, they could
easily be identified. Regarding the solve time, bioprocesses
commonly present slow dynamics, and, for this case, the
longest run time to solve an optimization model was about
15 seconds, which can be considered a negligible delay for
an one-hour interval.

Another aspect that is worth discussing is importance of
model initialization, i.e., from which point NLP solvers
start. Starting values usually have great influence on
convergence, so it is important to have a good initial
guess for all variables. To illustrate this, Figure 4 shows
the run time for solving the optimization model at each
time step without providing a starting point to the solver,
which uses its default values. In every case, the solver was



able to converge the same results as shown in Figure 2;
however, run time was greatly increased, especially when
the relaxation reformulation was used.

penalty

penalty

penalty

penalty

relaxation

relaxation

relaxation

relaxation

Fig. 4. Run time for solving the model at each time step
without initialization.

For closed-loop control models, we can use the results from
the previous iteration as starting point. When implement-
ing a shrinking horizon, at each time step, the model is
solved from the current time point ti until the end of the
batch at tF ; the results from ti+1 to tT can be saved to
be used as initial guess for the optimization model in the
next time step. This starting point is usually close to the
solution; however, for interior point solvers, issues can arise
when variables start at their bounds. To deal with variable
bounds, such as x ≥ 0, IPOPT uses a barrier term in the
objective function of the form µ log x, where µ ∈ R is the
barrier parameter, which starts at 10−1 by default and
gradually decreases as the calculation progresses. If x is
set to start at 0, IPOPT changes its value to start within
the barrier, so it can decrease gradually with µ. When
starting close to a solution that contains variables at their
bounds, they are changed by the solver and the starting
point can be altered to a ”bad” initial guess. In our case
study, when the penalty-term reformulation was used with
π = 102, the solver failed to converge when starting from
the results from the previous time step. This issue can be
handled by changing the initial value of µ; for the results
presented in this section, µ was set to start at 10−6.

6. CONCLUSION AND FUTURE WORK

We have shown that model-based control of bioprocesses
employing dFBA can be successfully formulated and
solved by line search interior point solvers. However, it
is important to understand its limitations and carefully
design the problem to avoid issues that may arise. Check-
ing for dependent constraints, selecting a reformulation
technique and associated parameter value to handle the
complementarity constraints, initializing the model are
important steps that should not be overlooked. For this
case study, the main goal was maximizing biomass at the
end of the batch and, therefore, the active metabolism does
not change during the process. For future work, we will
investigate the challenges associated with changes in the
active set of the dFBA model, as well as expanding this
application to genome-scale metabolic networks.
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