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Abstract: We propose two new systematic and easy-to-implement online tuning strategies for nonlinear 

Kalman filters with low computational cost. The tuning strategies assume the process and measurement 

noise are due to parametric uncertainty. We assume 𝑛𝜃 uncertain parameters which are translated into noise 

statistics by either i) generalized unscented transformation with 2𝑛𝜃 extra online model evaluations at every 

time step or ii) latin hypercube sampling, where the user sets the number of samples. Both approaches are 

distribution free, hence, the tuning strategies work for all kind of distributions. In the case study, it was 

found that the two proposed tuning strategies outperform the standard approach of fixed, diagonal noise 

matrices. In the case study, we further found that tuning based on the generalized unscented transformation 

seems to be more consistent than the method based on latin hypercube sampling for the same online 

computational cost. In addition, a Monte Carlo based tuning with modal noise adjustment is tested with 

promising performance. The modal noise adjustment is interesting as we can estimate the most likely point 

value of the noise (the mode of the noise distribution) and add this term to the state- and measurement 

equations at every time step. 
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1. INTRODUCTION 

Many modern control algorithms require knowledge 

of the state variables 𝒙(𝑡) of a process model. When it is not 

possible to measure the states directly, or the measurements 

are not of satisfactory quality, state estimation techniques are 

used. The Kalman Filter (KF) is arguably the most famous 

state estimator. By coupling the uncertainty in a process model 

with uncertainties of measurements, 𝒚(𝑡), the KF obtains an 

estimate of the state,  𝒙(𝑡), and the corresponding covariance 

𝑷 of that estimate. This is the minimum variance estimate 

given that the measurement noise is Gaussian and the process 

model is linear. For non-linear models, the framework has 

been expanded to the Extended Kalman Filter (EKF) and the 

Unscented Kalman Filter (UKF), which both can appear in 

many forms.  

The main issue with variants of Kalman filters is that 

they are difficult to tune to obtain satisfactory performance. 

This paper presents a systematic and easy-to-implement online 

tuning strategy of the process- and measurement noise 

covariance matrices 𝑸𝑘 and 𝑹𝑘. The proposed approaches 

have a low additional on-line computational cost. The general 

idea is based on Valappil and Georgakis (2000). The major 

assumption in their work is that there is only parametric 

mismatch between the plant and the process model. However, 

their method also worked in presence of some structural plant-

model mismatch (Valappil and Georgakis, 2000). In their case 

studies, the best performance of the filter was obtained by 
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running Monte Carlo (MC) simulations on the parametric 

uncertainty distribution 𝑁𝑀𝐶  times. 𝑸𝑘 is then calculated at 

every time step as the sample covariance matrix of these 𝑁𝑀𝐶  

runs. One drawback of their method is it may require 𝑁𝑀𝐶  to 

be very large to obtain a good estimate of the process noise 

covariance matrix. This is especially important if the 

probability distributions of the parameters have fat tails. A 

large 𝑁𝑀𝐶  imposes a heavy online computational burden, and 

if the sampling is random, there is no guarantee that the tails 

of the distribution are explored.  

In this paper, we propose two new methods to address 

the issue of high computational cost while attaining similar or 

better information about the covariance matrix 𝑸𝑘. First, we 

propose to use latin hypercube sampling (LHS) in combination 

with MC simulations. Helton and Davis (2003) noted that LHS 

is the most broadly applicable approach to the propagation and 

analysis of uncertainty in complex systems, and often the only 

approach that is needed. LHS typically reduces the number of 

sample points required for MC simulations, and it ensures that 

the tails of the distribution are explored. A drawback of LHS 

is that it requires the parameter distributions to be independent. 

The second approach proposed in this paper handles dependent 

distributions in a natural manner. In particular, we propose to 

apply the generalized unscented transformation (GenUT), as 

presented by Ebeigbe et al. (2021), to estimate 𝑸𝑘. The GenUT 

works for all probability distributions, also correlated ones. If 

there are 𝑛𝜃 uncertain parameters, the extra online 

computational burden of obtaining 𝑸𝑘 by the GenUT is 
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generally 2𝑛𝜃 + 2 model evaluations. However, if the filter 

uses the mean values of the parameters the online cost is only 

2𝑛𝜃. The method is computationally efficient for all 

distributions of the parameters, including distributions with 

heavy tails. These tuning strategies are applicable for both the 

UKF and EKF, but only the UKF is presented in this work. 

This paper contains three contributions. To increase 

the accuracy and decrease the computational time when 

estimating the process noise, we propose to use either the 

GenUT or LHS. This is the focus in section 3.1 and 3.2. 

However, if the distribution of the process noise is not 

symmetrical, the most likely point is the mode and not the 

mean. The third contribution is therefore to use MC simulation 

to determine the mode of the process noise, and then use the 

mode instead of the mean in the Kalman filter. This is only 

possible for the proposed MC and LHS approaches. In some 

cases, this can improve the estimator performance. This 

method is described in section 3.3.  

2. BACKGROUND 

2.1 Nonlinear Kalman Filtering 

For thorough background theory of state estimation, 

refer to Simon (2006). A general discrete nonlinear system is 

given by 

𝒙𝑘 = 𝒇(𝒙𝑘−1, �̅�𝑓𝑥 , 𝒖𝑘−1, 𝑡𝑘 , 𝒘𝑘−1)  (1) 

𝒚𝑘 = 𝒉(𝒙𝑘 , �̅�ℎ𝑥, 𝑡𝑘, 𝒗𝑘−1) (2) 

where �̅�𝑓𝑥 , �̅�ℎ𝑥 are the deterministic parameters for the state 

update and measurement equations, 𝒖𝑘 are the manipulated 

variables, 𝒘𝑘 ∼ (𝟎, 𝑸𝑘) the zero-mean process noise with 

covariance 𝑸𝑘, and 𝒗𝑘 ∼ (𝟎, 𝑹𝑘) the measurement noise. The 

subscript 𝑘 denotes the discrete time step. The states are 

denoted by 𝒙 ∈ ℝ𝑛𝑥 , the measurements by 𝒚 ∈ ℝ𝑛𝑦 , and the 

continuous time by 𝑡. The filter is initialized with: 

𝒙0
+  = 𝔼[𝒙0]  (3) 

𝑷0
+  = 𝔼[(𝒙0 − 𝒙0

+ )(𝒙0 − 𝒙0
+)𝑻 ]   (4) 

The  𝒙 indicates it is an estimate, while 𝒙 is the true, 

uncertain state. The superscript “+” are the a posteriori 

estimate, while a “-” means the a priori estimate. A priori 

estimates have only used the state equations (1) for predicting 

the state at time 𝑘, while a posteriori estimates have also used 

equation (2) to process the measurements at time 𝑘. At every 

time step, the estimate of the state and covariance are 

propagated. If the propagation is done by linearizing equation 

(1) and (2), this leads to the EKF. If the unscented 

transformation (UT) is used to propagate the mean and 

covariance, this leads to the UKF, as proposed by Julier et al. 

(2000). There are many good sources which describes the EKF 

and UKF in detail, see e.g. Simon (2006) or Barfoot (2017).  

The filter designer needs to provide the filter with 

reasonable values for 𝒙0
+, 𝑷0

+, 𝑸𝑘 and 𝑹𝑘 to obtain satisfactory 

estimates. A good discussion about how to set these quantities 

are in Schneider and Georgakis (2013). Typically, the most 

challenging tuning parameter is the process noise matrix 𝑸𝑘 ∈
ℝ𝑛𝑥×𝑛𝑥. If there is parametric uncertainty in the measurement 

equation, it can also be challenging to find a good value for 

𝑹𝑘 ∈ ℝ𝑛𝑦×𝑛𝑦.  Our paper proposes two methods for automatic 

tuning of these noise matrices. In the following discussion, we 

focus on obtaining 𝑸𝑘 for brevity, but the method is applicable 

analogous for obtaining information about 𝑹𝑘. 

2.2 Tuning of noise covariance matrices based on parametric 

uncertainty 

An actual plant is described by (1). Our focus will be 

on the process noise, 𝒘𝑘, which is the stochastic term. This 

noise can be due to unmodeled effects or model inaccuracies. 

It is assumed that the model inaccuracies dominate the process 

noise component, and that structural plant-model mismatch 

can be captured as uncertainty in the model parameters, see 

Valappil and Georgakis (2000). Model parameters are 

typically estimated from experiments, and it is a crucial step 

that the uncertainty of the parameter estimates is recorded. Let 

𝜽𝒇𝒙 ∼ 𝑭𝒇𝒙, where 𝑭𝒇𝒙 can be any probability distribution, and 

similarly 𝜽𝒉𝒙 ∼ 𝑭𝒉𝒙. The actual plant in (1) can be 

reformulated as a stochastic process: 

𝒙𝑘
𝑡𝑟𝑢𝑒 = 𝒇(𝒙𝑘−1

𝑡𝑟𝑢𝑒 , 𝜽𝒇𝒙, 𝒖𝑘−1, 𝑡𝑘)   (5) 

The state estimator is using a fixed, deterministic 

value of the parameters, �̅�𝒇𝒙/𝒉𝒙, and a nominal value for the 

states as below: 

𝒙𝑘
𝑛𝑜𝑚 = 𝒇(𝒙𝑘−1

𝑛𝑜𝑚 , �̅�𝒇𝒙, 𝒖𝑘−1, 𝑡𝑘)   (6) 

To exactly match the actual plant, an additive noise 

term   �̃�𝑘 ∼ (�̅�𝑘 , 𝑸𝑘) is added to (6) which gives (7). 

Rearranging equation (7) and substituting (5) gives (8), which 

we will use to estimate �̃�𝑘. 

𝒙𝑘
𝑛𝑜𝑚 + �̃�𝑘 = 𝒙𝑘

𝑡𝑟𝑢𝑒   (7) 

�̃�𝑘 = 𝒇(𝒙𝑘−1
𝑡𝑟𝑢𝑒, 𝜽𝒇𝒙 , 𝒖𝑘−1, 𝑡𝑘)   − 𝒙𝑘

𝑛𝑜𝑚   (8) 

By applying the information about the uncertainty of 

the parameters, it is possible to get accurate statistics of �̃�𝑘 at 

every time step. This is in contrast to the “standard” way of 

using the filters, where equation (6) is used and a fixed hand-

tuned diagonal matrix 𝑸 is added. Valappil and Georgakis 

(2000) proposed two methods of exploiting the information 

about the uncertainty of 𝜽𝒇𝒙. In the first method, the 

covariance matrix of the parameters, 𝑷𝜽, was propagated 

through the system by linearizing (8). This gives �̅�𝑘 = 𝟎 and 

an estimate of 𝑸𝑘 accurate to the 1st order of the Taylor series, 

as in equation (9). This method has been successfully used in 

e.g. Tuveri et al. (2021) and Nagy and Braatz (2003). 

𝑱𝑝,𝑛𝑜𝑚 =
𝜕𝒇

𝝏𝜽
|𝒙𝑛𝑜𝑚,𝑘−1,�̅�𝒇𝒙,𝒖𝑘−1,𝑡𝑘

    

𝑸𝑘 = 𝑱𝑝,𝑛𝑜𝑚𝑷𝜽𝑱𝑝,𝑛𝑜𝑚
𝑇    (9) 

In the second method, Valappil and Georgakis (2000) 

estimated �̃�𝑘 by MC integration. Under the assumption that 

𝒙𝑘−1
𝑡𝑟𝑢𝑒 ≈ 𝒙𝑘−1

+ , we can take 𝑁𝑀𝐶  random samples from the 

distribution of 𝜽𝒇𝒙 and propagate them through (8).  �̅�𝑘, 𝑸𝑘 

are then the sample mean and covariance of these 𝑁𝑀𝐶  runs. 



Note that  �̅�𝑘 ≠ 𝟎 in general, and that the mean of the process 

noise can be used in the state propagation step as below: 

𝒙𝑘
− = 𝔼[𝒇(𝒙𝑘−1, �̅�𝒇𝒙, 𝒖𝑘−1, 𝑡𝑘)] + �̅�𝑘−1   (10) 

In all the case studies in Valappil and Georgakis 

(2000), these two adaptive methods of setting �̅�𝑘, 𝑸𝑘 showed 

superior performance compared to a fixed, diagonal hand-

tuned 𝑸. As expected, the MC-based approach consistently 

performed better than the linearization approach, with the 

disadvantage of a significantly higher on-line computational 

cost.  

2.3 Generalized unscented transformation 

 In the UKF, the mean and covariances were estimated 

by the UT. The UT approximates any nonlinear stochastic 

equation by creating a set of weights and sigma points. The 

sigma points are propagated through the nonlinear equation, 

and the weighted mean and covariance of the transformed 

points are estimated. The UT is accurate to the 3rd order of the 

Taylor series in approximating means and covariances, but it 

is only valid for symmetrical distributions. To approximate the 

mean and covariance for any distribution, one can instead use 

the GenUT as proposed by Ebeigbe et al. (2021).  

The GenUT is accurate to the 3rd order of the Taylor 

series for independent distributions and 2nd order accuracy for 

correlated distributions. To generate the sigma points for the 

uncertain distribution 𝜽, the mean, covariance, 𝐶𝑀3𝑖 and 

𝐶𝑀4𝑖 for 𝑖 ∈ [1, 𝑛𝜃] must be available. Here, 𝐶𝑀𝑛 is the 

central moment of order 𝑛. Refer to Ebeigbe et al. (2021) for 

a detailed discussion and details for  how the weights and 

sigma-points (𝑊𝜽
(𝑖)

, 𝝌𝜽
(𝑖)

) for 𝑖 ∈ [0,2𝑛𝜃] are obtained. By 

assuming that 𝒙𝑘−1
𝑡𝑟𝑢𝑒 ≈ 𝒙𝑘−1

+ , the mean and covariance of 

equation (8) is approximated by equation (11)-(13).  

�̃�𝑘
(𝑖)

= 𝒇(𝒙𝑘−1
+  , 𝝌𝜃

(𝑖)
, 𝒖𝑘−1, 𝑡𝑘) − 𝒙𝑘

𝑛𝑜𝑚   (11) 

�̅�𝑘 = ∑ 𝑊𝜽
(𝑖)

2𝑛𝜃

𝑖=0
�̃�𝑘

(𝑖)
 

(12) 

𝑸𝒌 = ∑ 𝑊𝜽
(𝑖)

2𝑛𝜃

𝑖=0
(�̃�𝑘

(𝑖)
− �̅�𝑘)(… )𝑇 

(13) 

where (… ) means that it is a copy of the previous parenthesis. 

2.4 Latin hypercube sampling 

LHS is a well-known sampling procedure, which has 

the benefits that i) the samples cover the whole range of the 

uncertain parameter space and ii) it has an easy 

implementation. As the samples are guaranteed to be spread 

out over the whole parameter space, fewer samples are 

typically required for LHS compared to random sampling. 

This translates into a lower online computational cost when 

approximating the noise covariance matrices. The LHS can 

sample from any distribution, 𝜽 ∼ 𝑭, given that the parameters 

are independent. Correlations can be induced by combining 

LHS with the method in Iman and Conover (1982). For a 

detailed comparison about different sampling schemes, see 

Helton and Davis (2003). 

3. PROPOSED METHODS FOR ESTIMATING NOISE 

STATISTICS IN NONLINEAR SYSTEMS 

3.1 GenUT to estimate noise statistics 

Assume the mean, covariance, 3rd and 4th central 

moments are available for our parameter distribution. These 

are denoted as 𝝁𝜽, 𝑷𝜽, 𝑪𝑴𝟑 and 𝑪𝑴𝟒, respectively. This 

information is readily available from the posterior distribution 

from a Bayesian parameter estimation, or it can be calculated 

from any specified probability distribution. 

Before the filter is initialized, calculate offline 2𝑛𝜃 +
1 sigma points 𝝌𝜽 ∈ ℝ𝑛𝜃×(2𝑛𝜃+1) and their weights 𝑾𝜽 ∈

ℝ2𝑛𝜃+1. The 𝑖-th sigma point is denoted 𝝌𝜽
(𝑖)

∈ ℝ𝑛𝜃, and it is 

equivalent to the (𝑖 + 1)-th column in 𝝌𝜽. Generating the 

sigma points is the most computational costly part of the 

GenUT algorithm as it involves calculating the matrix square 

root, which is typically the Cholesky factorization. It is 

emphasized that this step is performed offline and does not 

affect the online computational cost.  

Initialize the filter. At every time step, propagate the 

2𝑛𝜃 + 1 sigma points and estimate the noise statistics by (11)-

(13). Note that in this step, the state estimate  𝒙𝑘−1
+  is treated 

as a fixed quantity. The covariance matrix of the states, 𝑷𝑘, is 

therefore not used in this step. A visualization of the process is 

shown in Figure 1. As 𝒙𝑘
𝑛𝑜𝑚 is also calculated online, the total 

computational online cost is 2𝑛𝜃 + 2 model evaluations. If we 

select �̅�𝑓𝑥 = 𝔼[𝜽𝒇𝒙] ≝ 𝝌𝜽
(0)

, then �̃�𝑘
(0)

= 𝟎 and the additional 

cost is 2𝑛𝜃 model evaluations. Note that 𝒙𝑘
𝑛𝑜𝑚 must still be 

calculated, but in the UKF that corresponds to propagating the 

zeroth sigma-point of the states, 𝝌𝑘−1
(0)

, through the state-update 

equation and it is therefore not an extra cost. 

 

Figure 1: Tuning of noise statistics based on the GenUT. The sigma 

points and their weights are computed offline and propagated 

using the model equations in the online part.  

 Remark: If the measurement statistics  �̅�𝑘, 𝑹𝑘 are to 

be estimated, the approach is the same. That is, use i) statistics 

from 𝜽𝒉𝒙 instead of 𝜽𝒇𝒙 to generate the sigma points, and ii) 

the a priori estimate 𝒙𝑘
− and the measurement equation 𝒉(⋅) in  

(11) instead of 𝒙𝑘−1
+  and 𝒇(⋅). 

 
  
   
 

 
 
   
 



3.2 LHS to estimate noise statistics 

First, we specify the distribution of the parameters 

and generate 𝑁𝐿𝐻𝑆 samples from the latin hypercube, which is 

a feature in most scientific computational packages. At every 

timestep, the 𝑁𝐿𝐻𝑆 samples are propagated through (8). The 

noise statistics are now estimated as the sample mean and 

covariance of these 𝑁𝐿𝐻𝑆 runs. This procedure is illustrated in 

Figure 2.  

A key question is how large must 𝑁𝐿𝐻𝑆 be to obtain a 

satisfactory approximation of the noise statistics. This is case 

dependent, and important factors are i) the distributions of the 

parameters, ii) the function every sample is propagated 

through and iii) available computational resources. 

 

Figure 2: Tuning of noise matrix based on MC and LHS. Samples 

of parameters 𝜽𝒇𝒙 are generated offline using LHS, and these 

samples are used to estimate noise statistics in the online part.  

3.3 Selecting the most likely noise term (the mode) 

For skewed distributions, the mode and mean are not 

the same. Setting  �̅�𝑘 as the point value with highest 

probability density might therefore be a better choice than the 

mean. Hence, we are setting �̅�𝑘 = �̃�𝑘
𝑚 = 𝑀𝑜𝑑𝑒(�̃�𝑘). See 

section 4.3 for how we find �̃�𝑘
𝑚 in this paper. Note that we are 

implicitly breaking the assumption of 𝒘𝑘 and 𝒗𝑘 to be zero-

mean in (1) and (2). However, the filter may still work even if 

all its assumptions are not fulfilled, see Simon (2006). Finding 

the mode is only possible for a sampling-based approach such 

as MC or LHS. 

4. CASE STUDY: FALLING BODY 

The problem investigated by Julier et al. (2000) and 

Simon (2006) is studied. A body falls into the atmosphere from 

a very high altitude and velocity. We want to estimate the 

altitude 𝑥1(𝑡), velocity 𝑥2(𝑡) and a constant ballistic 

coefficient 𝑥3(𝑡). At our guidance, we have a radar 

measurement which is located at a height 𝑎 and a horizontal 

distance 𝑀 from the falling body. The dynamics of the system 

and the measurements are described by: 

�̇�1(𝑡) = 𝑥2(𝑡) + 𝑤1 (14) 

�̇�2(𝑡) =
1

2
𝜌0𝑒−

𝑥1
𝑘 𝑥2

2𝑥3 − 𝑔 + 𝑤2 
(15) 

�̇�3(𝑡) = 𝑤3 (16) 

𝑦(𝑡𝑘) = √𝑀2 + (𝑥1(𝑡𝑘) − 𝑎)2 + 𝑣𝑘 (17) 

Here, 𝜌0 is the air density at sea level, 𝑘 is a constant 

relating the air density and altitude and 𝑔 is the gravitational 

acceleration. Process noise is entering through 𝒘 and the 

repeatability of the measurements are defined by 𝑣 ∼
𝒩(0, 𝜎𝑣

2) where 𝜎𝑣
2 = 1𝐸4 ft2. A measurement is obtained 

every 0,5 second and a Runge-Kutta method of order 4 with 

adaptive step size is used to integrate the process model. The 

system and the state estimators are initialized with: 

𝒙(0) = [3𝐸5, −2𝐸4, 1𝐸 − 3]𝑇 (18) 

𝑷0
+ = 𝑑𝑖𝑎𝑔([3𝐸8, 4𝐸6, 1𝐸 − 6]) (19) 

𝒙+(0) = 𝒙(0) + √𝑑𝑖𝑎𝑔(𝑷0
+) 

(20) 

Following our assumption, 𝒘 = 𝟎 as all process noise 

stems from a fixed parametric plant-model mismatch. 

Measurement noise is both due to parametric mismatch and 

white noise from 𝑣𝑘. The set of uncertain parameters are 𝜽𝒇𝒙 =
[𝜌0, 𝑘]𝑇 and 𝜽𝒉𝒙 = [𝑀, 𝑎, 𝑣]𝑇, while 𝑔 = 32,2 𝑓𝑡/𝑠2 is a 

deterministic parameter. We assume that parameter estimation 

of 𝜌0, 𝑘, 𝑀and 𝑎 has found them to be independent and 

following Gamma distributions given in Table 1. We select the 

mean of the parameter distribution for the UKF, while the 

system selects the most probable value, i.e. 𝝁𝜽 =  𝜽𝑈𝐾𝐹 ≠
𝜽𝑡𝑟𝑢𝑒 = 𝑀𝑜𝑑𝑒(𝛉). 

Table 1: Parameter values used by the system, 𝜽𝑡𝑟𝑢𝑒, and the UKF, 

𝜽𝑈𝐾𝐹. The distribution for 𝜽 is 𝜽 ∼ 𝑂𝑓𝑓𝑠𝑒𝑡 + 𝚪(𝜶, 𝜷). 

𝜽 Offset 𝜶 𝜷 𝜽𝑡𝑟𝑢𝑒 𝜽𝑈𝐾𝐹 

𝜌0(lb-s2/ft4) 1,8 4 2E1 1,95 2 

𝑘 (ft) 1,8E4 4 2E-3 1,95E4 2E4 

𝑀 (ft) 9,0E4 4 4E-4 9,75E4 1E5 

𝑎 (ft) 9,0E4 4 4E-4 9,75E4 1E5 

 The performance of the state estimator is now only 

dependent on the noise statistics  (�̃�𝑘, �̃�𝑘) since 𝒙0
+, 𝑷0

+ are 

given by equation (19)-(20). The three proposed methods will 

be compared to two benchmark methods (UKF with MC 

(Valappil and Georgakis (2000), and fixed 𝑸). See section 4.1-

4.4 for details on the five methods for this case study. The 

performance indicators for the five estimators are the 

additional online computational cost and the accuracy of the 

method. Table 2 compares the computational cost for the 

methods in terms of function evaluations. The accuracy of the 

methods is assessed by equation (21), which is the same cost 

function as in Valappil and Georgakis (2000).  

𝐽𝑖 =
√∑ (�̂�𝑖,𝑘

+ − 𝑥𝑖,𝑘)
2𝑡𝑒𝑛𝑑

𝑘=0

√∑ (𝑥𝑖,𝑘
𝑂𝐿 − 𝑥𝑖,𝑘)

2𝑡𝑒𝑛𝑑
𝑘=0

   

(21) 

Here, the state estimate error is compared against the 

open loop (OL) error for every state 𝑖. The OL simulation has 

 
  
   
 

               

 
 
   
 



the same parameters and is initialized with the same estimate 

as the filters, but it does not take measurements into account. 

Hence, if the cost function is less than 1, it means that the filter 

is improving its estimates by using the measurements.  

4.1 Tuning based on the GenUT 

The sigma points and weights 

((𝝌𝜽
𝑓𝑥

, 𝑾𝜃
𝑓𝑥

), (𝝌𝜃
ℎ𝑥, 𝑾𝜃

ℎ𝑥)) for the GenUT were calculated 

before the filter was initialized. Since 𝜽𝑓𝑥 ∈ ℝ2, then 𝑾𝑓𝑥 ∈

ℝ5 and  𝝌𝜃
𝑓𝑥

∈ ℝ2×5. In accordance with section 3.1, the 

additional computational cost of estimating 𝑸𝑘 by the GenUT 

is therefore 4 evaluations of 𝑓(⋅) at every sampling time. For 

estimating 𝑹𝑘 we have that 𝜽ℎ𝑥 ∈ ℝ3, so 6 evaluations of ℎ(⋅) 

was done online at each time step. Note that we set (�̅�𝑘, �̅�𝑘) =
(𝟎, 0). The reason is that the mean of �̃�𝑘, �̃�𝑘 is further away 

from the mode than the point 𝟎. 

4.2 Tuning based on LHS 

 The noise matrices 𝑸𝑘 and 𝑹𝑘 were estimated by 

LHS. 𝑁𝐿𝐻𝑆 were set to 10 in order to explore the parameter 

space while keeping a reasonable computational cost. We set 

(�̅�𝑘 , �̅�𝑘) = (𝟎, 0) for the same reason as in  section 4.1. 

4.3 Tuning based on modal noise adjustment 

A MC filter with adaptive noise matrices 

and  (�̅�𝑘 , �̅�𝑘) = (�̃�k
m, ṽk

m) was tested, in accordance with 

section 3.3. A brute force approach was used to find the mode. 

We ran a MC simulation with 𝑁𝑀𝐶 = 500 random samples at 

every time step, and a histogram of �̃�k with 20 bins were built. 

The mode was found as the bin in the histogram with the most 

points. The filter is denoted MCm. 

4.4 Tuning based on benchmark methods 

For comparison, we use UKFs where i) the noise 

matrices were found by MC with 𝑁𝑀𝐶 = 500 random samples 

as in Valappil and Georgakis (2000) and ii) a manually tuned 

UKF with fixed noise matrices. For the MC filter, we set 

(�̅�𝑘 , �̅�𝑘) = (𝟎, 0), see section 4.1 for the reasoning behind 

this. For the fixed filter we set 𝑸𝑓𝑖𝑥𝑒𝑑 =

𝑑𝑖𝑎𝑔([1𝐸3, 1𝐸3, 1𝐸 − 8]) and 𝑅𝑓𝑖𝑥𝑒𝑑 = 1𝐸6 ≫ 𝔼[𝑣2] . Note 

that normal approach is to set 𝑅𝑓𝑖𝑥𝑒𝑑 = 𝔼[𝑣2]. In this case 

study the filter will diverge with that tuning as the additional 

parametric uncertainty is not considered, meaning that the 

filter trusts the measurements too much.  

Table 2: Computational cost in the case study for each method, 

given by the additional model evaluations at each time step 

compared to the “fixed” noise filter. 

Model GenUT LHS MC MCm 

�̃�𝑘(⋅) = 𝑓(⋅𝑘) − 𝑥𝑘
𝑛𝑜𝑚  4 10 500 500 

�̃�(⋅) = ℎ(⋅𝑘) − 𝑦𝑘
𝑛𝑜𝑚  6 10 500 500 

4.5 Simulation results 

The system was simulated for 30 seconds. The 

trajectories of the true state, state estimates and measurements 

sequence are shown in Figure 3. 

The simulation shows that initially, the velocity 𝑥2 is 

very high due to the low drag effect at high altitude 𝑥1. After 

about 10 seconds the altitude has decreased which leads to an 

increase in the air density. The drag effect becomes more 

important, and 𝑥2 converges to the terminal velocity. If we 

look at the measurements 𝑦(𝑡), we see that after about 10 

seconds the body is at the same altitude as the radar 

measurement. The body is still falling and 𝑦(𝑡) reports that the 

distance to the body increases. 

 

Figure 3: State trajectory, state estimates obtained by different UKF 

tuning strategies and measurement. Open loop (OL) simulation 

from  �̂�+(0) also included, while LHS and MC are resembling 

GenUT and are therefore not shown. *units of 𝑥3 is 
𝑓𝑡3

𝑙𝑏−𝑠2.  

The simulation was repeated 100 times to observe if 

the results were consistent. The distribution of the cost 

function (21) is shown as a violin plot in Figure 4. 

 
Figure 4: Distribution of the cost function after 100 runs for each 

state and tuning method. 𝑁𝐿𝐻𝑆 = 10 and 𝑁𝑀𝐶 = 𝑁𝑀𝐶𝑚 = 500. 

To structure the discussion of the contributions of this 

paper, we first discuss the performance of the MCm tuning. 

Afterwards, we will discuss GenUT, LHS, MC and the Fixed 

filters. 



4.6 Performance improvement of using the mode, MCm 

As Figure 4 shows, a significant improvement of the 

cost function (21) was obtained by setting (�̅�𝑘, �̅�𝑘) =
(𝑀𝑜𝑑𝑒(�̃�𝑘), 𝑀𝑜𝑑𝑒(�̃�𝑘)). This is not a general result, but 

modal adjustment might improve estimator performance in 

certain cases. The standard deviation of the cost function for 

MCm is high due to the inaccurate method used to find the 

mode. Future work will explore this tuning method further. 

4.7 Performance improvement of structured noise estimation 

From Figure 4 we observe that the tuning methods 

have similar performance for 𝑥1. This is reasonable as 𝑥1 is the 

only state in the measurement equation, and 𝑅𝑓𝑖𝑥𝑒𝑑 ≪ 𝑅𝑜𝑡ℎ𝑒𝑟 . 

For the remaining states, the proposed adaptive tuning 

methods outperform the manual tuning. Even with careful 

manual tuning of the noise matrices, the cost of 𝑥2 is greater 

than one. The MC filter with many samples and high online 

computational cost is the reference method from Valappil and 

Georgakis (2000) which GenUT and LHS is compared to. For 

all the states, we observe that GenUT, LHS and MC has the 

same average performance, but there is less variation in the 

cost function by the GenUT-method. One way to decrease the 

variance in the cost function for LHS and MC is to increase 

the number of samples. Figure 5 shows how the variance of 

the cost decreases for the MC-based tuning when the sample 

number increases.  To calculate the sample variance, every 

simulation is repeated 100 times. E.g. there has been 100 runs 

to calculate the sample variance when 𝑁𝐿𝐻𝑆 = 𝑁𝑀𝐶 = 1000. 

 
Figure 5: Variation of the cost function decreases for the LHS and 

MC-based tuning when the sample number increases. They 

converge to the standard deviation of the GenUT-based tuning. 

As Figure 5 shows, the standard deviation in the cost 

function for LHS and MC approaches the GenUT-based 

tuning, given that the number of sample points are sufficiently 

high. Also note that the LHS-based tuning always has a lower 

standard deviation in the cost function than the MC-based 

tuning for the same computational cost. This is as expected 

from the theory.  

Note that Gamma distributions were used for the 

parameters in this case study. This is a heavy-tailed 

distribution which are difficult to sample from. If the 

parametric distributions are e.g. Gaussian or Uniform, it is 

expected that 𝜎𝑐𝑜𝑠𝑡
𝐿𝐻𝑆 would be more similar to 𝜎𝑐𝑜𝑠𝑡

𝐺𝑒𝑛𝑈𝑇for a 

lower sampling number.  

5. CONCLUSION 

By assuming only parametric uncertainty in the 

process and measurement model, we proposed a GenUT-based 

and a LHS-based tuning method to estimate the noise statistics. 

The methods are i) easy to implement, ii) computationally fast 

and accurate and iii) eliminates the need of cumbersome hand-

tuning of the state estimators. The drawback is the unavoidable 

increase in online computational cost compared to a fixed, but 

sub-optimal, noise matrix. The GenUT-based tuning easily 

handles correlated parameter distributions, while the LHS-

based tuning only works for independent distributions in its 

original form. 

A method for estimating the modal value for the 

noise, and utilizing this information in the state estimator, was 

also proposed. This method showed promising performance 

and will be subject for further work. 
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