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Abstract 

Using nonlinear models to represent multi-scenario design optimization problems can 
lead to very large NLPs that can become intractable to be solved centrally due to the 
available memory in the computing device used. In this paper, we consider a simple but 
general approach for partitioning the large problem into smaller NLPs by adding 
consensus constraints. A distributed algorithm is then developed by applying the 
Alternating Direction Method of Multipliers (ADMM) to solve the partition problems 
separately and overcome this memory limitations. The approach is demonstrated using a 
simple case study and compared against the solution obtained by solving the problem 
centrally.      
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1. Introduction 

Thermal energy storage (TES) systems help manage the asynchronous behaviour between 
supply and demand of thermal energy that occur in many industrial processes. They store 
excess energy during off-peak periods and discharge it during peak demand, thus reducing 
reliance on external utilities and decrease operating costs. During the design stage, the 
profiles for the supply and demand for energy under which the system is expected to 
operate in are uncertain and needs to be accounted for. This uncertainty can be represented 
by a set of discrete scenarios : {1, , }S   with cost weights s  to represent the 

likelihood of scenario s being realized. Stochastic programming approaches can be used 
to cast the optimal design problem as a two-stage optimization problem where the design 
variables desw  are first-stage (here and now) decisions while the operations variables 

oper
sw  are second stage (wait and see) decisions for each scenario (Thombre et al., 2020). 

The dynamics of the system in each scenario can be discretized into N equally spaced 
sampling intervals represented by the set : {0, , 1}N    and the optimal design 

problem cast as an NLP in the centralized form as (1).  

,
min
des operw w
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The vectors x, u and  represent the differential states, control inputs applied to the plant 
during operations, and time-varying parameters respectively. The subscript 

,(.) k s
 is used 

to represent the sth scenario at timestep k while the initial condition for all scenarios is 0x

. We define the operations variable for scenario s built by stacking the vectors in each 

timestep k as,           0 , , 0 , 1,: , , , , ,
T T T T Toper

s s N s s N sw x x u u 
    

  . Functions  .ca pex  

and  .l  represent the capital costs and operating costs. The function  .g  represents 

inequality constraints and function  .h  is used to represent the dynamics of the system. 

When considering many scenarios and longer time horizons, solving the optimal design 
problem in the central form as in (1) can become computationally intractable due to the 
limited memory available in the computing device used. In this paper, we explore the 
option of dividing this problem into smaller partition problems which can be solved 
separately by multiple smaller machines to overcome the memory limitations. The 
partition problems are then solved iteratively with a coordination step in between to reach 
a solution to the central problem. 

2. Methodology 

2.1. Reformulating the design problem as a general form consensus optimization problem   

We can divide the two-stage dynamic optimization problem into P partitions denoted by 
the set : {1, , }P   in a very flexible manner. For example, besides considering each 

scenario as a partition, we could also form partitions within the prediction horizon of a 
particular scenario, or bundle together similar parts from multiple scenarios into a 
partition. Each partition p then is a separate optimization problem with its own local 
variables for design ( d e s

pw ) and operations ( oper
pw ) and can be solved separately. An 

illustration of a problem with 2 scenarios divided into 6 partitions is shown in Figure 1.  

Figure 1: Illustration of dividing the optimal design problem with 2 scenarios into 6 partitions. 

The solutions from the individual partitions put together is a solution to the centralized 
problem (1) when,  

- All the partitions achieve consensus between their local design variables 
- Adjacent partitions achieve consensus of the differential state variables shared 

between them (at the edge of the partitions)  
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We introduce a global copy of all the variables that must reach consensus into a vector 
and the consensus requirements can then be imposed as a constraint in each partition p. 
We can thus write the optimal design problem as a sum of smaller partition problems that 
are linked with consensus constraints as,  

,
min

pw 
    capex des oper oper

p p p p
p

w w


  


 
 (2a) 

.st   , , 0oper des
p p p pg w w   p   (2b) 

  , , 0oper des
p p p ph w w   p   (2c) 

 0des des
pw    p   (2d) 

 0oper oper
p p pA w B    p   (2e) 

    ,
T TT des oper

p p pw w w    
 p   (2f) 

Ap and Bp are selection matrices used to link a subset of the local variables of partition p 
to the corresponding sections in the global copy  . The objective function terms in the 
partition problems are chosen appropriately to add up to the original objective in (1).  

2.2. Applying ADMM to get a distributed algorithm   

The individual partition problems in (2) are not trivially separable due to the presence of 
constraints that enforce the consensus condition. We can solve this problem in a 
distributed approach using ADMM as described below. The  primal residual of the 
constraints (2d) and (2e) can be denoted using the vector pr  as, 

 
des des
p

p oper oper
p p p

w
r

A w B




 
    

 p    

The partial augmented Lagrangian (AL) function of (2) can be formed by relaxing these 
constraints and adding it to the objective as,  

         1
, ,

2

T Tcapex des oper
R p p p p p p p p

p
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 (3) 

The vector      : ,
T T Td e s o p e r

p p p      
 is built by stacking lagrange multipliers 

associated with the consensus constraints and R is a symmetric positive definite matrix. 
The AL function is additively separable except for the quadratic penalty terms. The 
ADMM algorithm involves solving the partition problems while keeping   and  fixed 
and then updating them by keeping the local variables 

pw  fixed in an alternating fashion 

until convergence. The ith iteration of the ADMM algorithm thus takes the form 

  1i
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  ,arg m in ,
p p

i i
R p

w
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



  p   (4a) 
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  1arg min , ,i i

R p pw


     (4b) 
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i

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    i

pp

i
R r   p   (4c) 

Step (4a) involves solving an optimization problem for each partition while the global 
variable is kept constant. This is the computationally expensive step in the approach but 
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can be solved using separate machines and in parallel to speed up convergence. Step (4b) 
is the minimization of the AL function while the local variables in partitions are kept 
constant. This step for consensus problems reduces to finding the minimum of a quadratic 
function and can be shown to be the averaging operator (Rodriguez et al., 2018) as,  

    1 11i i
p

j p

j w j  



 


 

where 
j    denotes the set of partitions connected to the jth element of the global 

variable. Step (4c) is the update to the lagrange multipliers of consensus constraints and 
can be carried out in each partition separately. The termination criteria for ADMM 

iterations are that primal residual ( 1ir  ) and the dual residuals (    11 i ii
p p ps  

   ) be 

reasonably close to zero as explained in Boyd et al. (2010). 

3. The TES Design problem 

We use flowsheet in Figure 2 to represent the heating section of a district heating network, 
where water is used in a closed-loop to satisfy the heating requirement in an area.  

 
Figure 2: Simplified flowsheet of a district heating system. 

The volumetric flow rate of water in the loop is dhq  which is determined by the number 

of consumers and their heating demands at any time. The temperature of water returned 

is ,Redh tT  and determined by the heat losses in the system and is assumed to be correlated 
to ambient weather conditions. The operational objective of the heating system is to heat 

this water to a temperature phbT  that must be above a contractually specified temperature 
,mindh SupT . A cheap source of heat is available from a process stream in an industrial 

process that needs to be cooled. It transfers heat to the district heating system using the 
heat exchanger WHB. Any additional heating required in the district heating side is met 
by using the peak heat boiler PHB. There is a temporal mismatch in the supply of heat 
from the process stream and the demand for heating from the consumers. To better 
manage this mismatch and decrease the reliance on external utilities, a thermal energy 
storage system in the form of a simple buffer tank is being considered. This simple TES 
system can charge/ discharge by raising/ lowering the temperature of the tank by 
manipulating the flow split  .  
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Mass and energy balance equations can be written out to model the dynamics of the 
system, details of which and the parameters used can be found in Prakash (2020). The 

differential states are , ,T whb tes phbx T T T     and the control inputs  , ,T phb dcu Q Q     

and the uncertain parameters at each time step k are 
,, ,T dh dh Ret whb

k k kq T Q     . The design 

problem is then to find the optimal volume of the TES tank ( tesV ) that must be installed, 
given the uncertain profiles of future supply and demand of thermal energy.  

4. Results and Discussions 

We present a simulation study to demonstrate the distributed approach and compare it 
against solving the design problem as a single NLP centrally. Two equally likely 
scenarios are used to represent future operations (with N = 60). The profiles for whbQ  has 

a step change at timesteps k = 20 and k = 40, while all other parameters are held constant. 

Quadratic functions are used to represent capital cost  2
0.001capex tesV   and the 

operating cost  2phbl Q . The design variables and operations variables were all scaled 

to be within zero and one while formulating the optimization problem. Scaling facilitated 
selecting the AL penalty parameters in R to tune the convergence in our distributed 
approach more easily. The penalty parameter influences the convergence speed of 
ADMM when applied to convex problems. In the case of nonconvex problems, poorly 
chosen values of this penalty parameter can make convergence harder or can even prevent 
convergence altogether. We use a diagonal matrix for R (with values 0.001 and 0.1 
corresponding to the design and operation variables respectively) to roughly balance the 
magnitudes of the original objective and the added penalization term at the initial guess.  

 

Figure 3: Results from solving the design problem centrally vs distributed approach. 

In Figure 3, we can see that the primal and dual residuals become sufficiently small in the 
ADMM algorithm, indicating the convergence in our distributed approach. The optimal 
design variables can be seen to converge to the same solution as found by solving the 
problem centrally. An important point to note is that this behavior is not guaranteed by 
ADMM in the case of nonconvex problems. When applied to nonconvex problems, 
ADMM need not converge and even when it does converge, it need not converge to an 
optimal point and must be hence considered just as another local optimization method 
(Boyd et al., 2010). Although the convergence guarantees for ADMM in the case of 
complex nonconvex NLPs are poorly understood, it has been shown to perform 
satisfactorily in practice (Rodriguez et al., 2018). Three snapshots of the optimal 
differential state trajectory Ttes in the partitions of scenario 1 are shown in Figure 4. 
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Figure 4: Snapshots at ADMM iterations (i = 1,10, 100) in the partition problems. 

An interesting observation in our approach is that all partitions apart from the leftmost 
partition has the initial condition of the dynamic optimization problem as a variable. Thus 
in Figure 4, we can see that during the initial iterations (left subplot), the optimal solution 
is to initialize the TES tank at a high temperature. The penalization terms added are then 
updated to close the gap between the partitions and achieve consensus (middle and right 
subplots). In this aspect our approach shares similarities to the multiple shooting (MS) 
approach in dynamic optimization. The key difference is that MS is solved centrally and 
the state continuity (consensus constraint) is enforced explicitly as an equality constraint 
by the solver. We solve it in a distributed way where the consensus constraint is relaxed 
by forming the AL. The ADMM iterations are then able to enforce this constraint 
implicitly by minimizing the AL.     

5. Conclusion 

In this paper, we presented the optimal design of a simple TES system under uncertainty 
as a two-stage nonlinear dynamic optimization problem. Due to limitations in memory of 
solving the problem centrally in a single machine, an approach for forming smaller 
partition problems in a general fashion was shown. The ADMM algorithm was applied 
to coordinate between the subproblems which could be solved separately and in parallel. 
A simple simulation exercise was used to demonstrate the approach.  
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