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Abstract— In this paper, we present a computationally effi-
cient multistage nonlinear model predictive controller (NMPC)
with a prediction horizon update using nonlinear programming
(NLP) sensitivities. Computational delay is minimized by up-
dating the prediction horizon to a sufficient length at every
time step. For a set-point tracking multistage NMPC, we first
determine a terminal region around an optimal equilibrium
point for each uncertainty realization in offline mode. Then
using NLP-sensitivity we estimate a sufficient horizon length for
the next time step such that all scenarios will be driven into their
respective terminal regions. This adaptive horizon multistage
NMPC (AH-msNMPC) is recursively feasible and input-to-state
practically stable. In a simulation study, the AH-msNMPC
was used to control a benchmark cooled CSTR process under
parametric uncertainty. The AH-msNMPC computations take
1.4% and 29.5% of the sampling interval duration for robust
horizon of 1 and 2, respectively. With a robust horizon length of
1 the controller is 15 times faster than ideal-multistage NMPC
with a long enough prediction horizon. The computational delay
is halved with robust horizon length of 2. The performance
of the two controllers was found to be similar. The improved
efficiency is vital in practice for improved control performance
and closed-loop stability. It is desired for real-time optimal
decision making, and also under limited computing resources
such as in embedded systems.

I. INTRODUCTION

Model predictive control (MPC), has emerged as a promis-
ing dynamic optimal control strategy in process industries. It
is based on mathematical modeling and online optimization
of the model to find the optimal plant inputs [1]. Process
systems are strongly nonlinear systems hence the growth
of interest in nonlinear MPC (NMPC). The nonlinearity
introduces a high degree of complexity in the optimal control
problem (OCP) making it computationally demanding.

The optimization problem in an standard MPC assumes
an exact model with known future disturbances and perfect
prediction.

However, chemical processes can not be perfectly mod-
elled, and the future parameters may not exactly be known
ahead of time, resulting in plant-model mismatch. Uncer-
tainty can appear as lack of truth of the identified system
parameters. It can also occur as noise, either in the mea-
surements or from the process or as a result of unknown
disturbances. If the uncertainty level is pronounced, standard
NMPC declines in performance and its inherent robustness
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can no longer guarantee recursive feasibility. As a result
stochastic NMPC including robust NMPC schemes have
been proposed that explicitly takes uncertainty into account.

One of the earliest robust schemes developed was a min-
max MPC [10], that optimizes the worst-case scenario cost
while ensuring feasibility for all possible scenarios. This
open-loop min-max MPC formulation ignores the presence
of future information. A feedback min-max MPC [4] was
created to resolve this issue. The robust schemes are in-
herently large-scale problems especially for long prediction
horizons. The controller designer must sacrifice computa-
tional speed for conservativeness.

Multistage NMPC (msNMPC) is a robust scheme based
on stochastic programming proposed in [2]. msNMPC as-
sumes discrete values of uncertain parameter realizations
and presents the future evolution of uncertainty in form
of a branching scenario tree along the prediction horizon.
The msNMPC problem increases exponentially in size with
prediction horizon length. It is shown in [2] that a shortened
branching horizon called robust horizon, produces as good
performance because of feedback and the moving horizon
nature of MPC. However, the OCP is still at least n-times
larger than a standard NMPC problem if n uncertainty
realizations are assumed with a minimum robust horizon of
1. The existing complexity of NMPC plus increased problem
size in msNMPC gives rise to significant computational cost
and associated computational delay. Computational delay
is undesirable for online decision making and can lead to
performance degradation and instability [16]. To improve
efficiency, parallel computing can be used for example by
primal decomposition of the scenario-based optimal control
problem as proposed in [11].

A different approach to minimize computational delay is
to select the shortest possible horizon at each iteration of the
msNMPC. A variable horizon method that was proposed in
[4] requires solving a mixed-integer nonlinear problem for
the msNMPC which is even more computationally demand-
ing than the original problem. The adaptive horizon method
in [3] updates the prediction horizon length efficiently at
every time step by solving an NLP-sensitivity problem online
that determines the sufficient horizon length for the system
to enter a pre-determined terminal region of attraction. If the
control problem is such that it is attracted to a terminal region
set, the new horizon will be reduced at each subsequent stage
making the problem smaller and simpler to solve.

The main contribution of this paper is to extend the adap-
tive horizon method [3] on to multistage NMPC. We compare
the performance with a standard approach and demonstrate
its potential for improving computational efficiency. The rest



Fig. 1. A scenario tree representation of uncertainty evolution. A scenario
is a path from the root node to a leaf node. There are a total of NS = 9
scenarios, with a robust horizon NR = 2 and prediction horizon NP = N .

of this paper is organized as follows. Section II carries the
main contribution of this manuscript. It sets foundation on
the nonlinear problem and ideal multistage NMPC frame-
work. We also present the adaptive horizon algorithm and
the computation of terminal region of attraction. Section III
presents recursive feasibility and stability proofs of the
method. Section IV shows results of a simulation study on
a benchmark example under parametric uncertainty. Finally,
Section V presents the drawn conclusions.

II. ADAPTIVE HORIZON MULTISTAGE NMPC

We represent the dynamics of a system as a discrete-time
nonlinear model given by (1).

xk+1 = f(xk,uk,dk) (1)

where, xk ∈ X ⊆ Rnx , uk ∈ U ⊆ Rnu are the state and
input vectors, and dk ∈ D ⊂ Rnd is the vector of uncertain
parameters in the plant model at time step tk, and k ≥ 0 is
the time index.

A. Ideal Multistage NMPC

Multistage NMPC [2] employs a scenario tree to define the
possible instances that an uncertain parameter can take in the
future along the prediction horizon. Fig. 1 shows a scenario
tree structure with a robust horizon NR = 2 and a prediction
horizon NP = N . The root node of the tree is the current
state of the plant from which the disturbance dk assumes any
value in the uncertainty set, D. For instance, in Fig. 1 we
may assume dk can take 3 representative discrete values D =
{low, nom, high}. If nd = 1, three different states will be

predicted at the next time step, tk+1. The tree will continue
branching from each node, and branching stops at the robust
horizon. After that, the uncertainty realization is assumed to
remain constant. Then we obtain a total number of scenarios,
NS such that NS = |D|NR , where |D| is the cardinality of
D. The robust horizon is an admissible simplification due to
the moving horizon aspect of the NMPC controller, see [2].
The resulting OCP (2) is re-optimized at each iteration and
the optimal first step input is injected to the plant.

V msN (x̂t) = min
xj
k,u

j
k

∑
j∈S

{
ωj
(
Vf (xjN ) +

N−1∑
k=0

`(xjk,u
j
k)
)}
(2a)

s.t. xjk+1 = f(xjk,u
j
k,d

j
k), k = 0, . . . , N − 1 (2b)

xj0 = x0 = x̂t (2c)

ujk = ulk if xjk = xlk (2d)

xjk ∈ X , ujk ∈ U , xjN ∈ X
j
f (2e)

j, l ∈ S where S = {1, . . . , NS} (2f)

where, x̂t is the state measurement of the plant at time t.
xjk and ujk are the predicted state and inputs at stage k and
scenario j, and djk is the uncertain parameter of scenario
j at stage k. ωj denotes the assigned weight for scenario j.
`( · , · ) is the scalar stage cost function such that ` : X×U →
R. The weighted sum of the scenario summation of the stage
costs `( · , · ) and terminal cost Vf (.) is the objective value
function V msN for the multistage OCP given by (2a). S is an
index set for the scenarios. (2b) is the system model and (2c)
is the initial condition which equals the current plant state
x̂t. (2d) are the non-anticipativity constraints (NACs).

B. Adaptive horizon using NLP sensitivity

The adaptive horizon method updates the prediction hori-
zon length of the next msNMPC iteration by estimating
a sufficient horizon length from the current solution using
NLP-sensitivities, see [3], [9], [14].

We assume that the system is controlled with a set-
point tracking objective and has an optimal equilibrium pair
(xjf ,u

j
f ) for all scenarios j ∈ S. This point is an equilibrium

pair such that xjf = f(xjf ,u
j
f ,d

j
f ) for all j ∈ S and gives

the lowest stage cost among all the equilibrium pairs, see
[17].

Assumption 1: There exists a terminal region of attraction
X jf around an optimal equillibrium pair (xjf ,u

j
f ) for all j ∈

S such that
X jf := {xj | ‖∆xj‖ ≤ cjf} (3)

where ∆xj = xj−xjf and cjf is the terminal region’s radius.
Assumption 2: There exists an open ball Bε(xjf ,u

j
f ) with

radius ε > 0 around the optimal equilibrium pair (xjf ,u
j
f ),

such that the stage cost is small compared to the stage cost
at the initial condition for all (xj ,uj) ∈ Bε(xjf ,u

j
f ) and for

all j ∈ S [3].
Following Assumption 1, Fig. 2 illustrates possible open

loop optimal trajectories for a system with 3 uncertainty



Fig. 2. Open loop trajectories for different scenarios as they approach
their respective terminal regions. Their sufficient horizon lengths Nj

T are
also indicated. Here the prediction horizon can be truncated at N3

T .

Fig. 3. Adaptive horizon algorithm to determine the sufficient horizon
length for the next stage problem.

scenarios. If the prediction horizon is long enough, each
scenario’s optimal trajectory enters their respective terminal
region at their respective stage N j

T . There exists a prediction
horizon length NT where all scenarios would be steered into
their respective terminal regions. According to Assumption
2, the prediction horizon of the OCP can be truncated at that
stage. For instance, in Fig. 2 we would truncate at NT ≥ N3

T .

The proposed algorithm is summarized by a flowchart
in Fig. 3. The algorithm begins with choosing a safety
factor Nmin, and a sufficiently long horizon N as the initial
prediction horizon for (2). At time t the NLP is solved
with a prediction horizon Ñt. An NLP-sensitivity problem
is solved to make a one-step ahead prediction of the optimal
trajectory for the NLP at time t + 1, see [3], [9], [13],
[14]. This trajectory is checked if it enters the terminal
region for all scenarios. If true, the sufficient horizon lengths
for each scenario N j

T are determined. The overall sufficient
horizon length NT = max(N1

T , . . . , N
j
T ) for all j ∈ S. The

prediction horizon length for the next iteration is Ñt+1 =
NT +Nmin.

C. Quasi-infinite horizon NMPC

The adaptive horizon method requires identification of the
terminal regions with radii cjf and a terminal cost function

Vf ( · ) of the closed loop system for each scenario. This is
approximated by a quasi-infinite horizon NMPC presented
by [3]. In order to determine terminal regions X jf consider
Assumption 3.

Assumption 3: There exists a stabilizing LQR controller
with a local control law: ∆uj = −Kj∆xj such that
f(xj ,ujf −Kj∆xj ,dj) ∈ X jf for all xj ∈ X jf .

We determine a ball of radius cjf in the vicinity of xjf
where the LQR control law stabilizes the uncertain nonlinear
system (1). The terminal state and input is an optimal
equilibrium pair (xjf ,u

j
f ) obtained by solving a steady-state

optimization problem at dj . The nonlinear system (1) is
linearized about (xjf ,u

j
f ) as follows

∆xjk+1 = Aj∆xjk +Bj∆ujk + φj(∆xjk,∆ujk,d
j) (4)

for all j ∈ S, where Aj and Bj are the jacobians of f w.r.t
x and u respectively at (xjf ,u

j
f ) and φj(∆xjk,∆ujk,d

j) is
the linearization error. An infinite horizon LQR is proposed
as the stabilizing controller in the terminal region given by

∆xj
>
P j∆xj = min

∞∑
k=0

(∆xjk
>
Q∆xjk + ∆ujk

>
R∆ujk)

(5a)

s.t. ∆xjk+1 = Aj∆xjk +Bj∆ujk ∀ k = 0 . . .∞
(5b)

for all j ∈ S, where P j > 0 is a solution of the discrete
algebraic Ricatti equation.

The closed loop trajectory of the nonlinear system (1)
controlled by the LQR is given by

∆xjk+1 = Ajcl∆xjk + φ̄j(∆xjk,d
j) (6)

for all j ∈ S, where Ajcl = Aj −BjKj and φ̄j(∆xjk,d
j) =

φj(∆xjk,−Kj∆xjk,d
j). The LQR controller design assumes

φj(∆xjk,∆ujk,d
j) = 0. For the nonlinear system, we deter-

mine the bounds on the linearization error for each scenario
j using Lemma 1 as follows.

Lemma 1: There exists M j , q ∈ R+ for all j ∈ S such
that

‖φ̄j(∆xjk,d
j)‖ ≤M j‖∆xjk‖

q, ∀xj ∈ X (7)

Proof: See [3].
Analytical determination of the bound (7) is tedious and

thus one can run one-step simulations offline. This method
was proposed by [3], and is also adopted in this work. In
offline mode, a random initial point in the system domain
X × U is taken and a one-step simulation determines the
linearization error by evaluating the difference (8).

φ̄j(∆xjk,d
j) = f(xjk,u

j
f −K

j∆xjk,d
j)−Ajcl∆xjk (8)

After determining the bounds of the linearization error for
each scenario j using Lemma 1, we quantify the size of the
terminal region X jf using Lemma 2.

Lemma 2: Suppose Assumption 1 holds, the radius of the
terminal region of attraction cjf for all dj and for all j ∈ S



is dependent on the linearization error bound and is given
by

cjf :=

(
−σ̄jΛj +

√
(σ̄jΛj)2 + (λW j − εLQ)Λj)

ΛjM j

) 1
q−1

(9)
where σ̄j is the maximum singular value of Ajcl, λ̄W j and
λW j are the maximum and minimum eigen values of W j :=

Q + Kj>RKj , Λj :=
λ̄Wj

(1−σ̄j)2 , and εLQ > 0 is a small
constant: an allowable tolerance for the terminal cost V jf .

Proof: See [3].

III. PROPERTIES OF ADAPTIVE HORIZON
MULTISTAGE NMPC

In this section, we assume a transformed problem such
that the optimal equilibrium pairs (xjf ,u

j
f ) for all j ∈ S are

all centered at (0, 0) using (xj ,uj) = (x̃j − x̃jf , ũ
j − ũjf )

where x̃j and ũj are states and inputs before transformation.

A. Recursive feasibility

Assumption 4: The adaptive horizon multistage NMPC
(AH-msNMPC) has the following properties.
• Lipschitz continuity: The functions f(x,u,d), `(x,u),

and V jf (x) are Lipschitz continuous with f(0, 0,dj) =

0 for all j ∈ S, `(0, 0) = 0 and V jf (0) = 0.
• Constraint set: The sets X and Xf ⊆ X are closed. U

is a compact set. All constraint sets contain the origin.
• Common terminal region: There exists a common ter-

minal region Xf =
⋂
j∈S
X jf that is control invariant.

Theorem 1: Suppose that Assumption 4 holds, then the
AH-msNMPC is recursively feasible.

Proof: In [8], [12], [13] recursive feasibility of an
msNMPC with a constant prediction horizon was proven. If
the new horizon length Ñt+1 is sufficient to steer the system
into the control-invariant common terminal region set Xf ,
then recursive feasibility is proven using same arguments as
standard NMPC with terminal region in [1].

B. Stability

In order to prove stability we define the following.
Definition 1: Comparison functions: A function α : R+

0 →
R+

0 is a K-function if it is continuous and strictly increasing
with α(0) = 0. A function α is a K∞-function if α ∈ K and
is unbounded. A function β : R×Z+ → R is a KL-function
if it is continuous, β( · , k) ∈ K for all k > 0, and β(n, · ) is
decreasing for all s > 0 and β(s, k)→ 0 as k →∞.

Definition 2: Robustly Positive Invariant (RPI) set: A set
X is an RPI set for (1) if xt+1 ∈ X holds for all xt ∈ X
and d ∈ D.

Definition 3: Input-to-State Practical Stability (ISpS): The
system (1) is ISpS in X if there exists a KL-function β, a
K-function γ, t > 0 and c ≥ 0 for all d ∈ D such that

‖xt‖ ≤ β(‖x0‖, t) + γ(‖d‖) + c, ∀x0 ∈ X (10)

Definition 4: ISpS-Lyapunov function: A function V ( · ) is
an ISpS-Lyapunov function for the system (1) if there exists

an RPI set X , K∞-functions α1, α2, α3 and K-function σ,
c0, c1 ≥ 0 for all x ∈ X and d ∈ D such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) + c0 (11a)
∆V (x,d) ≤ −α3(‖x‖) + σ(‖d‖) + c1 (11b)

Assumption 5: ISpS assumptions for AH-msNMPC.
• If Assumption 3 holds then Vf (f(xj ,−Kjxj ,dj)) −
Vf (xj) ≤ −`(xj ,−Kjxj) for all xj ∈ Xf .

• The stage cost satisfies the following for all x ∈ X and
d ∈ D:

αL(‖x‖) ≤ `(x,u) ≤ αU (‖x‖) + σU (‖d‖) (12)

where αL, αU and σU are K∞-functions [13], [15].
• The solution for the AH-msNMPC satisfies the

Mangasarian-Fromovitz Constraint Qualification
(MFCQ) and the Strong Second-Order Sufficient
Conditions (SSOSC) such that the NLP-sensitivity
theory [14] can be applied.

Let us define a set of acceptable horizon lengths N =
{Ñ |Nmin ≤ Ñ ≤ N, Ñ ∈ Z+} and the subset Nt ⊂ N
of acceptable horizon lengths for all the feasible problems
of (2). We define a mapping H : Rn × N × Rn → N
for the algorithm illustrated by Fig. 3 such that Ñt+1 =
H(x̂t, Ñt, x̂t+1|t) ∈ Nt+1.

Assumption 6: If problem (2) at time t with x̂t is feasible
then so is the problem at time t+ 1 with x̂t+1 and Ñt+1 =
H(x̂t, Ñt, x̂t+1|t) ∈ Nt+1 for all x̂t, x̂t+1|t ∈ X , Ñt ∈ Nt.

Theorem 2: If X is an RPI set and Assumptions 4, 5,
6 hold and α1, α2, α3 ∈ K∞, σ ∈ K and V ( · ) is an
ISpS-Lyapunov function with ∆V (x̂t,d) = VÑt+1

(x̂t+1)−
VÑt

(x̂t) for all x̂t ∈ X and Nt ∈ Nt, then the AH-msNMPC
system is ISpS stable in X .

Proof: For the sake of brevity, we outline a sketch of
the proof. Following Assumptions 4 and 5, it is proven by
[8], [13], [18] that the cost V msN (x) is an ISpS-Lyapunov
function and that an ideal-msNMPC results into an ISpS
stable sytem. To ensure stability, [13] highlights that a
terminal cost for each scenario is required, and they should
be control Lyapunov functions. In the case of AH-msNMPC,
we have two possible cases of prediction horizon update
which include:
• prediction horizon shortening i.e. Nt+1 < Nt or
• constant prediction horizon or lengthening i.e. Nt+1 ≥
Nt.

Using Assumptions 5 and 6 in each case above, we are
always guaranteed feasibility. We predetermined the terminal
regions at which we have a control Lyapunov terminal
cost function. Since prediction horizon shortening occurs at
the point when all scenarios have entered their respective
terminal regions plus a safety factor, then the weighted
terminal cost is an ISpS Lyapunov-function. This implies
that AH-msNMPC also results in an ISpS stable system.

IV. SIMULATION EXAMPLE

We consider a continuously-stirred tank reactor (CSTR)
system with a cooling jacket from [5]. The reactions in the



TABLE I
SYSTEM PARAMETERS

Parameter Value Units Parameter Value Units
A1,2 9.043× 1012 /h ρ 0.9342 kg/m3

A3 9.043× 109 /h AR 0.215 m2

E1,2/R 9758.3 K VR 10.01 m3

E3/R 8560.0 K Tin 130.0 ◦C
∆HAB 4.2 kJ/mol kW 4032 kJ/hm2K
∆HBC −11.0 kJ/mol mJ 5 kg
∆HAD −41.85 kJ/mol R 8.314× 10−3 kJ/Kmol
cp 3.01 kJ/kgK cp,J 2.0 kJ/kgK

CSTR are given by (13), where component B is the main
product.

A
k1−→ B

k2−→ C (13a)

A
k3−→ D (13b)

The system dynamics of the cooled CSTR are described by
the following set of equations.

˙cA = F (cA,0 − cA)− k1cA − k3c
2
A (14a)

˙cB = −FcB + k1cA − k2cB (14b)

ṪR = F (Tin − TR) +
kWAR
ρcpVR

(TJ − TR)

− k1cA∆HAB + k2cB∆HBC + k3c
2
A∆HAD

ρcp
(14c)

ṪJ =
1

mJcp,J
(Q̇J + kWAR(TR − TJ)) (14d)

where reaction rates ki follow Arrhenius law, ki =

Ai exp
(
−EA,i

RTR

)
. Table I presents all the model parameters,

their corresponding values and units. The states vector x =
[cA, cB , TR, TJ ]> consists of the concentration of A and
B, reactor and coolant temperature respectively. The control
inputs u, are inlet flow per reactor volume F = Vin/VR, and
cooling rate Q̇J .

The control objective is to maintain the concentration of
B to a desired set-point. The set-point is csetB = 0.5 mol/`
throughout the operation period. The activation energy, EA,3
is the uncertain parameter of the system. The stage cost is a
typical set-point tracking error for cB with control movement
penalization terms ∆Fk = Fk − Fk−1 and ∆Q̇Jk = Q̇Jk −
Q̇Jk−1 given by

`k = (cBk − cset
B )2 + r1∆F 2

k + r2∆Q̇J
2

k (15)

where the control penalties r1 = 10−5 and r2 = 10−7.
Regularization terms were added to the stage cost to ensure

dissipativity and strong convexity as done in [9]. The initial
prediction horizon N = 40 and for each scenario terminal
constraints are included such that ‖xjN − xjf‖2 ≤ cjf

2
. The

robust horizon is chosen to be either 1 or 2. For NR = 2 and
nd = 1, we obtain a 9-scenario tree structure as in Fig. 1 for
the msNMPC.

A. Terminal region calculations

With a selected LQR controller tuning of Q = I4 and
R = [10−3 10−4]I2 we design a stabilizing controller for
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Fig. 4. Linearization bound after 10000 simulations for each parameter
uncertainty realization (D = {Enom

A,3 ± 2.5%}, Mj = 125 and q = 2.2).

each of the 9 scenarios. As outlined before, 105 one-step
simulations from random initial values are performed offline
for each scenario. Fig. 4 is a plot of the linearization error
against ∆x for each scenario. The linearization errors for all
the scenarios are not significantly different and therefore a
common linearization error bound (black solid line) M j =
125 and q = 2.2, is fitted. Using (9) applied to each
scenario, the radius of the terminal regions were computed
as c1f , c

4
f , c

7
f = 0.023, c2f , c

5
f , c

8
f = 0.023 and c3f , c

6
f , c

9
f =

0.024.

B. Simulation results

The sampling time was chosen to be 0.005 h and the
closed loop system for (14) was simulated for an operation
time of 0.3 h. The inlet concentration of component A is
constant cA,0 = 5.1 mol/` and the uncertain parameter was
d̂ = Enom

A,3 + 1% throughout. The control performance of the
AH-msNMPC was compared to an ideal-msNMPC. Nmin = 3
was selected as the minimum horizon length and the safety
factor.

We implemented the controller using CasADi
v.3.4.5[6] in a MATLAB environment. The NLP
solver was IPOPT 3.12[7] and linear solver was MA27
running on a 2.6 GHz Intel Core-i7 with 16GB RAM.

Fig. 5 shows the optimal state trajectories and control
actions for both schemes. It can be seen that the optimal
trajectories for ideal-msNMPC and AH-msNMPC are the
same. Both controllers are capable of minimizing offset even
with a plant-model mismatch in the uncertain parameter
EA,3. It is evident that the adaptive horizon scheme does not
affect the control performance of the msNMPC controller.

Fig. 6 illustrates how the prediction horizon length, Nt is
continuously reduced to a minimum value as the system is
driven to the terminal region. It also shows the amount of
time either controller spent to solve the NLP at each iteration.
While the ideal-msNMPC continues solving the problem for
an entire maximum horizon length at each iteration spending
significantly larger time, the adaptive horizon method always
solved a sufficiently reduced problem, making it faster.

As shown in Table II, the adaptive horizon scheme com-
putes 15 times faster for NR = 1, and computes 2 times
faster for NR = 2 on average per iteration compared to
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Fig. 5. Comparison between the ideal msNMPC with AHmsNMPC with
d̂ = Enom
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Fig. 6. Comparison of the prediction horizon length and computation
time between ideal msNMPC and AHmsNMPC with parametric uncertainty
realization d̂ = Enom

A,3 + 1% for both NR = 1 and NR = 2.

the ideal-msNMPC. For the sampling time of 18s, the AH-
msNMPC’s computational delay with NR = 1 is 1.4% of
the sampling interval while with NR = 2 is 29.5% of the
sampling interval which is a significant reduction compared
to the ideal-msNMPC’s 64% fraction.

V. CONCLUSIONS

We have presented in this paper an adaptive horizon
multistage NMPC formulation that is both efficient and
robust. The resulting optimal control problem is shown to
be recursively feasible and input-to-state practical (ISpS)
stable. A simulation case study on a CSTR shows that
the control performance of the adaptive horizon multistage
NMPC framework is the same as that of ideal multistage
NMPC. The adaptive horizon framework is faster than the
ideal-multistage NMPC. The adaptive horizon update is
beneficial for multistage NMPC in order to reduce NLP size
and the computational delay. This method can be applied to

TABLE II
MEAN COMPUTATION TIME

NR Controller CPU time [s]
Max Mean Min

1 ideal-ms 5.3215 3.7385 1.6401
AH-ms 1.9783 0.2453 0.1500

2 ideal-ms 15.4335 11.5805 6.1988
AH-ms 11.2770 5.3149 3.7616

control a nonlinear system provided that it is attracted to a
terminal region.
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