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aDepartment of Chemical Engineering, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway

Abstract

The performance of model-based optimization methods, like Real-time Opti-

mization (RTO), relies on the model accuracy and adequacy. However, features

of the process may be unknown and/or the system behavior can drastically

change with time (e.g. system degradation). Therefore, even if we have a perfect

model in the beginning, we may end up making decisions based on a poor model.

This paper proposes a method that adapts the model structure online, based

on an available model set, while simultaneously estimates the model parame-

ters. The problem is presented in a superstructure framework and solved using

a mixed-integer nonlinear formulation. Then, the updated model is combined

with Output Modifier Adaptation, an RTO variant, for economic optimization.

Our method is tested in a continuous stirred-tank reactor and a gas lifted oil

well network. The results show that we can select the correct model structure,

update its parameters and, simultaneously, converge to the plant optimum.

Keywords: Model-based optimization, Modifier Adaptation, Model-plant

mismatch, Model correction, Symbolic regression

1. Introduction

Process models are very useful whenever it is necessary to interact with a

given system. They are fundamental for process design, process analysis and
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process operation [1]. In Real-time Optimization (RTO), we use a rigorous

steady-state model to find the best operating strategy given an economic cri-

terion [2]. Usually, RTO is implemented using the two-step (TS) approach [3],

which is based on solving two sequential problems. First, the model parameters

are adjusted in order to match the current plant conditions. Next, the updated

model is used for computing the new optimal operating point.

The performance of a TS implementation relies heavily on the model, which

needs to be accurate enough to predict the true plant optimum [4]. If this

requirement is not met, the RTO decisions based on this model are not reli-

able and can lead to significant economic loss. Obtaining a good model can

be challenging and expensive, especially if the inner workings of the process

are partially unknown (e.g. in complex reaction networks), different system

operation modes (e.g. different batch campaigns), and/or the system behavior

changes drastically over time (e.g. system degradation) [2]. In these cases, even

after adapting the model parameters, the model can fail to represent the actual

plant behavior.

In this paper, we present an approach that allows the model structure to

evolve in time while simultaneously determining the best model parameters. Our

solution combines online model structure selection [5] and RTO using Output

Modifier Adaptation (MAy) [6] as shown in Figure 1. MAy is a TS variant

that guarantees convergence to the plant optimum even if the best available

model is structurally and parametrically wrong. In our method, we propose

several model structures for describing the process and select online the best

model with updated parameters for representing the plant. In order to avoid

chattering between model structures, as a consequence of noisy measurements

for instance, we only perform the model structure selection step if a goodness

of fit criterion is not met. Next, the updated model is used for optimizing the

process operation via the classical MAy framework.

Note that MAy does not require model adaptation to converge to the plant

optimum. However, updating the model to the current plant measurements

is important for model maintenance and provides valuable information about
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Figure 1: Schematic representation of the online model maintenance approach. The variable

d represents disturbances that affect the process. y and y′ are, respectively, the plant mea-

surements and gradients, which are the derivative of the outputs with respect to the inputs

u. θ? are the model parameters and M? is the selected model structure, updated only if a

goodness of fit criterion is not met. u? is the output computed via MAy using the chosen

model structure and the updated parameters.

the process, which can be used for other purposes, such as process condition

monitoring. This paper fits well into this special issue for Prof. Engell because of

his group important contributions to adapting the optimization problem based

on measurements [7] and gradients [8].

Another advantage of our method appears when there are several candi-

date model structures available but no previous evidence for which one best

represents the actual process. Using our method, one does not need to know

the model structure a priori and can propose several model structures based

on different hypothesis. Under the operation, the best model structure will

be revealed, while at the same time the process is driven to the optimal op-

eration point. Therefore, the model now can track different disturbances and

“self-adapt” to more drastic changes in the process structure, e.g. equipment

degradation, flow regime changes, among others.

The paper is organized as follows. First, we indicate how our method is

related to previous studies in Section 2. Then, Section 3 introduces our method

in detail, explaining its implementation with a toy example. In Section 4, we
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formally define the problem and show the algorithm for its implementation.

In Section 5, we discuss possible implementation issues. Next, Sections 6 and

7 give computational results of our method in the two case studies, a simple

continuous stirred tank reactor (CSTR) reactor and a gas lift oil well network.

Finally, Section 8 concludes the paper.

2. Related work

Previously, we proposed a 2-step online model maintenance method in the

context of RTO [5]. First, we solved a model identification problem, in which

several model structures were candidates for adequately describing the current

behavior of the plant. Then, we used the updated model structure to optimize

process operation with an an economic cost function. The main drawbacks of the

method in [5] are: (1) there is no explicit mechanism to avoid chattering between

consecutive iterations; and (2) the parameter values are not adapted, only the

best model structure is selected. In this paper, we extend the previous approach

to overcome them. We update the model parameters at every iteration, similarly

to the TS approach, and include a goodness of fit test to check whether or not

the model structure needs to be adapted.

If the discrepancy between the predictions and the measured values is accept-

able, we do not update the model structure, only its parameters. This goodness

of fit test avoids excessive switching between model structures, which may affect

the method’s convergence to the plant optimum. The parameter estimation is

included because it increases the predictive capability of the individual struc-

tures and, as a consequence, of the whole system model. On the other hand,

estimating the model parameters leads to a mixed-integer nonlinear optimiza-

tion problem with issues regarding identifiability and non-unique parameters,

which are discussed in Section 5.

Ahmad et al. [9] also apply a combination of modifier adaptation and pa-

rameter estimation. The goal of the authors is to enforce that the model is

adequate in a modifier adaptation sense (i.e. it is locally convex in the vicinity
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of the plant optimal inputs [6]), which guarantees convergence to the plant op-

timum. Since the model with adapted parameters provides better second order

information, they also speed up the convergence. Instead of estimating the pa-

rameters, the same research group in Gao et al. [10] proposed a method where

they switch between the rigorous model and local quadratic approximations of

the plant. Here, the main idea is also to guarantee convergence of the MAy to

the plant optimum since the quadratic is always adequate in a modifier adapta-

tion sense. However, the cost of using the local approximations is the lower rate

of convergence to the optimum due to the poor second order information [11].

Despite the fact that our method shares characteristics with the works above

(i.e. we estimate the model parameters and switch between model structures to

improve the fitting to the plant), our main goal is not limited to guaranteeing

convergence to the plant optimum, which is achieved by restricting the available

model set to modifier adaptation adequate models. Our main objective is to

online maintain a good model by combining a “population of submodels” that

is consistent with our current knowledge about the system.

Our method is also similar in spirit to the approach proposed by Hille and

Budman [12], which modifies the estimation problem in order to simultaneously

identify a proper structure for optimization and optimize the process. The

authors define a model-update criterion online in order to estimate the model

parameters for satisfying the conditions of optimality.

In a more general sense, the idea of simultaneously defining the functional

form of the model and estimating its parameters (which is also known as sym-

bolic regression, function identification or empirical design) has already been

applied in chemical systems [13, 14] and control [15, 16]. The goal in these pa-

pers is also to increase the flexibility of the model in cases that the underlying

phenomenon is not completely known. However, instead of using deterministic

optimization approaches, the optimization problem is solved via Genetic Pro-

gramming (GP). Despite being able to provide good solutions, GP does not

provide any guarantees of local and global optimality. Recently, Cozad and

Sahinidis [17] presented an MINLP formulation to solve the symbolic regression
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problem. The paper uses a basic set of operators and operands (e.g. +, ×,

exp (·), √·, etc.) instead of blocks of more complex structures as used in our

paper. As such, we have the ability to include more a priori knowledge into

our problem. Also, in our method, we use not only plant measurements but

also plant gradients in the regression problem. As a consequence, we reduce

problems with the non-uniqueness of model structures.

3. Model Maintenance using “modifiers” to quantify model accuracy

in the Real-time Optimization context

RTO aims at optimizing a non-linear steady-state model based on an eco-

nomic objective [2]. The process model plays a critical role in the standard

RTO implementation. Traditionally, RTO models employ rigorous phenomeno-

logical relations to describe the process behavior. For a given model structure,

the model parameters (or a subset of them) are adapted with new plant in-

formation obtained with sensors and analyzers [3]. The parameter adaptation

step is carried out by solving an optimization problem, which minimizes the

offset between the measurements and model prediction by changing the model

parameters. However, this standard updating strategy may not suffice in cases

of structural plant-model mismatch, where the RTO model is not adequate to

find the true plant optimum even with updated parameters [18].

3.1. Alternatives for addressing plant-model mismatch

Instead of relying on model parameter adaptation, one could apply the iter-

ative gradient-modification optimization (IGMO) scheme proposed by Gao and

Engell [8]. Here, the model is corrected by adding terms for bias and gradi-

ent correction that shift the cost and constraint functions without adapting the

model parameters. Consequently, the model locally matches the plant optimal-

ity conditions. Thus, the optimization routine is able to drive the operation to

the plant optimum upon convergence without any constraint violation, even in

presence of plant-model mismatch [8]. Marchetti et al. [6] also applied the bias
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and gradient correction approach, which they labeled as “modifiers” and intro-

duced the Modifier Adaptation (MA) method. In the same paper, the authors

proposed an MA variant called Output Modifier Adaptation (MAy) that has

the same convergence properties but modifies the model directly,

yad,k(u) := y(u) + εk + (λk)T (u− uk). (1)

Here, y : Rnu → Rny is the original steady-state model; u ∈ Rnu the model in-

puts; and k is the subscript representing the kth MAy iteration. The adaptation

terms ε and λ, as known as the modifiers, are calculated by

εk = yp(uk)− y(uk), λk =

(
y′p(uk)− y′(uk)

)T
, (2)

where, yp are the plant measurements and y′p the plant gradients, which are the

derivative of the outputs with respect to the inputs. They need to be estimated.

The modifiers contain valuable information about the differences between the

model and the plant. For example, ε indicates the difference between the model

predictions and plant measurements, and λ the difference between the model

and plant gradients.

Hence, the modifiers can be considered a good model quality indicator in

the context of RTO and can be also used for discriminating between different

models. Matias and Jäschke [5] aggregated their information by introducing the

“total model modifier”, which is simply the sum of the Frobenius norm of the

modifiers. In this paper, we introduce a weighted total modifier:

ψ :=
1

2

(
εTk Σεεk + λTk Σλλk

)
(3)

in which, Σε and Σλ are weighting matrices of appropriate dimensions. The

weights can be chosen simply as scaling factors or as the inverse of the covariance

matrix of ε and λ in the case that enough measurements are available to compute

them. If the number of inputs is larger than 1, we stack the λ values for each

input, i.e. λk = [λTk,u1
,λTk,u2

, · · · ,λTk,unu
]T , where nu is the number of inputs.

A small value of ψ indicates that the model matches the plant data well at the

current operating point.
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3.2. Online model maintenance approach

To illustrate the approach and how the total modifier ψ can be applied for

comparing different models, we consider the problem of modeling and optimizing

a reaction process (Figure 2). In this example, there are 3 possible hypotheses

to describe the initially unknown reaction set. Therefore, we can propose three

different models for representing the system.1. What is the correct reaction set among the 3 possible
hypotheses?

2. Different reaction sets result in different steady-state
models f :

1:

2:

3:

A + B B → C

C → D

A + B B → D

A + B → C

C + B → D

0 = f(y, y′, u |M(θ))

y = measurements

y′ = gradients

u = inputs

M = reaction set

θ = parameters
mass balances

energy balance

valve equation

...
reaction model





m1 : reaction set 1

m2 : reaction set 2

m3 : reaction set 3

(
yp,k, y

′
p,k

)

u

y

f(yk, y
′
k, uk|m1(θ?))

f(yk, y
′
k, uk|m2(θ?))

f(yk, y
′
k, uk|m3(θ?))

Plant (unknown)

uk

Zooming in near the operating region uk

m1

uk

m2

uk

m3

uk

Figure 2: Illustration of the application of our method to a simple CSTR reactor with an

unknown reaction set.

We initialize the method by choosing one of the model options. Then, when

plant data come, in the form of measurements yp,k and gradients y′p,k, we can

check how well this information fits to the chosen model using the goodness of

fit criterion. In Section 4.3, we describe this test in detail and present different

options of how to perform it.

If the chosen model does not meet the criterion, we start the model refine-

ment step. The idea here is to compare all available models in terms of difference

between prediction and measurements (full dots) and model and plant gradients

(arrows). Note that, even if the previously chosen model does not pass the test,

we analyze it in this step because it still may be the best plant representation.

As shown in Figure 3, we conclude that the best local plant approximation in

this iteration is the model m3 with the reaction set 3 because the model matches

8



both plant measurements and gradients best.

1. What is the correct reaction set among the 3 possible
hypotheses?

2. Different reaction sets result in different steady-state
models f :

1:

2:

3:

A + B B → C

C → D

A + B B → D

A + B → C

C + B → D

0 = f(y, y′, u |M(θ))

y = measurements

y′ = gradients

u = inputs

M = reaction set

θ = parameters
mass balances

energy balance

valve equation

...
reaction model





m1 : reaction set 1

m2 : reaction set 2

m3 : reaction set 3

(
yp,k, y

′
p,k

)

u

y

f(yk, y
′
k, uk|m1(θ?))

f(yk, y
′
k, uk|m2(θ?))

f(yk, y
′
k, uk|m3(θ?))

Plant (unknown)

uk

Zooming in near the operating region uk

uk uk uk

Model 1 Model 2 Model 3

εk,1
εk,2

εk,3

λk,1
λk,2

λk,3

ψ1: ψ2: ψ3:

Figure 3: Comparing models response with plant information. We show how the total modifier

ψ is computed and how it is used for choosing between different models. The modifier εk is the

difference between model prediction and the plant measurements at uk, and λk the difference

between model and plant gradients evaluated at uk. Based on the total modifier, we conclude

that ψ3 < ψ1 < ψ2. Thus, model 3 is the best approximation at uk

Analyzing the example models at uk in Figure 3, we see that the zero and

first order modifiers have complementary information. For example, if we just

analyze the model prediction capacity (ε - zero order modifier) at uk, models 1

and 3 are locally very similar. However, when the first order information (λ) is

also used for comparing the models, it is clear that model 3 describes the plant

better than model 1 at uk. Note that using ψ to differentiate between models

is basically an extension of the least-squares criterion, where we add first-order

information.

3.2.1. Using first-order information in ψ : numerical example

In a simple example, we show how the total modifier ψ improves model

discrimination compared to the commonly used criterion, which we refer to as

the least-square criterion:

ψLS :=
1

2

(
(yp(u)− y(u))TΣε(yp(u)− y(u))

)
=

1

2

(
εTk Σεεk

)
(4)

Let us say we want to optimize the process represented by the following

9



model, i.e. φ = yp, where

yp(u) = 40− 40u+ 10u2 (5)

The optimum is obtained when u = 2 and yp(u) = 0. Assume that we have

three candidate models to describe the process but we do not know which one

best represents yp(u) beforehand. The three models have the same functional

form y(u) = θ1 + θ2u+ θ3u
2 but different parameter values:

θ1 = [0.4,−0.4, 0.1]

θ2 = [28,−28, 7]

θ3 = [320,−320, 80]

(6)

Clearly, the three models are different from yp(u). However, their optimum

is equal to the plant optimum u?Model 1 = u?Model 2 = u?Model 3 = u?Plant. We

compare the three models with the “plant” in Figure 4.

0 1 2 3 4

u

0

50

100

150

y(
u)

Plant - Model comparison

Plant
Model

1

Model
2

Model
3

Opt

Figure 4: Comparison between “plant” and models. The three models are not perfect (plant-

model mismatch), but they are able to predict the plant optimum correctly

Now, we use both ψ and ψLS to decide which model is the best for a given

value of u. In Figure 5, we plot the both criteria values, using Σε = Σλ = 1, for

all models in the region defined by u ∈ [0, 4]. By analyzing Figure 5a, we readily

discard Model 3 using either ψ or ψLS , despite the fact that is relatively accurate

near the optimum. Figure 5b zooms in close to the optimal point, however it
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(a) All 3 models
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(b) Models 1 and 2 in the optimum vicinity

Figure 5: Comparing the value of the estimation objective function ψLS and ψ. By including

the gradient information, it is easier to discriminate between the two models.

only takes into account Models 1 and 2. Considering both ψ and ψLS , we

conclude that Model 1 is the best representation of the plant. However, ψLS is

much more flat near the optimum and the difference between the values ψLSModel 1

and ψLSModel 2 is much smaller in this input range, which can be a problem if we

have noisy measurements. On the other hand, ψ is a better indicator of the

difference between between Model 1 and 2 due to the fact that we included extra

information (gradients) in the analysis. In previous work [5], the outcomes of

choosing a model with the total modifiers were compared with commonly used

model selection criterion (R-square, Akaike information criterion (AIC) and the

Bayes information criterion (BIC)) yielded similar results.

3.3. Potential benefits of including gradients in the estimation problem

We present a general approach to quantify the changes in the estimated pa-

rameters due to the addition of the gradients in the estimation problem. We as-

sume that the gradient estimates are independent from the plant measurements

used in the estimation problem. For example, if the gradients are estimated via

Central Difference Approximation, we do not use the same measurements for

estimating the parameters and for approximating the gradients. Consequently,
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the plant measurements and gradients are statistically independent.

3.3.1. Using only plant measurements

First, we analyze the case in which only measurements are used for esti-

mating the parameters. In this case, the objective function of the estimation

problem is only the sum of squared residuals ψLS instead of the total modifier

ψ. Given the inputs u and plant measurements yp, ψ
LS can be written as (note

that we explicitly show the dependence on the parameters):

ψLS(θ) =
1

2

(
ε(θ)T Σε ε(θ)

)
(7)

By differentiating ψLS w.r.t. θ and using the chain rule, we find that:

∂ψLS

∂θ
=
∂ψLS

∂ε

∂ε

∂θ
= −∂ψ

LS

∂ε

∂y

∂θ
(8)

If we evaluate the expression above at θLS,?, which is the optimal solution for

the unconstrained estimation problem, we get:

∂ψLS

∂θ
(θLS,?) = −∂ψ

LS

∂ε
(θLS,?)

∂y

∂θ
(θLS,?) = 0 (9)

3.3.2. Using plant measurements and gradients

On the other hand, if we use the total modifier ψ as the objective function,

it can be written as (same as Equation (3)):

ψ(θ) =
1

2

(
ε(θ)T Σε ε(θ) + λ(θ)T Σλ λ(θ)

)
(10)

Note that:
∂ψLS

∂ε

∂y

∂θ
=
∂ψ

∂ε

∂y

∂θ
(11)

Then, we differentiate ψ w.r.t. θ and evaluate it at θLS,?, i.e. the parameters
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estimated using ψLS . We assume that Σλ is not a function of θ and is symmetric:

∂ψ

∂θ
(θLS,?) = −∂ψ

∂ε
(θLS,?)

∂y

∂θ
(θLS,?)− ∂ψ

∂λ
(θLS,?)

∂y′

∂θ
(θLS,?)

∂ψ

∂θ
(θLS,?) = −

���
���

���
�:0

∂ψ

∂ε
(θLS,?)

∂y

∂θ
(θLS,?) − ∂ψ

∂λ
(θLS,?)

∂y′

∂θ
(θLS,?)

= −λT (θLS,?) · Σλ ·
∂y′

∂θ
(θLS,?)

= − (y′p − y′(θLS,?))T
︸ ︷︷ ︸

T1

· Σλ︸︷︷︸
T2

· ∂y′

∂θ
(θLS,?)

︸ ︷︷ ︸
T3

(12)

To assess the magnitude of change due to the inclusion of the gradients, we

use the gradient of the estimation problem ψ evaluated at θLS,?. If its value

deviates from 0, it means that the information added by the gradients in the

problem have influence in the parameters estimates. Our conclusion on how the

new data (gradients) change the results of the estimation depend on the three

terms of the right-hand side of the last equation:

T1) If y′p ≈ y′(θLS,?) (i.e. the gradients of the model updated only with the

measurements y′(θLS,? can described the plant gradients y′p), including

gradient information does not contribute to the estimation problem.

T2) If we set Σλ = Cov(yp, yp)
−1 (i.e. as the inverse of the covariance matrix of

the gradient estimates), we weight the deviation between y′p and y′(θLS,?)

based on the “trust” we have in the measurement. Thus, if the estimation

of the plant gradient in a given direction has a small variance, it has a

large influence in ψ and, consequently, in the parameter estimates. On the

other hand, gradients with large variance do not have a major influence

in the estimation process. Note that, if we use an approximation of the

covariance matrix, we would also take into account the correlation between

the gradient directions in the estimation problem.

T3) The final term represents the model structure. If a set of parameters has

no influence in the model gradients, it is clear that no information about

that parameter can be by including the gradients. For instance, in a linear
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model y = θ0 + θ1u (where y′ = θ1), including the gradient measurement

does not improve the estimation of θ0.

This criterion ψ enables us to take into account both structural characteris-

tics of the model (T3) and practical aspects (T1 and T2). Hence, by using T1,

T2 and T3, we can systematically assess how the new information, related to

the gradient, affects the parameter estimation.

4. Combining RTO and Model Selection

A summary of our method is given in Algorithm (1). It consists of three

main tasks. First, we check if we need to refine the model structure (Task 1 ).

If yes, we solve a simultaneous model structure/parameter adaptation problem.

Otherwise, we only update the model parameters (Task 2 ). Next, we run an

operation economic optimization with the updated model (Task 3 ). To facilitate

the understanding, we first describe Task 2 and Task 3. Then, we show Task 1

in details.

4.1. Model structure selection (Task 2)

For representing the available model combinations, we use a block based

superstructure representation proposed by Yeomans and Grossmann [19]. Ba-

sically, we divide our model in blocks and use a collection of sub-models for

representing the modeling uncertainty of each block. For example, in the sys-

tem shown in Figure 2, we set up a block in the model for the reaction set

and we propose three sub-models for representing it. The assignment of the

sub-models for different blocks, the determination of how they are connected

and the parameter estimation are performed simultaneously by solving a mixed

integer non linear problem (MINLP). In order to formulate the optimization

problem, we used a generalized disjunctive programming approach [20].

First, we divide our model in nb blocks Mi, i = 1, · · · , nb, leading to a su-

perstructure model formulation represented by Y := M1(θ1) ∪M2(θ2) ∪ ... ∪
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Input : Set of possible models structures

Output: 1. Best model structure with updated parameters

2. New operating point

Data: Process measurements

begin

Estimate plant gradients;

Task 1. Goodness of fit test

Check if the model structure needs to be adapted ;

Task 2. Model structure selection

Select a combination of models (model structure) and update

model parameters OR only update model parameters ;

Task 3. Optimizing operation

Use Output Modifier Adaptation to compute new operating point;

Implement the new operating point in the plant;

end

Algorithm 1: Model Adaptation via Output Modifier Adaptation

Mnb
(θnb

). Several sub-models can be used to describe a given block. For exam-

ple, the bth block is described by nMb
different models Mb(θb) := {mb,1(θb,1) ∨

mb,2(θb,2) ∨ . . . ∨mb,nMb
(θb,nMb

)}, where θb := {θb,1 ∨ θb,2 ∨ . . . ∨ θb,nMb
} rep-

resents the model parameters for block b1. The model structure selection and

1Note that the models may share some parameters in Mb, i.e. ∃ i, j ∈ [1, nMb
] such that

θb,i ∩ θb,j 6= ∅.
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parameter estimation problem becomes:

z?k+1,Θ
?
k+1 = arg min

z,Θ
ψ :=

1

2

(
εTk Σεεk + λTk Σλλk

)

s.t. εk = yp(uk)− y(uk|M1(θ1), . . . ,Mnb
(θnb

)),

(λk)T = y′p(uk)− y′(uk|M1(θ1), . . . ,Mnb
(θnb

))

 ∨
j=1,...,nM1


 if z1,j = 1

M1 := m1,j(uk|θ1,j)




 ∧ . . . ∧


 ∨
j=1,...,nMnb


 if znb,j = 1

Mnb
:= mnb,j(uk|θnb,j)






nMb∑

j=1

zb,j = 1 where b = 1, . . . , nb and zb,j ∈ {0, 1}

(13)

where,

z :=

[
[z1,1, z1,2, . . . , z1,nM1

], . . . , [znb,1, znb,2, . . . , znb,nMnb
]

]

θi := [θTi,1, . . . , θ
T
i,nMi

] i = 1, . . . nb

Θ := z� [θ1 . . .θnb
]

where, � is the element-wise multiplication operator. The variables of Equa-

tion (13) were previously defined. Except for zbj , which indicates that the jth

model is assigned (or not) to the block Mb, and z, which is the is the vector of

all zbj . Using this formulation for the optimization problem, any mixed-integer

nonlinear programming solver can be used to solve it. Upon convergence, the

solution of Equation (13) will provide the model M(θ?) and parameter values

θ? that best match the plant state, in a sense of minimizing ψ.

4.2. Optimizing operation (Task 3)

The updated model structure and parameters found from solving Equa-

tion (13), which are represented by M?(θ?), are used for computing the optimal

operating point via Output Modifier Adaptation:

u?k+1 = arg min
u

φ(u,yad,k(u|M?
k (θ?))

s.t. G := {gi(u,yad,k(u|M?
k (θ?))) ≤ 0, i = 1, · · · , ng}

(14)
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in which,

yad,k(u|M?
k (θ?)) := y(u|M?

k (θ?)) + εk + (λk)T (u− uk)

and G is the set of all gi constraints, with i = 1, · · · , ng. This set usually

includes lower and upper bounds for measurements as well as operation and

safety constraints.

Remark. Note that the plant gradients y′p(uk) need to be estimated to solve

Equations (13) and (14). Computing gradient estimates based on plant measure-

ments can be challenging. There are several strategies available for estimating

y′p(uk) in the literature, for a detailed review refer to Marchetti et al. [21].

4.3. Goodness of fit test (Task 1)

Before performing Task 2 and Task 3, we run a goodness of fit test. When

a set of new measurements yp,k and y′p,k is available, the test evaluates the

prediction quality of the model structure obtained at the previous iteration

k − 1, namely M?
k−1(θ?k−1). For the test, we use the predicted (a priori) total

modifier:

ψapk :=
1

2

(
εTk|k−1Σεεk|k−1 + λTk|k−1Σλλk|k−1

)
(15)

where,

εk|k−1 = yp(uk)− y(uk|M?
k−1(θ?k−1))

(λk|k−1)T = y′p(uk)− y′(uk|M?
k−1(θ?k−1))

Since fluctuations in the plant information can affect this index, we filter the

value of ψapk by a first order element, similarly to Hebing et al. [22]:

ψap,filtk =
ψapk + ψap,filtk−1 ∆filt

∆filt + 1
(16)

in which, ∆filt is a tuning parameter. Small values (→ 0) indicate a high level

of confidence in the current measurements. After computing ψap,filtk , its value is

compare to a goodness of fit threshold ψgof . If ψap,filtk < ψgof , we assume that

the model structure M?
k−1 is able to satisfactorily represent the current plant

state. Hence, we fix the model structure and use Equation 13 only to estimate
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the model parameters. If ψap,filtk > ψgof , we updated the model structure and

its parameters. As mentioned earlier, even if the model structure M?
k−1 does

not pass the test, it is still included in the model structure adaptation problem,

because it still may be the best structure available for representing the plant.

Note that the use of ψap,filt averages the decision of updating the model

structure over information obtained in several iterations, instead of relying only

on local measurements. As a consequence, there is a time-scale separation be-

tween the model structure adaptation and the operation optimization, which

avoids model chattering. If the chosen model structure keeps switching between

consecutive iterations, it may lead to noisy parameter estimates and affect the

MAy convergence properties.

4.3.1. Alternatives goodness of fit tests

Other tests can be applied instead of the one previously presented. For

example, the prediction accuracy criterion of Gao et al. [10] compares the ca-

pacity of the adapted model M?
k−1(θ?k−1) to represent the plant measurements

in consecutive iterations:

ρk = max

{∣∣∣∣1− yad,i(uk|M?
k−1(θ

?
k−1))− yad,i(uk−1|M?

k−1(θ
?
k−1))

yp,i(uk)− yp,i(uk−1)

∣∣∣∣ : i = 1, . . . , ny

}
(17)

By comparing the maximum deviation among all measurements to an allow-

able threshold, this model quality index can be used as goodness of fit indicator.

A second option is to use a statistical test such as the Wald test [23], where we

test the nonlinear hypothesis of H0 := ψ(M?
k−1(θ?k−1)) = 0 with a chosen statis-

tical significance. One of the challenges with this alternative is the low number

of samples to consistently estimate the parameter estimates variance matrix.

5. Handling Identification Issues

In this section, we briefly address issues related to the definition of the

available model structures and the correspondent parameter vectors. We also

discuss how these problems can be related to our method. In our case we are
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not only trying to estimate parameters from a given structure but also trying

to select the best structure in an available set. Thus, we have to take some

precautions when choosing the model structures in the set and the parameters

of which are to be estimated. Two structural properties are important when

choosing the models in the set, distinguishability and identifiability [24].

5.1. Distinguishability

Since we have different model structures for representing specific phenomena

and/or assumptions, it is possible that the parameter vectors associated with

different model structures are not the same. Therefore, given a set of measure-

ment yp and estimated gradients y′p, it may not be possible to adjust the model

parameters of a given model structure Mi to fit the plant information well. On

the other hand, there may be a model structure Mj that can be adjusted to yp

and y′p.

In this case, we call models Mi and Mj as structurally output distinguishable

(s.o.d.) [25], and we can eliminate structure Mi in favor of structure Mj . For-

mally, two models are s.o.d. if, for all feasible inputs and a given parametrization

θi of Mi, there are no parameters θj of Mj such that y(u|Mi(θi)) = y(u|Mj(θj)).

By using the total modifier ψ instead of the least-square ψLS , the s.o.d. cri-

terion requires not only y(u|(Mi(θi)) = y(u|Mj(θj)) (zeroth-order distinguisha-

bility) but also y′(u;Mi, θi) = y′(u;Mj , θj). ( first order distinguishability).

Consequently, we relax the requirements for two models to be considered s.o.d.,

as illustrated in Section 3.2.1. Such characteristic is important because it is not

possible to select one model in favor of the other, based only on input-output

experiments, if the models are not s.o.d..

5.2. Identifiability

For all the model structures in the set, it is important to understand how

reliably we can estimate its parameters θ from yp and y′p. We need to study

the model structural properties to detect problems that may occur even be-

fore we collect data. The idea is to draw general conclusions about the chosen
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parametrization, for example, if the planned measurements have enough infor-

mation for estimating θ [24].

If one of the available structure combinations in the set leads to an uniden-

tifiable model, the parameter estimates are prone to form an arbitrary set of

estimates that can overfit the observation data [26]. As a consequence, we may

choose the wrong model structure in favor of the best one [27]. Moreover, the

estimated parameters of an unindentifiable model may have no physical mean-

ing, which can be problematic if we are using the estimated model for different

purposes, like condition monitoring.

We have to guarantee that all models in the available set have identifiable

parameter sets. Various techniques for studying model identifiability are avail-

able in the literature (see. Miao et al. [26]). In the appendix, we show the

method that we applied in the models of Case Study 2.

5.3. Identifiability and distinguishability in our method

Since in our method we do not choose the next plant operating point nei-

ther to discriminate most efficiently between two models nor to improve the

parameter estimation, it is important to guarantee that the individual models

have identifiable parameter sets and are distinguishable in the operating range.

Otherwise, the parameter estimates are not only imprecise but also highly cor-

related, with a high variance [28]. Additionally, model chattering may occur

between two sequential iterations if the structures are not distinguishable [5].

6. Case Study 1: Tank Reactor

To illustrate that our approach can drive the process to the true plant op-

timum while identifying the best model, we use a modified version of the tank

reactor case study shown in Matias and Jäschke [5]. The main difference here

is that the plant behavior changes with time. This case study shows that, by

adding parameter estimation to the algorithm, we do not affect the capacity of

the method to find the best model structure while optimizing the system opera-

tion. Even in the case that the “true” model structure is not included within the
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Inlet 1: F1 CA,in

Inlet 2: F2 CB,in

CA CC CD

Outlet

M1





m11 : A+B → C and 2B → C

m12 : A+ 3B → C +D

m13 : A+B → C

M2

{
m21 : D as impurity

m22 : Pure B

Figure 6: CSTR flowsheet. The system has only one manipulated variable, the flowrate of

inlet 1, F1, which contains pure A. The outlet concentrations CA, CC , and CD are measured

as well as the flowrate of inlet 2, F2. The highlighted blocks M1 and M2 indicate the model

uncertainty related to the reactor set and the concentration of D in inlet 2, respectively.

set of candidate models, which is the most likely situation to occur in practice.

Clearly, the parameter estimation step may lead to overfitting and/or identifia-

bility issues. Such issues are discussed in the context of the next case study, in

Section 7.

The process is shown in Figure 6. The objective is to maximize the concen-

tration of the product C at the reactor outlet. It is known that C is formed

from the reaction of A and B but the complete reaction set is assumed to be

unknown. The system has two inlets 1 and 2. The first one contains pure A with

concentration CA,in and its flowrate F1 can be manipulated freely. The second

one comes from an upstream process with fixed flowrate F2 and concentration

CB,in. There is also a fourth component D that is either a byproduct of the

reactions or comes as a residual in inlet 2. Therefore, there are three possible

settings for the process:

1. Inlet 2 contains pure B. The reaction is first-order in A and B, and there

is a side reaction that generates D by consuming B:

A + B
k1−−→ C and 2 B

k2−−→ D

2. Inlet 2 contains pure B and there is only one reaction, first-order in A and
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third-order in B, that generates both C and D:

A + 3 B
k3−−→ C + D

3. Only the first reaction of Option (1) takes place and D enters the system

as an impurity in inlet 2:

A + B
k1−−→ C

Given these three options, we summarize the model using two blocks M1

and M2, which are indicated in Figure 6. We further apply some standard

assumptions: perfect mixing, perfect level control, and isothermal operation.

The resulting steady-state model is:

0 =




F1CA,in

V

F2CB,in

V

0

M2



− (F1 + F2)

V




CA

CB

CC

CD




+M1 (18)

where,

M1 :=

m11 :


−1 0

−1 −2

1 0

0 1


k1CACB

k2C2
B



∨
m12 :


−1

−3

1

1


[
k3CAC

3
B

]

∨
m13 :


−1

−1

1

0


[
k1CACB

]



(19)

in which, m : . . . indicates that the sub-model m can be defined by the equations

[. . .]. k1, k2 and k3 are the rate constants of the chemical reactions and we need

to estimate their values. For M2:

M2 :=

{(
m21 : 0

)∨(
m22 :

(F1 + F2)CD

V

)}
(20)

According to the three possible process settings, we then define three model

options M1 = {m11,m21}, M2 = {m12,m21}, and M3 = {m13,m22} to fit the

problem to the framework of Equation (13). Also, we define the parameter set

to be estimated for the model structures as θ1 = [k1, k2]T , θ2 = [k3]T , and

θ3 = [k1]T .
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6.1. Simulation set-up

First, we define the “real” process. We consider that inlet 2 contains only B.

Regarding the reaction set, we consider that, at the beginning of the simulation,

there are two reactions, a first order reaction in A and B that generates C and

a side reaction, second order in B, that generates D. Then, for illustrative

purposes, we consider that the “true” reaction set start to change linearly to

A + 3 B
k3−−→ C + D, which can be represented by M1 = α M1 + (1 − α)M2,

where α ∈ [0, 1]. Hence, M1 is the “true” model at the beginning (α = 1) of the

simulation and M2 at the end (α = 0). Despite hypothetical, this disturbance

can represent mixing problems inside the reactor and also catalyst deactivation

changing the reaction pathway. For the parameter set, we assume that the

“true” parameters of M1 are k1 = 0.75 [L/(mol min)] and k2 = 1.5 [L/(mol

min)], while the parameter of M2 is k3 = 1.5 [L3/(mol3 min)].

For estimating the parameters, we assume that only CB , CC and CD are

measured in the outlet stream (yp = [CB , CC , CD]T ). To further simplify the

problem, we consider perfect measurements (no noise). In turn, we assume that

the gradients are not directly measured. We use plant experiments with Forward

Finite Differencing (FFD), as in Marchetti et al. [21]. with a step size of ∆h.

The economic optimization objective is to maximize the production of C and

there are no operation constraints (thus, φ := CC and G := ∅ in Equation (14)).

The degree of freedom for the operation is assumed to be the flowrate of pure A,

F1. The initial condition and the model parameters are summarized in Table 1.

We use an input filter, uk+1 = uk +Ku(u?k+1−uk), to include some robust-

ness due to the possible presence of noise measurements and gradient estimation

error in the modifier computation. Values of Ku near 1 are chosen if measure-

ment noise and the gradient estimation error are small. A consolidated method

for choosing the filter values remains an open question. However, Papasavvas

and François [29] proposed an interesting method for automatic selection of the

filter gain that preserves MAy’s convergence properties while minimizing con-

servatism. Here, since the case study is relatively simple, the filter gain value

is chosen by a trial-and-error process. Regarding the total modifier weights, we
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chose the values of Σε and Σλ as scaling factors.

The proposed method is simulated in the MATLAB R2019b programming

environment (Mathworks Inc., Natick, MA, USA) using the CasADi v3.4.5 ex-

tension [30] for algorithmic differentiation. The NLP problem is solved using

IPOPT version 3.12.2 [31] and the MINLP problem is solved using BARON

[32].

Table 1: Initial condition and parameters for the CSTR simulation. We also show the weights

of the total modifier (diag indicates a diagonal matrix). The two last values are the pertur-

bation used in the Forward Finite Difference approach and the input filter parameter.

Description Symbol Value Unit

Plant initial condition x0 =


CA,0

CB,0

CC,0

CA,0




0.7385

0.0231

0.4922

0.0308

 [mol/L]

F1 initial flow rate F1,0 8 [L/min]

Feed concentration of A CA,in 2 [mol/L]

Feed concentration of B CB,in 1.5 [mol/L]

F2 flow rate F2 5 [L/min]

Reactor volume V 500 [L]

ε weight in ψ Σε diag(1,1,1) [-]

λ weight in ψ Σλ 0.1diag(1,1,1) [-]

Goodness of fit threshold ψgof 0.01 [-]

Perturbation step size ∆h 0.01 [mol/L]

Input filter Ku 0.75 [-]

6.2. Results

The goal of the case study is to show that we can use our method to con-

verge to the true plant optimum while identifying the best model. We start by

discussing the convergence to the optimal operating point. Next, we show the

behavior of the total modifier and its use as a plant-model mismatch indicator.
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Then, we show the connection between the total modifier behavior with the

model choice and the goodness of fit test. Finally, we conclude the case study

analysis by analyzing the parameter estimation results.

In the simulations, we do not consider the dynamic behavior of the sys-

tem, only the steady-state is analyzed. The simulations were carried out for

20 steady-state periods. For the first 5 iterations, the plant is represented by

M1, then the plant behavior changes linearly, until the 15th iteration, where

M3 becomes the plant model. Therefore, between iterations 5 and 15, there is

no “true” model in the available set. The simulation starts from a suboptimal

operational condition, u0 := F1,0 = 4 [L/min]. The initial model guess for the

model structure is M3 (i.e. D as impurity and C is generated by the first order

reaction A + B
k1−−→ C). The initial guess for k1 is 1 [L/(mol min)].

6.2.1. Convergence to plant optimum

The economic objective is to maximize the production of C by adjusting the

input F1, the feed stream that contains the reactant A. Since this is a simulation

study and we know the “plant” optimum, we can check if the method is able to

converge to it.

In Figure 7, we show the concentration of C as a function of the input FA

and the steady-state period. We plot the input trajectories calculated using

Equation (14) (blue) as well as the chosen model at the corresponding itera-

tion. To benchmark our method, we compare this trajectory with the input

sequence computed via MAy using M1. We see that, even though we start with

a wrong model M3, our method chooses the best model structure while driving

the system to its optimum. The method chooses the correct model at the first

iteration that M3 does not pass in the goodness of fit test (iteration 3) (see

Figure 9). When the plant structure begins to change, both input sequences

deviate from the true optimum due to plant-model mismatch, even though we

are optimization via modifier adaptation methods in both cases. This happens

because modifier adaptation methods are able to reach the true plant optimum

only after the convergence of the modifiers ε and λ [6]. After iteration 15, our
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Figure 7: Optimum Tracking. The input trajectories F1 computed by Equation (14) (blue)

and by the standard MAy (red) are compared along the simulation periods. We also show

the model structure chosen in the iteration (M1 = ♦, M2 = 5 and M3 = �) and the true

optimum. Note that plant behavior changes between iterations 5 and 15. In the beginning of

the simulation, M1 is the true model. Then, the plant behavior changes between iterations 5

and 15. After this period, M2 is the true model.

method readily identifies the correct model structure and reaches the plant op-

timum, while MAy takes a few iterations to drive the system to its optimum

(until the modifiers converge to their true value).

Therefore, we see that estimating the model structure and its parameters

is not necessary for MAy to reach the plant optimum. MAy is conceptually

designed to assure the convergence even in cases where the model y(u) used in

the economic optimization (Equation (14)) is structurally and parametrically

wrong. The only requirement is that the model follows some mild adequacy cri-

teria [6]. However, by refining the model structure and updating its parameters,

we can potentially improve the optimization performance as seen in this case

study. On the other hand, if model chattering happens between consecutive

iterations, it can affect the MAy convergence, limiting the advantages of our
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method. That is the reason that we included a goodness of fit test to trigger

the model structure selection. The test criterion is based on a filtered version

of the total modifier, which is used here as a model quality indicator.

6.2.2. Total modifier as model quality indicator

In Figure 8, we show the results of the total modifier ψ for the 3 model

options, M1, M2, and M3. The total modifier ψ in our method is used as an

indicator of the plant-model mismatch. Note that instead of using just the

model predictions residual (yp − y), we also add the deviation in the gradient

prediction (y′p−y′). Hence, ψ is influenced by both terms, which means that we

want to match not only the plant measurements but also the plant first order

information. This roughly means that we want our model not only to show

precisely where we are, but also where are we going.

On the left-hand side of Figure 8, we compare the values of ψ at every

iteration for the three models. On the right hand side, we show the composition

of the total modifier for each individual model. As shown in Equation (3),

the total modifier (full line) is the summation of 0.5 εT Σε ε (dotted line) and

0.5 λT Σλ λ (dashed line).

The results of Figure 8 show us why the total modifier can be used as model

quality indicator. We can conclude that M1 is the “true” model in the begin-

ning of the simulations because the total modifier is equal to zero. The same

case applies to M2 after iteration 15. Moreover, in the end of the simulation,

we see that the modifiers for all models converge to their stationary point when

the plant behavior ceases to change (as expected from the standard MAy op-

timization results in Figure 7). When we analyze the contribution of the first

order terms λ to ψ, we see that, although its magnitude changes during the sim-

ulation, we could have reached the same conclusion without this information.

The main reason is that the models assumptions are very different in M1, M2

and M3. However, since we are applying the method in the MAy-RTO context,

having good first order information is important to optimize the system using

the modifier adaptation scheme. In the next case study, the gradient-related
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Figure 8: The total modifier for the 3 models is compared during the simulation on the left-

hand side plot. On the right-hand side, the values of the total modifier are plotted individually

as well as the contribution of the zeroth (ε) and first (λ) order modifiers, which compose the

value of ψ according to Equation (3)

term of ψ plays an important role in the model selection step of our method.

6.2.3. Model Structure Selection and goodness of fit criterion

After computing the total modifier at the current information, we can cal-

culate the goodness of fit criterion using Equation (16). In Figure 9, we show

how the model choice (top plot) is triggered by the value of ψap,filtk (second

plot from top to bottom). Whenever ψap,filtk is bigger than the threshold ψgof ,

which is represented by the dotted line, we update the model structure.

As shown in Figure 9, the filter is initialized at the first iteration. At iteration

2, ψap,filt is updated and already indicates that the model structure needs to be

refined. Then, we update the model structure to M1, which meets the goodness

of fit criterion until iteration 15 when we update the model structure again. By

using ψap,filt instead of ψ, we consider information from several iterations to

trigger the model structure refinement step. The main advantage of this step

is to avoid switching back and forth between two or more model candidates
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Figure 9: The top plot shows the model choice at each iteration. The dashed line corresponds

to the true model at a given iteration. In the second plot, we show ψap,filt, computed using

Equation (16), and the threshold value for the test.

in consecutive iterations, which can affect the performance of the operation

optimization.

6.2.4. Parameter Estimation

Next, Figure 10 shows the parameters estimates using ψ as criterion. We

start with Model 3 and k1 = 1 [mol/L]. We compare the value of the parameter

estimates (markers) with the parameter value (dotted line). Since M1 and M3

share the parameter k1, we used different colors to indicate when the parameter

of M1 is estimated and when the parameter of M3 is estimated. We used the

same color code as in Figure 8, i.e. black - M1, blue - M2 and red - M3.

By analyzing Figure 10, we see that we can estimate the model parameters

without any deviations from their “plant” counterparts when we use the correct

model structure. When there is no true model (between iterations 5 and 15),

we can estimate the parameters of the model structure currentyly being used.

Even though the simulation setting is ideal (without noise and the model set

contains the true model in some of the iterations), this case study shows the

capacity of the total modifier to be used as a model performance indicator, and

illustrates important concepts used in our method.
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Figure 10: Results for the simultaneous model structure and parameter estimation according

to Equations (13). Each model structure has its own estimable parameter set (θ1 = [k1, k2]T ,

θ2 = [k3]T , and θ3 = [k1]T ). Note that both M1 and M3 contain k1, therefore its value is

estimated whenever one of these two structures is chosen.

7. Case Study 2: Gas lift oil well network

In the second case study, we implement our method in a more complex

process, a gas lift oil well network to illustrate some issues that are to be expected

in a more realistic setting including noise and poor model information.

7.1. Process description

To extract oil from a subsea reservoir, a well is drilled into the seabed. The

reservoir natural pressure is responsible for lifting the fluid, which usually con-

tains a mixture of oil, gas, sand and water, to the topside facilities. There, the

oil is treated (handling the water that is mixed with the oil, for example) and

stored. If the reservoir pressure is not high enough to transport the fluids, arti-

ficial lifting methods need to be applied. Among the possibilities, artificial gas

lifting is frequently used [33]. The idea is to inject gas close to the bottom of the

well in order to reduce the fluid mixture density. Consequently, the hydrostatic

pressure loss is reduced and the production from the reservoir increases. On

the other hand, by adding more gas into the pipeline, the frictional pressure

drop increases, which may reduce the well production, such that an optimal gas

injection that maximizes oil production must be found.
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One possibility to deal with this trade-off is to determine the gas lift flowrate

using RTO. However, since RTO is a model-based optimization, the challenge

shifts to capture accurately not only the multi-phase flow inside the pipelines

but also the reservoir behavior in a model. Moreover, even if we have a good

model in the beginning of the production, reservoir characteristics change with

time leading to plant-model mismatch. The problem becomes more challenging

when dealing with a network of wells.

We propose to optimize the operation of a two-well network shown in Fig-

ure 11. The main goal is to maximize the oil extraction of the reservoir while

considering the processing capacity constraints on the gas lift flowrates and on

the maximum gas processing at the topside facilities. The manipulated variables

of the system are the gas lift flowrate of each well.

∆h

Reservoir

Wells

Gas Lift Manifold

Riser

Top Facilities

Figure 11: Network containing two gas lifted wells. A manifold connects the two wells to

the riser, a pipeline that transports the gas/oil mixture from the seabed to the top facilities.

The system has two inputs that can be manipulated, the gas-lift flowrate of each well. The

pressures along the wells and riser, as well as the total oil and gas production are measured

at the top facilities.
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7.2. Model

In order to obtain the model of the gas lift oil well network, we make some

simplifying assumptions: constant temperatures along the wells, ideal gas be-

havior, and a simple linear relations to calculate the reservoir outlet flows. The

developed model is based on Krishnamoorthy et al. [34]. The modeling uncer-

tainty here is included as different assumptions regarding pressure loss due to

friction along the riser (M1) and the wells (M2), as well as the reservoir model

(M3):

1. Pressure loss due to friction along the riser/manifold:

M1 :=


m1,1 :

pressure drop

is negligible

∨m1,2 :

pressure drop calculated by

Darcy-Weisbach equation



2. Pressure loss due to friction along the along the wells:

M2 :=


m2,1 :

pressure drop

is negligible

∨m2,2 :

pressure drop calculated by

Darcy-Weisbach equation



3. Reservoir liquid outflow model. The reservoir is represented by a linear

equation that relates oil outlet, wro, with the pressure difference between

well bottom hole, pbh, and reservoir, pr. The reservoir model can be writ-

ten as wro,i = PI(i)(pr − pbh,i) where i = 1, 2 (one model for each well).

For each sub-model, different values of PI are used:

M3 :=

{(
m3,1 : PI =

[
5 5

]T)∨(
m3,2 : PI =

[
7 7

]T)}
The resulting model contains around 40 equations and it is not shown here for

the sake of brevity. Please refer to Krishnamoorthy et al. [34] for the complete

model equations. Figure 12 summarizes the model and the modeling uncer-

tainty. Using 3 blocks, we end up with 23 = 8 different combinations in the

available model set. This exponential increase in the number of options shows

the importance of elaborating the model structure decision as an optimization

problem like in Equation (13), especially when including more candidate sub-

models.
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y(u, θ|M)

y = pressures, topside flowrates

u = gas lift flowrate

θ = [GOR1,GOR2]T

M = M1,M2,M3mass balances
(oil and gas)

density relations

valve equation

pressure drop
(wells) - M1

pressure drop
(riser) - M2

reservoir outflow
(liquid) - M3

reservoir outflow
(gas) - θ

{
m11 : without pressure drop

m12 : with pressure drop

{
m31 : PI = [5, 5]T

m32 : PI = [7, 7]T

m21 : without pressure drop

m22 : with pressure drop

}

Figure 12: Overview of the steady-state model. The uncertain model blocks are highlighted

in dark gray.

In Figure 12, we also show the model parameters that need to be estimated,

gas oil ratio GOR of the wells, θ = [GOR1,GOR2]T . This parameter determines

the ratio between the oil, wro, and gas, wrg, outflows of the reservoir (i.e.

GOR = gas flowrate
oil flowrate ). Note that, in this case study, the parameters are not

directly included in the blocks M1, M2 and M3, but they are part of a common

set of equations for all models. The choice of the estimable parameter set is

important to avoid identifiability issues (i.e. guaranteeing that the planned

measurements contain enough information for reliably estimating the model

parameters). An identifiability analysis of the available models is given in the

Appendix.

7.3. Simulation set-up

In the simulation, we consider that a model represents the plant as in Case

Study 1. However, the plant model behavior changes as a function of the gas lift

flowrate, as shown in Figure 13, instead of time. In Region A (dark gray), both

riser and wells have pressure loss due to friction, whereas in RegionB (light gray)

frictional pressure drop is not significant (i.e. only the liquid column hydrostatic

pressure affects the difference between the top and bottom pressures). In order
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to simulate this behavior, we use two different models to represent the plant

and the transition between them is calculated by a 2-D sigmoidal function as

in Matias and Jäschke [5]. This transition strategy leads to a third region,

which we called intermediary. This region is also shown in Figure 13 using an

intermediary gray color. Using this “plant” configuration, we cannot predict

the plant behavior in both regions with only one model. Plant-model mismatch

is inherent to this system if we change regions during operation and use a single

model. Therefore, we want to use our method to optimize the system while we

track the changes in the plant behavior.

Figure 13: Profit as a function of the inputs. We indicate the plant optimum, the constraints

on the maximum gas processing at the topside facilities (blue dashed line), and the maximum

gas lift flowrate in each well (black dashed line). In the contour plot, Region A is indicated by

the dark gray region and Region B by the light gray. The transition between the two regions

is also indicated.

The economic optimization problem aims at maximizing the profit, which

we computed as the difference between the squared oil production revenue and

the squared cost related to compression of the gas for artificial lifting. We also

consider constraints on the processing capacity (g1) and on the availability of

gas lift (g2 and g3). For the 2 well network, the optimization problem is written
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as:

max
u=[wgl,1,wgl,2]T

φ := αow
2
oTot − αgl

2∑

i=1

w2
gl,i

s. t. G :=





g1 : wgTot − wgM ≤ 0

g2 : wgl,1 − wglM ≤ 0

g3 : wgl,2 − wglM ≤ 0





(21)

where, woTot and wgTot are the well network oil and gas production; wgl,i is

the gas lift flow rate of well i; wglM is the maximum gas lift flowrate; and

wgM is the maximum gas processing capacity of the upstream processes. αo

and αgl are the price of oil and the cost associated with the gas compression,

respectively. We specify α0 = 1 and αgl = 0.5. Note that the total oil and

gas production of the well are computed by the the input-output mapping,

[woTot, wgTot]
T = y(wgl,1, wgl,2) shown in Figure 12, which is adapted by the

Output Modifier Adaptation method (i.e. y 7→ yad) like in Equation (1).

The pressures in the system and the total oil and gas production at topside

are the system measurements. To make the case study more realistic, we add

noise to the plant model outputs ynoise = ymodel + r, where r is drawn from a

standard normal distribution with mean zero and the variance adapted accord-

ing to the current value of the measurement (1% of the current value for the

pressures and 0.5% for the flows). The noise r is neither correlated in time nor

between measurements.

The case study optimization and simulation are carried out using the same

solvers and software as in the previous case study. The gradients are not di-

rectly measured, they are estimated via plant experiments with Central Finite

Differencing (CFD) using a perturbation step size ∆h = 0.05 for both inputs.

This method is similar to Forward Finite Differences (FFD) used in the first case

study and perform better in presence of noise, for more details refer to Brekel-

mans et al. [35]. For the total modifier (Equation (3)), we set Σε = I(ny) and

Σλ = 0.01I(2ny), where I is the identity matrix and the value in parenthesis in-

dicate its dimension. These values were chosen based on the order of magnitude

of the zero and first order modifiers. We set the goodness of fit threshold ψgof
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as 0.9, also based on the total modifier order of magnitude. The input filter

gain in MAy optimization is chosen as Ku = 0.25 after some exploratory ex-

periments. The goal was to guarantee a smooth operation while preserving the

ability of MAy to converge only at the true plant optimal. Despite conservative,

this filter value avoids excessive input changes due to noise measurements and

gradient estimation errors, making the iterations safer. We could have applied

filters to the modifiers (ε and λ) instead, but input filtering has been shown to

be more effective [29]. The initial condition and the values of the nominal model

parameters are not shown here for the sake of brevity. They can be found in

Matias and Jäschke [5].

7.4. Results

The results are shown in the same order as in the previous case study. First,

we discuss the scheme’s ability to converge to the optimal plant operational

point. Then, we show the model structure selection, goodness of fit, and pa-

rameter estimation results.

In the simulations, we run the system for 50 steady-state periods. The initial

point is at wgl = [0.5, 0.5]T [kg/s], which is in Region A, and the plant optimum

is in Region B. Therefore, in this case study, the method needs to track both

the optimum and changes in the plant behavior. In the figures, we use different

markers for each one of the 8 available model structures discussed previously.

The correspondence between markers and models is shown in Table 2. To avoid

ambiguities, we refer to the whole system model (combination of all blocks) as

complete model (CM).

7.4.1. Economic Optimization of plant operation

The results are shown in Figure 14. On the left-hand side, we plot the

calculated inputs by Equation (14) (blue) and the plant optimum (red dotted

line). Also, we show the region of the current steady-state period. We use the

same color correspondence as in Figure 13, where the dark gray shows that we

are in Region A, the light gray in Region B. The intermediary region is also
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Table 2: Marker and model correspondence. Complete model 8 (CM8) is the correct model

for plant region A and complete model 2 (CM2) for region B

Symbol Model
M1 - Well

frictional ∆P

M2 - Riser

frictional ∆P

M3 - Reservoir

parameters (PI)

C CM1 → {m11,m21,m32} without without [7; 7]

© CM2 → {m11,m21,m31} without without [5; 5]

F CM3 → {m11,m22,m32} without with [7; 7]

5 CM4 → {m11,m22,m31} without with [5; 5]

4 CM5 → {m12,m21,m32} with without [7; 7]

� CM6 → {m12,m21,m31} with without [5; 5]

B CM7 → {m12,m22,m32} with with [7; 7]

♦ CM8 → {m12,m22,m31} with with [5; 5]

indicated. On the right-hand side, we plot the same information, the computed

inputs, but now we plot them on the plant profit contour surface. In this

plot, we also indicate the different plant regions as well as the optimization

problem constraints. The dashed blue line is the maximum gas production

constraint and dashed black lines are the maximum gas lift flow rate for each

well. Additionally, in the right-hand side figure, we use markers to indicate the

chosen model structure in the correspondent steady-state period. Note that ♦

is the correct model for Region A and © for Region B. In this plot, we do not

show the probing plants to compute the plant gradients via CFD.

The input profile in Figure 14a shows that the method is able to track the

plant optimum despite the change in the plant behavior and the presence of

noise. The profile approaches the optimum smoothly, as a direct consequence

of the small value of the input filter Ku = 0.25. Additionally, the operating

constraints are always satisfied. The reasons are the convergence of the model

structure estimation problem and the constraint adaptation using the modifiers

ε and λ. The modifiers correct the eventual plant-model mismatch in case of

deviation between the estimated parameters and their plant counterparts as well

as in cases when the wrong model structure is selected.
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Figure 14: Optimum Tracking. We start the simulation with the system at a suboptimal

operational condition wgl = [0.5, 0.5]T in Region A. Then, we optimize the system (Equa-

tion (21)) for 50 steady-states periods. The value of the inputs is compared to the optimal

inputs (left) and plotted on the plant profit surface (right) to show how we track the opti-

mum while changing the operating Regions from A to B. We plot the optimization problem

constraints on the on the Figure (b), dashed blue line - maximum gas production constraint,

and dashed black lines - maximum gas lift flow rate. We also include an inset zooming in near

the plant optimum to show that the constraints are not violated.

In Figure 14a, we do not compare the results with the standard MAy input

trajectory. Because, in this case study, these trajectories are almost overlapped.

This shows an important advantage of the method. We can explore and rely

on the nice convergence properties of the MAy while identifying the model

structure, increasing our knowledge about the real process.

7.4.2. Model Structure Selection

In Figure 15, we show the model structure selected during the SS periods by

Equation (13) (top) and the value of the goodness of fit test (bottom). In the

top plot, we use the marker-model correspondence of Table 2 but the markers

have two different colors. When the method chooses the correct model for the

region, we use the blue marker and the white marker otherwise. To explicitly

show the correspondence between the SS period and the plant region, we used
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Figure 15: Results for the model structure selection (Equations (13)). Each marker corre-

sponds to one of the 8 available model structure. The correspondence is shown in Table 2.

The markers have two colors, white and blue. Blue indicates that the correct model structure

is chosen in the SS period. The plant regions and SS period correspondence is shown on the

background. In order to facilitate visualization, we also plotted the model markers in three

different levels according to the plant region. In the bottom plot, we show the evolution of

the goodness of fit criterion ψap,filtk and its threshold ψgof . If ψap,filtk > ψgof , we trigger

the model structure selection.

the gray color map of Figure 14. Also, we plotted the markers in different levels

according to the plant region to facilitate visualization.

In the bottom plot, we show the value of ψap,filtk during the simulation. We

compare it against the threshold ψgof . If ψap,filtk < ψgof , we assume that the

model structure is able to represent the plant well enough. Hence, we do not

need to refine the model structure, only update its parameters.

Figure 15 shows that the method is able to choose the correct structure in

Regions A and B. Additionally, it selects a model in the intermediary region

even when there is no “correct” model available. Note that, after iteration

15, we switch between the intermediary region and Region B several times.

In this situation, the use of ψap,filtk to trigger the model structure refinement

is specially interesting. Here, the filter “averages” this decision and avoids
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chattering between consecutive iterations.

In the bottom plot, we can see that the the goodness of fit criterion is not

met in two consecutive iterations (4 and 5). In this case, we continue estimating

the model structure. However, it may happen that none of the models is a good

enough representation and the best model keeps failing at the test consecutively.

If this occurs, a policy to systematically increase/decrease the threshold ψgof

needs to be created.

These results present a significant improvement when compared to the ones

in Matias and Jäschke [5]. Since the authors used an unweighted version of

the total modifier, the effect of the wrong model assumption m12 could not be

identified in every iteration inside Region B. Depending on the noise realization

and/or on the gradient estimation error, the method was not able to distinguish

between models CM6 (�) and CM2 (©). Even though, in their case study, the

model parameters were fixed and CM2 contained the “true” parameter values.

On the other hand, here, we weight the total modifier using Σε and Σλ. As a

consequence, we scale the error between different measurements and also in the

gradient estimation, which improves the model selection step. The disadvantage

is that we need to tune more parameters to implement our method. Note that

the gradients estimation uncertainty plays a major role in this step. If it is too

large when compared to the measurement prediction residual ε, it may domi-

nate ψ leading to a model structure selection based only on approximation error,

which is completely undesirable. However, if it is properly scaled, as shown in

T2 in Equation (12), the inclusion λ can improve model structure distinguisha-

bility. Moreover, since the gradient uncertainty is additive and bounded [21],

the approximation error is “shared” by all structures.

7.4.3. Total modifier as model quality indicator

We can see the contribution of both ε and λ in ψ in Figure (16). It shows the

composition of the total modifier for the individual model structures, where the

total modifier (full line) is the summation of 0.5εΣεε (dotted line) and 0.5λΣλλ

(dashed line). Instead of presenting the value for all model structures, we show
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Figure 16: The total modifier composition for CM2 and CM8 is compared during the sim-

ulation. The values of the total modifier (full line) are plotted along with the contribution

of the zeroth-order (0.5εΣεε - dotted line) and first-order (0.5λΣλλ - dashed line) modifiers.

The plant regions are also indicated with the same color scheme as in the previous figures.

only for CM8 and CM2, the best model for Region A and B, respectively.

We see that both terms contribute to the total modifier, which shows that

they provide complementary information to the model selection algorithm. In-

cluding the gradients in ψ can be seen simply as the addition of new observa-

tions (either correlated or independent, depending on the gradient estimation

approach) in order to improve the model structure selection and parameter es-

timation. The main advantage is that these new observations are specifically

tailored to improve the proper identification of the system curvature and not

taken with a different purpose (e.g. optimization).

It is important to note that including λ in ψ is not mandatory. If the

competing model structures are distinghishable by considering only zeroth-order

information, the method works similarly if we consider only the ε related term

in ψ, see Case Study 1, for instance.
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Figure 17: Results for the simultaneous model structure and parameter estimation according

to Equations (13). All the model structures share the same estimable parameter set θ =

[GOR1,GOR2]T .

7.4.4. Parameter Estimation

Finally, the estimated parameters are show in Figure 17. The actual value is

plotted as a dashed black line, except in the intermediary region, where we do

not have true parameter values. The markers indicate the value of the estimated

parameters and the chosen model structure for a given SS period. The marker

correspondence is the same as in the previous figures. Once again, if the correct

model is chosen, the marker is shown in blue. We also plot the corresponding

plant region.

Note that, before estimating the parameters online, we need to perform an

identifiability analysis on the models (shown in the Appendix). Hence, the

estimation results are not sensitive to perturbations in the problem data and,

consequently, we avoid problems with overparametrization and ill-conditioned

parameter estimation problems.

Given that we have a reasonable estimable parameter set, it is expected that

the parameter estimation problem converges to the true parameter values. We

see that, even if we choose the incorrect model structure, CM1 for example,
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Figure 18: Results for the estimation of θ = [GOR1,GOR2]T , given that we have an incorrect

model structure, CM1 in this case. Since we performed an identifiability analisys, discussed

in Appendix B, the parameters can be uniquely identified despite the fact that we have plant-

model mismatch. Clearly, they converge to the incorrect values because we are not able to

represent the underlying process with CM1.

we are able to uniquely identify a set of parameters as shown in Figure 18.

This highlights the importance of performing an identifiability analysis before

implementing our method. If this previous step is set aside, one of the models

could overfit the measurements and be chosen by the method even if it is not

the best representation of the plant.

8. Conclusion

We presented a method that adapts the model structure and parameters

online while optimizing the process. The method is implemented using the

framework depicted in Figure 1 and latter detailed in Algorithm (1). Basically, it

can be represented by a two-level structure, where: 1. the zeroth order modifier,

ε = yp(uk)− y(uk), and first order modifier, λ = (y′p(uk)− y′(uk))T are used for

solving an identification problem, in which the total modifier ψ, Equation (3),

is minimized. The goal is to select the best model with updated parameters in

the model set; and 2. a more classical Output Modifier Adaptation (MAy) with

the updated model is performed.

Given that several model structures are available for adequately describing

the plant behavior, the total modifier ψ indicates not only the difference between

plant measurement and model prediction ε, which is traditionally considered in
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identification problems, but also the difference between plant and model gradi-

ents λ. By including first order information about the differences between the

plant and model, we avoid issues such like non-uniqueness of model structures

as shown in Section 3.2.1.

Before solving the structure identification problem, we perform a goodness of

fit test. If the current structure is a good representation of the plant, we do not

update the model structure, only its parameters. The goal is to avoid chattering

between consecutive iterations, which may hinder the MAy convergence to the

optimal operating point.

The method was tested in two case studies, a CSTR and a gas lift well

network (Sections 6 and 7, respectively). In our simulation studies, the method

converges reasonably fast to the plant optimum and updates the model structure

and parameters accurately. We also show how it behaves in cases that there is

no “true” model. The method, then, chooses the model structure combination

with updated parameters that minimized the criterion ψ. Note that, before

running our method online, we need to perform a sensitivity analysis on our

models in order to rule out problems with parameters identifiability.

Our method is somewhat structurally similar to the standard two-step RTO

approach. The main differences are: (i) the model structure can change and,

(ii) by combining the model identification with Output Modifier Adaptation,

we can deal with plant model mismatch provided that our model is adequate.

Hence, even if we do not have the “true” model in our model set, we are able

to reach the plant optimum via MAy. The method presented is useful when

there is uncertainty in the modeling step or in cases where the real process

change with time, like when an equipment is degrading. However, to apply

our method, we must have information about the plant gradients, which can

be a limitation. Additionally, probing the plant in a way that enables us to

select the best model can be useful, for example choosing a sampling strategy

that increases our knowledge about a particular model (or set of models). A

future research interest is to find an optimal sampling plan that allies feasible

region exploration, to get better model updates, and model exploitation (fast
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convergence to the real plant optimum).

9. APPENDIX: Identifiability analysis of the models used in Case

Study 2

The appendix is divided in two parts. First, we introduce a method for model

parameter identifiability checking used by Yang et al. [36]. Next, we show how

we applied it to the oil well network model of Case Study 2. The method is used

for avoiding problems with overparametrization and ill-conditioned parameter

estimation problems.

9.1. Model parameter identifiability checking

There are different methods for testing if the model structure is identifiable

(see, e.g. Walter and Pronzato [24], Miao et al. [26], and Yang et al. [36]).

Here we give a brief overview of the method presented in Yang et al. [36]. The

idea is to find parameters that cannot be estimated separately and group them

in clusters. For example, let us say that our system model is y = θ1θ2u. Both

parameters have similar effect on the model output. If we try to estimate both at

the same time, we have infinite solutions to the data-fitting problem. However,

if we cluster them in a unique parameter θ̄, its value can be easily determined.

For more complicated models, it is hard to determine this similarity between

parameters. One alternative is to use the parameters output sensitivity vector

si, which is defined as si = ∂y
∂θi

. We use the cosine distance between the vectors

si and sj to analyze the colinearity between the pair of parameters i and j:

dij = 1− |cosωij | = 1− |si · sj |
‖si‖ ‖sj‖

(22)

If the cosine distance is lower than a threshold τθ, the parameters cannot be

estimated separately in practice, and are clustered (or one of the parameter is set

to some nominal value). By sequentially checking the pairwise cosine distance

of all available parameters combinations, we obtain an estimable parameter set

that can be accurately updated with the plant information.
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9.2. Parameter subsection selection applied to Case Study 2

Table 3 shows the parameters of the gas lift oil well model, showed in Sec-

tion 7.2, that can be adapted.

Table 3: Parameters of the gas lift oil well network

Parameter Description

θ1 GOR Reservoir gas-oil ratio

θ2 pres Reservoir pressure

θ3 ρoil Density of oil in the reservoir

θ4 µoil Viscosity of oil in the reservoir

In order to choose the estimable parameter set, we use the following proce-

dure based on Yang et al. [36]:

1. We generate 100 data points by randomly probing the plant in the feasible

input space (Regions A, B and intermediary region shown in Figure 13,

using the same noise range as in the Case Study 2);

2. For all models, we estimate the parameters θi where i = 1, · · · , 4 in Ta-

ble 3. Then, we compute the correspondent si for each model;

3. Next, we average si over all data points. At this stage, each model struc-

ture has one average value of si, with i = 1, · · · , 4 (i.e. for each parameter

in Table 3);

4. For each model, we compute dij for all the possible parameter combina-

tions and set τθ = 0.7. If dij < τθ, we set one of the parameters to its

nominal value.

By applying Step 4 sequentially, we obtain the estimable parameter set as:

θ =
[
GOR1 GOR2

]T
(23)

In Figure 19, we show the estimation results for the 100 probing points for

CM7 and CM8 (Model 8 is the “true” model in Region A and model 7 has the
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incorrect structure in every region in the feasible space). The estimate mean is

shown as a black dot, and the confidence interval with α = 0.95 is shown as the

black ellipsoid. Histograms containing of the individual parameters estimates

are also plotted. Finally, the actual value of the parameter is shown in red.
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Figure 19: Parameter estimation for 100 samples. The 95% confidence interval as well as

the mean (as a black dot) are shown. Histograms containing of the individual parameters

estimates are also plotted. The actual value of the parameter is shown in red.

Since we do not know a priori which structure is correct, we do not analyze

the bias or the variance of the estimation. Instead, we focus on the fact that for

all models the parameters show a low correlation between them, which indicates

that they, in fact, bring complementary information to the estimation process

and can be estimated separately.
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[5] J. Matias, J. Jäschke, Online model maintenance via output modifier adap-

tation, Industrial and Engineering Chemistry Research (2019).

[6] A. Marchetti, B. Chachuat, D. Bonvin, Modifier-adaptation methodology

for real-time optimization, Industrial and Engineering Chemistry Research

48 (2009) 6022–6033.

[7] S. Engell, Feedback control for optimal process operation, Journal of

Process Control 17 (2007) 203–219.

[8] W. Gao, S. Engell, Iterative set-point optimization of batch chromatogra-

phy, Computers and Chemical Engineering 29 (2005) 1401–1409.

[9] A. Ahmad, W. Gao, S. Engell, A study of model adaptation in iterative real-

time optimization of processes with uncertainties, Computers and Chemical

Engineering 122 (2019) 218–227.

[10] W. Gao, S. Wenzel, S. Engell, A reliable modifier-adaptation strategy for

real-time optimization, Computers and Chemical Engineering 91 (2016)

318–328.

[11] T. Faulwasser, D. Bonvin, On the use of second-order modifiers for real-

time optimization, IFAC Papers online 47 (2014) 7622–7628.

48



[12] R. Hille, H. M. Budman, Simultaneous identification and optimization

of biochemical processes under model-plant mismatch using output uncer-

tainty bounds, Computers & Chemical Engineering 113 (2018) 125–138.

[13] B. McKay, M. Willis, G. Barton, Steady-state modelling of chemical process

systems using genetic programming, Computers and Chemical Engineering

21 (1997) 981–996.

[14] B. McKay, M. Willis, D. Searson, G. Montague, Non-linear continuum

regression using genetic programming, in: Proceedings of the 1st Annual

Conference on Genetic and Evolutionary Computation-Volume 2, Morgan

Kaufmann Publishers Inc., 1999, pp. 1106–1111.

[15] P. Balasubramaniam, A. V. A. Kumar, Solution of matrix riccati differ-

ential equation for nonlinear singular system using genetic programming,

Genetic Programming and Evolvable Machines 10 (2009) 71–89.

[16] M. A. Keane, J. R. Koza, J. P. Rice, Finding an impulse response function

using genetic programming, in: 1993 American Control Conference, IEEE,

1993, pp. 2345–2350.

[17] A. Cozad, N. V. Sahinidis, A global minlp approach to symbolic regression,

Mathematical Programming 170 (2018) 97–119.

[18] J. Forbes, T. Marlin, J. MacGregor, Model adequacy requirements for op-

timizing plant operations, Computers and Chemical Engineering 18 (1994)

497–510.

[19] H. Yeomans, I. E. Grossmann, A systematic modeling framework of su-

perstructure optimization in process synthesis, Computers and Chemical

Engineering 23 (1999) 709–731.

[20] R. Raman, I. E. Grossmann, Modelling and computational techniques for

logic based integer programming, Computers and Chemical Engineering

18 (1994) 563–578.

49



[21] A. G. Marchetti, G. François, T. Faulwasser, D. Bonvin, Modifier adap-

tation for real-time optimizationmethods and applications, Processes 4

(2016) 55.

[22] L. Hebing, F. Tran, H. Brandt, S. Engell, Robust optimizing control of fer-

mentation processes based on a set of structurally different process models,

Industrial and Engineering Chemistry Research 59 (2020) 2566–2580.

[23] W. H. Greene, Econometric analysis, Pearson Education India, 2003.

[24] E. Walter, L. Pronzato, Identification of parametric models, volume 8,

Springer, 1997.

[25] E. Walter, Y. Lecourtier, J. Happel, On the structural output distinguisha-

bility of parametric models, and its relations with structural identifiability,

IEEE Transactions on Automatic Control 29 (1984) 56–57.

[26] H. Miao, X. Xia, A. S. Perelson, H. Wu, On identifiability of nonlinear

ODE models and applications in viral dynamics, SIAM review 53 (2011)

3–39.

[27] G. E. Box, W. G. Hunter, The experimental study of physical mechanisms,

Technometrics 7 (1965) 23–42.

[28] Y. Bard, Nonlinear parameter estimation, Academic press, 1974.

[29] A. Papasavvas, G. François, Output modifier adaptation with filter-based

constraints, Journal of Process Control 87 (2020) 37–53.

[30] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, M. Diehl, CasADi

– A software framework for nonlinear optimization and optimal control,

Mathematical Programming Computation 11 (2019) 1–36.
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