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Abstract
A key factor for energy-efficient industrial clusters is the recovery of waste heat. To this
end, thermal energy storage (TES) is an appealing technology that facilitates dynamic
heat integration between supplier and consumer plants. A long-term strategy for energy
savings must involve adequate consideration for the optimal design of the TES. From an
industrial perspective, finding the capacity of the TES unit is often based on heuristic rules
which may lead to suboptimal design. This approach does not account for the short-term
variability in operation of the TES system. Scenario-based stochastic programming ap-
proaches, where the operational uncertainty is described in form of discrete scenarios, can
be used to find the best design for the TES system. We present two problem formulations
for finding the optimal capacity of the TES unit. The first is a single-level formulation
where the design and operating constraints are combined for all scenarios, with the ob-
jective of minimizing the combined cost of design and operation. The second is a bilevel
formulation where the design decisions are taken on the upper level to minimize overall
system cost, whereas the lower level problems (one per scenario) represent the optimal
operation for the chosen design variables, each minimizing the operating cost for their re-
spective scenarios. We compare the results of the two approaches with an illustrative case
study of an industrial cluster with one supplier plant and one consumer plant exchanging
heat via a TES unit.
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1. Introduction
The storage and reuse of industrial waste heat is vital for improving the energy efficiency
of many energy-intensive processes. When multiple industrial plants operate in close
proximity of each other, waste heat can be recovered from one plant and supplied to
another plant in need of it. Thermal energy storage (TES) can mitigate the issue of asyn-
chronous heat supply and demand by storing energy during off-peak periods and discharg-
ing it during peak demands, leading to savings in operating costs. The capital investment
costs for installing a TES system are proportional to the capacity of the TES, and may
become significantly high. In order to find a trade-off between high capital costs (large
capacity) and high operating costs (small capacity), it is worth investigating methods for
optimally sizing the TES. A well designed TES system still has to contend with opera-
tional uncertainty, for example the daily/weekly fluctuations in heat supply and demand.
By incorporating this uncertainty information in the design phase itself, it is possible to
size a TES system that is robust against this uncertainty. Solving a single deterministic
optimization problem that spans across the entire operation horizon of the TES (typically
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multiple years), and accounts for all the heat profile fluctuations therein, is computation-
ally intractable. To overcome this, stochastic programming approaches can be used to
optimize the design decisions over a set of representative scenarios of operation.

Our aim is to find a measure for the optimal sizing of the TES equipment - the volume of
a TES unit and the areas of the heat exchangers delivering/extracting heat from the TES
unit - by rigorously accounting for the uncertain heat supply and demand in operation
phase. For the TES system, the decisions can be divided into two stages - design and
operation. In the extensive form of stochastic programming (Birge and Louveaux, 2011),
the design variables are “here-and-now", whereas the “wait-and-see" operation variables
are assigned to each scenario. This results in a single-level optimization problem, where
the objective function represents the overall system cost. The design constraints and the
operating constraints for each scenario are all imposed together in this formulation.

Another stochastic approach is the bilevel formulation, based on a Stackelberg leader-
follower hypothesis. The upper level problem (leader) identifies the optimal design de-
cisions that minimize the overall cost over a set of scenarios. On the other hand, the
lower level problems (followers), representing different scenarios, aim to minimize their
corresponding operating cost (see Xu et al. (2017), for example). Bilevel problems are
typically nonconvex and NP-hard. However, for cases where the lower level problems
are convex and follow some constraint qualifications, the lower level problems can be re-
placed with their Karush-Kuhn-Tucker (KKT) optimality conditions Dempe and Franke
(2019). The KKT reformulation turns the bilevel problem into a single-level mathematical
program with complementarity constraints (MPEC). The complementarity constraints can
be further linearized using disjunctive programming (Fortuny-Amat and McCarl, 1981),
rendering the problem a mixed-integer program.

In this paper, we develop a linear model for the TES system and present the two formu-
lations for optimizing the TES design. The results are compared with the help of a case
study that is motivated from an industrial district heating network in northern Norway.
We compare the results of the two approaches in terms of design parameters for the TES
- its volume and the heat exchanger area.

2. Methodology
The topology of a TES system with one supplier and one consumer is shown in Figure 1.
We employ a simplified linear model in terms of heat duties (MW) to represent the TES
system. The heat supplier needs to reject Qsupply(t) amount of duty, whereas the consumer
has a heat demand Qdemand(t) to be met. If the TES cannot meet the total demand of the
consumer, the excess energy Qpeak(t) is imported from an external peak heating source.
Similarly, if all of supplied heat cannot be extracted from the supplier, the excess energy
Qdump(t) is rejected into a cooling water system. The resulting heat flows into and out
of the tank are denoted by Qin

tes(t) and Qout
tes (t). The energy in the TES unit is denoted by

Etes(t) (MWh). Heat losses from the TES unit to the surroundings are denoted by Qloss(t),
which proportional to its energy content. The peak heating and heat dumping duties, along
with the energy in the TES unit represent the operating variables in the system. xopr :=
{Qpeak(t),Qdump(t),Etes(t)} The associated costs (kr/MWh) of importing and dumping
heat are Cpeak(t) and Cdump(t) respectively. Considering an operating period from t0 to t f ,

the total operating cost is: Copr :=
∫ t f

t0

(
Cpeak(t)Qpeak(t)+Cdump(t)Qdump(t)

)
dt.
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Figure 1: An industrial cluster with one supplier and one consumer exchanging heat
through a TES unit.

In context of the system design, the required total energy capacity of the TES unit (MWh)
is denoted by CAPtes, whereas the required maximum power rating for heat exchange
with the TES unit (MW) is POWtes. For taking design decisions, the former gives the
basis for choosing the total volume of the tank. Similarly, the power rating is related to
the area of the heat exchangers needed to deliver the heat to the TES unit. Thus, CAPtes
and POWtes represent the design variables in the system. xdes := {CAPtes,POWtes} The
prices associated with these variables are Ccap(kr/MWh) and Cpow(kr/MW) respectively.
The total design cost is: Cdes :=CcapCAPtes +CpowPOWtes.

Our aim is to identify the optimal design parameters for TES system under some in-
formation about the operational uncertainty. This uncertainty is modeled in terms of N
scenarios, each scenario representing a discrete combination of the heat supply and de-
mand profiles, Qsupply(t) and Qdemand(t), across the operating period. We consider two
different formulations of the design optimization problem, a single-level formulation and
a bilevel formulation.

2.1. Single-level formulation
Considering N scenarios of operation, the single-level problem is formulated as (1).

min
xopr ,xdes

Cdes +
N

∑
n=1

ωn Copr,n (1a)

s. t. CAPtes ≥ 0 (1b)
POWtes ≥ 0 (1c)

Ėtes,n(t) = Qin
tes,n(t)−Qout

tes,n(t)−Qloss,n(t) n = 1, . . . ,N (1d)

0≤ Qpeak,n(t)≤ Qpeak,max n = 1, . . . ,N (1e)
0≤ Qdump,n(t)≤ Qdump,max n = 1, . . . ,N (1f)

0≤ Qin
tes,n(t)≤ POWtes n = 1, . . . ,N (1g)

0≤ Qout
tes,n(t)≤ POWtes n = 1, . . . ,N (1h)

0≤ Etes,n(t)≤CAPtes n = 1, . . . ,N (1i)

Here, the subscript n represents the nth scenario of operation. In the objective (1a), ωn
is the probability associated with the nth scenario. Equation (1d) is the energy balance
equation for the TES unit, where is the Ėtes,n(t) is the derivative of the energy in the TES
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unit. The heat flows in and out of the TES unit are upper bounded by the POWtes, and
the energy in the TES unit is upper bounded by its capacity CAPtes. For implementation,
we discretize all the continuous variables in (1) using constant time steps. The integral in
the objective (1a) is thus replaced by the summation over all the discretized time steps.
Moreover, we employ a forward Euler scheme to discretize the energy balance equation
(1d). This transforms (1) into an LP, solvable by solvers like Gurobi.

2.2. Bilevel formulation
In the bilevel formulation (2), the lower level operating variables are constrained to be
the optimal solutions of the lower level problems (2d), corresponding to their respective
scenarios of operation. The upper level objective function is the overall cost (same as (1)),
whereas the objective function of each lower level problem is the operating cost for the
corresponding scenario.

min
xdes,xopr

Cdes +
N

∑
n=1

ωn Copr,n (2a)

s. t. CAPtes ≥ 0 (2b)
POWtes ≥ 0 (2c)
xopr,n ∈ argmin

xopr,n

Copr,n

s. t. Ėtes,n(t) = Qin
tes,n(t)−Qout

tes,n(t)−Qloss,n(t)

0≤ Qpeak,n(t)≤ Qpeak,max

0≤ Qdump,n(t)≤ Qdump,max

0≤ Qin
tes,n(t)≤ POWtes

0≤ Qout
tes,n(t)≤ POWtes

0≤ Etes,n(t)≤CAPtes

(2d)

The notation used for various variables is the same as in (1). Note that the lower level
constraints involve the upper level variables. We also use the same discretization scheme
as (1) to convert (2) into a linear bilevel program. This linear bilevel program is still non-
convex is nature owing to the constraints (2d). However, since the lower level problems
(2d) are LPs after discretization, the bilevel problem (2) can be reformulated as an MILP
as explained in Section 1, and can thus be solved by solvers like Gurobi.

The formulation (2) has a more restrictive feasible set than (1). The bilevel formulation
is thus expected to result in more conservative solutions of the scenario-based stochastic
problem, compared to the corresponding single-level formulation.

3. Case study - design basis
An industrial TES system with one supplier and one consumer of heat is studied. To for-
mulate the design problem, 5 years of operation is assumed for the TES unit. The overall
objective function (Equations (1a) and (2a)) in the formulation then consists the design
cost and the operating cost for 5 years of operation. On the operation level, we consider
only hourly variation in the heat duties and, to maintain computational tractability, an
operating horizon of one week (168 hours). On the design level, we approximate the to-
tal 5-year operating cost by extrapolating the weekly operating cost from the operation
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level over 5 years of operation. The scenarios for weekly operation are taken from the
2017 winter data for heat supply/demand provided by Mo Fjernvarme, a district heating
company in northern Norway. Further, all scenarios are considered equally likely in the
formulations (1) and (2). The prices for peak heating, Cpeak are taken to be the corre-
sponding hourly 2017 electricity prices in northern Norway. The prices for heat dumping,
Cdump, are assumed to be 1/10th of the peak heating prices. The maximum peak heating
and heat dumping rates Qpeak,max and Qdump,max are set to be 1 GW each. The design
basis for calculating the TES volume and heat exchanger area is as follows. The max-
imum energy storage capacity CAPtes is related to the TES volume and depends on the
total enthalpy change of the TES fluid in the tank between the fully charged and fully
discharged state, CAPtes = ρCpVtes∆T . Assuming water as the storage medium and an
operating window of 20◦C for the storage tank, the following relation is obtained.

Vtes (m3) = 43.06 ∗CAPtes (MWh) (3)

The maximum power rating POWtes corresponds to the maximum duty transferred across
the heat exchangers to and from the TES unit, given by Q=UA(∆T )LMT D =mCp∆T . The
ability of the heat exchanger to transfer heat depends on the temperature of the TES unit.
Charging to a nearly fully charged TES or discharging from a nearly discharged TES unit
would give the maximum area requirement of the heat exchangers. We assume that the
TES unit is large enough to have a nearly flat profile across the heat exchanger and use
a 10◦C approach temperature in the heat exchangers. Using the fluid properties of water,
we estimate the lowest (∆T )LMT D to be 19.5◦C, and get the relation between POWtes and
an upper bound for the area required for the heat exchanger as:

Ahex (m2) = 60.24 ∗POWtes (MW) (4)

Finally, we use a linearized approximation of the total purchased equipment cost as pro-
vided by Sinnott and Towler (2009), to estimate our design costs Ccap and Cpow. Follow-
ing the factorial method to convert the purchase costs to total design costs, we get the
following approximate relations:

Ccap(mil. NOK 2017) = 0.7+0.11 ∗CAPtes (MWh) (5)

Cpow(mil. NOK 2017) = 0.095+0.3 ∗POWtes (MW) (6)

4. Results and discussion
We compare the results between the two formulations while considering 5, 10 and 20
weekly scenarios, chosen from the 2017 winter data. Also, when considering real data,
care has to be taken to avoid any outliers that may skew the results of the design optimiza-
tion. Figure 2 shows that the single-level formulation results in higher TES capacities,
whereas the bilevel formulation emphasizes higher HEX areas for efficient heat trans-
fer. This implies that, at higher TES capacities, optimal lower level solutions result in a
higher design cost for the bilevel formulation. The bilevel formulation prioritizes mini-
mizing the design objective at the expense of operation objective. Although this results in
a higher operation cost for the bilevel formulation (Figure 3), it ensures that the chosen
design parameters lead to optimal operation on the lower level. Also interesting to note is
that the design costs from the bilevel formulation remain unchanged when scenarios are
increased from 10 to 20. The single-level formulation leads to lower overall costs, but
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Figure 2: TES volume and HEX area for the two formulations
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Figure 3: Design and operating costs for the two formulations

optimal operation is not guaranteed explicitly for any of the chosen scenarios. Including
more scenarios seems to reduce the design cost in single-level formulation. Availability
of more data would allow us to check if this cost converges to a particular value.

5. Conclusion
In this paper, we compared two stochastic formulations for design optimization of TES
systems. The results show that the bilevel formulation prioritizes minimizing the design
cost, leading to higher operating costs. On the other hand, the single-level formulation
minimizes the overall cost, but does not explicitly account for optimal operation.
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