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Abstract

Key requirements for robust nonlinear model predictive control (NMPC) are

stability, efficient performance under uncertainty, constraint satisfaction and

computational efficiency. Multistage NMPC, based on a scenario tree formu-

lation for the uncertainty, has been shown to satisfy the first three objectives

under plant-model mismatch. However, a limiting factor in multistage NMPC,

is the exponential scaling of the scenarios with respect to uncertain param-

eters and the length of the robust horizon. To address this issue, we present

an approximate sensitivity-assisted multistage NMPC (samNMPC) scheme that

reduces the problem size by dividing the scenario set into critical and noncritical

scenarios, with the former composed of the worst-case realizations of the un-

certain parameters. In this approach, the optimization is sought explicitly over

the critical scenarios, while noncritical scenarios are included implicitly through

nonlinear programming (NLP) sensitivity-based approximations in the objective

function. A key advantage of the proposed approach is that the problem size is
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independent of the number of constraints and scales only linearly with the robust

horizon. This allows for faster computations with longer robust horizons that

rigorously account for future uncertainty. In this paper, we explore the samN-

MPC approach and discuss its robust stability properties. We demonstrate the

applicability of the approach for the continuous stirred tank reactor (CSTR)

and the quadtank case studies for tracking setpoints, and show that samNMPC

compares favorably in performance and robustness to ideal multistage NMPC,

but with a significant reduction in computational cost.

Keywords: Robust Nonlinear Model Predictive Control, Dynamic Optimiza-

tion, Stochastic Programming, Sensitivity

1. Introduction

Model predictive control (MPC) is a powerful tool that has been widely used

for control and optimization in the chemical process industry, mainly because of

its ability to handle complex multivariable systems under process constraints.

Based on model predictions, MPC computes an optimal control trajectory that

minimizes a certain cost function over a prediction horizon [31]. Plant dynam-

ics are often highly nonlinear, and hence the nonlinear counterpart of MPC

(NMPC) has received attention.

The presence of plant-model mismatch or noise can easily cause the system

to violate constraints or become suboptimal. As such, robust NMPC approaches

that rigorously handle the uncertainty have been studied in the past few decades.

Although standard NMPC provides some inherent robustness against uncer-

tainty, this is not enough when the uncertainty is pronounced. Different ap-

proaches for handling uncertainty have been proposed in the literature, going

back to the min-max MPC presented in [3], where the optimal control trajec-

tory is computed such that it minimizes the cost of the worst-case realization

of the uncertainty. However, this approach ignores available future recourse

(i.e., feedback) actions that may counteract the uncertainty. Feedback min-max

MPC was proposed in [33], where closed-loop optimization is sought over dif-
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ferent sequences of control inputs for different realizations of the uncertainty.

Extending this approach, multistage NMPC proposed in [18] offers robustness

in terms of constraint satisfaction without being overly conservative. Here, the

uncertainty propagates through time in the form of a scenario tree, with each

scenario representing a discrete realization of the uncertainty.

The major challenge in multistage NMPC, however, is that the computa-

tional size of the problem grows with the scenario tree. In particular, the prob-

lem size grows exponentially with 1) the number of uncertain parameters, 2) the

number of discrete realizations for each uncertain parameter, and 3) the length

of the prediction horizon. The problem quickly becomes computationally in-

tractable, and this poses a challenge for real-time implementation of NMPC. To

expedite computations, various approximation strategies have been proposed.

Most implementations of multistage NMPC make the so-called robust horizon

assumption [18], where the branching of scenarios is stopped after a certain

number of time steps in the prediction horizon. Note that the problem size

still grows exponentially with the length of robust horizon, however, and it is

typically restricted to one or two time steps in most applications. A paralleliz-

able advanced-step multistage NMPC algorithm proposed in [39] precomputes

a set of solutions offline, and makes a quick sensitivity-based correction online

to reduce computational effort. A data-driven method of selecting scenarios is

shown in [36], where the uncertainty information is captured with fewer sce-

narios using multivariate data analysis. Alternatively, cost-to-go functions of

different scenarios were approximated by neural networks in [4] and applied to

a semi-batch reactor. To exploit the inherent structure of the multistage NMPC

problem, algorithms based on primal decomposition [15] and dual decomposi-

tion [19, 24, 16] have been proposed. An online scenario generation approach

that approximates the multistage NMPC with a much smaller scenario tree is

proposed in [9]. This method is based on finding the worst-case realizations of

uncertainty with respect to constraint feasibilities.

In this study, we extend the sensitivity-based robust NMPC scheme recently

proposed in [38, 39, 40]. We develop an efficient approximation to the ideal
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multistage NMPC problem by dividing the scenarios into two sets: a (small) set

of so-called critical scenarios, and a (larger) set of non-critical scenarios. The

critical scenarios are those most likely to violate inequality constraints, and are

composed of the corresponding uncertainty realizations. We solve an optimiza-

tion problem with a smaller scenario tree comprising of these critical scenarios.

Further, to account for the remaining uncertainty, we include the costs of the

noncritical scenarios in the objective function based on a sensitivity-based linear

approximation. This approach, which we call samNMPC, directly addresses the

issue of exponential growth rate of the problem size. In particular, the problem

size is independent of the number of uncertain parameters, and also the number

of discrete realizations for each uncertain parameter. Moreover, it scales only

linearly with the length of the robust horizon, which allows us to efficiently ap-

proximate very large scenario tree representations for ideal multistage NMPC.

The robust stability properties of samNMPC are also discussed in this study.

The performance of samNMPC is shown for two illustrative case studies, and

compared with standard NMPC and ideal multistage NMPC formulations.

The remainder of this paper is structured as follows: Section 2 presents the

standard and ideal multistage NMPC formulations, along with the concept of

NLP sensitivity. Section 3 presents the samNMPC methodology and imple-

mentation, and Section 4 discusses its stability properties. Section 5 includes

two case studies: a setpoint tracking of species concentration in a CSTR, and

setpoint tracking of water levels in an interconnected four tank system. Finally,

Section 6 concludes the paper.

2. Background development

2.1. Standard NMPC

Consider a system with dynamics described by the discrete-time mapping:

xk+1 = f(xk,uk,dk) (1)

where xk ∈ X ⊂ Rnx are the state variables, uk ∈ U ⊂ Rnu are the control

variables, and dk ∈ D ⊂ Rnd represents the time-varying uncertainty in the
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model. The sets X and U are the domains for the state and control variables,

respectively, whereas D is the bounded uncertainty set. The function f : Rnx ×
Rnu ×Rnd → Rnx along with f(0, 0, 0) = 0 represents the nominal model of the

system.

In the standard NMPC controller, the model uncertainty is not explicitly

accounted for. At time tk, the current state xk is obtained from plant measure-

ments and the following NLP is solved:

Jnom ≡min
zl,vl

φ(zN ,d
0
N−1) +

N−1∑

l=0

ϕ(zl,vl,d
0
l ) (2a)

s.t. zl+1 = f(zl,vl,d
0
l ) l = 0, ..., N − 1 (2b)

z0 = xk (2c)

zl ∈ X,vl ∈ U, zN ∈ Xf (2d)

where N is the length of the prediction horizon, zl and vl are the state and

control variable vectors, respectively at time tk+l, and the value of the uncertain

model parameter is fixed at a nominal d0
l for all time steps.

The objective function (2a) is composed of the stage cost ϕ : Rnx × Rnu ×
Rnd → R, and the terminal cost φ : Rnx ×Rnd → R. Constraints (2b) represent

the dynamic model used in the controller. The controller is initialized with

the current state xk at tk, as shown in (2c), and (2d) represent the bound

constraints on the state and control variables. Note that the set Xf ⊂ X is

the terminal region, and is typically used to ensure recursive feasibility of the

NMPC controller.

At each time step k, problem (2) solves for a predicted state trajectory

x[k,k+N ] and a corresponding sequence of control inputs u[k,k+N−1] across the

prediction horizon [k, k + N ]. From the obtained optimal sequence of control

inputs, the first stage control input uk = v∗0 is applied to the plant. This can

also be represented in the form of a feedback control law uk = h(xk), where

h : Rnx → Rnu . After injecting uk, the plant evolves from tk to tk+1 according

to (1). The updated state xk+1 at tk+1 is used to solve problem (2) at the next
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time step, and the procedure repeats.

Typically, a receding prediction horizon is used as the controller moves for-

ward in time. This receding horizon nature, along with the incorporation of

state feedback information, allows standard NMPC to offer a limited degree of

robustness [5, 37]. However the plant-model mismatch arising due to uncertainty

causes deteriorating performance in standard NMPC, particularly with respect

to constraint satisfaction. A comprehensive discussion on standard NMPC can

be found in [31].

A key performance metric for any NMPC scheme is the computational delay,

which is the time difference between obtaining updated state information from

the plant at tk and applying the computed control input uk to the plant. To

minimize this delay, it is important to be computationally fast in solving NMPC

problem formulations such as (2). The sensitivity-assisted multistage NMPC

scheme offers this advantage, and will be discussed in Section 3.

2.2. Ideal Multistage NMPC

In contrast to standard NMPC, robust NMPC methods rigorously account

for the model uncertainty. In presence of plant-model mismatch, the evolution

of the state trajectory at time step k depends on the actual realization of the

uncertain parameter dk ∈ D. As such, the sequence of control inputs u[k,k+N−1]

should correspond to a cone of state trajectories {x[k,k+N−1]}D [8]. The min-

max MPC solves for a single control profile that applies to all realizations of the

uncertainty, including the worst-case realization [3].

However, optimizing over a single control profile is overly conservative and

disregards the fact that feedback is available. In other words, it does not explic-

itly take into account that new uncertainty information will be available in the

future and the future control inputs can take recourse action to negate the effect

of the current uncertainty. With this notion of feedback, it may be prudent to

optimize over different control policies for different realizations of uncertainty

(see [25, 26]). More precisely, a cone of control profiles {u[k,k+N−1]}D needs to

be computed.

6



This problem can be made tractable by discretizing the uncertainty set D,

which converts the cone of state trajectories into discrete scenarios. The future

evolution of the uncertainty can be modeled in the form of a scenario tree as

shown in [33], and closed-loop optimization sought over the different scenarios,

thereby reducing conservativeness compared to the min-max approach. This is

the main idea of multistage MPC, which was further expanded upon in [18] in

the context of nonlinear systems to propose the multistage NMPC.

Consider that the continuous uncertainty set D is discretized into a set M of

discrete realizations. The heuristic suggested in [18] is to use the combinations

of {max, nominal, min} values of each uncertain parameter to build the scenario

tree. The set of discrete realizations of uncertainty is thus:

M = {dmax
1 , dnom1 , dmin

1 } × · · · × {dmax
nd

, dnomnd
, dmin
nd
} (3)

where nd is the dimensionality of the uncertain parameter vector, and |M| = 3nd .

Figure 1 shows the evolution of a fully branched scenario tree with 27 scenarios

(nd = 1, N = 3). The current state at tk is the root node of the scenario tree.

At tk+1, there are 3 possible states corresponding to the 3 discrete realizations

of the uncertainty. The scenario tree continues branching as we move forward in

time, with 9 possible states at tk+2, and 27 possible states at tk+3. A scenario is

defined as a sequence of states from the root node to the leaf node at the end of

the prediction horizon. Thus there are 27 discrete scenarios in the scenario tree

shown in Figure 1. In general, the total number of scenarios in a fully branched

scenario tree is |M|N .

It is apparent that for longer prediction horizons, the number of scenarios

grows exponentially large, and it becomes computationally infeasible to solve

the resulting optimization problem. To resolve this, a robust horizon of length

Nr was suggested in [18], wherein the branching of the scenario tree is stopped

after tk+Nr , and the uncertain parameters stay at their tk+Nr values for the

rest of the prediction horizon. Figure 2 shows a truncated scenario tree with

Nr = 2, and 9 scenarios. The number of scenarios is |M|Nr , which is much lower

than the fully branched scenario tree provided Nr � N , albeit with the caveat
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Figure 1: Fully branched scenario tree with nd = 1 and N = 3.
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that the truncated scenario tree does not account for every possible evolution of

the uncertainty up to N . This is justified on the basis that only the immediate

control input is applied to the plant and the next control inputs are recomputed

anyway in a receding horizon implementation.

The resulting optimization problem to be solved with current state xk at tk

is formulated as follows:

min
zc
l ,v

c
l

∑

c∈C
ωc
(
φ(zcN ,d

c
N−1) +

N−1∑

l=0

ϕ(zcl ,v
c
l ,d

c
l )
)

(4a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

c
l ) l = 0, ..., N − 1 (4b)

zc0 = xk (4c)

vcl = vc
′

l {(c, c′)|zcl = zc
′

l } (4d)

zcl ∈ X,vcl ∈ U, zcN ∈ Xf ,dcl ∈ D (4e)

dcl−1 = dcl l = Nr, . . . N − 1 (4f)

∀c, c′ ∈ C

where C is the set of all scenarios, ωc is the probability of each scenario, and

zcl ,v
c
l ,d

c
l represent the vectors of state variables, control variables and uncertain

parameters at stage l and scenario c. The objective function in (4a) is the

weighted sum of the cost across all the scenarios at xk, with ωc being the

probability associated with each scenario. The equation (4f) imposes that the

uncertain parameters remain constant after the robust horizon.

Equation (4d) represents the non-anticipativity constraints (NACs) which

impose that all control inputs corresponding to branches of the same parent node

in the scenario tree, are equal. This is because only one control input uk = v0

can be injected into the plant at tk, irrespective of how dk evolves. In other

words, one cannot anticipate how the state trajectory is going to evolve from a

particular node before a control decision is taken at the node. In Figure 1 for

instance, v1
0 = v2

0 and v1
1 = v2

1 are NACs (however v1
1 and v4

1, for example, are

not coupled by non-anticipativity because their parent nodes are different). Note

that the number of NACs grows exponentially with the number of scenarios.
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Figure 2: Robust horizon assumption: scenario tree with nd = 1 and Nr = 2.
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It must be noted that in ideal multistage NMPC, the scenario tree grows

exponentially not only with the length of the robust horizon, but also with the

number of uncertain parameters. Hence, for complex systems with multiple

uncertain parameters, it is common to assume a very small robust horizon (for

example Nr = 1) to keep the optimization problem tractable. In contrast, as will

be discussed in Section 3, the scenario tree in the proposed sensitivity-assisted

multistage NMPC does not scale exponentially with the number of uncertain

parameters, allowing for computations with longer robust horizons.

2.3. NLP sensitivity

Because Problem (4) is parametric in its uncertainty dk, we investigate the

sensitivity properties of (4) with respect to dk by rewriting this problem in the

more compact form:

min
x

F (x; p)

s.t. c(x; p) = 0

x ≥ 0

(5)

where x are all the variables in (4), and p are all the uncertain parameters

d of (4). The solution of (5) is given by a KKT point, which satisfies the

Karush-Kuhn-Tucker conditions for (5):

Definition 1. (KKT, see [27]) KKT conditions for Problem (5) are given by:

∇F (x∗) +∇c(x∗)λ− ν = 0

c(x∗) = 0

0 ≤ ν ⊥ x∗ ≥ 0

(6)

for some multipliers (λ, ν), where x∗ is a KKT point. We also define L(x, λ, υ) =

F (x) + λT c(x)− νTx as the Lagrangian function of (5).

A constraint qualification (CQ) is required so that a KKT point is necessary

for a local minimizer of (5) [27]. For Problem (5) the following CQs are widely

invoked:
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Definition 2. (LICQ, [27]) The linear independence constraint qualification

(LICQ) holds at x∗ when the gradient vectors

∇c(x∗; p) and ∇x∗j ; j ∈ J where J = {j|x∗j = 0} (7)

are linearly independent. LICQ also implies that the multipliers λ, ν are unique.

Further, the KKT point is a local minimum if the following sufficient second

order conditions apply.

Definition 3. (SSOSC, [32]) The KKT point with multipliers λ and ν is a

strict local optimum if there exists some ε > 0 and the following strong second

order sufficient conditions (SSOSC) hold at x∗:

qT∇xxL(x∗, λ, ν; p)q ≥ ε > 0 for all q 6= 0 (8)

such that

∇ci(x∗; p)T q = 0, i = 1, .., nc

qj = 0, for νj ≥ ε > 0, j ∈ J.
(9)

Finally, for active constraints sets we give the following definition:

Definition 4. (Strict Complementarity, [27]) At a KKT point of (5) (x∗, λ, ν),

the strict complementarity condition (SC) is defined by νj + x∗j > 0 for each

j ∈ J .

To guarantee differentiability of x∗(p) with respect to p, we require that LICQ,

SC and SSOSC hold at the KKT point [27].

The IPOPT algorithm substitutes the inequality constraints in (5) with a

barrier function in the objective and solves a sequence of problems, indexed by

m with limm→∞ µm → 0:

min
x

F (x; p)− µm
nx∑

i=1

ln(xi)

s.t. c(x; p) = 0

(10)

At p = p0 and with µm → 0, the solutions of (10) approach the solution of

(5), x∗ = x(p0). Moreover, the solution x(p)∗ of (10) changes as parameter p is

perturbed from p = p0 to p = p1 with the following properties:
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• s∗(p0) is an isolated local minimizer of (5) at p0 and the associated La-

grange multipliers are unique.

• For p in a neighborhood of p0 there exists a unique, continuous and differ-

entiable function s∗(p) which is a local minimizer satisfying SSOSC and

LICQ for (5) at p.

• There exists a positive Lipschitz constant LS such that |s∗(p)− s∗(p0)| ≤
LS |p− p0| where |.| is the Euclidian norm.

• There exists a positive Lipschitz constant LJ such that the optimal cost

values F (p) and F (p0) satisfy |F (p)− F (p0)| ≤ LJ |p− p0|.

For a negligibly small µ > 0, the Lagrangian of (10) can be denoted as:

L(x, λ, ν; p0) := F (x; p0) + λT c(x; p0)− νTx (11)

and the KKT conditions of (10) at p0 are:

∇xL(x∗, λ∗, υ∗; p0) = ∇xF (x∗; p0) +∇xc(x∗; p0)λ∗ − υ∗ = 0

c(x∗; p0) = 0

X∗V ∗e = µe

(12)

where V = diag(υ), X = diag(x), and eT = [1, .., 1]. The primal-dual solution

vector is

s(µ, p) =




x(µ, p)

λ(µ, p)

υ(µ, p)




Applying the Implicit Function Theorem to differentiate (12) leads to the fol-

lowing linear system for sensitivity of s:

M(s(µ, p0))∆s = −N (s(µ, p0); p) (13)

where

M(s(µ, p0)) =




∇xxL(s(µ, p0)) ∇xc(s(µ, p0)) −I
∇xc(s(µ, p0))T 0 0

V (µ, p0) 0 X(µ, p0)
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is the KKT matrix, and

N (s(µ, p0); p)T =




∇xL(s(µ, p0); p)

c(x(µ, p0); p)

0




with s(0, p) = s(µ, p0)+∆s+O(||p−p0||2)+O(µ). When LICQ, SSOSC, and SC

are satisfied at s(µ, p0),M(s(µ, p0)) is nonsingular and the sensitivity steps ∆s

can be computed as ∆s = −M(s(µ, p0))−1N (s(µ, p0); p) using an inexpensive

backsolve if the factorized form of M(s(µ, p0)) is available. The approximate

solution at p can be calculated as s̃(p) = s∗(µ, p0) + ∆s. The most expensive

step in the NLP algorithm is to formulate and factorize the KKT matrix. The

main advantage of calculating the sensitivity step with (13) is that we avoid the

expensive solution of problem (5) at p, which is crucial in the implementation

of NMPC.

2.4. Implication of soft constraints

To extend the discussion to the notion of relaxed inequality (soft) constraints,

consider the following definitions:

Definition 5. (MFCQ, [27]) For Problem (5), the Mangasarian-Fromovitz con-

straint qualification (MFCQ) holds at the optimal point x∗(p) if and only if

• ∇c(x∗; p) is linearly independent and the singular values of ∇c(x∗; p) are

bounded away from zero.

• There exists a vector q such that

∇c(x∗; p)T q = 0, qj > 0 j ∈ J. (14)

MFCQ implies that the set of KKT multipliers is a compact convex polytope

[7].

Definition 6. (GSSOSC, [30]) The generalized strong second order sufficient

condition (GSSOSC) holds at x∗ when the SSOSC holds for all KKT multipliers

(λ, ν) that satisfy the KKT conditions of (5).
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MFCQ and GSSOSC are the weakest conditions under which a perturbed

solution of (5) is locally unique [14] and Lipschitz continuity of x∗(p) with

respect to p can be guaranteed.

We now relax the inequalities in (5) with penalty variables r to form:

min
x

F (x; p) +M(rT e)

s.t. c(x; p) = 0

x+ r ≥ 0

r ≥ 0

(15)

where M is a penalty weight and eT = [1, 1, . . . , 1]. Note that the inequality

constraints are always feasible, and since the equality constraints in (15) are the

discrete dynamic equations and NACs in (4), these constraints have (forward)

solutions for all inputs and initial conditions in their domains, and the gradients

of the equality constraints therefore contain a nonsingular basis matrix and

are linearly independent [10]. Moreover, with the relaxation of the inequality

constraints, it is straightforward to show that the MFCQ always holds at the

solution of (15).

Finally, by adding the quadratic term

‖x− x∗‖2W (16)

to the objective in (15), where W is a positive definite weighting matrix, so-

lutions of the KKT conditions of (15) are unchanged and (x∗, λ, ν) remains a

KKT point. Moreover, by defining matrix Z as a basis of the nullspace of active

constraint gradients (in Definition 3) and choosing W , with sufficiently large

eigenvalues for ZTWZ, then SSOSC and GSSOSC can always be satisfied at x∗

(in fact, such a term is automatically added in the IPOPT solver as part of its

regularization strategy). As a result, the Lipschitz continuity property holds for

all x∗(p) and F (x∗(p)) with respect to all input parameters p, and the feasibility

of problem (15) always holds for an appropriate penalty variable r.

With these properties in mind, the ideal multistage NMPC problem can be
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reformulated by relaxing the bounds on the state variables:

Jms ≡ min
zc
l ,v

c
l

∑

c∈C
ωc

(
φ(zcN ,d

c
N−1) +

N−1∑

l=0

ϕ(zcl ,v
c
l ,d

c
l )
)

+

∑

c∈C
ωc

(
Mφe

T rcN +

N−1∑

l=0

MϕeT rcl

)
(17a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

c
l ) l = 0, ..., N − 1 (17b)

zc0 = xk (17c)

− rcl + XL ≤ zcl ≤ XU + rcl ; rcl ≥ 0 (17d)

− rNl + XLf ≤ zcN ≤ XUf + rcN ; rcN ≥ 0 (17e)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (17f)

vcl ∈ U,dcl ∈ D (17g)

dcl−1 = dcl l = Nr, . . . N − 1 (17h)

∀c, c′ ∈ C

where Mφ and Mϕ are large weights for the penalty terms, and eT = [1, 1, . . . , 1].

The bound constraints on the states are softened with penalty variables r ∈ Rnx

as shown in (17d) and (17e), and the corresponding penalty terms are added to

the objective function Jms in (17a).

3. Sensitivity-assisted multistage NMPC

For an efficient implementation of a multistage NMPC controller, the sce-

nario tree should be suitably constructed to represent the uncertainty in the

system. The limitation in ideal multistage NMPC is the exponential scaling of

scenarios with the number of uncertain parameters, which creates a bottleneck

for computational tractability. The main idea of sensitivity-assisted multistage

NMPC (samNMPC) is to emulate the performance of ideal multistage NMPC

with a reduced scenario tree.

Out of the {max, nominal, min} realizations of an uncertain parameter, we
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find the “worst-case” realization that is most likely to cause violation of an in-

equality constraint [9]. The combination of these worst-case realizations of each

uncertain parameter forms a “critical” scenario for that inequality constraint.

Going through all the inequality constraints, we form the set of critical scenar-

ios that is used to build the scenario tree in samNMPC. Moreover, to account

for the “noncritical” scenarios , we approximate them by using their associated

NLP-sensitivity steps in the stage and terminal costs in the objective function.

We first present the problem formulation of samNMPC, followed by the discus-

sion of how to get the critical scenarios and the sensitivity steps for noncritical

scenarios. The samNMPC formulation, with soft constraints, is:

Jsam ≡ min
zc
l ,v

c
l

c∈Ĉ∪{0}

∑

c∈Ĉ∪{0}

ωc

(
φ(zcN ,d

c
N−1) +

N−1∑

l=0

ϕ(zcl ,v
c
l ,d

c
l )
)

+

∑

c∈Ĉ∪{0}

ωc

(
Mφe

T rcN +

N−1∑

l=0

MϕeT rcl

)
+

∑

c∈C̄

ωcφ(z0
N + ∆zcN ,d

c
N−1) +

∑

c∈C̄

ωc

N−1∑

l=0

ϕ(z0
l + ∆zcl ,v

0
l + ∆vcl ,d

c
l ) (18a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

c
l ) l = 0, ..., N − 1 (18b)

zc0 = xk (18c)

− rcl + XL ≤ zcl ≤ XU + rcl l = 0, ..., N − 1; rcl ≥ 0 (18d)

− rNl + XLf ≤ zcN ≤ XUf + rcN ; rcN ≥ 0 (18e)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (18f)

vcl ∈ U,dcl ∈ D (18g)

dcl−1 = dcl l = Nr, . . . N − 1 (18h)

∀c, c′ ∈ Ĉ ∪ {0}

where Ĉ and C̄ are the critical and noncritical scenario sets, respectively. The
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scenario {0} represents the nominal scenario. The decision variables in the prob-

lem are the state and control variables associated with only the nominal and

critical scenarios, rendering a smaller problem formulation than (17). The equal-

ity and inequality constraints (18b) – (18h) are imposed only for the nominal

and critical scenarios. As shown in (18a), the noncritical scenarios are approxi-

mated with their NLP-sensitivity steps ∆zc and ∆vc in the objective function,

and the soft constraints on state bounds are penalized with appropriate large

weights.

Problem (18) is a partially linearized version of (17), since the noncritical

scenarios appear only as linear sensitivity steps in the objective function. The

samNMPC formulation thus optimizes an expected performance over critical

and noncritical scenarios. This is much like the ideal multistage NMPC formu-

lation, where the expected cost is the weighted sum of the costs over all scenarios.

The samNMPC thus provides an approximation of the ideal multistage NMPC

with a reduced problem size.

3.1. Selecting critical scenarios

Critical scenarios are composed of worst-case uncertainty realizations that

are most likely to violate inequality constraints (typically state bounds zl ∈ X).

Let g(zl,vl,dl) ≤ 0 represent the vector of inequality constraints in the NMPC

formulation (18) at tk, where g : Rnx × Rnu × Rnd → Rng . If each individual

inequality is indexed as gj(·, ·, ·) ≤ 0, the critical scenarios can be found by

solving the following optimization problem at tk with a fixed control trajectory

vl, for each inequality constraint with l = 0, . . . , N :

max
d′l

gj(zl,vl,dl) (19a)

s.t. zl′+1 = f(z′l,v
′
l,dl) l′ = 0, ..., l − 1 (19b)

z0 = xk (19c)

18



Problem (19) is solved around a reference trajectory (zl,vl)|ref , l = 0, . . . , N .

From (19) we observe that we have the implicit relationship that:

gj(zl,vl,dl) = gj(zl(dl′),vl,dl) = gj(dl′) ≤ 0, l′ ≤ l = 0, . . . N. (20)

Moreover, we assume that the gj model is strictly monotonic with respect to

dl, i.e. the sensitivities of inequality constraints g with respect to the uncertain

parameters dl do not change sign across the trajectory of the parametric solu-

tion of the process model. The solution of (19) can then be found by linearizing

process dynamics f and the inequality constraints g around the reference tra-

jectory.

We now concatenate the uncertain parameters and states, and define dT =

[dT0 ,d
T
1 , . . . ,d

T
Nr

] and zT = [zT0 , z
T
1 , . . . , z

T
N ]. To find the sensitivities

dg

dd
∈

Rng×ndNr around the reference trajectory, we can then write:

dg

dd

T

= ∇zg
T (
dz

dd
)T +∇dgT (21)

Note that if the inequality constraints represent the state bounds zl ∈ X, then

∇dg = 0, and ∇zg = 1 or −1, depending on whether it’s an upper or lower

bound.

To compute the sensitivity
dz

dd
, let c(zl,dl) = 0 represent the equality con-

straints in (19), with fixed vl. Differentiation by the Implicit Function Theorem

yields:

∇zc
T (dz) +∇dcT (dd) = 0

dz

dd

T

= −(∇zc
−T )∇dcT . (22)

Substituting in (21) leads to:

dg

dd

T

= −∇zg
T (∇zc

−T )∇dcT +∇dgT (23)

Here we choose the solution of the standard NMPC problem solved at tk as the

reference trajectory. By doing so, the terms ∇zc and ∇dc are obtained from the

Jacobian matrix at the optimal solution obtained by solving the standard NMPC

problem. This allows for the efficient computation of critical scenarios even for
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longer robust horizons, since ∇dc can be readily obtained by parametrizing the

standard NMPC problem in the uncertain parameters (dl)l=1,··· ,Nr
.

We further assume that the worst-case realization of the uncertain parameter

(dm)m=1,··· ,nd
is either dmax

m or dmin
m . Combining this assumption with strict

monotonicity, the analytical solution of (19) can be stated for l ∈ Nr and

m = 1, · · · , nd:

dwcl,m = arg maxdl∈D
dg

dd

T

d

=





dminl,m , if
d(gj)

d(dl,m)
|(zl,vl)|ref ≤ 0

dmaxl,m , otherwise

(24)

The assumption that worst-case realizations of the uncertainty always are

on the extremes follows directly from the strict monotonicity assumption. It

certainly holds when the dynamics and input disturbances are linear in the

plant, but may be violated for processes that are nonlinear. Finding the worst-

case realizations in the general nonlinear case requires the solution of a NP-hard

optimization problem [2]. As such, it may not be possible to compute these

worst-case problems in the background except for smaller systems.

Nevertheless, the monotonicity assumption leads to a straightforward com-

putation of the critical scenarios Ĉ in the general framework of our samNMPC

algorithm, and we only need to apply (24) for the inequality constraints that are

active or are close to the state trajectory. Indeed, if an element | d(gj)

d(dl,m)
| ≤ ε,

i.e. the constraint gj is insensitive to the uncertain parameter dl,m, then the

corresponding critical scenarios can be ignored. Thus, the number of critical

scenarios is bounded by the number of active inequality constraints, which in

practice is much smaller than the fully branched scenario tree. The number of

critical scenarios does not scale with the number of uncertain parameters, since

only the worst-case realizations of the uncertainties are relevant.

At each iteration of the samNMPC algorithm, a standard NMPC problem

is solved to get the reference trajectory (zl,vl)|ref and the critical scenarios
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are updated dynamically. An illustration of a reduced scenario tree is shown in

Figure 3, where there are only 3 critical scenarios (in addition to the nominal

scenario), as opposed to 9 scenarios in a fully branched scenario tree. The

constraints corresponding to the critical scenarios are included in the final NLP

of samNMPC, as shown in (18).

3.2. Computing sensitivity steps for noncritical scenarios

To get the sensitivity steps for the noncritical scenarios, we start with the

scenario decoupled KKT matrix of the ideal multistage formulation (4) (follow-

ing the notation of Section 2.3):




W0 A0 Ñ0

W1 A1 Ñ1

. . .
. . .

...

Wnc Anc Ñnc

AT
0

AT
1

. . .

AT
nc

ÑT
0 ÑT

1 . . . ÑT
nc




(25)

where |C| is the number of scenarios and nc = |C| − 1 is the last index of the

scenarios. Wc = ∇xcxcL(x, λ, ν)+X−1
c Vc is the augmented Hessian of the entire

problem, with Xc = diag(xc) and Vc = diag(νc). The Jacobian matrix of each

scenario is decomposed into two parts, with respect to the non-NAC constraints

Ac, and with respect to the NAC constraints Ñc:

Ac = ∇xcci(x) ∀i ∈ M̄ (26a)

Ñc = ∇xccj(x) ∀j ∈ M̂ (26b)

where M̄ and M̂ are the index sets for the constraints representing the non-NAC

equalities and the NACs, respectively.
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Figure 3: Example of a reduced scenario tree with nd = 1 and Nr = 2. The nominal and

critical scenarios are shown with the thick lines.
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Rearranging the KKT matrix (25):



W0 A0 Ñ0

AT
0 0

W1 A1 Ñ1

AT
1 0

. . .
...

. . .
...

Wnc
Anc

Ñnc

AT
nc

0

ÑT
0 0 ÑT

1 0 . . . . . . ÑT
nc

0




(27)

the linear system (13) can be rewritten in the following block-bordered-diagonal

(BBD) form:



K0 N0

K1 N1

. . .
...

Knc Nnc

NT
0 NT

1 . . . NT
nc







∆s0

∆s1

...

∆snc

γ




= −




r0

r1

...

rnc

0




(28)

where Kc =


 Wc Ac

AT
c 0


, ∆sc =


 ∆xc

∆λc


, rc =


 ∇xcL(xc, dc)

c(xc, dc)


. The

primal variables associated with the scenario c in the multistage formulation

(4) are xc = [zc0,v
c
0, z

c
1,v

c
1, · · · , zcN−1,v

c
N−1, z

c
N ]T and λc are the dual variables

associated with scenario c.

In (28), Nc represents the NAC constraint that contains scenario c, where

Nc = [Ñc, 0]T ∈ Rn+mc × RmNAC∗nu and n and mc are the number of primal

variables and constraints, respectively, in each scenario, and mNAC and nu are

the number of NAC constraints and the number of control variables, respectively.

Nc and Ñc can be generated for robust scenarios of any length, and are sparse

with nonzero elements of 1’s and −1’s that correspond only to control variables

for the NAC. Additionally, γ in (28) is the multiplier associated with NAC (4d)

with the dimension γ ∈ RmNAC∗nu .
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Solving the linear system (28) for the full multistage problem is computation-

ally expensive for a large number of scenarios. We seek an approximate solution

of (28) that is fast to compute. To be specific, we solve the standard NMPC

formulation (2) for the nominal scenario to get the KKT matrix K0 of the nom-

inal scenario, and since Kc = K0 + (‖dc − d0‖) we apply the approximation

Kc = K0, ∀c ∈ C in (28). Thus, assembling the full KKT matrix on the LHS

of (28) only requires the solution of the standard NMPC problem, as the NAC

matrices Nc ∀c ∈ C always stay the same. The solution of the approximated

linear system (28) gives the sensitivity steps for all scenarios ∆sc, ∀c ∈ C. We

expect an O(‖∆d‖) error resulting from this approximation, as the sensitivities

evaluated at the standard NMPC solution differ from the full multistage NMPC

solution by O(‖∆d‖), where ‖∆d‖ = maxc‖dc−d0‖ (see Section 4 for details).

Note that since we solve for the sensitivities of the standard NMPC problem

to evaluate the critical scenarios anyway, we have access to the most updated

K0 to be used in (28) at every time step. For especially large problems, an

alternative may be to fix K0 corresponding to the solution of a steady state

problem, and compute all the sensitivities offline to be reused at every time step.

However, this ignores the model disturbance dynamics and may add another

layer of inaccuracy.

The Schur complement decomposition can also be used to solve the linear

system (28). For the KKT matrix in (28), the Schur complement is formed as:

S =
∑

c∈C
(NT

c K−1
c Nc) (29)

The NAC multipliers γ can then be obtained by solving:

S γ = −
∑

c∈C
(NT

c K−1
c rc) (30)

Finally the sensitivity steps for all scenarios ∆sc can be computed by solving:

Kc∆sc = −(rc + Ncγ), ∀c ∈ C (31)

Note that for longer robust horizons, both the size and number of Nc matrices

increases exponentially, and the summation of the matrix products in the RHS
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of (29) and (30) across all scenarios, significantly adds to the computational

cost. To fully realize the advantage of using Schur complements, these matrix

multiplications can be parallelized. The sensitivity steps in (31) can also be

computed in parallel. Moreover, the approximation Kc = K0 ∀c ∈ C helps in

speeding up the computations, since we can store the factorization of K0.

After identifying the critical and noncritical scenario sets as explained in

Section 3.1, the sensitivity steps of the noncritical scenarios c ∈ C̄ are included in

the objective function of the samNMPC formulation (18). Note that the NACs

of the noncritical scenarios are still satisfied in the approximated linear system

(28), and are thus implicitly taken into account in the samNMPC formulation

(18).

3.3. Overall samNMPC algorithm and implementation

The overall samNMPC strategy can be summarized as shown in Algorithm

1.

Algorithm 1: sensitivity-assisted Multistage NMPC

Given: {max, nominal, min} of all uncertain parameters.

for k = 1, 2, · · · do
Get the current state of the plant xk.

Solve the standard NMPC problem (2) for the nominal uncertainty

d0
k, and get the KKT matrix K0 at the optimal solution.

For critical scenarios: Extract ∇zc and ∇dc from K0, and solve

(23) to form the critical scenario set Ĉ.

For noncritical scenarios: Solve the linear system (28) with the

approximation Kc = K0 ∀c ∈ C, and get the sensitivity steps for

the noncritical scenarios c ∈ C̄.

Solve samNMPC formulation (18), where constraints are imposed

for critical scenarios and the noncritical scenarios are

approximated with their sensitivity steps in the objective function.

Set uk = vc0, c ∈ Ĉ ∪ {0} and inject into the plant.

end
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Our procedure models the same category of feedback information and its

impact on the controller as with ideal multistage MPC. This is done by including

the predicted state and control trajectories for the critical scenarios, i.e., worst-

case uncertainty realizations, as well as sensitivity approximations for predicted

state and control trajectories for all of the remaining scenarios. As a result,

all of the scenarios considered in ideal multistage MPC are also considered

with samNMPC. Also note that the samNMPC solution differs from the ideal

multistage solution by O(‖∆d‖), as will be shown in Section 4.

The samNMPC algorithm is implemented using the software JuMP (version

0.19.2) [6], which provides a convenient framework for mathematical optimiza-

tion for NLPs. The JuMP tool works within the framework of the Julia (version

1.0.3) programming language [1]. The NLP solver used within this framework

is IPOPT, which uses interior-point algorithms to solve NLPs. The MA57 linear

solver from the Harwell Subroutine Library [34] is used within IPOPT. All com-

putational experiments are carried out with an Intel i7-7600 Quad Core CPU

at 2.8 GHz and 16GB RAM.

JuMP allows for directly querying derivative information at the optimal so-

lution, and thus can be effectively used to construct K0. The NAC-associated

sparse matrices Nc ∀c ∈ C are generated automatically for the given number of

control variables and the length of the robust horizon. The resulting approxi-

mate linear system (28) is also solved using MA57.

4. Stability properties

Previous studies [17, 20, 21, 23] have analyzed the recursive feasibility and

stability properties of ideal multistage NMPC. However, these studies consider

only the fully expanded scenario tree (Nr = N). In this section, we extend these

concepts for both ideal multistage and samNMPC, for the case where (Nr < N).

We first introduce fundamental concepts and assumptions of stability properties,

and then proceed to dicuss the recursive feasibility and input-to-state practical

stability (ISpS) for both the ideal multistage and samNMPC.

26



4.1. Preliminaries

We start with some fundamental concepts needed for the stability analysis

of ideal multistage and samNMPC.

Definition 7. A continuous function α(·) : R → R is a K function if α(0) =

0, α(s) > 0,∀s > 0 and it is strictly increasing. A continuous function β(·, ·) :

R × Z → R is a KL function if β(s, k) is a K function in s for any k > 0 and

for each s > 0, β(s, ·) is decreasing and β(s, k)→ 0 as k →∞.

Definition 8. (Lyapunov function) A function V (·) is called a Lyapunov func-

tion for system (18b) if there exist an invariant set X, a feedback control law

h(x) and K functions α1, α2 and α3 such that, ∀x ∈ X

V (x) ≥ α1(|x|) (32a)

V (x) ≤ α2(|x|) (32b)

∆V (x) = V (f(x,h(x)))− V (x) ≤ −α3(|x|) (32c)

Definition 9. (Control invariant set) [31] A set A ⊆ X is a control (or positive)

invariant set for system x+ = f(x,u) if for all x ∈ A, there exists u ∈ U such

that f(x,u) ∈ A .

Definition 10. (Robustly Positive Invariant) A set X ⊆ X is a robustly positive

invariant (RPI) set for system x+ = f(x,u,d) if x+ ∈ X holds for ∀x ∈ X ,

and ∀d ∈ D.

Definition 11. (Input-to-State Practical Stability) The system x+ = f(x,u,d)

is ISpS in X if there exists a KL function β, a K function γ and c ≥ 0 such

that for all d ∈ D,

|xk| ≤ β(|x0|, k) + γ(|∆d|) + c, ∀ k ≥ 0, ∀x0 ∈ X (33)

Definition 12. (ISpS-Lyapunov function) [29] A function V (·) is called an

ISpS-Lyapunov function for system x+ = f(x,u,d) if there exist an RPI set
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X , K functions α1, α2, α3 and σ, and c0, c1 ≥ 0 such that, ∀x ∈ X and ∀d ∈ D,

V (x) ≥ α1(|x|) (34a)

V (x) ≤ α2(|x|) + c0 (34b)

∆V (x,d) = V (f̂(x,h(x),d))− V (x)

≤ −α3(|x|) + σ(|∆d|) + c1 (34c)

where h(x) is the feedback control law.

To facilitate the stability discussion, we consider some reformulations to the

NMPC problems proposed so far. First, we consider the nominal case of the

ideal multistage NMPC problem (17) where dcl = d0
l ∀c ∈ C:

Jms,0 ≡ min
zc
l ,v

c
l

∑

c∈C
ωc

(
φ(zcN ,d

0
N−1) +

N−1∑

l=0

ϕ(zcl ,v
c
l ,d

0
l )
)

+

∑

c∈C
ωc

(
Mφe

T rcN +

N−1∑

l=0

MϕeT rcl

)
(35a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

0
l ) l = 0, ..., N − 1 (35b)

zc0 = xk (35c)

− rcl + XL ≤ zcl ≤ XU + rcl ; rcl ≥ 0 (35d)

− rNl + XLf ≤ zcN ≤ XUf + rcN ; rcN ≥ 0 (35e)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (35f)

vcl ∈ U,d0
l ∈ D (35g)

d0
l−1 = d0

l l = Nr, . . . N − 1 (35h)

∀c, c′ ∈ C

We also consider the following equivalent formulation of the samNMPC prob-

lem (18):
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Jsam,eq ≡ min
zc
l ,v

c
l

c∈Ĉ∪{0}

∑

c∈Ĉ∪{0}

ωc

(
φ(zcN ,d

c
N−1) +

N−1∑

l=0

ϕ(zcl ,v
c
l ,d

c
l )
)

+

∑

c∈Ĉ∪{0}

ωc

(
Mφe

T rcN +

N−1∑

l=0

MϕeT rcl

)
+

∑

c∈C̄

ωc

(
φ(z0

N ,d
0
N−1) +O(‖dcN−1 − d0

N−1‖)
)

+

∑

c∈C̄

ωc

N−1∑

l=0

(
ϕ(z0

l ,v
0
l ,d

0
l ) +O(‖dcl − d0

l ‖)
)

(36a)

s.t. ∀c, c′ ∈ Ĉ ∪ {0} :

zcl+1 = f(zcl ,v
c
l ,d

c
l ) l = 0, . . . , N − 1 (36b)

zc0 = xk (36c)

− rcl + XL ≤ zcl ≤ XU + rcl ; rcl ≥ 0 (36d)

− rNl + XLf ≤ zcN ≤ XUf + rcN ; rcN ≥ 0 (36e)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (36f)

vcl ∈ U,dcl ∈ D (36g)

dcl−1 = dcl l = Nr, . . . , N − 1 (36h)

∀c ∈ C̄ :

zcl+1 = f(z0
l ,v

0
l ,d

0
l ) +O(‖dcl − d0

l ‖) l = 0, . . . , N − 1 (36i)

where the sensitivity terms in (18a) are represented as O(‖∆d‖) approximations

to the nominal cost in (36a). Similarly, the system dynamics (36i) for the

noncritical scenarios are represented as O(‖∆d‖) approximations to dynamics

of the nominal scenario.

4.2. Recursive feasibility for ideal multistage and samNMPC

In multistage NMPC, the true realization of the uncertainty at time step k

can take the state to any of the branched scenarios at time step k + 1 (Figure

29



2). For recursive feasibility, it is necessary to map the new scenario tree at time

step k + 1 to the one at time step k. The mapping has to be such that the

probability of any particular scenario ωc remains the same across the run time

of the controller, i.e. ωck = ωck+1.

To this end, we define ωjl the probability of the state evolving from zl to

zl+1 = f(zl,vl,d
j
l ), where j ∈M, and l = 0, 1, . . . , N − 1. Note that

∑

j∈M
ωjl = 1, ∀l (37)

The probability of each scenario c ∈ C is then calculated as:

ωc =

N−1∏

l=0

ωjll (38)

where the scenario c is represented as c = {j0, j1, . . . , jN−1}. We assume that

ωjl = ωjl′ ∀l, l′ ∈ {0, 1, . . . , N − 1}, so that ωc is the same for all time steps

k. Importantly, this is the case even if we have a truncated scenario tree with

Nr < N . Note, however, that this does not necessarily imply ωc = ωc
′ ∀c, c′ ∈

C.

Assumption 1. (Recursive feasibility assumptions of ideal multistage and sam-

NMPC (Nr < N), adapted from [23])

• (Lipschitz continuity) For all x ∈ X and u ∈ U the model dynamics and

both stage and terminal costs are twice differentiable and Lipschitz continu-

ous in all arguments, and they satisfy ∀j ∈M, f(0, 0,dj) = 0, ϕ(0, 0,dj) =

0, and φ(0,dj) = 0 where M is as defined in (3).

• (Constraint set) The relaxations on the state bounds X and the terminal

region Xf ⊆ X are closed, and the control set U is compact. All sets

contain the origin.

• (Common terminal region) For all j ∈M, ∃ a common Xf that is control

invariant for xk+1 = f(xk,uk,d
j
k) and uk ∈ U, ∀xk ∈ Xf .

From these assumptions we can state the following result:
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Theorem 1. (Recursive feasibility of ideal multistage and samNMPC) Suppose

Assumptions 1 hold, then the soft-constrained problems (17) and (18) with a

truncated scenario tree (Nr < N) are recursively feasible.

Proof. Since MFCQ and GSSOSC hold for the relaxed problems (17) and (18),

Lipschitz continuity holds at the optimal solutions of these problems for all dcl

(see Section 2.4). Considering (17), it follows from NLP sensitivity that:

‖r∗(dc)− r∗(dc
′
)‖ ≤ LR‖dc − dc

′‖ ∀c, c′ ∈ C (39)

where LR is a positive Lipschitz constant.

Define ∆d as the maximum difference between any two scenarios across the

prediction horizon N :

‖∆d‖ = max
dc,dc′

∀c,c′∈C

(
max

l∈{0,...,N−1}
‖dcl − dc

′

l ‖
)

(40)

This means that:

r∗(dc)− r∗(dc
′
) = O(‖∆d‖) (41)

Now, since the system evolves to a different branch of the scenario tree at

each time step, the optimal value of r from time step k to k + 1 differs by

O(‖∆d‖). Thus, irrespective of the evolution of the scenario tree (and even

with Nr < N), a positive, bounded r can always be chosen in order to satisfy

(17d) – (17e). In the case of samNMPC, similar arguments can be made for

(18d) – (18e), where only the critical and nominal scenarios are considered i.e.

∀c, c′ ∈ Ĉ ∪ {0}.
Thus, ideal multistage NMPC (17) and samNMPC (18) are recursively fea-

sible. �

4.3. ISpS for ideal multistage NMPC

Next, we state the ISpS assumptions of ideal multistage NMPC and show

that it is ISpS-stable.

Assumption 2. (ISpS assumptions of ideal multistage NMPC)
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• For each parametric disturbance j ∈ M, there exists a local control law

u = hf (x) defined on Xjf such that f(x,hf (x),dj) ∈ Xjf ,∀x ∈ Xjf , and

φ(f(x,hf (x),dj),dj)− φ(x,dj) ≤ −ϕ(x,hf (x),dj),∀x ∈ Xjf .

• For each parametric disturbance j ∈M, the stage cost ϕ(x,u,dj) satisfies

αp(|x|) ≤ ϕ(x,u,dj) ≤ αq(|x|) + σq(|∆d|) where αp(·), αq(·) and σq(·)
are K functions.

From these assumptions we have the following result:

Theorem 2. (adapted from [11, 22]) Let X be a robustly invariant set for sys-

tem x+ = f(x,u,d) that contains the origin, with Assumptions 1 and 2 satisfied,

then the resulting system is ISpS in X .

Proof. Consider the nominal case of the ideal multistage NMPC formulation as

shown in (35). Here, since every scenario in ideal multistage NMPC becomes the

nominal scenario, this problem has nominal (asymptotic) stability (cite paper).

Let the optimal control sequence obtained from (35) for the nominal scenario be

{vc0,vc1, ...,vcN−1,hf (zN )}. Based on Theorem 1, recursive feasibility is guaran-

teed for (35), and so this control sequence is feasible for the same problem with

an extended prediction horizon N + 1.

By applying this suboptimal solution to the extended horizon formulation,

and writing the corresponding value function as J̃N+1(xk), the following is valid

from Assumption 2:

J̃N+1(xk)− JN (xk)

=
∑

c∈CN+1

ωc(φ(zcN+1,d
0
N ) + ϕ(zcN ,v

c
N ,d

0
N )− φ(zcN ,v

c
N ))

≤ 0 (42)

Define E(JN (xk,uk)) =
∑
j∈M ωjJN (f(xk,uk,d

0
k)) as the weighted optimal

value functions to |M| individual subtree problems where uk is implemented at
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xk. We can then write:

E(JN (xk,uk)) +
∑

j∈M
ωjϕ(xk,uk,d

0
k) =

∑

j∈M
ωj(JN (f(xk,uk,d

0
k)) + ϕ(xk,uk,d

0
k))

≤ J̃N+1(xk)

≤ JN (xk) (43)

where the first inequality follows because E(JN (xk,uk)) is composed of optimal

solutions to the same subtree problems appearing in J̃N+1(xk,uk) only differing

in the current stage at xk; and the second inequality follows from (42).

!!! From this point on, ignore rest of the section - needs further rewriting.

Next, we consider the ideal multistage NMPC formulation (17) and show

that the difference between the value function of (17) for a realized xk+1 (JmsN (xk+1))

and a weighted value function of the nominal case (35) is bounded:

JmsN (xk+1)− E(JN (xk,uk)) =
∑

j∈M
ωj
(
JN (xk+1)− JN (f(xk,uk,d

0
k))
)

≤
∑

j∈M
ωjLJ |f(xk,uk, d̂k)− f(xk,uk,d

0
k)|

≤
∑

j∈M
ωjLJLf |dck − d0

k|

≤ σ0(|dck|) + cd (44)

where cd =
∑
j ωjLJLf |d0

k|. Assumption 2 along with NLP sensitivity corrob-

orates the first inequality, and Assumption 1 satisfies the second inequality.

Finally, from the above relations we can show the descent property:

JmsN (xk+1)− JN (xk)

= JmsN (xk+1)− E(JN (xk,uk)) + E(JN (xk,uk))− JN (xk)

≤ σ0(|dck|) + cd −
∑

j∈M
ωjϕ(xk,uk,d

0
k)

≤ −α4(|xk|) + σ0(|dck|) + cd (45)

The result proves that ideal multistage NMPC is ISpS-stable. �
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4.4. ISpS for samNMPC

To extend the stability discussions to samNMPC, we compare the formu-

lations of the optimization problems for standard (2), ideal multistage (4) and

samNMPC (18), respectively. Since MFCQ and GSSOSC are satisfied for (2),

(4), (18), Lipschitz continuity holds for Jnom(d), Jms(d) and Jsam(d). Note that

the recursive feasibility properties of samNMPC are the same as those of ideal

multistage NMPC, and are valid for fully-expanded scenario trees (Nr = N).

Comparing (2) and (4), we can replicate (2) |C| times and impose nonantic-

ipativity constraints trivially. By Lipschitz continuity we note that

| Jms(d)−
∑

c∈C
ωc Jnom| ≤ LJ‖∆d‖ (46)

where LJ > 0 is a suitably large Lipschitz constant and ‖∆d‖ = maxc∈C,l ‖dcl −
d0
l ‖.

Comparing (2) and (18), we again replicate (2) |C| times and note that

nonanticipativity holds. We also break up Jsam = Ĵ + J̄ + ω0Jnom using C =

Ĉ ∪ C̄ ∪ {0} and the construction of (18).

For Ĉ and the solutions of (2) and (18), we note that:

Ĵ(d)−
∑

c∈Ĉ

ωc Jnom(d) =
∑

c∈Ĉ

ωc((φ(zcN ,d
c
N−1)− φ(z0

N ,d
0
N−1)

+

N−1∑

l=0

(ϕ(zcl ,v
c
l ,d

c
l )− ϕ(z0

l ,v
0
l ,d

0
l )))

= O(‖∆d̂‖). (47)

where ‖∆d̂‖ = maxc∈Ĉ,l ‖dcl − d0
l ‖.

For C̄ we note from the solution of (2) and its KKT sensitivity that

J̄(d)−
∑

c∈C̄

ωc Jnom(d) =
∑

c∈C̄

ωc((φ(z0
N + ∆zcN ,d

c
N−1)− φ(z0

N ,d
0
N−1)

+

N−1∑

l=0

(ϕ(z0
l + ∆zcl ,v

0
l + ∆vcl ,d

c
l )− ϕ(z0

l ,v
0
l ,d

0
l )))

= O(‖∆d‖). (48)
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If we further assume that the active sets do not change for d0
l → dcl , c ∈ C̄ ,

then we have
∑
c∈C(ωc Jnom(d))− J̄(d) = O(‖∆d‖2).

Writing

Jms − Jsam = (Jms −
∑

c∈C
ωc Jnom) + (

∑

c∈C
ωc Jnom − Jsam)

= (Jms −
∑

c∈C
ωc Jnom) + (

∑

c∈C
ωc Jnom − (J̄ + Ĵ + ω0Jnom))

(49)

Combining the above order results with (49) leads to:

|Jms − Jsam| ≤ LJ‖∆d‖. (50)

Thus, the solution of samNMPC (18) differs from the solution of ideal mul-

tistage NMPC (4) by an O(‖∆d‖) term, which we consider as noise, w ∈ W,

where W ⊂ Rnx is a bounded set. Now, since Jms is shown to be an ISpS-

Lyapunov function (Theorem 2), it follows from the above result that that Jsam

is also an ISpS-Lyapunov function, and consequently that samNMPC is ISpS-

stable. This result is stated formally in the following theorem, and the proof is

essentially the same as Theorem 5 in [39] 1.

Theorem 3. (Robust Stability of samNMPC) Under Assumptions 1 and 2 the

cost function Jsam obtained from the solution of (18) is an ISpS-Lyapunov func-

tion, and the resulting closed-loop system is ISpS stable.

1Theorem 5 in [39] shows ISpS-stability of ideal multistage NMPC under both parametric

uncertainty d and bounded noise w.
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5. Case Studies

5.1. CSTR example

We first consider the nonlinear benchmark CSTR problem [13], where the

dynamics are described by the following equations:

dcA
dt

=F (cA0 − cA)− k1cA − k3c
2
A (51a)

dcB
dt

=− FcB + k1cA − k2cB (51b)

dTR
dt

=F (Tin − TR) +
kWA

ρcpVR
(TK − TR)− k1cA∆HAB + k2cB∆HBC + k3c

2
A∆HAD

ρcp

(51c)

dTK
dt

=
1

mKcpK
(Q̇K + kWA(TR − TK)) (51d)

where the reaction rate ki follows the Arrhenius law, ki = k0,ie
−EA,i

R(TR+273.15) . The

state vector x = [cA, cB , TR, TK ]T , which are the concentration of A, concentra-

tion of B, the reactor temperature and jacket temperature, respectively. The

control input vector u = [F, Q̇K ]T , which are the inlet flow per reactor vol-

ume F = Vin/VR and the cooling rate Q̇K . Tables 1 and 2 show the model

parameters and bounds, respectively.

The control objective is the setpoint tracking for desired product concen-

tration cB . An operation period of 0.2h is considered, with the setpoint for

t < 0.1h being crefB = 0.5 mol/L, and for t ≥ 0.1h it is crefB = 0.7 mol/L. The

uncertain parameters in the system are EA,3 and cA0. The cost to be minimized

is:

ϕl = (cBl − cBrefl )2 + r1∆F 2
l + r2∆Q̇K (52)

where ∆Fl = Fl − Fl−1 and ∆Q̇Kl = Q̇Kl − Q̇Kl−1 are the difference between

consecutive control actions for the flow rate and cooling rate, respectively, and

r1 = 10−7 and r2 = 10−11 are the penalty parameters. The prediction horizon

is chosen to be N = 40 with each step time being 0.005h. The MPC algorithm

is thus implemented in 40 runs for the entire operation period of 0.2h.

The uncertainty range for EA,3 and cA0 both is ±10% of the nominal value.

In this case study, we consider that the uncertainty dk is time-variant. To be
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Table 1: CSTR - Model parameters.

Parameter Value Unit

k0,1 1.287 × 1012 1/h

k0,2 1.287 × 1012 1/h

k0,3 9.043 × 109 L/mol.h

EA,1/R 9758.3 K

EA,2/R 9758.3 K

EA,3/R 8560.0 K

∆HAB 4.2 kJ/mol

∆HBC -11.0 kJ/mol

∆HAD -41.85 kJ/mol

cp 3.01 kJ/kg.K

cpK 2.0 kJ/kg.K

ρ 0.9342 kg/L

A 0.215 m2

VR 10.0 L

Tin 130 kg

kW 4032 kJ/h.m2.K

mK 5.0 kg

cA0 5.1 mol/L

Table 2: CSTR - Initial conditions and bounds on states and inputs.

Variable Initial condition Minimum Maximum Unit

cA 0.8 0.1 5.0 mol/L

cB 0.5 0.1 5.0 mol/L

TR 134.14 50 140 °C

TK 134.0 50 180 °C

F 18.83 5 100 1/h

Q̇K -4495.7 -8500 0 kJ/h
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precise, we consider that the true realizations of EA,3 and cA0 take random

values from their corresponding {max, nominal, min} values. We consider the

robust horizons Nr = 1, 2, 3 to compare the standard, ideal multistage and

samNMPC algorithms. The results for Nr = 1, 2, 3 are shown in Figures 4, 5

and 6, respectively.

For each of EA,3 and cA0, there are 3 possible realizations of the uncertainty

- the number of branches per node in the scenario tree is thus 9. This corre-

sponds to 9 scenarios in the full tree for Nr = 1. The tracking performance

of the three NMPC schemes under uncertainty for Nr = 1 is shown in Figure

4. The ideal multistage and samNMPC schemes show similar performance in

tracking the setpoint of cB (shown in dashed blue line). Moreover, both schemes

show robust constraint satisfaction, respecting the upper bound of TR (shown

in dashed black line). On the other hand, standard NMPC shows poor track-

ing performance due to the significant plant-model mismatch arising from the

time-varying uncertainty. Standard NMPC is also not robust, violating the TR

constraint for a significant period of operation.

The tracking performance improves for both ideal multistage and samNMPC

schemes for Nr = 2 (Figure 5), which corresponds to 81 scenarios in the full

tree. This is because uncertainty in future time steps is also explicitly modeled

in the scenario tree. Since the number of critical scenarios in samNMPC is much

smaller than 81, it is slightly less conservative than the ideal multistage NMPC,

while still satisfying the state constraints.

Increasing the robust horizon to Nr = 3 results in a full tree consisting of

729 scenarios, making ideal multistage NMPC computationally infeasible due

to large problem size. However, samNMPC is able to solve a much smaller

problem as it identifies the critical scenarios, and is able to provide robustness

in its tracking performance, as shown in Figure 6.

Note that here the uncertainty in EA,3 and cA0 is ±10% each. For smaller

uncertainty range in these parameters, a much better tracking performance is

achieved for all the NMPC schemes. However, due to the smaller plant-model

mismatch, standard NMPC does not show any bound violations and ends up
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Figure 4: Setpoint tracking (cB) and constraint satisfaction (TR) for standard, ideal multistage

and samNMPC with Nr = 1 (9 scenarios).
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Figure 5: Setpoint tracking (cB) and constraint satisfaction (TR) for standard, ideal multistage

and samNMPC with Nr = 2 (81 scenarios).
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Figure 6: Setpoint tracking (cB) and constraint satisfaction (TR) for standard and samNMPC

with Nr = 3 (729 scenarios).
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Table 3: CSTR - Average computational performance in CPUs. For samNMPC, the times

for solving linear system (28) and the NLP (18) are reported separately.

Nr |C| Standard Multistage SAM - solving (28) / (18) Avg. |Ĉ|
1 9 0.453 s 3.910 s 0.113 s / 1.589 s 2.54

2 81 0.453 s 46.327 s 1.819 s / 4.223 s 5.96

3 729 0.453 s − 18.041* s / 9.170* s 9.25*

being robust.

Table 3 shows the CPU computations measured as the wall clock solution

times for each of the three NMPC problems. These are averaged over 5 random

sequences of uncertainty realizations. It can be clearly seen that samNMPC

requires less computational effort than ideal multistage NMPC. Table 3 also

gives a measure of the reduction in problem size with samNMPC, showing that

the average number of critical scenarios scales only linearly with the robust

horizon. The computationally intensive elements of the samNMPC algorithm

are solving the linear system (28) and solving the approximate problem (18),

which are shown separately in Table 3. The results show that the combined

computational footprint of samNMPC is much smaller than that of the full-tree

ideal multistage NMPC problem, which involves solving a full NLP.

The size of the KKT matrix in (28) grows exponentially with increasing Nr,

and solving the linear system takes up the bulk of the time at longer robust

horizons. Using the Schur complement strategy avoids solving the large lin-

ear system by decomposing it into smaller linear systems, which can then be

solved in parallel to achieve better computational performance. However, as

noted before, computing the Schur complement itself requires summation over

the products of many matrices (29), and this can become slow without paral-

lelization. This is especially the case for Nr = 3, where the Schur complement is

computed by summing over 729 scenarios. On the other hand, this summation

is trivially parallelizable and does not lead to communication latencies (see [12]

for extensive analysis on this). As such, we note the wall times without paral-

42



Table 4: CSTR - Average computational performance in CPUs for solving (28) as large linear

system and with Schur complement

Nr |C| Solving (28)

directly

Using Schur complement decomposition (best

parallel estimate)

1 9 0.113 s 0.019 (0.002) s

2 81 1.819 s 1.326 (0.016) s

3 729 18.041* s 530.995 (0.728) s

lelization for the Schur complement strategy, and divide them by the number

of scenarios to report the “best estimate” CPUs with parallelization. Table 4

shows the comparison between solving (28) as a large linear system and with

the use of Schur complement strategy, averaged over 5 random sequences of un-

certainty realizations. Because the Schur complement computations for Nr = 3

are slow without parallelization, we only report the wall time for solving one

NMPC step instead of the average wall time, for this case.

As the length of the robust horizon increases, using the Schur complement

approach with parallelization can be two orders-of-magnitude faster than solving

the large linear system (28).

5.2. Quadtank example

In our second case study, we consider the Quadtank problem [28], with a

configuration of four tanks as shown in Figure 7.

The water levels in the four tanks are governed by the following dynamics:

dx1

dt
=− a1

A1

√
2gx1 +

a3

A1

√
2gx3 +

γ1

A1
u1 (53a)

dx2

dt
=− a2

A2

√
2gx2 +

a4

A2

√
2gx4 +

γ2

A2
u2 (53b)

dx3

dt
=− a3

A3

√
2gx3 +

1− γ2

A3
u2 (53c)

dx4

dt
=− a4

A4

√
2gx4 +

1− γ1

A4
u1 (53d)

where xi denotes the level in the tank i, and ui represents the flow rate of

pump i. The state vector is x = [x1, x2, x3, x4] and the control inputs are
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Figure 7: Quadtank schematic [28]

u = [u1, u2]. Ai and ai are the cross sectional areas of the tank i and its outlet

port, respectively. The parameters γ1 and γ2 are the valve parameters, and are

considered to the uncertainties in the system. The values of the various model

parameters and bounds is shown in Tables 5 and 6.

The control goal is to track the water levels in the lower tanks (tank 1 and 2)

at their setpoints x1s = 14cm and x2s = 14cm. Further, we introduce predefined

pulse changes in the state values at certain steps k to reinitialize the controller

Table 5: Quadtank - Model parameters.

Parameter Value Unit Parameter Value Unit

A1 50.27 cm2 a1 0.233 cm2

A2 50.27 cm2 a2 0.242 cm2

A3 28.27 cm2 a3 0.127 cm2

A4 28.27 cm2 a4 0.127 cm2

γ1 0.4 − γ2 0.4 −
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Table 6: Quadtank - Bounds on states and inputs.

Variable Minimum Maximum Unit

x1 7.5 28.0 cm

x2 7.5 28.0 cm

x3 14.2 28.0 cm

x4 4.5 21.3 cm

u1 0.0 60.0 mol/L

u2 0.0 60.0 mol/L

Table 7: Predefined pulse changes to state variables in Quadtank case study.

k x1 x2 x3 x4

0 28 cm 28 cm 14.2 cm 21.3 cm

50 28 cm 14 cm 28 cm 21.3 cm

100 28 cm 14 cm 14.2 cm 28 cm

tracking, as shown in Table 7. The MPC simulation is run for 150 time steps

with each time step being 10s.

The objective function is formulated as:

ϕl = (x1l − x1s)
2 + (x2l − x2s)

2 + r(∆u2
1 + ∆u2

2) (54)

where ∆u1l = u1 − u1l−1 and ∆u2 = u2l − u2l−1 are the difference between

consecutive control actions for the pump flow rates, and the penalty parameter

r = 0.01.

The uncertainty range for γ1 and γ2 is ±0.15 of their nominal values. As

with the previous case study, we consider that the true realizations of γ1 and γ2

take random values from their corresponding {max, nominal, min} values. The

resulting plots for an increasing robust horizon are shown in Figures 8, 9 and

10, respectively.

As is evident from the figures, all three NMPC schemes have very similar

performance in tracking the setpoints of x1 and x2 (shown in dashed blue lines).

Overall, they are able to maintain the water levels even in face of the pulse
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Figure 8: Setpoint tracking (x1, x2) and constraint satisfaction (x3, x4) for standard, ideal

multistage and samNMPC with Nr = 1 (9 scenarios).
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Figure 9: Setpoint tracking (x1, x2) and constraint satisfaction (x3, x4) for standard, ideal

multistage and samNMPC with Nr = 2 (81 scenarios).
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Figure 10: Setpoint tracking (x1, x2) and constraint satisfaction (x3, x4) for standard, ideal

multistage and samNMPC with Nr = 3 (729 scenarios).
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Table 8: Quadtank - Average computational performance in CPUs. For samNMPC, the times

for solving linear system (28) and the NLP (18) are reported separately.

Nr |C| Standard Multistage SAM - solving (28) / (18) Avg. |Ĉ|
1 9 0.096 s 1.113 s 0.058 s / 0.293 s 3

2 81 0.096 s 12.906 s 0.703 s / 0.6 s 4.99

3 729 0.096 s − 7.735 s / 1.850 s 6.97

Table 9: Quadtank - Average computational performance in CPUs for solving (28) as large

linear system and with Schur complement.

Nr |C| Solving (28)

directly

Using Schur complement decomposition (best

parallel estimate)

1 9 0.058 s 0.0087 (0.0009) s

2 81 0.703 s 0.825 (0.01) s

3 729 7.735 s 389.26 (0.534) s

disturbances in the water levels. In terms of robustness, ideal multistage and

samNMPC do not breach the specified water level limits for x3 and x4 (shown

in dashed black lines), whereas there are frequent violations on part of standard

NMPC. Moreover, the trajectories of ideal multistage and samNMPC overlap

almost exactly for Nr = 1 (Figure 8), and are reasonably close for Nr = 2

(Figure 9). As with the CSTR case, the full tree problem becomes too large to

solve for Nr = 3, but the samNMPC algorithm is able to handle it efficiently,

as shown in Figure 10.

A comparison of the computational times, averaged over 5 random sequences

of uncertainty realizations, is shown in Tables 8 and 9. Again, samNMPC sig-

nificantly outperforms ideal multistage NMPC in terms of speed, without sac-

rificing robustness or setpoint tracking under uncertainty. Table 9 shows that,

consistent with the previous case study, using the Schur complement method in

parallel can significantly improve the computational speed of samNMPC.
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6. Conclusion

This work presents an approximate, sensitivity-assisted multistage NMPC

strategy to reduce the computational load of robust NMPC. The samNMPC ap-

proach optimizes over a set of critical scenarios that are most likely to cause con-

straint violations, and approximates the noncritical scenarios with their corre-

sponding sensitivities in the objective function. These sensitivities are obtained

by solving an approximate KKT system of the multistage NMPC problem. The

strategy ensures robust constraint satisfaction under uncertainty, while perform-

ing similarly to the ideal multistage NMPC algorithm. In contrast with the

exponential growth in ideal multistage NMPC, the problem size in samNMPC

grows only linearly with the length of the robust horizon; and it is independent

of the number of uncertain parameters and the number of discrete realizations

of each uncertain parameter. It thus leads to much lower computational costs

than its full-tree counterpart. In addition, by comparing the formulations of

ideal multistage and samNMPC, it has been shown that samNMPC is ISpS-

stable and has the same stability properties as ideal multistage NMPC.

We apply the samNMPC approach to the CSTR and Quadtank case studies,

and compare its performance with respect to standard NMPC and ideal multi-

stage NMPC. The examples demonstrate that samNMPC achieves robustness

and tracking performance similar to the ideal multistage NMPC, at a fraction

of the computational footprint. It performs particularly well for longer robust

horizons where ideal multistage NMPC becomes intractable. The use of parallel

Schur complement decomposition can further speed up the solution time.

Future work in this domain includes extending the samNMPC algorithm

to large-scale industrial case studies with many uncertain parameters, where

it becomes necessary to branch the scenario tree further in time in order to

better represent the uncertainty. An interesting approach would be to use a

more accurate path-following sensitivity-based approximation along the lines of

[35], instead of computing linear sensitivity steps, for the noncritical scenarios.

Another option is to integrate the samNMPC approach with the advanced-step
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multistage NMPC [39], which would further reduce the computational effort.

The computational effort can also be aided by employing decomposition strate-

gies to solve this approximate multistage NMPC problem.
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