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Abstract

We present a sensitivity-based nonlinear model predictive control (NMPC) al-

gorithm and demonstrate it on a case study with an economic cost function. In

contrast to existing sensitivity-based approaches that make strong assumptions

on the underlying optimization problem (e.g. the linear independence constraint

qualification implying unique multiplier), our method is designed to handle

problems satisfying a weaker constraint qualification, namely the Mangasarian-

Fromovitz constraint qualification (MFCQ). Our nonlinear programming (NLP)

sensitivity update consists of three steps. The first step is a corrector step in

which a system of linear equations is solved. Then a predictor step is computed

by a quadratic program (QP). Finally, a linear program (LP) is solved to select

the multipliers that give the correct sensitivity information. A path-following

scheme containing these steps is embedded in the advanced-step NMPC (asN-

MPC) framework. We demonstrate our method on a large-scale case example

consisting of a reactor and distillation process. We show that LICQ does not

hold and the path-following method is able to accurately approximate the ideal
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solutions generated by an NLP solver.

Keywords: numerical optimal control, NLP sensitivity, economic MPC,

path-following.

1. Introduction

The recent progress in nonlinear model predictive control (NMPC) provides

the possibility of designing controllers that directly optimize an economic per-

formance index. This is known as economic NMPC [1]. Some of the latest

advancements of economic NMPC are documented in a textbook [2] and a re-5

cent survey article [3]. Most of the contributions in economic NMPC consider

the stability analysis. The work of [4] started the stability analysis of economic

NMPC using the notion of rotated stage costs and the strong duality. Later,

dissipativity [5] and input-to-state stability (ISS) [6] were used for this pur-

pose. Other approaches can be found, e.g., in [7], [8], [9], [10], [11], [12], [13].10

Distributed economic NMPC approaches were discussed in [14] and [15], and

tube-based robust economic NMPC was proposed in [16].

Contributions to implementation and computational aspects for economic

NMPC are fewer compared to those of stability analysis papers, although the

problem of large computational delay is well documented. Among others, Idris15

and Engell [17] noted very long computation times in their realistic case studies

on economic NMPC. When applying NMPC, the updated optimal solution has

to be available within a very short time, because otherwise the controller acts

on outdated information, which leads to performance loss, or even instability

[18].20

To minimize the time delay in NMPC, sensitivity-based approaches have

proven to be very successful. Sensitivity-based approaches for fast NMPC ex-

ploit the fact that the optimization problem solved at any NMPC iteration is

identical to the optimization problem at the previous iteration, except for the

updated initial state. Therefore, the sensitivity of the optimal solution [19] can25

be used to obtain fast approximations of the solution.
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Early work related to sensitivity-based methods includes the Newton-type

controller by Li and Biegler [20], where a QP approximation of the optimal

solution is solved at given sample times. Sensitivity was first used in the NMPC

context by Diehl et al. [21] in the development of the real-time iteration method.30

Since then methods have been applied and further developed by [22], [23], and

in the context of the advanced Step NMPC (asNMPC) by Zavala and Biegler

[24]. Within the asNMPC framework, there have been further recent activities

to handle problems active constraint changes, [25]. A review article on some of

the recent developments in the field is given in [26]. A link between stability35

and the properties of the underlying nonlinear programming problem is made

in [12].

The approaches for fast sensitivity NMPC outlined above, rely on strong

regularity assumptions, such as the linear independence constraint qualification

(LICQ), that imply unique multipliers of the NLP. However, in general this40

assumption may not be satisfied, as was observed by Vicente and Wright [27].

A more general and weaker assumption, that is more likely to be satisfied in an

NMPC context, is the Mangasarian Fromowitz constraint qualification (MFCQ),

which is consistent with non-unique multipliers of the NLP solution. In the

context of direct optimal control methods, among others in direct collocation,45

the linear independent constraint qualification (LICQ) no longer holds if the

number of active constraints exceed the number of degrees of freedom, a case

that is not unlikely in economic NMPC applications. Sensitivity-based NMPC

for such degenerate systems have been previously only been studied by Jäschke

et al. [28].50

The contribution of this paper is to present an advanced step NMPC ap-

proach that makes use of an improved version of path-following algorithm intro-

duced in [28] and [25], that can handle NMPC problems for which the standard

assumption of LICQ does not hold. In particular, we apply the path-following

algorithm for parametric NLP with non-unique multipliers from Kungurtsev55

and Jäschke [29] to obtain fast approximate solutions of the NMPC problem.

We present a large-scale case study, and show that the commonly assumed reg-
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ularity conditions (LICQ) does not hold. For such formulations of the NMPC

optimization problem, standard sensitivity approaches are not applicable, and

would fail to work.60

This paper is organized as follows. We begin by formulating the economic

NMPC problem in Section 2 and present the proposed solution method in Sec-

tion 3 with the path-following approach. We then demonstrate our proposed

method in a case example in Section 4. Finally, we conclude with discussion

and some remarks in Section 5.65

2. Economic NMPC

2.1. Ideal Economic NMPC

The economic MPC controller computes the optimal control input by solving

the following optimization problem

(PN ) : min
zl,vl

 (zN ) +
P

N�1
l=0  (zl,vl) (1)

s.t. zl+1 = f (zl,vl) , l = 0, . . . , N � 1

z0 = xk,

(zl,vl) 2 Z, l = 0, . . . , N � 1

zN 2 Xf ,

where zl 2 Rnz and vl 2 Rnv are the predicted state and control variables at70

sample time l, respectively. The objective function consists of the terminal cost

 (zN ) 2 C2 : Rnz ! R and the stage costs  (zl,vl) 2 C2 : Rnz⇥Rnv ! R. The

constraints include a discrete time dynamical system f 2 C2 : Rnz⇥Rnv ! Rnz ,

the equality constraint for the initial conditions z0, which are obtained from

the measurement of the actual state xk 2 Rnz at the time instance k, and75

the final state variable zN is contained within the set defined by the terminal

constraint Xf . The set Z denotes the path constraints on the predicted state

and control. Since the set Z contains both the predicted state and control, for
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ease of exposition, we split the set into X ⇢ Rnz and U ⇢ Rnv denoting the

feasible state and control sets, respectively.80

Having obtained the solution of the optimization problem PN , denoted by

v
⇤
{0,...,N�1}, the first sequence of optimized predicted control input uk := v

⇤
o
is

applied to a plant that evolves according to

xk+1 = f (xk,uk) (2)

where xk is the actual state variable in the plant.

As the time instance k evolves, the optimization problem PN is solved re-85

peatedly in a rolling horizon fashion as follows:

1. Obtain measurement data xk,

2. Solve the optimization problem PN ,

3. Inject the optimized predicted control input uk,

4. Set k  k + 1, repeat from Step 1.90

We refer to the procedure above as an ideal NMPC (iNMPC ) controller,

assuming negligible computation time for solving an online NLP problem.

2.2. The Advanced-step NMPC

The optimization problem (1) is solved at every MPC iteration. For large

processes with realistic models, the MPC problems become quite large, and com-95

puting their solutions may require a non-negligible amount of time. This com-

putation time causes a delay between obtaining the new measurement values,

and implementing the updated input into the plant, and leads to performance

loss or even loss of stability [18]. Sensitivity-based methods aim at reducing the

computational delay. They are based on the insight that the MPC problems100

at every iteration are identical, except for the changing initial state xk. Hence,

the initial state variable may be considered a parameter. Instead of solving a

full NLP problem for updating the inputs, the asNMPC approach computes the

sensitivity of the NLP solution with respect to the initial variable (parameter)

xk. This can be used to obtain a first-order approximation of the solution of105
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the problem at a nearby parameter. Based on NLP sensitivity, the asNMPC

procedure includes the following three steps [24].

1. (Background step) Solve the NLP problem PN (zk+1) background at time

k while setting the initial state value to the predicted state at k + 1.

2. (Online step) When the measurement xk+1 becomes available at time k+1,110

update the optimal solution obtained from the background step using the

sensitivity of the optimal solution from step 1.

3. Implement the optimal control input, update k  k + 1, and repeat from

Step 1.

If LICQ and strict complementarity hold together with a suitable second115

order condition, the optimal sensitivity update in Step 2 can be calculated using

the implicit function theorem, by solving a system of linear equations that can

be formulated using the Karush-Kuhn-Tucker (KKT) system of the NLP [24].

However, if strict complementary does not hold, the system is only direction-

ally di↵erentiable. In this case, a quadratic program must be solved to obtain120

the directional derivative [30, 28, 31]. Alternatively, it may be heuristically

approximated by “clipping”, as proposed by [26].

Moreover if the NLP satisfies MFCQ, a weaker constraint qualification that

allows for non-unique NLP multipliers, additional challenges arise because set-

ting up the QP requires evaluating the derivatives of the Lagrangian, and se-125

lecting the right multipliers values is necessary to obtain correct directional

derivatives. If the predicted state zk+1 and the measured state xk+1 are not

very close, the online step can be improved by applying a sequence of sensitiv-

ities step leading to a pathfollowing algorithm. This is described in the next

section.130

3. Predictor-Corrector Path-following Economic NMPC

3.1. Preliminaries

We explain the predictor-corrector path-following method in this section

along with its application to an advanced-step economic NMPC controller.
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First, we define some notation. The ith component of a vector v is denoted135

by [v]
i
and if K is an index set then [v]K represents the vector with |K| compo-

nents composed of the entries of v indexed by K.

We consider Problem (1) as a parametric nonlinear optimization,

min
�

F (�,p) (3)

subject to ci (�,p) = 0, i 2 E ,

ci (�,p)  0, i 2 I,

where F : Rn� ⇥ Rnp ! R is the objective function, � 2 Rn� the primal

variable (i.e. the states z and inputs v in Problem (1)) and p 2 Rnp is the140

parameter (initial state xk). The equality and inequality constraint sets are E =

{1, . . . ,m} and I = {m+ 1, . . . , n}, respectively. In sensitivity-based NMPC,

the parameter change is from p0 (the predicted state zk) to a final value pf

(the measured (estimated) state xk).

The Lagrangian is defined as L (�,�,p) := F (�,p)+�T
c (�,p) , where � is145

the dual variable (multiplier). In the following, we recall some basic properties

regarding the sensitivity of nonlinear programs, see, e.g., [32] and [33]. The

Karush-Kuhn-Tucker (KKT) conditions for the problem are

r�L (�,�,p) = 0,

ci (�,p) = 0, i 2 E , (4)

ci (�,p)  0, i 2 I,

�T
c (�,p) = 0,

�i � 0, i 2 I.

We refer to a point �⇤ that satisfies (4) as a KKT point.

Definition 1. The set of acceptable multipliers for problem (3), given a KKT
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point �⇤
, is defined as

M (�⇤) ,
n
� 2 Rm : r�⇤L (�⇤

,�,p) = 0, �T
c (�⇤

, p) = 0, and�i � 0, i 2 I
o
.

We denote active inequality constraints as a setA (�,p) = {i 2 I | ci (�,p) = 0}.150

For a KKT point � and multiplier � that satisfy the optimality conditions

in (4), the active inequality set A (�,p) has two disjoint subsets, the weakly

active set A0 (�,�,p) = {i 2 A (�,p) | �i = 0} and the strongly active set

A+ (�,�,p) = {i 2 A (�,p) | �i > 0}.

The Hessian of the Lagrangian with respect to the primal variables is

H (�,�,p) = r2
��F (�,p) +

nX

i=1

�
r2

��ci (�,p)
�
�i. (5)

Definition 2. The strong second-order su�cient conditions (SSOSC) holds at

(�,�,p) if the primal dual pair (�,�) satisfies the KKT first-order necessary

conditions (4) at p and

d
T
H (�,�,p)d > 0 for alld 2 C (�,�,p) \ {0} ,

where the set C (�,�,p) is defined as

C (�,�,p) :=
n
d : r�ci (�,p)

T
d = 0 for i 2 A+ (�,�,p) [ E

o
.

Definition 3. The general strong second-order su�cient optimality conditions155

(GSSOSC) are satisfied at � if the SSOSC is satisfied for all � 2M(�) together

with � that fulfill the first-order necessary conditions (4).

A constraint qualification is required to ensure that the KKT conditions (4)

are necessary for optimality [34]. The standard constraint qualification that is

most frequently used is the linear independence constraint qualification (LICQ),160

which requires that the gradients of the active constraints to be linearly inde-

pendent:
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Definition 4. Given a point (�,p), the linear independence constraint qualifi-

cation (LICQ) holds at (�,p) if the set of vectors {r�ci (�,p) , i 2 E [A (�,p)}

is linearly independent.165

If LICQ is satisfied at a point �⇤, the setM(�⇤) is a singleton, and the multiplier

� is unique.

However, in dynamic optimization with path constraints, LICQ may not

be satisfied, see e.g., [28] and [27], and the multipliers that satisfy the KKT

conditions may become non-unique. A constraint qualification that is more170

likely to hold in this case is the Mangasarian-Fromovitz constraint qualification.

MFCQ requires that the equality constraints are linearly independent, and that

there exist a strictly feasible direction into the interior of the feasible set:

Definition 5. The Mangasarian-Fromovitz constraint qualification (MFCQ) holds

at (�,�,p) for a feasible point � if175

1. {r�ci (�,p) , i 2 E} is linearly independent,

2. There exists a direction s 6= 0, such that r�ci (�,p)
T
s = 0 for all i 2 E

and r�ci (�,p)
T
s < 0 for all i 2 A (�,p).

The MFCQ implies that the set of multipliers M(�) is a bounded polytope [35].

In this work, we refer to an NLP that satisfies the MFCQ (but not the LICQ)180

as a degenerate NLP. To calculate the sensitivity of a degenerate NLP, we will

further make use of the constant rank constraint qualification [36].

Definition 6. The constant rank constraint qualification (CRCQ) holds at (�,�,p)

if there exists a neighborhood N of � such that for all subsets U ✓ E [A (�,p),

the rank of {r�ci (�,p) , i 2 U} is equal to the rank of {r�ci (�̄,p) , i 2 U} for185

all �̄ 2 N .

Note that CRCQ is neither weaker nor stronger than MFCQ [36]. Under MFCQ

and CRCQ, we present the following result of NLP sensitivity from [32].

Theorem 7. Let F and c be twice continuously di↵erentiable with respect to p

and � near (�⇤
,p0), and let MFCQ and GSSOSC hold at (�⇤

,p0). Then the190
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solution �⇤ (p) as a function of p is Lipschitz continuous in a neighborhood of

(�⇤
,p0), and the solution function �⇤ (p) is directionally di↵erentiable. More-

over, for each p in a neighborhood of p0, and direction s 2 Rnp there exists a

set of multipliers � 2M such that the directional derivative uniquely solves the

following quadratic program195

min
�p�

1
2�p�T r��L (�⇤

,�,p0) �p�+ s
Tr�pL (�⇤

,�,p0)�p� (6)

subject to rpci (�⇤
,p0) s +r�ci (�⇤

,p0)�p� = 0, i 2 E

rpci (�⇤
,p0) s +r�ci (�⇤

,p0)�p� = 0, i 2 A+

rpci (�⇤
,p0) s +r�ci (�⇤

,p0)�p�  0, i 2 A0

If in addition CRCQ holds, then the multiplier value � at which the quadratic

program (6) must be evaluated, can be found as a solution of the linear program:

max
�

�Trpc (�⇤
,p0) s (7)

subject to � 2M (�⇤
,p0) .

Proof. See Ralph and Dempe [32].

We define the optimality residual as

⌘ (�,�,p) =

���������

0

BBB@

r�F (�,p) +r�c (�,p)�

c (�,p)E

[min (c (�,p) ,�)]I

1

CCCA

���������
1

. (8)

In a neighborhood of the solution, this optimality residual can be used to esti-

mate the strongly active inequality constraints as

A+ (�,�,p) = {i 2 I : �i > ⌘ (�,�,p)} , (9)

and an estimate of the strongly active set A+ is obtained by including the indices

of equality constraints, such that A+ = A+ [ E .200
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x∗

tj+1

p1

Figure 1: Illustration of the corrector and predictor steps in the path-following method.

3.2. Predictor-Corrector Path-Following

The path-following method for tracing the optimal solution along a param-

eter change is described in detail in [29] and consists of three main steps: a

corrector step, a predictor step, and a multiplier jump step. These three steps

are run repeatedly to follow the path of optimal solutions, starting from an205

initial parameter value p0 until the final parameter pf .

We introduce a new parameter t 2 [0, 1], to describe the progress along the

path in p, such that p (t) = (1� t)p0 + tpf . The path-following algorithm

approximates the solution of the NLP, starting at t0 = 0, where p = p0, at

timesteps tj , such that t0 = 0 < t1 < . . . < tj < . . . <= 1. We denote the210

primal and dual variables during at the path-following iterations as �
j
and �j

respectively, where j represents the index of the iteration along the path.

The corrector and predictor steps are illustrated in Figure 1, where the goal

is to track optimal solutions at times tj and tj+1 denoted with x
⇤
tj

and x
⇤
tj+1

,

respectively. Consider a step in the path-following method starting at point215
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x
1 that is an approximation of the solution of the NLP at p1 = pt1 . If one

applies a corrector step only it moves x
1 to the point x

2. A pure predictor

step starting from x
1 would lead to the point x

3. If one applies a standard

predictor-corrector method [31], it steps from x
1 to the point x4. The improved

path-following method employed in this work starts from the point x1 and, using220

the improved problem data (derivatives) from x
2, results in a step to x

5. The

steps of the path-following algorithm are described below in detail.

3.2.1. Corrector Step

This step takes an approximate solution of the primal variables and the

strongly active dual variables and refines them for a given value of p. This is225

done by solving a system of a linear equations

0

@ H
�
�j ,�j , t

�
r�cA+,j

�
�j , t

�

r�cA+,j
�
�j , t

�T 0

1

A

0

@ �c�

�+�

1

A = �

0

@ r�F
�
�j , t

�
+ r�c

�
�j , t

�
�j

r�cA+,j
�
�j , t

�

1

A .

(10)

Since the LICQ does not hold, the Jacobian r�cA+,j

�
�

j
, t
�
is not full rank,

unless the dual variables �j used to define A+ are chosen from vertex of the

polytope of optimal multipliers [32]. This can be done by obtaining �j in the

multiplier jump step (see Section 3.2.3) by solving the linear program using a230

simplex method.

The improved approximate dual variables for the strongly active constraint

are obtained from the solution (10), i.e., [�c�]A+,j
= �+� and the remaining

multipliers are set to zero, [�c�]{1,...,n}\A+,j
= 0. In Figure 1, this corrector

step moves point x1 to the point x2.235

3.2.2. Predictor Step

Based on (6), we compute a predictor by solving the following QP

min
�p�

�
r�F

�
�j , t + �t

�
� r�F

�
�j , t

��T �p� + 1
2�p�

T
H

�
�j ,�j , t + �t

�
�p� (11)

subject to rtci
�
�j , t

�
�t +

⇣
r�ci

�
�j , t + �t

�
+ r2

��ci
�
�j , t + �t

�
�c�

⌘T
�p� = 0, i 2 A+,j

rtci
�
�j , t

�
�t +

⇣
r�ci

�
�j , t + �t

�
+ r2

��ci
�
�j , t + �t

�
�c�

⌘T
�p�  0, i 2 Aj\A+,j .
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Note that we add a second order gradient correction of the constraints, to obtain

improved accuracy. Here, we need to evaluate the derivatives of the objective

function, the Lagrangian, and the constraints at t + �t. Moreover since the240

parameter, in this case is the initial state variable, enters linearly to the problem,

the objective function derivative remains the same at t+�t. Thus, the QP (11)

simplifies to

min
�p�

1
2�p�

T
H

�
�j ,�j , t + �t

�
�p� (12)

subject to rtci
�
�j , t

�
�t +

⇣
r�ci

�
�j , t + �t

�
+ r2

��ci
�
�j , t + �t

�
�c�

⌘T
�p� = 0, i 2 A+,j

rtci
�
�j , t

�
�t +

⇣
r�ci

�
�j , t + �t

�
+ r2

��ci
�
�j , t + �t

�
�c�

⌘T
�p�  0, i 2 Aj\A+,j

We obtain the primal and dual solution in this step (�p�,�p�). Combining

with the solution from the corrector step, we get (��,��) = (�c�+�p�,�c�+�p�).245

We update the primal and dual variables solutions, i.e., �
j+1 = �

j
+ ��,

�j+1 = �j +��, and consequently the active set Aj+1. The predictor QP will

lead the point x2 to x
5 described in Figure 1.

3.2.3. Multiplier Jump Step

To allow discontinuity in the multipliers along the path, we compute the250

dual variable solutions by solving the following LP,

min
�

�Trtc
�
�

j
+��, t+�t

�
�t (13)

subject to � |⌦|  # (�)  |⌦|

�I � 0

�i/2Aj+1
= 0.

where

⌦ = r�L(�j
+��,�j +��, t+�t),

# (�) = r�F (�
j
+��, t+�t) +

X

i2Aj+1

r�ci

�
�

j
+��, t+�t

�
�i

13



The solution (�LP ) updates the dual variable solutions �j+1 = �LP and also

the strongly active set A+,j+1 =
�
i : [�j+1]i > 0

 
[ E . The three steps are

summarized in Algorithm 1.

3.2.4. Adaptation of stepsize �t255

The stepsize �t may vary from one step to another, depending on the

optimality residual ⌘j defined in (8). If ⌘j+1 < ⌘j , then �t is increased to

�t = min

⇣
1� tj ,

tj

↵

⌘
. In our experiment, the parameter ↵ is set to 0.6. In

case ⌘j+1 > ⌘max, the stepsize �t is decreased by multiplication with ↵ 2 (0, 1).

Remark 8. In [29], an NLP solver is invoked as contingency in case a predictor-260

corrector step fails. In the context of asNMPC, it is not required because an NLP

solver in already called in the background step of asNMPC.

Remark 9. The parameters in the algorithm include the maximum optimality

residual ⌘max and � for determining the size of �t.

Remark 10. The algorithm can be implemented in a distributed fashion where265

the initial �t is initiated with di↵erent values (multi-start �t).

Further details on the algorithm, including a proof the convergence, can be

found in [29].

3.3. Path-following NMPC (pf-NMPC)

We use the predictor-corrector path-following method in the online step270

of the asNMPC controller. The resulting pf-NMPC controller in Algorithm 2

and the predictor-corrector path-following method is invoked in the function

MFCQ PC PF. Note that the final parameter value pf in the algorithm is obtained

from measurement data.
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Algorithm 1 Predictor-corrector path-following method

Input: t, �, � close to solution (�⇤ (t) ,�⇤ (t)) such that
{r�ci (�, t)}{i2I:�i>0}[E is linearly independent, �t, ⌘max < 1.

Output: � and � at pf

1: function mfcq pc pf(�,�,p0,pf ,�t)
2: Define parameter � satisfying 0 < � < 1.
3: Define A+.
4: Set j  0.
5: Set tj = 0.
6: while tj < 1 do

7: Solve (CorrectStep) for (�c�,�+�).
8: Solve (QPPredict) for (�p�,�p�).
9: Set (��,��) = (�p�,�p�) + (�c�,�c�).

10: Compute ⌘j+� := ⌘
�
�

j
+��, �j +��, tj +�t

�
.

11: if ⌘j+� < ⌘max then

12: �
j+1  �

j
+��

13: �j+1  �j +��
14: tj+1  tj +�t

15: p (tj) = (1� tj)p0 + tjpf

16: if ⌘j+� < ⌘
1+�

j
then . very good step

17: Increase �t.
18: end if

19: Update A+.
20: Solve (JumpLP) to redefine �j+1.
21: Let A+ =

�
i : [�j+1]i > 0

 
[ E .

22: else

23: Decrease �t

24: Go to line 12
25: end if

26: j  j + 1.
27: end while

28: Return �
29: end function
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Algorithm 2 Economic pf-NMPC algorithm

Input: initial state x0 and stepsize �t.
Output: The actual state x1, x2, x3, . . .

1: for k = 0, 1, 2, . . . do
2: [�⇤

,�⇤] solution of the NLP PN (zk+1) for k + 1.
3: if a measurement of xk+1 is available then

4: Set p0 = x0

5: Set pf = xk+1

6: ��⇤  MFCQ PC PF(�⇤
,�⇤

,p0,pf ,�t)
7: Set solution �⇤ = �⇤ (p0) +��⇤

8: Inject the first input move of �⇤ into the plant
9: end if

10: Update initial state x0  xk+1

11: Set k + 1 k

12: end for

4. A Numerical Case Example275

In this section we demonstrate the pf-NMPC controller performance and

compare its results against the iNMPC controller. All simulations are done in

MATLAB using CasADi [37] version 3.4.5, which interfaces IPOPT [38] as the NLP

solver used in this work. We use the MINOS QP [39] solver from TOMLAB

and CPLEX [40] as the LP solver.280

4.1. Process Description

We consider a reactor and separator processes illustrated in Figure 2 as the

plant, which was also used in [31]. The original distillation column model is

from [41]. The continuous-stirred tank reactor (CSTR) is fed with a stream F0

consisting 100% of component A. A first order reaction A ! B takes place in285

the reactor where B is the desired product and the product flow rate F is fed

to the column. In the distillation column, the raw material is separated from

the product and recycled into the reactor. The desired product B leaves the

distillation column as the bottom product, which is required to have a certain

purity.290

The process model has 84 dynamic state variables of which 82 are from the

distillation (concentration and holdup for each stage) and two from the CSTR
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xr
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Figure 2: Diagram of CSTR and Distillation Column with control inputs reflux flow (LT ),

boilup flow (VB), feeding rate to the distillation (F ), distillate (top) and bottom product flow

rates (D and B)

(one concentration and one holdup). We discretize the system by applying direct

collocation on finite elements using Lagrange collocation with three collocation

points per finite element. The inputs are discretized such that the input is kept295

constant within a finite element. In contrast to previous work [31], we now

impose bound constraints for all collocation points. If the bound constraints

become active, this potentially results in more active constraints than degrees

of freedom, and thus the LICQ is violated. In this case the standard methods

that require LICQ for doing sensitivity-based MPC will fail.300

However, as there generally exists a strictly feasible point in the interior

of the bounds and the discretized ordinary di↵erential equation equality con-

straints are expected to have linearly independent gradients, MFCQ can be

expected to hold, and the approach outlined in this work can still be applied.

The stage cost of the economic objective function to optimize under opera-

tion is to minimize operating cost, i.e.,

J = pFF0 + pV VB � pBB, (14)

where pF is the feed cost, pV is the cost of the steam used in the reboiler of the305
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distillation column, and pB is the price obtained for selling the product. The

price setting is pF = 1$/kmol, pV = 0.02 $/kmol, pB = 2$/kmol.

To ensure stability, we use the regularized objective function with a state

steady objective function value as follows

Jm = pFF0 + pV VB � pBB + kx� xsk2Q1
. (15)

The operational constraints enforced at all collocation points are the con-

centration of the bottom product (xB  0.1) and the holdup in the CSTR

(0.3  MCSTR  0.75) kmol. The control inputs are reflux flow (LT ), boilup

flow (VB), feeding rate to the distillation (F ), distillate (top) and bottom prod-

uct flow rates (D and B). These control inputs have bound constraints as

follows 2

6666666664

0.1

0.1

0.1

0.1

0.1

3

7777777775



2

6666666664

LT

VB

F

D

B

3

7777777775



2

6666666664

10

4.008

10

1.0

1.0

3

7777777775

[kmol/min] .

We consider the case of optimizing a production rate change starting op-

eration with an initial feed rate F0 = 0.30 (kmol/min), which is increased to

F0 = 0.31 (kmol/min).310

We run the economic NMPC controller every one minute with a prediction

horizon of 45 minutes yielding 15429 variables and 15204 nonlinear equality

constraints as well as bound constraints for each variable. In the case that there

are more active constraints than the number of variables in the system, LICQ is

violated. That is, when more than 225 (i.e. 15429 (variables) - 15204 (equality315

constraints)) bound constraints are active, the LICQ fails and standard methods

for calculating the sensitivity update cannot be used.

In our path-following algorithm, we set the initial �t to 1.0 and ⌘max = 0.01.

That means we first try a large step, and then reduce the stepsize if necessary

to maintain accuracy. The ’real’ plant model is simulated by the ’ode15s’ solver320
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Figure 3: Comparison of selected open loop state trajectories of the iNMPC and pf-NMPC

from the second iteration. The top figures represent the top and bottom compositions at

the distillation, respectively. The bottom figures show the concentration and holdup at the

CSTR, respectively.

in MATLAB. We add noise to the holdup measurement data in the distillation,

where the noise is taken to have a normal distribution with zero mean and a

variance of one percent of the steady state values.

4.2. Comparison of Open-loop Optimization Results

We compare open loop optimization solutions (predicted states) at the sec-325

ond iterations of the iNMPC and pf-NMPC approaches with the presence of

measurement noise. That is, we compare how the path-following solution matches

the solution of the full NLP. The di↵erence between the path-following solution

and NLP solution is shown in Figure 4 and selected state trajectories are given

in Figure 3. We observe that the pf-NMPC closely tracks the solutions from the330

iNMPC controller.

We show the Lagrange multipliers for the active bound constraints of the

bottom concentration xB and reactor holdup in Figure 5. For the reactor holdup

(Figure 5 top), it is seen that the Lagrange multipliers are zero over large periods
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Figure 4: The di↵erence in selected open loop state-trajectories of the iNMPC and pf-NMPC

from the second iteration. The top figures represent the top and bottom compositions at

the distillation, respectively. The bottom figures show the concentration and holdup at the

CSTR, respectively.

of the prediction horizons where the constraint is inactive. Between collocation335

point 85 and 153, and the very end of the prediction horizon, the path constraint

becomes active, this is also reflected in the positive multiplier value obtained

from the interior point optimizer (IPOPT) used (Figure 5 green line). As LICQ

does not hold here, and the multiplier is non-unique, IPOPT returns a multiplier

value in the analytic center of the multiplier set, that is not suitable for calcu-340

lating sensitivity updates. In our path-following algorithm, the multiplier jump

step selects one vertex of the feasible multiplier set, resulting in the multiplier

being zero for these collocation points, at which the constraint is not strongly

active. This is nicely shown in Figure 5 top.

For the bottom concentration, shown in the bottom of Figure 5, the Lagrange345

multipliers are zero for most of the time, because the constraint is inactive most

of the time, except at the end of the horizon (see Figure 3 top right). Since we

have added noise to the state measurements, the predicted state for the NMPC

in the background step will be di↵erent from the measured state obtained from
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Figure 5: The Lagrange multipliers for the active upper bound constraints at bottom concen-

tration and reactor holdup.

the plant. This di↵erence may cause active set changes. We also plot active-350

set changes for the bottom concentration and reactor holdup from 26th MPC

iteration in Figure 6 and 7, respectively, as the times at which the background

(predicted solution without noise) and the online solution (with a measured

noisy state) are di↵erent. We see that we have active set changes between the

background and the online solutions.355
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Figure 6: Bottom concentration during the background (o✏ine) and online steps of pf-NMPC

at iteration 26.
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Figure 7: Open loop solution of reactor holdup from pf-NMPC at iteration 26.
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4.3. Closed-loop Results – Noise Free
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Figure 8: Comparison of close loop state variables between iNMPC and pf-NMPC controllers.

The top figures represent the top and bottom compositions at the distillation, respectively.

The bottom figures show the concentration and holdup at the CSTR, respectively.

We ran simulations for both NMPC controllers without measurement noise.

We plot the four selected state variables in Figure 8, optimized control in-

puts Figure 9, and number of active bound constraints in Figures 10. As the

closed-loop system evolves toward a steady-state, the number of active bound360

constraints increases to around 280. This makes sense, as the reactor holdup

and the bottom concentration constraints are active at steady-state. These

constraints are imposed at every collocation point and for this formulation the

standard sensitivity approach would fail. The solutions confirm that the pf-

NMPC controller gives very good approximation to the results of an iNMPC365

controller.
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Figure 9: Comparison of optimized control inputs between iNMPC and pf-NMPC controllers.
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Figure 10: Number of active bound constraints in the course of MPC iterations for more than

225 active bound constraints, LICQ fails and standard sensitivity approach cannot be applied.
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Figure 11: Comparison of close loop state variables between iNMPC and pf-NMPC controllers.

The top figures represent the top and bottom compositions at the distillation, respectively.

The bottom figures show the concentration and holdup at the CSTR, respectively.

4.4. Closed-loop Results – With Measurement Noise

Next, we run simulations with measurement noise on all the holdups in

the system. The noise is taken to have a normal distribution with zero mean

and a variance of one percent of the optimal steady state values. The closed-370

loop simulation results for a selection of close-loop state variables are shown in

Figure 11, and the corresponding input variables are given in Figure 12. The

active bound constraints are the upper bound constraint of the composition at

the bottom of the distillation, which must be below 0.1, and the upper bound

of the holdup at the CSTR constraining below 0.75. Due to the measurement375

noise, the number of active bound constraints can vary from one MPC iteration

to another. This variation is depicted in Figure 13.

As seen in Figure 13, and similarly observed in Figure 10, the number of

active bound constraints is increasing from the beginning until around the 31st

minute. The reason is because the closed-loop system approaches a new steady-380

point with the feed rate F0 = 0.31 (kmol/min).
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Figure 12: Comparison of optimized control inputs between iNMPC and pf-NMPC controllers.
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Figure 13: Number of active bound constraints in the course of MPC iterations at more than

225 active bound constraints LICQ fails.
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5. Conclusion

We have proposed the use of a predictor-corrector path-following method,

consisting of the three steps (corrector, predictor, and multiplier jump step), for

solving the online open-loop optimal control problem in an economic NMPC.385

We have shown that the pf-NMPC works as expected in the case example, and

accurately tracks the solutions of an iNMPC controller in the presence of non-

unique multipliers. Future work may include to develop a distributed version

for the path-following algorithm such as to initialize �t with a set of di↵erent

values (multi-start). Furthermore, an e�cient implementation of computing the390

Hessian of the constraints in the predictor step will be investigated. We intend

to have the Hessian readily available from computing the second derivative of

the Lagrangian.
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