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Abstract 

Modeling is an essential part of real-time optimization (RTO) implementations, where a 

rigorous steady-state model of the process is required. However, the process can change 

with time due to system degradation effects, and different models may be necessary to 

describe the process during its entire life time. Moreover, there is no prior evidence how 

the degradation evolves and when we need to change between models. We present a 

method for model maintenance, which identifies the model structure online while 

optimizing the process in an RTO fashion via Output Modifier Adaptation (MAy). The 

main idea is to propose several model structure candidates that can describe the plant 

behaviour in its entire lifetime, update its parameters online, and, then, use the modifier 

terms of MAy as a criterion for online selection among the available options. A case study 

of a degrading compressor in a subsea gas compression station illustrates the approach. 

The results indicate that the method chooses the best model structure with readapted 

parameters among the candidates and drives the process to its optimum without constraint 

violations. 
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1. Introduction 

For traditional Real-time Optimization (RTO) implementations, a rigorous steady-state 

model of the process is required. In such models, phenomenological relations are applied 

to describe the process behavior. However, some effects are not so easily modeled, like 

hydraulic effects and reaction kinetics. Additionally, the relations that govern the plant 

behavior can change during the operation due to equipment degradation, for example. 

Typically, one tries to adapt the model parameters in order to represent these changes on 

the process and/or to accommodate small modeling inconsistencies. Such a strategy relies 

on the flexibility of the model and, depending on the magnitude of the process 

changes/modeling errors, the model can fail to describe the actual plant behavior. 

Therefore, it is interesting to allow not only the parameters but also the RTO model 

structure to evolve in time, whenever plant data is available.     

Matias and Jäschke (2019) proposed a novel method for model maintenance, which 

identifies the model structure online while it optimizes the process in an RTO fashion via 

Output Modifier Adaptation (MAy) (Marchetti et al., 2009). The main idea is to propose 

several model structure candidates that can describe the plant behavior and, then, use the 

modifier terms of MAy as a criterion for selecting among the available options. This 

approach leads to a two-step approach, where, in the first, the best model structure in a 
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pre-determined model set is chosen. Simultaneously to the model structure selection, the 

model parameters are updated. In the second step, the updated model is used for 

optimizing the process in a classical MAy framework. Note that the first step is not 

necessary for the Output Modifier Adaptation scheme, which guarantees convergence to 

the plant optimum even when the model at hand is structurally and parametrically wrong. 

However, keeping the model updated to the plant information is interesting for model 

maintenance purposes and can provide valuable insight into the process, and may be used 

for process condition monitoring. 

In this paper, we apply the online model maintenance method to monitor the process 

health while optimizing it. To illustrate the proposed application, a subsea gas 

compression station case study is used (Verheyleweghen and Jäschke, 2017). The station 

boosts the pipeline pressure allowing the fluids to reach the topside facility in the desired 

outlet pressure. The system contains one compressor, whose bearings are prone to 

degradation if subjected to high mechanical stress. If the compressor stops due to failure, 

the complete operation also needs to stop, resulting in a high associated maintenance cost 

and production loss. The effects of the compressor degradation can be identified by 

monitoring its performance map, which is directly affected by the chosen model structure. 

Therefore, it is possible to include the “unhealthy” model structure in the available model 

set. If a degraded state is identified, actions need to be taken in order to mitigate the risks 

associated with the equipment exceeding design/safety limits. This adaptive model 

structure can be used as a prognosis tool for monitoring and predicting the process health, 

improving the process reliability and reducing unscheduled downtime.   

2. Method description 

First, we give a brief overview of modifier adaptation and, then, we introduce our method. 

2.1. Modifier adaptation 

Let us say that we have a steady-state model y(u), where the outputs y can be calculated 

as a function of the inputs u. The idea behind Output Modifier Adaptation is to add zeroth 

(ε) and first order terms (λ) to this model: 

( ) ( ) ( )    ( )T
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where these terms, also known as modifiers, are computed by: 
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where, yplant are the measurements, are the plant gradients (either measured or estimated) 

and k indicates the iteration in which these values are computed. At the kth iteration, MAy 

uses yad(u) instead of y(u) to compute the optimal inputs u*k+1. By recomputing the 

modifiers ε and λ and readapting the y(u) at every iteration, the MAy scheme reaches the 

plant optimum upon convergence even in the presence of plant-model mismatch, given 

that the model follows some adequacy condition (i.e. it is locally convex in the vicinity 

of the plant optimal inputs (Marchetti et al., 2009)). 

In Matias and Jäschke (2019), the authors showed that the modifiers have valuable 

information regarding the mismatch, i.e. the relationship between a model and the plant. 

Hence, they can be used not only in the MAy scheme, but also for discriminating between 

different models. The authors introduced the total modifier as:  
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 k k kF F
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Where, the subscript F indicates the Frobenius norm, a matrix norm computed as the 

square root of the sum of the absolute squares of the matrix elements. Note that, 𝜓𝑘 is an 

indicator of how much the model needs to be adapted to match the plant.  

2.2. Online model maintenance 

As discussed, our method can be divided in two basic steps, a model selection and an RTO 

via MAy step. The first requires an offline phase, which consists on determining several 

model structures candidates to describe the plant behavior. In order to determine this set 

of models, we divide the process model into blocks. The individual blocks represent a 

part of the process to be modeled, e.g. pressure drop in a pipeline. Next, we propose 

several candidate sub-models to describe a given block, where different set of equations 

constitute each sub-model. For example, different sub-model candidates for the pressure 

drop can include (or exclude) effects of friction, hydrostatic pressure, turbulence, etc.. 

Depending on the sub-models that are chosen for each block, the process model has a 

different shape (gradients) and prediction capacity, which can be quantified by the total 

modifier. Note that, even though a preliminary set of available models needs to be 

determined, model structures can be added whenever necessary. In the model selection 

online phase, in addition to identifying the model structure, we also update the model 

parameters because, since we are interested in model maintenance, it is necessary to have 

parameters that represent the true characteristics of the system. Clearly, we need to 

determine an appropriate parameter set for every model. Otherwise, the data-fitting 

problem may lead us to ill-conditioned parameter estimation problems or overfitting. 

Here, we chose to add a regularization penalty Rk = (STVyS)-1, where S = dy/du |uk and Vy 

is an estimate of the measurement noise covariance matrix, to deal with the overfitting 

issues. 

In order to implement the method, we describe our system using a disjunctive 

programming strategy, where binary variables are assigned to each of the potential sub-

models in the blocks. Since we use continuous variables for computing the mass and 

energy balances, pressures, costs, etc, the system needs to be solved by a MINLP solver. 

A description of the MINLP model can be seen in Matias and Jäschke (2019).  A 

simplified diagram of the method can be seen in the figure below: 

 

Figure 1: Simplified Diagram of the Online Model Maintenance Method 
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3. Case study – Subsea gas compression station 

Subsea boosting technologies are important in order to counteract the natural declining 

production rates of oil fields, which are a result of lower reservoir pressures. By installing 

a compression station close to the well, it allows us to transport the production over 

greater distances and increase the reservoir recovery factor. There are different 

configurations of boosting stations. The case study deals with a single-phase 

compression/pumping, where the oil/gas mixture is divided and, then, a pump is used for 

increasing the liquid pressure and a wet gas compressor for the gas pressure. A wet-gas 

compressor is necessary because of the liquid carry-over due to separation inefficiency 

(gas-volume-fraction from 0.95 to 1). After the boosting phase, the gas and liquid are 

recombined and sent to the top facilities through a pipeline. A simplified flowsheet is 

shown in Figure 2.  

 

Figure 2: Subsea Gas Compression Station (Verheyleweghen and Jäschke, 2017). 

There are two steady-state degrees of freedom, which are the choke opening [%] and 

normalized compressor flowrate [%]. The system has 8 measured variables that are: choke 

outlet pressure, reservoir volumetric flow, compressor inlet volumetric flowrate, 

compressor outlet temperature and pressure, compressor power, inlet pump volumetric 

flowrate, and pump power. For a complete description of the system model, please refer 

to Verheyleweghen and Jäschke (2017).  

Regarding system reliability, we assume that the main degrading component is the 

compressor. Since it is a rotation equipment, it is likely to suffer damage because its 

complexity and moving parts. In order to illustrate the compressor wear damage, we 

assume that the compressor efficient map changes with time. This change is represented 

by one “healthy state” and one “degraded state”. The equations for representing the 

different efficiency maps are: 
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Figure 3: Compressor efficiency (ν) map as a function of compressor normalized flowrate (qN). 

To choose the estimable parameter set θH and θD, a sensitivity analysis was performed. The true 

values of the parameters are: θH = [0.6, 2.7, 4.3] and θD = [0.4, 5, 2]. 
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4. Simulation setup and results 

We simulate the system for 150 steady-state cycles/MAy iterations (each last a month), 

in which the compressor changes from healthy → intermediary → degraded. We assume 

that the it stays for 30 iterations at the healthy state, then it starts to degrade linearly 

between iterations 31 and 120 (i.e. νplant = (1 – d)νhealthy + d vdegraded, where d = (k - 

30)/(120 – 30) and k is the iteration number). Finally, we consider the compressor at the 

degraded state from iteration 121 to the simulation end. In order to track the changes in 

the plant, we use the online model maintenance method of Figure 1.  

To assess how the method works, we fix the system feed (reservoir temperature, pressure 

and flowrate) and add white noise with a standard deviation of 0.1% of the current value 

to the measurements. Also, we use plant experiments with central finite differences for 

estimating plant gradients. The objective function, which should be maximized, is the 

ratio between compressor flowrate and power (J = Qcompressor/Pcompressor), where we 

optimize the efficiency indirectly increasing the transported volume per energy unit. 

There is also an operating constraint, the compressor outlet pressure should remain above 

100 bar. We show the method performance in this scenario for tracking the true plant 

optimum (Figure 4/left), tracking the model structure (Figure 4/right), and estimating the 

model parameters (Figure 5).  

 

Figure 4: Tracking the true "plant" optimum (left) and the compressor degradation (right). 

Figure 4 (left) shows that the method can find the actual process optimum starting from 

a suboptimal point. However, due to the nature of the optimization problem, a simple 

active constraint tracking can be used here to achieve the minimum choke opening and 

compressor flowrate that guarantee compressor outlet pressure at 100 bar. The main 

advantage of applying the method is presented in Figure 4 (right), where we track the 

degradation of the compressor. The healthy plant is indicated by the green region and the 

degraded plant by the yellow one. In the intermediary region, we use a color pattern to 

show that the system is changing and there is no correct model. Nevertheless, in the 

beginning of the intermediary region, the healthy model is a better representation of the 

plant, while the degraded model is better near the end of the intermediary region.   

Despite an incorrect model choice in the beginning of the simulation, as a result of poor 

gradient estimation, we track the best model structure in the healthy and degraded plant 

region. However, the most important result is that, even with no correct model in the 
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intermediary region, we can track that something is affecting the system and it is likely 

that the compressor is changing to a degraded state. Regarding the parameters, we show 

in Figure 5 that we can reliably estimate the healthy model parameters when we are in the 

green region, where this model represents what is happening in the “plant”. On the other 

hand, the parameters θD
2 and θD

3 of the degraded model are more difficult to identify due 

to the low gain in relation to the estimation objective function (i.e. the values of the 

parameters can change substantially without affecting the estimation objective function, 

leading to larger deviations from the true values), which was concluded after a sensitivity 

analysis of the parameter estimation that is not shown here for the sake of brevity. 

 

Figure 5: Estimated parameters. The red dashed line shows the true value of the parameters, while 

the black dots represent their estimated values (the compressor equations are shown in Figure 3).  

5. Conclusions 

We have proposed an extension of the method developed by Matias and Jäschke (2019), 

not only identifying the model structure, but also estimating its parameters. The method 

is applied to a subsea gas compression station to track the degradation of the system 

compressor. Two compressor “states” (healthy and degraded) are included in the 

available model set. The method finds the model that best fits the plant information online 

and updates its parameters while driving the system to its true optimum. The case study 

shows promising results and a motivation to extend the application to more complicated 

systems and to include dynamic aspects to the proposed method.  
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