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a b s t r a c t

In this paper, we present a computationally efficient economic NMPC formulation, where we propose
to adaptively update the length of the prediction horizon in order to reduce the problem size.
This is based on approximating an infinite horizon economic NMPC problem with a finite horizon
optimal control problem with terminal region of attraction to the optimal equilibrium point. Using the
nonlinear programming (NLP) sensitivity calculations, the minimum length of the prediction horizon
required to reach this terminal region is determined. We show that the proposed adaptive horizon
economic NMPC (AH-ENMPC) has comparable performance to standard economic NMPC (ENMPC).
We also show that the proposed adaptive horizon economic NMPC framework is nominally stable.
Two benchmark examples demonstrate that the proposed adaptive horizon economic NMPC provides
similar performance as the standard economic NMPC with significantly less computation time.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Real time optimization (RTO) and model predictive control
(MPC) have emerged as crucial technologies in achieving online
process optimization. Traditionally, real time optimization (RTO)
focuses on the steady-state optimal economic operation. Recently
there is an increasing interest in not only ensuring that the pro-
cess is operated optimally at steady-state, but that transients are
optimized as well. This is done in the context of dynamic real time
optimization (DRTO) [1], which provides the optimal setpoint tra-
jectories to the control layer below, which are often implemented
using model predictive control (MPC). Moreover, MPC has also
evolved to nonlinear model predictive control (NMPC) to ensure
reliable control of highly nonlinear systems. More recently, the
DRTO and NMPC layers have been tightly integrated into a single
layer approach, known as economic NMPC [2], where there is
no time scale separation such as in the conventional two-layer
approach.

DRTO, NMPC, and the closely related economic NMPC are all
based on using a dynamic model of the process to solve numerical
optimization problems online, in order to minimize a desired
objective function. Realizing these tasks in real time requires fast
optimization algorithms. As many industrial applications call for
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increasingly complex, detailed and large-scale process models [3],
a major concern is the computational resources needed to solve
the resulting large-scale optimization problem. While advances
in numerical optimization strategies have enabled us to solve
increasingly larger optimal control problems (OCPs), real-time
implementation is still challenging, even with today’s comput-
ing power [4,5]. The non-negligible amount of time required
to solve the numerical optimization problem online leads to
computational delays, which are known to degrade the control
performance [6] and can also destabilize the system [7,8].

One of the main reasons for computational delay is the op-
timization problem size, which increases with the prediction
horizon. Typically, the prediction horizon is chosen to be con-
servatively long in order to ensure feasibility and stability of the
dynamic optimization problem [9]. However, when using an eco-
nomic NMPC framework, as opposed to a two-layer framework
with dynamic RTO and setpoint tracking control layer, it may be
desirable to implement the economic MPC at higher sampling
rates [10] and the sampling time is limited by the worst-case
computation delay. Thus reducing the online computation delay
is important for implementation of economic NMPC at higher
sampling rates.

Shekhar [11] proposed a variable horizon MPC formulation,
where the prediction horizon length itself is a decision variable.
Since the horizon length is an integer variable, this leads to a
mixed integer nonlinear programming problem (MINLP) for the
economic NMPC. For large-scale systems, such an approach is
impractical and more computationally intensive than solving an
NLP with long prediction horizon.
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Recently, an adaptive horizon NMPC problem was proposed
in [9], where the length of the prediction horizon is chosen in
real-time based on the current state, and terminal conditions are
enforced to approximate the infinite horizon problem. In this
paper, we use the idea of dissipativity to extend the adaptive
horizon NMPC problem formulation to the economic NMPC prob-
lem, by enforcing a region of attraction to the optimal equilibrium
point as a terminal constraint. By doing so, we only need to
compute the optimal trajectory to this terminal region online. The
NLP sensitivity updates are used to choose the prediction horizon
length in real-time.

The main contribution of this paper, is the extension of the
adaptive horizon NMPC [9] to economic NMPC problems, such
that the stability properties are retained. The rest of the paper is
organized as follows. Section 2 introduces the problem formula-
tion and the preliminaries. Section 3 introduces the computation
of the terminal region of attraction to the optimal equilibrium
point. The algorithm to update the horizon length online is de-
tailed in Section 4. Stability analysis is performed in Section 5.
Section 6 demonstrates the performance of the proposed adap-
tive horizon economic NMPC on a CSTR process and Section 7
demonstrates the performance of the proposed approach on a
benchmark Williams–Otto reactor, before concluding the paper
in Section 8.

2. Preliminaries

We consider a discrete time nonlinear model

xk+1 = f(xk,uk) (1)

where, the states x ∈ X and the control inputs u ∈ U at time k
are constrained to lie in the compact sets X ⊂ Rnx and U ⊂ Rnu

respectively. The nominal plant model denoted by f : X×U → X
is assumed to be twice differentiable in x and u.

The objective is to control the plant to achieve optimal eco-
nomic operation and we consider an economic NMPC scheme
based on receding horizon formulation to achieve this. At time
step t , the optimal control problem (OCP) is formulated as,

VN (x̂t ) := min
xk,uk

Vf (xN )+
N−1∑
k=0

ℓ(xk,uk) (2a)

s.t.

xk+1 = f(xk,uk) (2b)

x0 = x̂t (2c)

xk ∈ X , uk ∈ U, xN ∈ Xf (2d)
∀k ∈ {0, . . . ,N − 1}

where, the stage cost is denoted by ℓ(·, ·) : X × U → R
that typically contains economic terms along with a terminal
penalty Vf : Xf → R that accounts for the truncation of the
prediction horizon after N steps. The OCP is solved with x̂t as the
initial condition, which is the actual plant state measurement or
estimate at time step t , and the first control input is implemented
on the plant, i.e. µt (x̂t ) := u0.

Notational remarks. We use the notation x̂t to denote the mea-
sured state and µt to denote the input implemented on the
system at time step t . x̂t+1|t denotes the states at t+1 predicted at
time step t using the plant model (1). We denote the dependence
of the optimal control problem (2) on the initial condition x̂t and
the horizon length N by writing OCPN (x̂t ). The time step in the
optimal control problem (2) is given by k ∈ {0, . . . ,N − 1}. For
a given control sequence u = (u0,u1, . . . ,uN−1) ∈ U , xk(u, x̂t )
denotes the solution of (1) with the initial condition x0 = x̂t
at any time step k ∈ {0, . . . ,N}. The optimal control sequence

dependent on the initial condition x̂t is denoted as u(·, x̂t )∗. We
use |·| to denote an Euclidean vector norm.

Suppose (2) is re-written in the standard NLP form,

min
w

J(w) s.t g(w) ≤ 0, c(w) = 0 (3)

with w := [u0, x1, . . . ,uN−1, xN ], (2a) denoted by J(w), (2b) and
(2c) denoted by c(w) and (2d) denoted by g(w), we can define
constraint qualifications and second order sufficient conditions as
follows.

Definition 1 (MFCQ). The Mangasarian–Fromovitz constraint
qualification (MFCQ) is said to hold at an optimal point w∗ if and
only if, ∇wc(w∗) has full column rank (linearly independent) and,
there exists a direction d ̸= 0, such that ∇wc(w∗)Td = 0 and
∇wgi(w∗)Td < 0 for all i such that gi(w∗) = 0 (active inequality
constraints).

Definition 2 (GSSOSC). Suppose ∇2
wwL is the Hessian of the La-

grangian of (3) and, λ, µ are the multipliers of c and g respec-
tively. The generalized strong second order sufficient condition
(GSSOSC) is said to hold at a first order KKT point w∗ if for all
directions d for all i such that ∇wgi(w∗)Td = 0 and µ∗i > 0 (i.e,
strongly active inequality constraints), dT

∇
2
wwL(w∗, λ∗, µ∗)d > 0

is satisfied for all multipliers λ and µ.

We now make the following assumptions.

Assumption 1. The set X is assumed to be control positive
invariant for f(·, ·), that is for each x ∈ X , there exists a control
u ∈ U such that f(x,u) ∈ X .

Assumption 2. X×U is compact and the functions f : X×U → X
and ℓ : X × U → R are twice differentiable.

Assumption 3. MFCQ and GSSOSC holds for the optimal control
problem in (2).

Satisfying Assumption 1 is dependent on the process system
and choice of controller. In our case, if Assumptions 2 and 3
hold for NMPC controller based on (2), then Assumption 1 holds.
Assumption 3 implies that the primal solution w∗ of (2) is locally
unique.

Definition 3 (K-Functions). A function α : R+ → R+ is of class K,
if it is continuous and strictly increasing with α(0) = 0. Further
it is of class K∞ if α is unbounded.

Definition 4 (Optimal Equilibrium Pair). A pair (x,u) ∈ X × U
is called an equilibrium or steady-state pair if x = f(x,u) holds.
Furthermore, an equilibrium pair (xf ,uf ) ∈ X × U is called an
optimal equilibrium pair if it yields the lowest value of the cost
among all the equilibrium points

ℓ(xf ,uf ) ≤ ℓ(x,u) ∀ (x,u) ∈ X × U with x = f(x,u) (4)

Assumption 2 guarantees the existence of such an optimal
equilibrium point, as shown in [12, Lemma 8.4].

Definition 5 (Dissipativity). System xk+1 = f(xk,uk) is said to be
dissipative w.r.t a steady-state pair (xf ,uf ) ∈ X × U , if ∃λ : X →
R+ such that for all x ∈ X and u ∈ U ,

λ(f(x,u))− λ(x) ≤ s(x,u) (5)

Here, λ is the storage function and s(x,u) := ℓ(x,u)−ℓ(xf ,uf )
is the supply rate, and without loss of generality we assume
ℓ(x,u) ≥ 0 for all (x,u) ∈ X × U .
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Definition 6 (Strict Dissipativity). System xk+1 = f(xk,uk) is said
to be strictly dissipative w.r.t (xf ,uf ) ∈ X × U , if in addition to
Definition 5, ∃ αl ∈ K∞ such that

λ(f(x,u))− λ(x) ≤ −αl(|x− xf |)+ s(x,u) (6)

Assumption 4. (a) There exists at least one steady-state pair
(xf ,uf ) ∈ X × U such that xf = f(xf ,uf ) holds. (b) There
exists a bounded non-negative storage function λ : X → R+
and αl ∈ K∞, such that the OCP (2) is strictly dissipative w.r.t
the steady-state pair (xf ,uf ) in the sense of Definition 6, where
s(x,u) := ℓ(x,u)− ℓ(xf ,uf ).

Lemma 1. Given Assumptions 3 and 4, (xf ,uf ) is a unique global
minimizer of the steady-state optimization problem

(xf ,uf ) = arg min
x,u

ℓ(x,u) (7a)

s.t.

x = f(x,u) (7b)

x ∈ X , u ∈ U (7c)

Proof. This can be proved by contradiction. If (xf ,uf ) is not
the global minimizer, then there exists another equilibrium pair
(xe,ue) such that ℓ(xe,ue) < ℓ(xf ,uf ). Evaluating the dissipation
inequality in (5) at (xe,ue) gives, ℓ(xf ,uf ) ≤ ℓ(xe,ue). This leads
to a contradiction.

Evaluating the strict dissipation inequality (6) at (xe,ue) gives,
0 < αl(|xe − xf |) ≤ ℓ(xe,ue) − ℓ(xf ,uf ). Hence ℓ(xf ,uf ) is the
unique global minimizer. □

Strict dissipativity implies that the system is optimally oper-
ated at steady-state, which is formalized below.

Proposition 1. Given Assumption 4 and Lemma 1, the inequality

lim sup
T→∞

1
T

T−1∑
k=0

ℓ(xk(u(x̂t ), x̂t ),uk(x̂t )) ≥ ℓ(xf ,uf ) (8)

holds for all xk ∈ X and all admissible control sequences uk ∈ U .

Proof. See [12, Proposition 8.9] or [13, Proposition 6.4]. □

The inequality (8) expresses that the system is optimally oper-
ated at steady-state (sub-optimally operated off steady-state) [12,
13]. As shown in [14] dissipativity is a sufficient condition for
optimal operation at steady-state, and the convergence analy-
sis using the dissipativity condition in [13,15] showed that the
closed-loop system does converge to the optimal steady-state.

Furthermore, if the optimal equilibrium point is exponentially
reachable, then it was shown in [16,17], that strict dissipativity
and exponential reachability implies that the optimal solution of
the OCP spends most of the time in an ε-neighborhood to the op-
timal equilibrium pair (xf ,uf ), (also known as turnpike property).
For any initial condition x̂t ∈ X , once the optimal equilibrium
(xf ,uf ) is reached, the tail subproblem starting from (xf ,uf )
is identical, which follows directly from Bellman’s principle of
optimality.

To summarize in simple words, we have thus far established
that there exists an optimal equilibrium point (xf ,uf ), and that
the system is optimally operated at steady-state (xf ,uf ). Further-
more, for any initial condition x̂t starting from a control invariant
compact set X , the optimal solution of the OCP (2) exponentially
converges to the optimal equilibrium point (xf ,uf ). With this we
now propose to adaptively update the length of the prediction
horizon of the OCP (2), in order to reduce the problem size and
consequently reduce the online computation time.

The key idea here is to find a terminal region of attraction
Xf which contains the optimal equilibrium point (xf ,uf ). If one
can then ensure that a stabilizing control law exists within this
terminal region, such that the system will asymptotically con-
verge to the optimal equilibrium point from any x ∈ Xf , then
OCP (2) only needs to be solved with the minimum number of
samples required to reach the terminal region Xf , along with a
terminal cost that approximates the infinite horizon economic
NMPC problem. In other words, we modify the original OCP (2)
with a reduced prediction horizon length and add a Lyapunov
function as the terminal cost. This is described in more detail in
the next section.

3. Quasi-infinite economic NMPC with terminal constraints

In this section, we describe the problem of finding a region of
attraction Xf , such that for any x ∈ Xf , there exists a stabilizing
control law u = κf (x) ∈ U that asymptotically drives the system
to the optimal equilibrium point (xf ,uf ). Finding this region of
attraction corresponds to finding the largest region around the
optimal equilibrium point with radius cf in which the control law
is stabilizing for the nonlinear system xk+1 = f(xk,uk).

Consider the nonlinear system (1), split into linear and non-
linear parts,

xk+1 = f(xk,uk) = A∆xk + B∆uk + φ(∆xk,∆uk) (9)

where,

A =
∂f
∂x

⏐⏐⏐⏐
(xf ,uf )

, B =
∂f
∂u

⏐⏐⏐⏐
(xf ,uf )

∆x := (x−xf ),∆u := (u−uf ) and φ(∆xk,∆uk) is the linearization
error.

We propose to use an infinite horizon LQR applied on the
linearized system as the stabilizing controller in the terminal
region:

Vf (x) ≡ ∆xTP∆x = min
∞∑
k=0

(
∆xT

kQ∆xk +∆uT
kR∆uk

)
(10)

s.t.

∆xk+1 = A∆xk + B∆uk, (11)
∀k = 0, . . . ,∞

where P ≻ 0. By solving the discrete algebraic Riccati equation,

P = ATPA− (ATPB)(BTPB+ R)−1(BTPA)+ Q (12)

the LQR control law is given by,

uk = κf (xk) = uf − K (xk − xf ) (13)

with

K = (R+ BTPB)−1BTPA (14)

The nonlinear system (1) controlled by the LQR control law (13)
is then given by,

∆xk+1 = Acl∆xk + φ(∆xk) (15)

where Acl = (A − BK ) and φ(∆xk) = φ(∆xk,−K∆xk). In the
LQR control design, we ignored the nonlinear effect φ(∆xk,∆uk).
However, in order to show that the LQR controller stabilizes the
nonlinear system, the linearization error must be bounded, which
is formalized below.

Lemma 2 ([9]). There exists M, q ∈ R+ such that

|φ(∆x)| ≤ M|∆x|q, ∀x ∈ X (16)
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Proof. See [9]. □

The radius of the terminal region of attraction to the optimal
equilibrium point is given by (19), which depends on the bounds
on the linearization error from Lemma 2. However, quantifying
the bound analytically may be tedious as pointed out in [9].
Instead, the authors in [9] proposed to explicitly fit M and q in
(16) via offline simulations, which will also be adopted in this
paper. Here, we solve a series of one step simulations offline,
using the LQR controller for several randomly sampled initial
conditions from the state space. The linearization error is then
quantified for all the simulations by subtracting the linear part of
the system.

φ(∆xk,∆uk) = f(∆xk,−K∆xk)− Acl∆xk (17)

Note that this procedure is done only once, offline during the
design of the controller.

Lemma 3. There exists a region of attraction around the optimal
equilibrium point xf

Xf := {x | |x− xf | ≤ cf } (18)

such that the system controlled using a stabilizing LQR control law
(13) in the interior of this region asymptotically converges to the op-
timal equilibrium point xf and the radius of the region of attraction
is given by,

cf :=

(
−σΛ+

√
(σΛ)2 + (λW − ϵLQ )Λ

ΛM

) 1
q−1

(19)

where σ is the maximum singular value of Acl, λW and λW are the
maximum and minimum eigenvalues of W := Q + K TRK , Λ :=
λW

(1−σ2)
, and ϵLQ is the margin for strong descent of Vf (x).

Proof. See [9]. □

Remark 1. Note that the stabilizing control law in the terminal
region is designed such that it satisfies the control constraints,
i.e. κf (x) ∈ U for all x ∈ Xf . Consequently, Xf can be assumed to
be control invariant under the control law u = κf (x).

With the existence of a region of attraction to the optimal
equilibrium point, we can now design an adaptive horizon eco-
nomic NMPC (AH-ENMPC) framework with a terminal cost and
region, where the length of the prediction horizon Ñt ≤ N at
time t is chosen such that it is just enough to reach this terminal
region Xf . The adaptive horizon economic NMPC with prediction
horizon length Ñt ≤ N is then written as,

VÑt
(x̂t ) := min

xk,uk
Vf (xÑt

)+
Ñt−1∑
k=0

ℓ(xk,uk) (20a)

s.t.

xk+1 = f(xk,uk) (20b)

x0 = x̂t (20c)

xk ∈ X , uk ∈ U (20d)

xÑt
∈ Xf (20e)

∀k ∈ {0, . . . , Ñt − 1}

Note that this formulation replaces the original economic
NMPC (2), where the terminal penalty Vf (xÑ ) is given by (xÑ −
xf )TP(xÑ − xf ). This ensures that the state trajectory asymp-
totically converges to the optimal equilibrium point within the
terminal region.

Remark 2. Since in the terminal region, the control law is
designed such that the terminal penalty cost Vf (xÑ ) ≡ (xÑ −
xf )TP(xÑ−xf ) monotonically decreases [9], this may conflict with
the economic objective ℓ(·, ·) inside the terminal region. Hence,
there may be a trade-off between the economic performance
(small size of the terminal region) and the computation cost
(large size of the terminal region). For this reason, the radius of
the terminal region Xf may be chosen smaller than cf , such that
the economic loss due to enforcing a monotonically decreasing
terminal region is negligible. Naturally all the desirable properties
of the terminal region established in Lemma 3 still follow in this
case, since 0 < ε ≤ cf , where ε is the new radius of the terminal
region.

Algorithm 1 details the offline steps involved in determining
the terminal region and the cost-to-go approximation.

Algorithm 1 Offline algorithm to design the terminal region and
the terminal cost function.

Define LQR tuning parameters Q and R.

(xf ,uf )← solve steady-state optimization problem (7).
A∆xk + B∆uk ← linearize nonlinear model (1) around (xf ,uf ).
P ← Solve discrete algebraic Riccati equation (12).
∆xk+1 ← one-step simulations with several random initial
states xk ∈ X .
φ← f(xk, κ(xk))− Acl(xk − xf ) ▷ linearization error
Determine bounds on linearization error M, q using |φ|
cf ← compute radius of the terminal region using (19)

Output: Xf , P

The algorithm to determine the terminal region presented
above is based on linearizing the system around the optimal
equilibrium pair (xf ,uf ). However, the optimal equilibrium pair
depends on disturbances, and may change as the disturbances
change. To reflect this, one can determine the radius of the termi-
nal region cf and the cost-to-go matrix P for different realizations
and choose the smallest terminal region and the correspond-
ing cost-to-go matrix. This would involve repeating Algorithm 1
for different disturbance realizations, which is performed once
offline during the design of the controller.

4. Adaptive horizon economic NMPC (AH-ENMPC)

Now that we have presented a method to construct the ter-
minal region Xf , we now present an algorithm to choose the
prediction horizon length Ñ , which is sufficient to reach the
terminal region. The first step is to determine a minimum hori-
zon length Nmin (typically chosen through simulation or domain
knowledge). At the first time step t = 0 we initialize Ñ0 = N ,
which is the full horizon length. The prediction horizon length
is defined to take an integer number from a bounded set Z :=
{Ñ|Nmin ≤ Ñ ≤ N, Ñ ∈ Z+}. The maximum prediction horizon
length N is chosen such that the economic NMPC problem is al-
ways feasible. The minimum length Nmin is chosen via simulations
such that the ENMPC problem is a good approximation of the
infinite horizon problem [9].

The objective is to define a process H : Rnx × Rnx × Z → Z
that determines the length of the prediction horizon to be used
at time step t + 1 based on the current state x̂t , successor state1
x̂t+1|t , and the current horizon length Ñt . One approach is to use

1 Which denotes the states at time step t + 1 predicted at time step t using
x̂t and (1).
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Fig. 1. Algorithm to determine the reduced horizon length Ñ starting from a
sufficiently long horizon length N .

the NLP sensitivity update to determine the minimum horizon
length required to reach the terminal region, which is described
below.

At each time step t , we solve the economic NMPC problem
OCPÑt

(x̂t ) in Eq. (20). Using the NLP sensitivity, we then solve
the parametric sensitivity problem with the initial condition x̂t as
the parameter. Using the successor state x̂t+1|t as the parametric
perturbation, we obtain the predicted state trajectory starting
from x̂t+1|t .

Let s∗(x̂t ) denote the combined primal–dual optimal solution
of OCPÑt

(x̂t ), and the active constraint gradients be linearly inde-
pendent, then the parametric sensitivity provides the linearized
approximation of the optimal solution with x̂t+1|t as the initial
condition,

s∗(x̂t+1|t ) ≈ s∗(x̂t )+
∂s∗(x̂t )T

∂ x̂t
(x̂t+1|t − x̂t ) (21)

For the sake of brevity, the parametric sensitivity update step and
how to compute ∂s∗(x̂t )

∂ x̂t
is detailed in the Appendix.

From the predicted state trajectory provided by the sensitivity
update s∗(x̂t+1|t ) we can determine the number of time steps NT
required to reach the terminal region Xf . At time step t + 1, we
can then set the horizon length Ñt+1 = NT +Nmin. However, if the
state trajectory from the sensitivity update starting from x̂t+1|t
does not reach the terminal region, then at time step t+1 we set
the full horizon length Ñt+1 = N .

To summarize, at each time step, this involves solving the NLP
problem with Ñt prediction horizon length and solving the sen-
sitivity problem. The prediction horizon length is updated online
based on the one-step ahead sensitivity predictions along with a
minimum number of samples Nmin added as a safety factor. The
sketch of the adaptive horizon algorithm is shown in Algorithm
2 and schematically represented in Fig. 1.

Remark 3. We assume that the OCP (20) at time t is always
feasible for Ñt = N . The process H (now defined by Algorithm
2) is designed such that if the OCP (20) with horizon length Ñt is
feasible at time t , then it is also feasible at time t+1 with horizon
length Ñt+1. Although NT in Algorithm 2 is determined based on
NLP sensitivity update, the safety factor Nmin can be chosen such
that the terminal region is Ñt+1 reachable. This can be done using
offline simulations, since finding Nmin that rigorously guarantees
this assumption may in general be difficult, and is not the focus
of this paper.

5. Stability properties of the AH-ENMPC

In this section, we study the stability properties of the adap-
tive horizon economic NMPC framework presented in Section 4.

Algorithm 2 Sensitivity-based adaptive horizon algorithm.
Define full horizon length N , minimum length Nmin.
Determine terminal region Xf and cost-to-go approximation
using Algorithm 1.
Initialize Ñ0 = N .

Input: at each time step t: initial state x̂t

s∗(x̂t )← Solve OCPÑt
(x̂t )

One-step ahead prediction x̂t+1|t ← f(x̂t ,µt )
s∗(x̂t+1|t ) ← Solve the sensitivity problem (21) that approxi-
mates OCPÑt

(x̂t+1|t ).
Obtain state trajectory xÑt

from s∗(x̂t+1|t )
if xÑt

∈ Xf then
Determine NT , step at which Xf is reached.
Set Ñt+1 ← NT + Nmin

else
Set Ñt+1 ← N

end if
t ← t + 1

Output: s∗(x̂t ), Ñt+1

We follow the Lyapunov stability framework where we want to
ensure the existence of a Lyapunov function,

VÑt+1
(x̂t+1)− VÑt

(x̂t ) ≤
Ñt+1∑
k=1

ℓ(xk,uk)+ Vf (xÑt+1+1
)

−

Ñt−1∑
k=0

ℓ(xk,uk)− Vf (xÑt
) (22)

However, for economic NMPC problems, the economic stage cost
ℓ(xk,uk) may not be a K function of xk, and can take any arbi-
trary form. In general, the local minima are not guaranteed to
be the global minima and in this case, the right hand side of
the inequality (22) may not always be negative. Therefore, the
objective function of the economic NMPC cannot be directly used
as a Lyapunov function and we need additional properties.

For economic NMPC problems, dissipativity as defined in Def-
initions 5 and 6 can be used to establish stability.

As established in [13], the dissipativity condition is satisfied
if the economic stage cost ℓ(·, ·) and the system (1) form a
strongly dual problem. If the steady-state optimization problem
has a strongly convex Lagrange function, then this leads to strong
duality [18]. This leads to the idea of rotated stage costs given by

ψ(x,u) := ℓ(x,u)+ λ(x)− λ(f(x,u)) (23)

Similarly, the rotated terminal cost

Ψ (xÑ ) := Vf (xÑ )+ λ(xÑ ) (24)

can be formed.
As shown in [19, Lemma 9], the existence of a stabilizing

control law u = κf (x) in the terminal region and the control
invariance property of Xf (cf. Remark 1) implies that the rotated
terminal cost satisfies

Ψ (xN+1)− Ψ (xN ) ≤ −ψ(xN ,uN )+ ℓ(xf ,uf ) (25)
∀xN ∈ Xf

where uN = κf (xf ) is given by the stabilizing control law (13).
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Considering the rotated stage cost (23) and terminal cost (24),
the OCP (20) can be rewritten as,

V̂Ñ (x̂t ) := min
xk,uk

Ψ (xÑ )+
Ñ−1∑
k=0

ψ(xk,uk) (26)

s.t. (20b)–(20e)

Lemma 4 (Rotation Does Not Alter Optimal Solution [15]). If the
adaptive horizon ENMPC solved with the stage cost ℓ(x,u) and
terminal cost Vf (xÑ ), admits an optimal solution u∗(·, x̂t ) for any
x̂t ∈ X , then for the same horizon length and initial condition, the
optimal solution u∗(·, x̂t ) is also optimal for the AH-ENMPC solved
with rotated stage cost ψ(x,u) and terminal cost Ψ (xÑ ).

Proof. Expanding the rotated cost function (26) gives

V̂Ñ (x̂t ) = Ψ (xÑ )+
Ñ−1∑
k=0

ψ(xk,uk) (27a)

=

Ñ−1∑
k=0

[ℓ(xk,uk)+ λ(xk)− λ(xk+1)]+ Vf (xÑ )− λ(xÑ ) (27b)

=

Ñ−1∑
k=0

ℓ(xk,uk)+ Vf (xÑ )+ λ(x0) = VÑ (x̂t )+ λ(x̂t ) (27c)

which differs from the original cost only by the constant term
λ(x̂t ). □

This implies that the optimal solution for the OCP (26) is
identical to (20). Therefore, one can equivalently analyze the
stability of (26).

If (23) is strongly convex, then strong duality can be guaran-
teed. However, if these are not strongly convex functions, then a
simple approach to ensure strong convexity of (23) is by adding
regularization terms
1
2
|(x− xf ,u− uf )|2Q̂ (28)

where Q̂ is a suitably defined regularization weighting matrix,
such that the resulting regularized rotated stage cost function is
strongly convex. The regularized rotated stage cost is given as,

ψreg (x,u) := ψ(x,u)+
1
2
|(x− xf ,u− uf )|2Q̂ (29)

At the optimum,

∇ψreg =∇ψ = 0 (30a)

∇
2ψreg =∇

2ψ + Q̂ (30b)

To ensure strong convexity, one must have ∇2ψreg ≻ 0, ∀(x,u) ∈
X × U . Therefore, Q̂ must be chosen such that the eigenvalues of
(∇2ψ+Q̂ ) > 0 over the entire feasible set X×U . For example, the
regularization weighting matrix can be determined by applying
the Gresgorin’s theorem to find the minimal regularization matrix
that makes the regularized rotated stage cost strongly convex as
explained in [20]. However, it is worth noting that the regulariza-
tion with Q̂ could make (28) a conservative, sluggish controller.
An alternative approach to adding regularization terms, may be
to impose a constraint that enforces a descent condition on a
tracking Lyapunov function as shown in [21, Section 4.2].

Consider the rotated cost evaluated using the stabilizing con-
trol law uk = κf (xk),

V̂ κ
Ñ
(x̂t ) := Ψ (xÑ )+

Ñ−1∑
k=0

ψ(xk, κf (xk))

Lemma 5. There exists α1 ∈ K∞ such that |̂V κN (x)− Ψ (x)| ≤
α1(|x− xf |) for all x̂t ∈ Xf and α2 ∈ K∞ such that |Ψ (x̂t )− V̂N (x̂t )|
≤ α2(|x− xf |) for all x̂t ∈ Xf .

Proof. See [9]. □

Assumption 5. The solution of the AH-ENMPC (20) with horizon
length Ñt ≥ Nmin satisfies

α1(|xÑt
− xf |)− αl(|x0 − xf |) ≤ −α′l (|x0 − xf |) if Ñt+1 > Ñt

α2(|xÑt+1+1
− xf |)− αl(|x0 − xf |) ≤ −α′l (|x0 − xf |) if Ñt+1 < Ñt

This essentially means that the approximation error using a
stabilizing control law in the terminal region must be negli-
gible (cf. Remark 2). This assumption can be enforced using a
sufficiently large Nmin which is selected through simulations as
explained in [9].

Theorem 1 (Nominal Stability of AH-ENMPC). Consider the adaptive
horizon economic NMPC problem (20) applied to the system (1).
Given Assumptions 1, 4, and 5, the closed-loop system is asymptot-
ically stable at xf .

Proof. According to Lemma 4, since the optimal solutions co-
incide, we can consider the rotated stage and terminal cost in
the economic NMPC. First we show that rotated cost function
V̂Ñ (x̂t ) is a suitable Lyapunov function for the closed-loop system
by considering the case where Ñt+1 = Ñt = Ñ .

V̂Ñ (x̂t+1)− V̂Ñ (x̂t )

=

Ñ∑
k=1

ψ(xk,uk)+ Ψ (xÑ+1)−
Ñ−1∑
k=0

ψ(xk,uk)− Ψ (xÑ )

= ψ(xÑ ,uÑ )− ψ(x0,u0)+ Ψ (xÑ+1)− Ψ (xÑ )

From (25), we have

V̂Ñ (x̂t+1)− V̂Ñ (x̂t ) ≤ ℓ(xf ,uf )− ψ(x0,u0)

From the definition of the rotated stage cost (23) and strict
dissipativity (6),

V̂Ñ (x̂t+1)− V̂Ñ (x̂t )
≤ ℓ(xf ,uf )− ℓ(x0,u0)− λ(x0)+ λ(f(x0,u0))
≤ −αl(|x0 − xf |)

where x0 = x̂t and u0 = µt (x̂t ). Hence V̂Ñ (x̂t ) is a Lyapunov
function and xf is an asymptotically stable equilibrium point of
the closed loop system. Now we can use the same framework and
consider the case where Ñt+1 ̸= Ñt .

Consider the case with increasing horizon length Ñt+1 > Ñt .
The candidate Lyapunov function is given by,

V̂Ñt+1
(x̂t+1)− V̂Ñt

(x̂t )

=

Ñt+1∑
k=1

ψ(xk,uk)+ Ψ (xÑt+1+1
)−

Ñt−1∑
k=0

ψ(xk,uk)− Ψ (xÑt
)

=

Ñt−1∑
k=1

ψ(xk,uk)+
Ñt+1∑
k=Ñt

ψ(xk,uk)+ Ψ (xÑt+1+1
)

− ψ(x0,u0)−
Ñt−1∑
k=1

ψ(xk,uk)− Ψ (xÑt
)

= −ψ(x0,u0)+
Ñt+1∑
k=Ñt

ψ(xk,uk)+ Ψ (xÑt+1+1
)− Ψ (xÑt

)
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= −ψ(x0,u0)+ V̂ κ
Ñt+1+1−Ñt

(xÑt
)− Ψ (xÑt

)

≤ −αl(|x0 − xf |)+ α1(|xÑt
− xf |) ≤ −α′l (|x0 − xf |)

Now consider the case with decreasing horizon length Ñt+1 <

Ñt . The candidate Lyapunov function is given by,

V̂Ñt+1
(x̂t+1)− V̂Ñt

(x̂t )

=

Ñt+1∑
k=1

ψ(xk,uk)+ Ψ (xÑt+1+1
)−

Ñt−1∑
k=0

ψ(xk,uk)− Ψ (xÑt
)

=

Ñt+1∑
k=1

ψ(xk,uk)+ Ψ (xÑt+1+1
)− Ψ (xÑt

)

− ψ(x0,u0)−
Ñt+1∑
k=1

ψ(xk,uk)−
Ñt−1∑

k=Nt+1+1

ψ(xk,uk)

= −ψ(x0,u0)+ Ψ (xÑt+1+1
)−

Ñt−1∑
k=Nt+1+1

ψ(xk,uk)− Ψ (xÑt
)

= −ψ(x0,u0)+ Ψ (xÑt+1+1
)− V̂Ñt−Ñt+1+1

(xÑt+1+1
)

≤ −αl(|x0 − xf |)+ α2(|xÑt+1+1
− xf |) ≤ −α′l (|x0 − xf |)

Hence V̂Ñ (x̂t ) is a Lyapunov function and the AH-ENMPC is
asymptotically stable. □

Remark 4. As noted in [15] the rotation of the stage and terminal
cost is not necessary for the implementation of the adaptive
horizon economic NMPC, but is only needed to show stability
properties.

6. Simulation example 1 — CSTR

In this section, we illustrate the concepts described above us-
ing a CSTR case example from [22], with a reversible exothermic
reaction A⇀↽ B. The objective is to maximize the product concen-
tration CB while penalizing the utility cost of heating the input
stream using the inlet temperature u = Ti as the manipulated
variable.

min
Ti
ℓ = −[2.009CB − (1.657× 10−3(Ti − 410))2]

s.t. (31)
dCA

dt
=

1
τ
(CA,i − CA)− r (32)

dCB

dt
=

1
τ
(CB,i − CB)+ r (33)

dT
dt
=

1
τ
(Ti − T )+

−∆Hrx

ρCp
r (34)

where the concentrations in [mol/l] of the two components in
the reactor are denoted by CA and CB, respectively. CA,i and CB,i
denote the feed concentrations. Ti and T are the inlet and reaction
temperatures, respectively and the reaction rate is given as r =
k1CA − k2CB with k1 = C1e

−E1
RT and k2 = C2e

−E2
RT . The system

has nx = 3 states and nu = 1 control input.
To ensure dissipativity and strong convexity, we add the regu-

larization terms 1
2 [qA(CA−C∗A )

2
+qB(CB−C∗B )

2
+qT (T−T ∗)2+qTi (Ti−

T ∗i )
2
] to the stage cost with qA = 27, qB = 26 and qT = qTi = 0,

which were chosen such that the eigenvalues of (∇2ψ + Q̂ ) > 0.

6.1. Terminal region calculation

To compute a terminal region, we design a LQR control law
with Q = 10 and R = 1. As mentioned earlier, the linearization

Fig. 2. Example 1: Nonlinearity bounds computed using 10000 simulations.

Fig. 3. Example1: Open-loop predicted optimal trajectory of |x− xf | at t = 16
(black) and the sensitivity update starting from the successor state (blue). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

error bounds are quantified by explicitly fitting M and q in (16)
via several one-step simulations offline. To quantify the lineariza-
tion error in this example, we perform 10000 such simulations
offline, with random initial states. Here M = 100 000 and q = 2
were found to be reasonable bounds as shown in Fig. 2 (orange
line). Using (19), the radius of the terminal region is computed as
cf = 1.2951× 10−6.

6.2. Simulation results

The system was simulated with a sampling time of 10 s. The
process was simulated for a total duration of 20 min. The pro-
posed adaptive horizon economic NMPC controller with reduced
horizon updated online (denoted by AH-ENMPC) was bench-
marked against the economic NMPC with the full horizon length
of N = 60 (denoted by ENMPC). Ñmin = 3 was chosen as the
minimum length for the AH-ENMPC scheme. The controller was
implemented using CasADi v.3.4.5[23] using MATLAB inter-
face. The NLP was solved with IPOPT [24] using MUMPS linear
solver on a 2.6 GHz Intel Core-i7 with 16 GB memory.

Fig. 3 shows the open-loop predicted optimal trajectory of
|x− xf | at t = 16 in black. The sensitivity update (21) using the
successor state x̂t+1|t is also shown in the same figure in blue.
As described in Algorithm 2, the number of samples required to
reach the terminal region NT is determined using the sensitivity
update, which is then used as the horizon length at the next time
step with an additional safety factor of Nmin.

Fig. 4 shows the open loop cost at time step t = 30, where it
can be seen that the open loop optimal trajectory of the adaptive
horizon economic NMPC with Ñ = 25 samples is also admissible
for the full horizon economic NMPC up to N = 25.
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Fig. 4. Example1: Open loop predictions showing the stage cost at time step
t = 30 for the adaptive horizon economic NMPC and the standard fixed horizon
economic NMPC.

Fig. 5. Example 1 no noise case: Simulation results comparing the adaptive
horizon economic NMPC with the standard fixed horizon economic NMPC.

Simulation without noise. Fig. 5 shows the closed-loop simula-
tion results of the AH-ENMPC (dashed) and the standard ENMPC
(solid) without measurement noise. It can be clearly seen that
the performance of both the controllers are nearly identical. The
only difference between the two controllers are the length of
the prediction horizon. The standard economic NMPC had a fixed
length of 60 samples, whereas the prediction horizon was up-
dated online using Algorithm 2 for the adaptive horizon economic
NMPC. The prediction horizon lengths and the corresponding CPU
times are shown in Fig. 6. The average computation time and the
total cumulative cost of the two approaches are also summarized
in Table 1, which clearly shows that identical performance as
the standard economic NMPC can be achieved with significantly
less computation time by using the proposed adaptive horizon
economic NMPC.

Simulation with noise. Fig. 7 shows the closed-loop simulation re-
sults of the AH-ENMPC (dashed) and the standard ENMPC (solid)

Fig. 6. Example 1 no noise case: Simulation results comparing the length of the
prediction horizon and CPU time.

Fig. 7. Example 1 with noise case: Simulation results comparing the adaptive
horizon economic NMPC with the standard fixed horizon economic NMPC.

with added measurement noise of zero mean and standard de-
viation σi = [0.0005, 0.0005, 0.05]. Again, it can be clearly seen
that the performance of both the controllers are nearly identical.
The prediction horizon lengths and the corresponding CPU times
are shown in Fig. 6. The average computation time and the
total cumulative cost of the two approaches are also summarized
in Table 1, which clearly shows that identical performance as
the standard economic NMPC can be achieved with significantly
less computation time by using the proposed adaptive horizon
economic NMPC (see Fig. 8).
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Table 1
Example 1: Average computation time and cumulative cost for ENMPC and AH-ENMPC.

No noise With noise

Cumulative cost Average Cumulative cost Average∑
ℓ[$] CPU time [s]

∑
ℓ[$] CPU time [s]

ENMPC (N = 60) −146.4480 0.1320 −146.4769 0.1580
AH-ENMPC −146.4477 0.0307 −146.4767 0.0325

Fig. 8. Example 1 with noise case: Simulation results comparing the length of
the prediction horizon and CPU time.

Simulation with different initial conditions. - We now perform
the same simulation as above, but start with different initial
conditions x̂0 and compare the performance of the proposed
AH-ENMPC scheme with the fixed horizon ENMPC. Fig. 9 (top
subplot) shows the minimum horizon length required to reach
the terminal region for 15 randomly chosen initial states. This
plot clearly shows that for some initial conditions, the terminal
region is reachable with a relatively short prediction horizon,
whereas for some other initial conditions, longer prediction hori-
zon is required. In other words, the minimum prediction horizon
length required to reach the terminal region varies with the initial
condition and is typically not known in advance. This is one of the
main reasons why the prediction horizon of the MPC is chosen
to be conservatively long in many practical applications, and
further motivates the need for an adaptive horizon framework.
The proposed AH-ENMPC scheme on the other hand, is able to
determine and update the minimum prediction horizon length
required to reach the terminal region in each simulation run.

The CPU time for the different simulation runs using ENMPC
and the AH-ENMPC are also shown in Fig. 9 (bottom subplot).
The average CPU time over the different simulation runs using
the proposed AH-ENMPC was 0.0305 s, as opposed to 0.1374 s
using ENMPC, which shows a 78% decrease in the average CPU
time using the proposed AH-ENMPC scheme.

7. Simulation example 2 — Williams–Otto reactor

In this section, we now demonstrate the proposed AH-ENMPC
scheme using a benchmark Williams–Otto reactor from [25].
Williams–Otto reactor is fed with two input streams FA and FB of
pure components A and B, respectively to produce the products
P and E, through the following set of chemical reactions,

A+ B→ C
B+ C → P + E
C + P → G

Fig. 9. Example 1 with noise case: Simulation results comparing the length of
the prediction horizon and CPU time for 15 different simulation runs starting
from different initial conditions x̂0 .

Feed stream FA = 1.8275 kg/s is fixed, and the process is
controlled using feed stream FB and the reactor temperature TR.
The economic optimization problem is given by,

min
FB,TR

ℓ = −1043.38xP (FA + FB)+ 20.92xE(FA + FB)

− 79.23FA − 118.34FB
s.t. x = f(x,u)

xG ≤ 0.08

where xi denotes the mass fraction of the ith component. The
process has nx = 6 states and nu = 2 inputs. To ensure strong
convexity, we add regularization terms 0.5|x− xf |Q̂ to the stage
cost, with Q̂ = 0.1I6×6, which was chosen to ensure that the
eigenvalues of (∇2ψ + Q̂ ) > 0. The terminal region was com-
puted by quantifying the linearization error bounds by explicitly
fitting M and q in (16) via several one-step simulations offline.
To quantify the linearization error in this example, we perform
3025000 such simulations. Here M = 1 and q = 2 were found to
be reasonable bounds as shown in Fig. 10 (orange line). This leads
to a terminal region of attraction with radius cf = 5.6162×10−4.

The system was simulated with a sampling time of 1min,
with the nominal prediction horizon of N = 60 samples. Note
that, in this example, although the terminal region was reachable
with a shorter prediction horizon, this led to poor closed-loop
performance. Therefore, we choose a prediction horizon of N =
60 to get the desired closed-loop performance, and then use the
proposed AH-ENMPC scheme to reduce the computational delay.
Ñmin = 12 was chosen as the minimum length of the prediction
horizon in the AH-ENMPC scheme. The process was simulated for
a total time of 60 min.

Fig. 11 shows the closed-loop simulation results of the AH-
ENMPC (dashed) and the standard ENMPC (solid) with measure-
ment noise of zero mean and standard deviation σi = 5 × 10−5.
Again, it can be clearly seen that the performance of both the
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Fig. 10. Example 2: Nonlinearity bounds computed using 3025000 simulations.

Fig. 11. Example 2 with noise: Simulation results comparing the adaptive
horizon economic NMPC with the standard fixed horizon economic NMPC.

Table 2
Example 2: Average computation time and cumulative cost for ENMPC and
AH-ENMPC.

Cumulative cost Average∑
ℓ[$] CPU time [s]

ENMPC −2.578× 104 0.4195
AH-ENMPC −2.579× 104 0.1421

controllers are nearly identical. The prediction horizon lengths
and the corresponding CPU times are shown in Fig. 12. The
average computation time and the total cumulative cost of the
two approaches are also summarized in Table 2, which clearly
shows that nearly identical performance as the standard eco-
nomic NMPC can be achieved with significantly less computation
time by using the proposed adaptive horizon economic NMPC.

8. Conclusion

This paper presents an adaptive horizon economic NMPC
framework where we showed that we can reduce the computa-
tional delay by choosing a smaller prediction horizon length. We
develop an approach to compute a terminal region to the optimal
equilibrium point and show that the online optimization problem
only needs to re-compute the optimal solution to this terminal

Fig. 12. Example 2 with noise: Simulation results comparing the length of the
prediction horizon and CPU time.

region. We also showed that the proposed adaptive horizon eco-
nomic NMPC is nominally stable. Simulation results demonstrate
the effectiveness of the proposed approach. Extending this ap-
proach to more general economic NMPC formulations is a natural
progression of this work. Explicit treatment of uncertainty and
model mismatch in the proposed AH-ENMPC scheme would be
another future research direction.
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Appendix. NLP sensitivity update

In this section, we show how to solve the parametric sensitiv-
ity updated for Vp(x̂t+1|t ). We note that the OCP (20) is parametric
in the initial condition p := x̂t , which is rewritten as a generic
parametric NLP:

P(p): min
w

J(w, p), s.t. c(w, p) = 0, g(w, p) ≤ 0 (A.1)

where w denotes the primal variables, p denotes the parameter, J
denotes the cost, c denotes the equality constraints and g denotes
the inequality constraints. The NLP (A.1) is solved with p = p0.
We denote the Lagrangian of (A.1) as,

L(w, p0, λ, ν) := J(w, p0)+ λT c(w, p0)+ νTg(w, p0) (A.2)

Let the primal–dual solution vector be represented as s∗ :=
[w∗

T
, λ∗

T
, ν∗

T
]
T and assume that it satisfies linear independent

constraint qualification (LICQ), strong second order sufficient con-
ditions (SSOSC), and strict complementarity i.e., νi−gi(w∗) > 0 for
all i. We define gA(w) as the sub-vector of g with all gi(w∗) = 0.
If the functions J , c , and g are sufficiently differentiable w.r.t w
and p in a neighborhood of the nominal solution s∗(p0), for P(p0),
then for p in the neighborhood of p0, ∃ s∗(p) which is continuous
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and differentiable and a unique local minimizer of the problem
P(p). In this case, the sensitivity can be computed by applying the
implicit function theorem (IFT) on the KKT conditions of (A.1) as
detailed in [26], which results in(

M
∂s∗

∂p
+ N

)
(p− p0) ≈ 0 (A.3)

where

M :=

⎡⎢⎣ ∇wwL(s
∗(p0)) ∇wc(w∗(p0)) ∇wgA(w∗(p0))

∇wc(w∗(p0))T 0 0
∇wgA(w∗(p0))T 0 0

⎤⎥⎦
is the KKT matrix and

N :=

⎡⎢⎣ ∇wpL(s∗(p0))
∇pc(w∗(p0))T

∇pgA(w∗(p0))T

⎤⎥⎦
Changes in active constraint sets can be handled by solving a
predictor–corrector QP using a path following strategy as ex-
plained in [20]. In this case, Algorithm 2 would solve a predictor–
corrector QP, instead of (A.3) to compute s∗(x̂t+1|t ).
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