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ABSTRACT

Virtual Flow Metering (VFM) is an increasingly attractive method for estimation of multiphase flowrates in oil
and gas production systems. Instead of using expensive hardware metering devices, numerical models are used
to compute the flowrates by using readily available field measurements such as pressure and temperature.
Currently, several VFM methods and software are developed which differ by their methodological nature and the
industry use. In this paper, we review the state-of-the-art of VFM methods, the applied numerical models, field
experience and current research activity. In addition, we identify gaps for future VFM research and development.
The review shows that VFM is an active field of research, which has the potential to be used as a standalone
metering solution or as a back-up for physical multiphase flow meters. However, to increase the value of VFM
technology for oil and gas operators, future research should focus on developing auto-tuning and calibration
methods which account for changes of fluid properties and operation conditions. In addition, the review shows
that the potential of machine learning methods in VFM is not fully revealed, and future research should focus on
developing robust methods which are able to quantify flow estimation uncertainties and incorporate first
principle models that will result in more accurate and robust hybrid VFM systems. Finally, our review reveals
that dynamic state estimation methods combined with first principles and machine learning models could fur-
ther improve the VFM accuracy, especially under transient conditions, but implementation of these methods can

be challenging, and further research is required to make them robust.

1. Introduction

An oil and gas production system typically consists of a number of
wells which are connected to a flowline which carries the produced
fluid from wellheads to an inlet separator of a processing facility. If the
field is subsea, the flowline is connected with the inlet separator via a
riser. The flowrate of the produced fluid is controlled by choke valves
installed at the wellheads. A schematic representation of a typical
subsea production system is shown in Fig. 1, where an example with
two wells is shown for simplicity. In the vast majority of cases the
production field consists of more wells. In this example, we also include
an electric submersible pump (ESP) as an example of artificial lift,
however, other methods may also be used for this purpose, for instance,
gas lift (Rashid et al., 2012). Typically, the produced fluid is a multi-
phase mixture of oil, gas, water and solids such as sand or asphaltenes
(Falcone et al., 2009). This mixture is split into single phases in the inlet
separator and further processed at a processing facility.

For economic operation of the production systems, it is important to
know the oil, gas and water flowrates from each well. It allows
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operators to make critical decisions in production optimization, rate
allocation, reservoir management and predict the future performance of
the field (Retnanto et al., 2001; Morra et al., 2014; Falcone et al., 2001).
At the early stage of the industry, the main method to estimate well
flowrates was well testing. Here, a well stream is directed into a test
separator where it is split into oil, gas and water. These flow streams are
then measured by single-phase meters at the separator outlet
(Corneliussen et al., 2005). The test separators require a separate
flowline, so that each well can be routed to the test separator and tested
without shutting-down the entire field. As an alternative, the flowrates
can be estimated by the use of an inlet separator. In this case, two
options are possible. The first option is to shut-down all the wells except
the tested one, so that the flowrates of this well can be estimated. This
option is associated with a large production loss and often economically
undesirable. Another possibility is to close the well of interest, measure
the flowrates of the producing wells at the separator conditions and
then back-calculate the flowrates of the closed well. This is done by
subtracting the obtained flowrates from the ones recorded before the
well test. This method is called deduction well testing (Idso et al.,
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Fig. 1. Schematic representation of a typical subsea oil and gas production system.

2014). In all the described options, stable operating conditions need to
be achieved in order to measure the flowrates, which might require
several hours depending on the distance between the well and se-
parator. In addition, the act of closing one well affects the performance
of other wells which may result in inaccurate flowrate estimations
(Falcone et al., 2001; Idso et al., 2014).

Over the last 25 years, physical multiphase flow meters (MPFMs)
have been developed as an alternative solution to well testing to mea-
sure well multiphase flowrates and were first commercialized in the
early 1990s (Falcone et al., 2001). The core idea behind MPFMs is to
estimate oil, gas and water flowrates without separating the phases.
These meters are usually installed at the wellhead, so that the multi-
phase flowrates from a particular well can be tracked in real-time. The
flowrates are calculated indirectly using supplementary measurements
of fluid phase properties such as velocities and phase fractions inside
the device (Falcone et al., 2001; Gryzlov, 2011). An extensive effort was
made to develop accurate multiphase flow meters and several tech-
nologies have been used for this purpose such as acoustic attenuation,
impedance and gamma densitometers (Falcone et al., 2001). A number
of review articles exist, in which the applied methods, principles,
governing equations and measurement strategies are discussed in de-
tails (Corneliussen et al., 2005; Falcone et al., 2009; Thorn et al., 2013).

Both aforementioned flowrate measurement techniques have their
advantages and disadvantages. First of all, well testing requires a se-
parate flowline and a separator, which results in high capital costs of
the field development (Falcone et al., 2001). If the inlet separator is
used as a test separator, the cost associated with the production loss can
be significant due to closing the well of interest. Sometimes, deduction
testing may be impossible to perform due to potential flow assurance
problems (Melbg et al., 2003). Despite these facts, well testing mea-
surements are still widely used in oil and gas production monitoring,
even if multiphase flow meters are installed in the field. The reason for
this is that the flowrate measurements from well tests are used as a

reference to calibrate multiphase flow meters and extract information
about the fluid properties (Corneliussen et al., 2005).

In contrast to well testing, MPFMs provide real-time information
about the well flowrates. This is definitely advantageous from an op-
erational point of view. However, MPFMs are quite expensive and re-
quire an intervention in case of a failure, which adds a significant op-
erational cost (Falcone et al., 2001; Patel et al., 2014). Moreover,
MPFMs have a specific operation range beyond which the accuracy of
the flowrate estimates can decrease significantly. Apart from this, the
meters may face degradation due to sand erosion or partial blockage
which also has an impact on the measurement accuracy (Marshall and
Thomas, 2015).

Considering the discussed challenges as well as associated costs for
both flow measurement approaches, an alternative solution is Virtual
Flow Metering (VFM). The idea behind VFM is to collect available field
data and use it in a numerical model to estimate flowrates (Rasmussen,
2004; Toskey, 2011). The measurement data usually include:

e Bottomhole pressure and temperature (Pgy and Tgpy).

o Wellhead pressure and temperature upstream of the choke (Pyycy
and Tywrcw)-

e Wellhead pressure and temperature downstream of the choke
(Pwrcp and Twrcp)-

e Choke opening (C,p).

In contrast to well testing and MPFMs, VFM systems do not require
installation of an additional hardware, as such they can reduce the
capital and operational costs of the field development. At the same
time, VFM systems have capabilities to estimate the flowrates in real
time and reflect changes of flow conditions accordingly. This is a clear
advantage compared to the well testing approach which assumes con-
stant well flowrates between the tests (Marshall and Thomas, 2015).
Moreover, VFM can be used as a standalone solution, or in a
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combination with a MPFM as a back-up system such that it can use the
information from a MPFM to further improve the flowrate estimates
(Holmas et al., 2013).

Despite the amount of work done on Virtual Flow Metering and the
diversity of applicable methods and models, there is a lack of an
overview of this. In this paper, we fill this gap and cover the following
objectives:

e Summarize and classify VFM methods, models and computational
procedures.

e Distinguish the differences among the VFM vendors based on pub-
licly available resources.

e Review the reported VFM field experience and the research activity.

o Identify gaps and propose directions for future VFM research and
development.

We believe that this paper will be an asset for readers who want to
get an overview of available VFM solutions, implement the existing
commercial VFM solutions in the field, construct an own VFM or im-
prove the already created one.

Our paper is organized as follows. First, we introduce the main VFM
approaches which are applied in industry or developed for research
purposes. Then, we explain each VFM method in detail by providing the
main concepts behind it, the models used, the available market pro-
ducts as well as reported field experience and the current status of the
academic research. Finally, we compare the methods and specify their
advantages and disadvantages and propose directions for the future
research and development of the VFM systems.

2. VFM methods

Over the last 20 years, the concept development of VFM resulted in
various methods to estimate the multiphase flowrates using available
field data, and several companies have developed commercial VFM
systems which are used by oil and gas operators around the world.
Some methods are currently emerging and aiming to improve the ac-
curacy of the flowrate predictions, while yet other methods are cur-
rently not used in the industry but have a good potential to move the
VFM development forward in the future.

Based on modeling paradigms, two main Virtual Flow Metering
approaches can be distinguished:

e First principles VFM
e Data-driven VFM

The first principles VFM systems are based on mechanistic modeling
of multiphase flows in the near-well region, wells, pipelines and pro-
duction chokes (Holmas and Lgvli, 2011). The models are used together
with the measurements such as pressure and temperature to find ac-
curate estimates of the flowrates. An optimization algorithm adjusts the
flowrates and other tuning parameters to minimize the mismatch be-
tween the model predictions and real measurements (Holmas and Lovli,
2011). The production system can be modelled as a whole from the
reservoir to the processing facility, or it can be separated into sub-
models depending on the available measurement data. First principles
models are currently used in most commercial Virtual Flow Metering
systems.

The data-driven VFM approach is based on collecting the field data
and fitting a mathematical model to it without the exact description of
the physical parameters of the production system such as a wellbore
and choke geometry, flowline wall thickness, etc. This approach is also
referred to as “machine learning” modeling and it has become very
popular in the past several years, not only for oil and gas applications
but for many other applications as well. In this paper, we will call this
approach “data-driven” modeling because in many VFM related pub-
lications it was named with this definition. In data-driven modeling, the
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fitting process is often called training (Hastie et al., 2009). If the model
is well trained and the exposed conditions are within the range used for
the training, the data-driven model can perform fast and accurate real-
time metering. In this approach, deep domain knowledge of production
engineering is not as important as in the first principles models and the
model can be constructed at a lower cost.

In addition to the classification based on the modeling principles,
we may classify approaches based on how time dependency is included
in the model. Based on this, the following sub-classification can be
performed:

o First principles VFM - steady state and dynamic models
e Data-driven VFM - steady state and dynamic models

In the first principles VFM, conservation equations often have a
dynamic form, however, the formulation of the optimization problem is
steady state or quasi-steady state, so that an optimization solver finds
the solution for only one point in time or takes the solution from the last
step as an initial guess for the current time step prediction. In some
cases, even the conservation equations take steady state form or do not
consider time because of its nature, for instance, a choke model
(Perkins, 1993). While it is possible to formulate the VFM optimization
problem in a dynamic way, in the available literature on the first
principles VFM does not consider this approach. The main reason for
this may be the fact that dynamic optimization for first principles VFM
systems is computationally very expensive (Lew and Mauch, 2006). On
the other hand, such methods may have been utilized but not discussed
in the literature.

Apart from dynamic optimization, state estimation techniques such
as Kalman filter approaches can be used in order to create a dynamic
VFM (De Kruif et al., 2008). This approach has been covered in the
research as we will show in the future sections, however, it is not im-
plemented in the commercial software yet. The main reason for this
may be that it requires a high expertise for setting up and using, and it
can be difficult to tune in a robust manner for real field data.

For the large majority of data-driven algorithms used for VFM, the
model formulation is steady state, so that the algorithms consider
pressure and temperature measurements in one point in time to predict
the flowrates at the same time step. At the same time, there are data-
driven algorithm structures which have a dynamic formulation, so that
measurements from the past may also be used to estimate the flowrate
at the current time step and some of these algorithms have recently
been studied for VFM applications. In the next sections, we consider
each VFM paradigm in more detail and explain the considerations of
dynamic system behavior by each method based on the used models
and algorithms.

3. First principles VFM systems
3.1. An overview of the concept

The first principles VFM systems are the most widely used Virtual
Flow Meters in the industry. This is because a tremendous effort was
made over the past 50 years in order to describe each part of this VFM
approach. This resulted in a quite good understanding of the mechan-
istic modeling of production systems, fluid properties and optimization
techniques. As such, first principles modeling can be considered as a
reliable way to describe the production system behavior in general, and
multiphase flow phenomena in particular. In this section, we will de-
scribe the main concept behind the first principles VFM. In the later
sections, each model used in the concept is discussed in more detail.

A current state-of-the-art first principles VFM system consists of the
following main components:

® Fluid properties model.
e Production system model including:
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Fig. 2. Schematic overview of a first principles Virtual Flow Metering system. Thermal-hydraulic, choke, ESP and reservoir inflow models use pre-generated PVT data
in order to predict the system variables such as pressures and temperatures along the system. The data validation and reconciliation algorithm adjusts the model
parameters (flowrates, choke discharge coefficient, etc.) such that the model outputs (red color) match the measurements from the physical system (blue color) and
the overall material balance (flowrates measured at the separator outlet). (For interpretation of the references to color in this figure legend, the reader is referred to

the Web version of this article.)

- Reservoir inflow model
- Thermal-hydraulic model
- Choke model
- Electric submersible pump (ESP) model
e Data validation and reconciliation (DVR) algorithm.

The main idea behind the first principles VFM system is depicted in
Fig. 2 where the concept is applied for the production system shown in
Fig. 1. First, the thermal-hydraulic, choke, ESP and reservoir inflow
models produce model outputs which can be pressures and tempera-
tures along the production system. To do that, the models require pre-
generated pressure-volume-temperature (PVT) data which describe the
fluid properties under given conditions and generated using fluid
properties models. The popular forms of the fluid properties model are
Equations of State (EoS) and Black Oil model (BOM) which will be
described further below.

Next, the measured field data is processed by the data validation
and reconciliation algorithm. In the DVR, first, the data are validated
which can include removal of outliers and noise filtering. Then, in the
reconciliation step the model parameters (e.g. flowrates, choke dis-
charge coefficient, gas and water fractions, friction and heat transfer
coefficients, slip relation, etc.) are adjusted such that the model outputs
(in red in Fig. 2) match the measurements from the physical system (in
blue in Fig. 2) and the overall material balance (flowrates measured at
the separator outlet).

In summary, for VFM using the first principles models, the following
steps are taken:

1 Create a fluid properties model which represents the fluid data ac-
curately.

2 Choose appropriate production system models based on the avail-
able measurements.

3 Read and validate the measurement data, remove outliers and filter
noise.

4. Select appropriate tuning parameters, for instance, flowrates, choke
discharge and heat transfer coefficients, etc. and make a guess of the
initial parameter values.

5. Simulate the models selected at step 2 using the fluid properties
from step 1 and initial values of the tuning parameters from step 4.

6. Select the model outputs from step 5 for which the measurements
are available, for instance, pressures and temperatures at the bot-
tomhole and the wellhead.

7. Run the data reconciliation algorithm to minimize the mismatch
between the model outputs from step 6 and the validated mea-
surement data from step 3 by adjusting the tuning parameters se-
lected at step 4.

8. Report the oil, gas and water flowrates for each well from the so-
lution from step 7.

3.2. Commercial first principles VFM systems

To discuss the details behind each component of the first principles
VFM, we consider commercial VFM systems which are based on this
approach. The reason for this is that these systems use the most ad-
vanced methods and models which are currently applied in VFM
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Table 1

Commercial first principles VFM systems.
Virtual Flow Metering system Vendor
OLGA Online Schlumberger
K-Spice Meter (K-Spice + LedaFlow) KONGSBERG
FlowManager FMC
Well Monitoring System (WMS) ABB
Virtuoso WoodGroup
FieldWatch + METTE Roxar
ValiPerformance Belsim
Rate&Phase BP

technology. At the same time, the discussion gives an overview of the
model variations among the software as well as the available products
on the market. As such, we believe by describing the models and cap-
abilities of the commercial software, we will be able to better evaluate
the current state of the VFM technology development.

In our review, we will consider the methods and models of the
commercial VFM systems listed in Table 1. All these products have
conceptually the same structure, i.e. utilize fluid properties and pro-
duction system models together with the data validation and re-
conciliation algorithm to estimate the multiphase flowrates. It is also
important to mention other VFM suppliers which are not included in
the list. Ensys Yocum delivers VMSS3 Virtual Flow Meter but the in-
formation about it in the literature is very limited, so that it is hard to
evaluate software's features precisely. TurbulentFlux is currently an
emerging company which supplies a state-of-the-art VFM product. As
the company is at the starting phase, the information about the software
is not publicly available yet, as such we do not consider it in the further
analysis.

In addition to the listed software, there are several other software
which could potentially be considered as a VFM system, but they are
not considered in this paper in details. For instance, Amin (2015) used
Prosper (PETEX, 2017) as a Virtual Flow Meter. Prosper is a software
which describes performance of wells and production systems under
various conditions and extensively used in the petroleum industry. The
software has a variety of reservoir inflow, choke and hydrodynamic
models linked to PVT data to evaluate production performance of wells
(PETEX, 2017) However, in this paper we do not consider Prosper as a
fully integrated VFM system because, according to the software de-
scription, it does not include the DVR algorithm to fit specific field
measurement conditions. In addition, there are no other studies or
papers which evaluate Prosper as a VFM system. Mokhtari and Waltrich
(2016) used PIPESIM as a Virtual Flow Metering system to evaluate
different models for VFM purposes. PIPESIM is a steady state multi-
phase flow simulator supplied by Schlumberger which delivers OLGA
Online as a VFM product which we consider in this study. As such,
PIPESIM is not considered as Schlumberger's VFM system in this study,
but potentially can be utilized for VFM purposes.

In the next section, we will consider the components of the first
principles VFM products from Table 1 in more detail. More specifically,
we will emphasize the mathematical description of the models and the
usage of a particular model type in a particular VFM product.

3.3. Description of the first principles VFM components and applied methods

In this section, we consider the components of the first principles
VFM systems in more detail. First, we will discuss the fluid properties
model together with subsequent PVT data generation. Then, we will
show what the principles behind the production system models are and
how the PVT data is used for in these models. Finally, we will discuss
how the data validation and reconciliation algorithm finds optimum
flowrate estimates. Throughout the description of the models, we will
discuss its implementation in the commercial VFM products.
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3.3.1. Fluid properties model

Hydrocarbon mixtures are complex substances whose properties
vary with local pressure and temperature conditions along the pro-
duction system. In order to take these variations into account, fluid
characterization is carried out based on fluid samples taken at different
points such as downhole or at the separator (Whitson and Brule, 2000).
Based on the characterized fluid, a pressure-volume-temperature (PVT)
data can be generated which is then used by VFM systems for two
purposes (Falcone et al., 2009):

e Calculating local phase properties of the hydrocarbon mixtures such
as density, viscosity, thermal conductivity, etc. for using in the first
principles models.

® Reconciling reference flowrate measurements (e.g. at separator or
standard conditions) with flowrate measurements/estimates at local
conditions (e.g. at the wellhead).

As for the first point, the local fluid properties have a direct influ-
ence on the flowrate predictions by a VFM system because they are
included in thermal-hydraulic conservation equations as well as the
models of choke, ESP and reservoir inflow. As such, giving incorrect
phase densities or enthalpies for certain pressures and temperatures to
the VFM system will result in deviations between the predicted and
actual flowrates. This in turn will cause problems in finding a good
solution by the data validation and reconciliation algorithm when
tuning flowrates and other model parameters.

Regarding the second point, when the local flowrates are calculated,
they are usually reported at reference conditions for reconciliation,
production and sales reporting purposes (Pinguet et al., 2005). Re-
conciliation is especially important in fields with commingled wells, so
that the overall measured production rates at the separator conditions
can be back-allocated (reconciled) to the individual wells as shown in
Fig. 2.

Fluid characterization is typically done by two approaches separator
(Whitson and Brule, 2000; Falcone et al., 2009):

e Black Oil model.
e Compositional model.

These two models are discussed below.

3.3.1.1. Black Oil Model (BOM). Black Oil model is a simple, yet useful
approach for petroleum fluid characterization. In this approach, oil and
gas are treated as two separate substances and their properties are
calculated based on correlations (Whitson and Brule, 2000). In the
traditional formulation of the BOM, three main PVT properties are
considered: oil formation volume factor, gas formation volume factor
and solution gas-oil ratio. For volatile hydrocarbon mixtures, modified
Black Oil models (MBOM) are developed which introduce another core
variable called solution oil-gas ratio. If water is present in the produced
fluid, additional properties such as water formation volume factor,
solution gas-water ratio and water content in gas are introduced into
calculations. The full description of both traditional and modified black
oil models for volatile oils and water/hydrocarbon systems are well
described in the SPE monograph by Whitson and Brule (2000).

3.3.1.2. Compositional model. A compositional fluid model is described
by Equations of State (EoS) which are relations between pressure,
volume and temperature which is a basis for calculating phase and
volumetric behavior of the produced fluid (Whitson and Brule, 2000).
The history of the EoS development starts from the fundamental work
by Van der Waals (1870). Later, various modifications and
improvements of the van der Waals’ equation were proposed. For the
majority of oil and gas applications, the following modifications are
used (Whitson and Brule, 2000; Falcone et al., 2009):
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® Peng-Robinson (PR) (Peng and Robinson, 1976).
® Redlich-Kwong (RK) (Redlich and Kwong, 1949).
e Soave-Redlich-Kwong (SRK) (Soave, 1972).

State-of-the-art VFM systems support both compositional and BOM
approaches for PVT modeling (Bendiksen et al., 1991; Haldipur and
Metcalf, 2008; Kongsberg, 2016; Lgvli and Amaya, 2016; Melbg et al.,
2003). Even though the current trend in the first principles VFM is to
use the compositional approach [e.g. VFM evaluation study by Letton-
Hall Group (Toskey, 2011)], simplified VFM systems based only on one
model (e.g. choke/orifice model) tend to utilize the Black Oil model
because of its simplicity (Campos et al., 2014; Da Paz et al., 2010).

3.3.1.3. PVT data development. In order to simplify the simulation
process, the obtained fluid properties models (BOM or compositional
model) are typically stored in the form of PVT tables which are then
used by the VFM models. In principle, the fluid properties models could
be used directly in the VFM systems, however, this would lead to a high
computational cost. Therefore, before performing the simulations, the
fluid properties data are stored in PVT tables which are then used by the
models to find the fluid properties values by interpolating between the
generated data points.

Prior to the PVT table construction, it is first required to tune the fluid
properties models to the specific petroleum fluid. This is because the de-
fault model parameters usually do not predict precisely the fluid properties
from a specific field (Coats and Smart, 1986). Moreover, during the field
life-cycle, fluid properties are changing which also require model cali-
bration (Falcone et al., 2009). This tuning/calibration can be performed by
applying non-linear regression (Agarwal et al., 1990; Coats and Smart,
1986) or by an iterative adjustment of EoS parameters (Pedersen et al.,
1988; Whitson and Torp, 1983). The calibration is performed based on the
data obtained in the laboratory tests. For the EoS model, the tests may
include compositional analysis (gas chromatography), constant composi-
tion expansion, multistage surface separation, constant volume depletion
and differential liberation expansion (Whitson and Brule, 2000). If BOM is
used, the laboratory tests are used in order to estimate the main model
parameters. An example of BOM parameters estimation based on the lab
data is Whitson-Torp method (Whitson and Torp, 1983).

When the fluid models are tuned to the specific fluid properties, the
PVT tables for the expected range of pressure and temperature condi-
tions is generated and uploaded into a VFM system. Using these data,
the system can interpolate the computed properties (e.g. phase density
and viscosity) to local pressure and temperature (e.g. at the wellhead)
based on the specified table values (Bendiksen et al., 1991).

3.3.1.4. Importance of fluid properties model tuning. Regardless the fluid
model used for the PVT properties characterization, the fluid properties
model accuracy has to be addressed with a particular attention. PVT related
deviations in flowrate metering have been typically observed in MPFMs
which have been found to be very sensitive to PVT data (AlDabbous et al.,
2015). The sources of the PVT related deviations in MPFMs may originate
from incorrect phase properties estimation or inaccurate usage of EoS
(Abro et al., 2017). EoS estimates of the fluid properties are consistent only
within the tuning range of pressures and temperatures. If the fluid
properties values are extrapolated outside the tuning range, the error of
the estimates may be significant (Joshi and Joshi, 2007).

Similar to MPFMs, first principles VFM systems strongly rely on the
PVT data. This means that accurate flowrate estimations require well
characterized fluid properties data (Petukhov et al., 2011; Zhang et al.,
2017). It has been found that when VFM is applied in a pilot case study
or a field, PVT data is one of the most critical system parameters
(Haouche et al., 2012a). Inaccurate PVT characterization results in the
increase of the uncertainty of the VFM estimates (Ausen et al., 2017).
The reason for such a large influence is the fact that the PVT data de-
fines the local fluid properties, hence the discrepancies in fluid prop-
erties will directly influence the local flowrate estimates. Also, it will
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affect the reconciliation algorithm outputs because the fluid properties
are directly involved in converting the rates from local to reference
conditions which are used in the algorithm.

3.3.2. Production system model

The production system model typically consists of different com-
ponents that are given by the measurements available in the field as
well as the installed equipment. Below, we present the most relevant
models which may be included into the first principles VFM system.

3.3.2.1. Reservoir inflow model. The reservoir inflow model is usually
represented by an Inflow Performance Relationship (IPR) model which
defines the well production rate as a function of pressure difference at
reservoir and bottomhole conditions. The data for IPR curves are
collected during multi-rate well testing (Golan and Whitson, 1991).
This method has been extensively used in the industry to calculate the
performance and production potential of wells and many models have
been developed which are currently implemented in the state-of-the-art
VFM systems. The most frequently used models are:

® Linear

® Backpressure/Backpressure normalized
e Undersaturated

® Vogel

e IPR table

® Forchheimer/Single Forchheimer

The linear model assumes that the well rate is proportional to the
pressure difference between the reservoir and bottomhole (Bradley,
1987). This model is typically used for undersaturated oil wells and can
be expressed in the following form (Cholet, 2008; Schlumberger
Limited., 2014):

qo = PI-(Pz — Pgy) €))

where g, denotes the oil flowrate, PI- the productivity index, Pz — the
reservoir pressure, Pgy — the bottomhole pressure. The productivity
index PI is estimated during a well test and then used in subsequent
calculations.

The backpressure model is suitable for gas wells and can be written
as follows:

g, = Co(PR — Pi)" 2

where g, denotes the gas flowrate, C; and n - the tuning coefficients
which are estimated during well tests.

A normalized form of Eq. (2) is used for saturated oil wells and can
be expressed as:

Por ) i
q, = qo,max 1- (_) ]
[ Pr ©)

where g, .., denotes the maximum oil flowrate.

For the full description of the backpressure model, please see
Bradley (1987).

The undersaturated model is often used to model oil wells with the
static reservoir pressure for which the bottomhole pressure drops below
the bubble point during production (Schlumberger Limited., 2014).

= . — ﬂ 2 _ p2
q, = PI-(Pr — Pp) + (ZPB )(PB P3y) @

where Py denotes the bubble point pressure.
The Vogel model (Vogel, 1968) is commonly used in solution-gas-
drive reservoirs and expressed as the following:

ol (3]
0 0,max PR PR (5)
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To compute the gas flowrate using the equations above, the ob-
tained flowrate must be multiplied by GOR.

IPR table, as the name states, represents the tabulated relationship
between the flowrate and pressure difference. Based on the user-specified
data and a calculated pressure difference value, the flowrate is inter-
polated by a linear or polynomial method (Schlumberger Limited., 2014).

For gas reservoirs with high flowrates, the inertial effect can be
important to be accounted. In this case, a non-Darcy's law model called
Forchheimer model is applicable (Bradley, 1987) which has the fol-
lowing form (Schlumberger Limited., 2014):

Pg — Py = Byq, + Craq; ©)

where B; and C; denote the tuning coefficients, which are estimated
during well tests.

In case of high pressure gas wells, the single Forchheimer model can
be used instead. It has a linear form of the pressure difference as fol-
lows:

Pr — Pgy = Brg, + qug2 @

Except for the Forchheimer's models, all the models are currently
implemented in K-Spice Meter, while OLGA-Online currently in-
corporates all the listed models (Kongsberg, 2016; Schlumberger
Limited., 2014). For other VFM software the information about im-
plemented IPR models is rather limited. In ValiPerformance (Belsim),
Vogel's model was utilized and tested (Haouche et al., 2012a, 2012b),
while in Petukhov et al. (2011) and Wising et al. (2009). IPR model is
mentioned as a part of the system but the type is not specified. In both
FieldWatch and FlowManager, the reservoir inflow model can be speci-
fied by IPR tables (Gunnerud, 2011; Roxar, 2015). WoodGroup's Virtuoso
and BP's Rate&Phase also use the IPR models, however, the exact models
are not specified (Haldipur and Metcalf, 2008; Heddle et al., 2012).

As we can see, the IPR models have variety of forms depending on the
well production conditions. In VFM, IPR models can be used in different
purposes. First, it can be used as a separate model to estimate the pro-
duction potential of a well. Secondly, the IPR models can be used in a
combination with the thermal-hydraulic and choke models as a boundary
condition of the system representing reservoir inflow to the well. In this
case, it adds additional variables to the tuning process described in Fig. 2
which can further be used to tune the VFM system to the historical data.
Apart from that, IPR equation can be combined with a thermal-hydraulic
model (vertical lift performance curve) to estimate multiphase flowrate
under steady state conditions, please, see, for instance, Lansagan (2012).

3.3.2.2. Thermal-hydraulic model. Multiphase flows in wells and
pipelines in oil and gas fields have existed for more than a hundred
years (Shippen and Bailey, 2012). The first attempt to model the
multiphase flow was made by Lockhart and Martinelli (1949). At that
time, the approach for multiphase flow modeling was based on
empirical correlations obtained from experiments and available field
data. With time, a more fundamental modeling approach replaced pure
empirical models by including the physics behind the multiphase flow
phenomena. An excellent review of the history of multiphase flow
models development can be found in Shippen and Bailey (2012).

In this work, we will focus on the models currently used in com-
mercial Virtual Flow Metering systems. Based on the literature, the
following types of thermal-hydraulic multiphase models are currently
implemented in the first principles VFM products:

o Two-fluid model.
o Drift-flux model.
e Steady state mechanistic model.

In the two-fluid model (often referred as the multi-fluid model), the
conservation equations are written for each phase which can be con-
tinuous or dispersed. In a simplified manner, the general form of mass,
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momentum and energy equations respectively can be written as follows
(Goldszal et al., 2007; Nydal, 2012):

daty oy, dag py Uk

=y
ot ax (€)]
da py Uk Aotk oy Uk U daypy. .
+ =- - sin® — F, + F; + O
a ax x| kPl ko 2 80T (9)

a“kpkhk aakpkukhk ol o) Dp
+ = —aky—T + Q= + Qo + i + Qe
ot . o R T Qkw %Qk Qext

(10)

where oy denotes the phase volume fraction, o, — the phase density, ¢ —
the time, u; — the phase velocity, x — the pipe axial dimension,¥ — the
mass transfer sources (e.g. phase change and mixing), p, — the phase
pressure, 6 — the pipe inclination angle, Fj,, — the wall friction, F; — the
interphase friction, Oy — the other momentum exchange terms (e.g.
phase change, droplet-exchange, level-gradient term), p — the system
pressure, k; — the effective phase thermal conductivity, Qy,, — the phase
transfer rate at pipe wall, Qy; — the interfacial heat transfer rate of k-
phase with other fields, Q. — the other net external heat transfer
sources.

In the drift-flux model, the momentum and energy equations are
written for the mixture while the mass conservation equations can be
written for each phase. It can be expressed as the following (Holmas
and Legvli, 2011):

daty oy, da py Uk -y
ot ox 1D

o) 0 op
— AP Uk + — ) Uk Uy + a + — =—-F, — 0O,
a ; K Py Uk ax ; K Py Ui Ui ; kPk8 ax ‘tot tot
(12)

3 3 8
e ; kP Er + - ; U P Ui B + x ; PP + Ut = 0 (13)
where F,,; denotes the total wall friction, O;,; — the source term,E; — the
total energy, U, — the total source term including wall heat transfer,
mass transfer and sources.

The drift-flux model requires a slip relation in order to take the
difference between the phase velocities into account. The most famous
and commonly used form is developed by Zuber and Findlay (1965):

ug = Colhy, + Uqg (14)

where u, denotes the gas velocity, u, — the mixture velocity, uy — the
drift velocity, C, — the profile parameter.

Both multiphase flow model formulations above are transient which
means they reconstruct the flow behavior in space and time. If the time
derivative term % is set to zero, the model becomes steady state and
resolved only in space. With a steady state model, it is not possible to
properly describe an unstable behavior in wells, for instance, liquid
loading or severe slugging as it is transient in nature (Waltrich and
Barbosa, 2011).

Some VFM systems use only one specific formulation of the thermal-
hydraulic model, while others utilize a combination of them. For in-
stance, in OLGA the two-fluid formulation of the momentum equation is
combined with a mixture energy equation (Nydal, 2012). In total,
OLGA includes five mass and three momentum equations as well as one
mixture energy equation (Shippen and Bailey, 2012). In K-Spice Meter
which uses LedaFlow for resolving multiphase flows in wells, nine mass,
three momentum and three energy equations are used (Kongsberg,
2016; Shippen and Bailey, 2012). As such, it is classified as a two-fluid
model which have nine fields: 3 continuous and 6 dispersed.

In contrast to OLGA and K-Spice Meter, FlowManager utilizes the
transient drift-flux model with one mixture momentum and one energy
equation. The mass balances are solved for each phase (Holmés and
Lovli, 2011). A similar approach is used in METTE which is a
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multiphase flow solver in FieldWatch. The software uses the transient
drift-flux model with the mixture momentum and energy equations
with a possibility to include and exclude the slip effect between the
phases (Roxar, 2015).

Based on the literature available on Well Monitoring System by
ABB, it is difficult to relate the software model to any of the formula-
tions above. van der Geest et al. (2000) formulated the momentum
equation in a very generic way as the following:

2
- % =ffricz‘.% + P8 sin 6 (15)
where p denotes the system pressure, fg,;. — the friction factor, u — the
fluid velocity, p — the fluid density, D - the pipe diameter, x — the pipe
axial dimension, 6 — the pipe inclination angle.

The equation basically states that the pressure drop along the well
depends on friction and gravity. In this case, the multiphase flow is
resolved as follows. First, the flow pattern is identified based on the
method developed by Barnea (1987). Based on the local flow pattern,
the respective closure laws and correlations are identified and the
momentum equation is solved. Given the solution of the momentum
equation, the temperature gradient is solved which has the following
form (van der Geest et al., 2000):

d . ah d
dr _ Cr—ul—gsing—
= an
dx e 6)

where e denotes the specific heat exchange with the environment, T —
the fluid temperature, h — the specific fluid enthalpy, w — the specific
work done on the system.

This is a similar approach to the Unified Model developed at the
University of Tulsa, see Zhang et al. (2003). However, since the literature
on the model applied in Well Monitoring System is limited, it is not
possible to surely state that the Unified Model is applied. On the other
hand, it is possible to conclude that this model uses a mechanistic steady
state approach as there is no time derivative in the model as well as flow
is modelled based on the physics behind including force balances and
correlations based on the flow pattern. This classification is also in cor-
respondence with the one provided by Shippen and Bailey (2012).

As for the rest of the commercial VFM systems, based on the available
sources, we have not been able to identify the type of the implemented
thermal-hydraulic model. However, the software definitely use one,
please see Haouche et al. (2012b) for Vali-Performance, Haldipur and
Metcalf (2008) for Virtuoso and Heddle et al. (2012) for Rate&Phase.

3.3.2.3. Choke model. Over many years, choke valves at the wellheads
have been used in oil and gas production for safety and control purposes
(Buffa and Balifio, 2017). In addition to this, because the pressure drop
over the choke depends on the flowrate, the choke valve can be used to
estimate the flow. As such, a choke valve model can be considered as a
simple Virtual Flow Meter because the flow is not measured directly but
rather estimated. However, estimating the flow over the choke is not a
straightforward task due to the multiphase flow complexity.

As in many other fluid dynamics applications, the first attempts to
estimate the flow through the choke were made using empirical cor-
relations. For example, see the model developed by Gilbert (1954). At
the later development stage, mechanistic models were proposed which
are currently implemented in Virtual Flow Meters.

Based on the available literature, we found that four models are
currently implemented in commercial VFM systems. It can be the case
that there are more utilized models, but, unfortunately, the literature
published by VFM suppliers on this topic is rather limited.

As for the implemented models, they are:

e Modified Bernoulli
e Hydro (Long and Short)
e Perkins
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The Modified Bernoulli model is implemented in Roxar's
FieldWatch. The model is derived from the famous Bernoulli equation
which was originally applied for a single-phase flow. In order to adjust
the model to specific choke parameters, the choke discharge coefficient
and mixture density are introduced. The Modified Bernoulli model can
be written as follows:

m=AC

A (1 7)

where m1 denotes the mass flowrate, Cp — the choke discharge coeffi-
cient, A, - the inlet choke area, A, — the choke throat area, g,, — the fluid
mixture density, Ap — the pressure drop over the choke.

The Hydro model developed by Selmer-Olsen (1995) is used in
OLGA Online. This model has two versions: Long and Short. In the Long
version, it is assumed that vena contracta is located inside the throat
while in the Short model it is located downstream of the throat. In both
models, sub-critical and critical flows are calculated and then the
smallest one is selected since the critical flow is the largest possible. In
comparison with many other models, the Hydro model considers irre-
versible losses in the choke in a mechanistic manner, thus, the dis-
charge coefficient is not involved in calculations. For the full Hydro
model description with the derivation details, an improved slip relation
as well as testing results by experimental data, please see Schiiller et al.
(2003) and Sampath et al. (2006).

The Perkins model (Perkins, 1993) is implemented in Rate&Phase.
The model is derived from the energy equation applied on a control
volume of a fluid. It calculates the mass flowrate for sub-critical and
critical flows and then adjusts it to the actual flow by multiplying with a
discharge coefficient (Perkins, 1993). In contrast to the Hydro model,
this model does not consider the slip effect between the phases as well
as frictional losses in the throat. However, Sampath et al. (2006) found
that this is a disadvantage of this model and that the Hydro model
outperforms Perkins model by accounting the slip effect. K-Spice Meter
includes both Hydro and Perkins models, so that the user may choose a
preferable option (Kongsberg, 2016).

Apart from the models implemented in the commercial simulators,
there are many other models suitable for estimating the mass flowrate
over the choke. Ashford (1974) derived a model for the total mass
flowrate based on the fluid properties, choke size and discharge coef-
ficient. With the computed total mass flowrate, the oil flowrate can be
estimated based on Black Oil properties.

By considering a no-slip frozen two-phase flow, Sachdeva et al.
(1986) developed a model which has been popular in the literature. As
in the Perkins model, they consider the discharge coefficient to adjust
the flowrate to the actual conditions. Sampath et al. (2006) showed that
the no-slip assumption makes this model to be less accurate than the
Hydro model. Despite this drawback, the Sachdeva et al. (1986) model
is one of the first mechanistic choke models and often considered in the
literature for the analysis and comparison with new models.

Al-Safran and Kelkar (2009) developed a mechanistic choke model
which accounts for the slip between phases. The idea behind the model
development was to create a simple (as Sachdeva and Perkins) and
accurate (as Hydro) model. As such, the basis of the model is taken from
Sachdeva and Perkins models with an implementation of the slip model
developed by Schiiller et al. (2003) for a modified version of the Hydro
model (Sampath et al., 2006). Based on experimental tests, Al-Safran
and Kelkar model outperformed Sachdeva and Perkins models and
decreased the average percent error by 5-10%.

As the field of choke models for flowrate estimation is wide, in
addition to the aforementioned models, there are some less popular and
general models available in the literature and utilized for real field
cases. Several review papers study the history of the choke models’
development and evaluate performance of different models. So, if the
validation of the discussed models as well as description of other
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developed ones is of interest, see the works by Rastoin et al. (1997),
Buffa and Balifio (2017) and Sampath et al. (2006).

3.3.2.4. Electric submersible pump (ESP) model. An electric submersible
pump is a widely used artificial lift equipment which is used to produce
oil where natural production is not possible due to various reasons, for
instance, low bottomhole pressure, liquid loading, heavy oil presence,
etc. ESPs have a long application history in the oil and gas industry, for
example, see Lea and Bearden (1999) for a review of ESP applications in
onshore and offshore oil and gas production. Due to its popularity, there
have been a numerous amount of attempts to make a first principles
model which describes ESP operation which are not possible to cover
within this paper. The general idea behind an ESP model is to link the
pump pressure increase with the pump inlet pressure, the flow and the
pump speed (Schlumberger Limited., 2014):

AP = f(q, 5) o, Pinter) (18)

where g denotes the flowrate, £ — the pump speed, «; — liquid fraction,
Pyt — pump inlet pressure.

By measuring the pressure before and after the pump and using a
model described in a form of Eq. (18), it becomes possible to compute
flowrates of the multiphase flow mixture which is pumped by an ESP. In
this paper, we do not describe the exact differences between the models
which are used by the commercial VFM systems. First of all, it is in
general difficult to group the ESP models as it was done, for instance, for
the thermal-hydraulic and choke models. In addition, some VFM sup-
pliers do not provide specifics of the used models and mention only the
fact that these models exist. What is important to note is the fact that
these systems use ESP models and it can be a good source for multiphase
flowrate estimation without additional hardware installations.

3.3.3. Data validation and reconciliation (DVR) algorithm

Another important part of the state-of-the-art first principles VFM
systems is a data validation and reconciliation algorithm. In some pa-
pers and software, this VFM part is called simply “optimization algo-
rithm” (Heddle et al., 2012; Holmas and Lgvli, 2011), while in others it
is mentioned as DVR (Haouche et al., 2012a; Patel et al., 2014). In case
of Well Monitoring System by ABB, Melbg et al. (2003) defines it as the
optimization algorithm, while van der Geest et al. (2001) defines it as
DVR. In this paper, we use the term “data validation and reconciliation”
to describe the process of adjusting the VFM model parameters such
that the VFM model outputs match the measured field data.

As the technique name states, DVR consists of two parts: (1) vali-
dation and (2) reconciliation. In the data validation part (1), the goal is
to remove erroneous and noisy data. This step can be done by means of
statistical analysis and filtering techniques, for example, exponential
filters or moving averages (Stanley, 1982).

When the data is validated, the reconciliation part (2) takes place.
Here, an optimization algorithm adjusts the model parameters, for in-
stance, flowrates, choke discharge coefficient, gas and water fractions,
and friction and heat transfer coefficients such that the model outputs
match the validated measured data being constrained to process con-
ditions, for instance, the material balances (CAmara et al., 2017). In
Virtual Flow Metering systems, the reconciliation algorithm is often
written in the constrained least-squares form (Petukhov et al., 2011):

N _ 2
. Ymeas i ypredicted i
min Z —_—
x -

: G 19)
subject to the following constraints:
F(s,y)=0 (20)
Ymin < Ypredicted i < Ymax @1
Smin < Si < Smax (22)

where i denotes the measurement index, y,,..; — the measured value,
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Ypredicrea i — the reconciled (predicted) value, o; — the measurement un-
certainty, s; — the unmeasured variable, F(s,y) =0 — the process
equality constraints (e.g. mass and energy balances).

In VFM applications, the problem formulation is usually non-linear
due to the complexity of the system. In order to find the solution of a
non-linear data reconciliation problem, different methods can be applied.
If inequality constraints are not present, the method of Lagrangian
multipliers may be used to obtain the solution (Camara et al., 2017). If
constrains are included, typically gradient based optimization methods
are used such as Levenberg-Marquardt, SQP or Gauss-Newton (Camara
et al.,, 2017; Holméas and Lgvli, 2011). In the outcome, the algorithm
estimates the flowrates which give a local or global minimum error.

When the reconciliation process is finished, the results can be va-
lidated. In this step, statistical tests are conducted in order to further
detect unreliable measurements and estimates and probability of a
gross error existence. This can be achieved by performing individual
(e.g. penalty) and global (e.g. chi-squared) tests (Petukhov et al., 2011).

3.4. Reported field experience with first principles VEM systems

The VFM systems derived from the first principles have been used in
the industry as standalone solutions as well as back-up systems for
physical multiphase flow meters. Unfortunately, not many examples of
using a particular VFM solution are published. Despite this fact, some
examples are still available in the open literature and are summarized
in this section.

3.4.1. Reported field experience with commercial first principles VFM
products

One of the most widely spread first principles VFM systems is Rate&
Phase which was reported to be installed in more than 300 production and
injection wells by 2011(Heddle et al., 2012). The authors reported that the
average error of this VFM is usually recorded at the level of less than 5%.

In 2004, FlowManager was in operation in a subsea field with three
wells which had challenges with downhole pressure sensors and unreliable
choke information. Despite these difficulties, the software was able to
identify erroneous flowrate measurements at the separator that emphasized
possible features of the VFM technology (Rasmussen, 2004). FlowManager
is also successfully utilized as a flow assurance system in Ormen Lange and
Vega fields in the North Sea and used as a back-up system to the MPFMs
(Holmés et al., 2013; Holmés and Lgvli, 2011). Lgvli and Amaya (2016)
showed six cases of FlowManager implementation for VFM applications
including gas condensate and oil fields. The software was used during
normal conditions as well as start-up operations. These examples showed
usefulness of VFM not only as a standalone solution but also for perfor-
mance monitoring of physical flow meters. Overall, by 2018, FlowManager
is in operation of 700 wells around the world (Escuer et al., 2018).

Application of Well Monitoring System in the British sector in the
North Sea is discussed in Melbg et al. (2003). In this application, the
information from the sensors was limited and not reliable but the flow-
rate estimations were close to the true values. van der Geest et al. (2001)
presented the tests of WMS in Troika Field in the Gulf of Mexico and
emphasized the ability of the simulator to predict the flowrates as well as
other system parameters when necessary. Another example of installa-
tion is Bonga field in Nigeria (ABB, 2004; Bringedal et al., 2006).

An example of VFM as a standalone metering solution is the im-
plementation of K-Spice meter in Alta field in Norway which is a small
field tied-in to the existing infrastructure (Patel et al., 2014). In this
case, the MPFM solution would have significantly increased CAPEX and
OPEX, so that it was decided to apply the VFM solution which showed a
good performance during the tests.

ValiPerformance was successfully tested and suggested for further use
in Ceiba oil field in Equatorial Guinea (Petukhov et al., 2011). It was also
installed in an offshore field in the Middle East operated by Total with 16
wells with ESPs (Couput and Renaud, 2010). During the tests and
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operation, the ESP model was tested and improved by “density correc-
tion factor” (Haouche et al., 2012a, 2012b). Couput et al. (2008) showed
examples of the software installation in an onshore field in France and a
complex subsea field as a back-up and reduction uncertainty system.

Virtuoso was successfully used as a standalone multiphase flow me-
tering technology in gas condensate and black oil systems in Asia Pacific,
the Gulf of Mexico and Southern North Sea (Haldipur and Metcalf, 2008).
The system was also linked to the implemented pipeline flow simulators
that resulted in an integration flow assurance system used for multiple
purposes such as flow metering, detection of hydrates, asphaltene and
wax depositions and leak detection. Parthasarathy and Mai (2006)
showed two other examples of Virtuoso implementation. In the examples,
Virtuoso was used as a back-up for wet gas meters initially but after ones’
failure it was used as primary metering information for the flow assurance
system. In another example, the software revealed inconsistent perfor-
mance of topside meters which then was successfully fixed.

Couput et al. (2017) summarized the operational experience with
ValiPerformance and K-Spice VFM systems in Total providing examples
from Couput and Renaud (2010) and Patel et al. (2014). They em-
phasized that despite the advantages of the VFM costs, this technology
still needs skilled people to tune and calibrate the software which can
be a challenge for operator companies.

3.4.2. Reported field experience with patchwork first principles VFM
solutions

Apart from the commercial first principles VFM products discussed
above, there were several examples of combining commercial software
with an optimization algorithm to create a VFM solution. Acuna (2016),
Omole et al. (2011) and Ma et al. (2016) combined the software
packages Prosper and GAP as an engine for VFM in real field cases and
then combined it with external optimization techniques to estimate the
flowrates continuously and optimize the field production.

In addition, smaller VFM solutions have also been utilized for flow
metering. Usually, these systems rely on a particular model rather than
on an integrated approach as the systems described above. For example,
Ajayi et al. (2012) and Allen and Smith (2012) used the models of
downhole inflow control valves (ICV) to construct a Virtual Flow Me-
tering system. Campos et al. (2010), Hussain et al. (2016), Moreno et al.
(2014), Loseto et al. (2010) and Espinoza et al. (2017) used choke valve
models in order to estimate the flowrate at the field conditions. Delarolle
et al. (2005) and Faluomi et al. (2006) from TEA Sistemi also developed a
choke model, validated it with experimental data and CFD analysis and
applied the model at field conditions in Italy, North and West Africa and
the Gulf of Mexico. They also tried to implement the hydraulic tubing
model, but it showed a less accurate performance than the choke model.

Cheng et al. (2018) created a VFM system based on not a particular
model but a combination of the discussed models such as IPR, steady
state thermal-hydraulic and choke models and successfully applied in
real operation of an offshore field in China. Similarly, Mursaliyev (2018)
used a steady state thermal-hydraulic model together with tuned PVT
model to construct a VFM system and applied it for real time production
monitoring in Kashagan field achieving the error of less than 5%.

Apart from the choke model based VFM solutions, the ESP model
has also been used for flow metering. Camilleri and Zhou (2011) and
Camilleri et al. (2016a, 2016¢, 2016b, 2015) showed field case studies
in which ESP first principles models act as Virtual Flow Meters and able
to estimate the flowrates as well as other production system parameters
such as productivity index.

3.5. Evaluation studies of the first principles VFM systems in the literature

In order to improve accuracy of VFM systems, it is important to cri-
tically evaluate it against various input data. This is because each single
field may differ from one to another in terms of sensor availability and
accuracy, frequency of well testing, presence of an additional equipment
(e.g. Venturi meters), etc. The critical evaluation of the existing VFM
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solutions is beneficial for both operators and software vendors. The op-
erators might understand the applicability of VFM systems for a parti-
cular case and/or a necessity for installing the required instrumentation
to improve the accuracy of the flowrate estimates. The vendors in turn
could understand the direction for further improvements of the software.

In the literature, there are several evaluations of the commercial
first principles VFM systems. Among the others, the evaluations by
Toskey (2011) and Amin (2015) are of a particular interest. This is
because they compare several VFM systems and evaluate the relative
error depending on the input data. Even though the works are con-
ducted by the same company and within a similar strategy, some major
differences exist. Toskey (2011) used OLGA to simulate the field data
while Amin (2015) used real field data. For tuning purposes, the ven-
dors in Toskey (2011) were provided with phase flowrates, while in
Amin (2015) the vendors were given Water-Liquid-Ratio at first and
total mass flowrates with Gas-Volume Fractions later. Last but not least,
Amin (2015) also included a short but important study of the VFM
products sensitivity to the PVT data. In addition to the mentioned
studies, a smaller but similar work was performed by Varyan et al.
(2015). They evaluated the performance of FlowManager software
using a similar approach, so that some conclusions may be compared
with the ones by Toskey (2011) and Amin (2015).

As the studies are extensive, we will not give a thorough description
of them here. Instead, we will summarize the main common conclu-
sions and disagreements. From the studies, the following common
conclusions can be made:

e VFM tuning is required for accurate estimations.

e Tuning frequency depends on the local field conditions.

o Tuning is essential when the pressure drops below the bubble point
at well conditions.

e When GOR increases, more attention must be paid to carefully tune
the VFM system

e Total mass flowrate is a reliable tuning parameter.

e Increase in choke opening decreases the estimates accuracy.

e Additional devices such as Venturi, densitometer or partly working
MPFM may help to improve the VFM system accuracy.

e Importance of adding measurements to the model depends on the
VFM strategy.

At first, the last conclusion may seem not very clear. This is because it
comes from a disagreement between the studies. Toskey (2011) con-
cluded that adding bottomhole sensors data to the VFM system does not
improve the flowrate predictions while the results from Amin (2015) and
Varyan et al. (2015) state opposite conclusions. Comparing these state-
ments and looking at the results, it can be said that the importance of
adding the measurements depends on the strategy used for Virtual Flow
Metering. This means that if the VFM strategy initially relies on the choke
model, then adding the bottomhole measurements will not add much
value because the final estimates still rely on the choke model. On the
other hand, if adding the measurement adds a separate model into the
VFM and the estimates are made based on both the choke and tubing
models (e.g. weighted average value), the results might improve.

Another important point is that using the total mass flowrate and
mixture densities as tuning parameters may allow some errors in PVT
data while still maintaining a high accuracy of the flowrate estimates
(Amin, 2015). This is a very important conclusion since it may be the
case that the PVT data is tuned with some errors or not being tuned
continuously. However, this conclusion is made based only on the case
considered in one study and may not be generalized for other cases.
Definitely, more studies are needed on this topic.

Finally, an attempt was made to evaluate the sensitivity of the VFM
systems to the errors in pressure and temperature readings. Amin
(2015) showed that with the measurement error the VFM systems were
unable to estimate the flowrate within a high accuracy. Toskey (2011)
found that the VFM suppliers were able to eliminate the measurement
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error and provide accurate estimates. However, both authors concluded
that more investigation on this topic is required because these results
were highly dependent on the studies conditions.

Additional investigations on the measurement errors influence were
conducted by Tangen et al. (2017) and Lansagan (2012). Tangen et al.
(2017) used K-Spice meter to test the sensitivity of the VFM software to the
errors in the pressure and choke opening measurements as well as in GOR
and WC. To do that, a digital twin approach was used where one model
represented a plant while the second one represented the VFM model.
Lansagan (2012) used two different approaches to test the sensitivity of a
VFM system. The first one relies on the intersection method between the
inflow and outflow performance of the well while the second one is the
same as in Tangen et al. (2017): using a transient multiphase flow simulator.
From the studies, some common and distinct conclusions can be drawn:

e Redundant measurements are preferable to improve VFM accuracy.

e Wellhead pressure measurements are more important than bot-
tomhole ones.

e Validated choke model makes the predictions more accurate.

o Qil wells are more sensitive to WC input.

® Gas wells are more sensitive to GOR input.

e Increase in choke opening decreases the estimates accuracy.

o If the intersection method is used, reservoir and bottomhole pres-
sures are more sensitive parameters than wellhead pressures.

Considering all the aforementioned studies on the VFM systems
sensitivity, the following general conclusions can be made. First princi-
ples VFM is a sophisticated system which aims to simulate complex non-
linear multiphase flow phenomena by combining several computational
approaches. This leads to the difficulty of a comprehensive VFM eva-
luation since it highly depends on the selected strategy and applied
computational methods. From the studies we see that some conclusions
agree with each other while the others may be totally contradictive.
Hence, we conclude that more studies on this topic are required in order
to better understand the behavior of the VFM under different conditions.
Future studies can take the discussed works into account and go deeper
in terms of the evaluation of critical system parameters such as mea-
surements and PVT data. An attempt to address some of these points was
done by Bikmukhametov et al. (2018). They conducted a statistical
analysis of the sensor degradation effect on a first principles VFM system
and revealed that drift errors in pressure and temperature measurements
may lead to a big systematic error in flowrate estimated from a VFM
system. They also conducted a sensitivity study on heat transfer modeling
approaches of the wellbore and found that the detailed heat transfer
modeling is not necessary for VFM in oil wells with middle range values
of GOR. Despite this attempt, further sensitivities studies are required for
a deeper understanding of first principles VFM systems and suggestions
for the future work are discussed later in the respective section.

4. Data-driven VFM systems
4.1. An overview of the concept

Data-driven modeling is a technique which is based on analyzing
the system data and finding relationships between the system state
input and output variables without exact knowledge about the physical
behavior of the system (Solomatine et al., 2009). The main advantage of
this approach is that it allows to skip the detailed physical modeling of
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systems or processes for which the exact solution can be difficult to find
numerically, for example, multiphase flows in pipes. Data-driven
methods rely on the fact that experimental or industrial data represent
the system well and attempt to learn the physics relationship which
describe the system directly from data. A typical workflow process of
data-driven modeling is shown in Fig. 3.

In order to start the modeling process, first, the data must be col-
lected. Any data related to the process can be relevant, for instance,
historical system data, current system data or even historical data from
a similar system. In the next step, the data must be pre-processed. This
may include different operations. First, we ensure that the collected
data is suited for modeling by removing outliers, treating missing va-
lues or removing noise. Also, additional insights about the information
contained in data can be obtained through data transformation and
feature engineering. Feature engineering get its name from the fact that
in the machine learning community the input data are often called
features, so that feature engineering is the process of manipulating the
input data to reveal useful information which can help in the model
training process.

When the data is pre-processed, the model development is per-
formed. At this step, a data-driven model is developed and trained on
the pre-processed data. The training process is basically fitting a
mathematical function which describes the data well. In some cases,
this function has an analytical form, for instance, in a linear regression
model, but it can also be a black-box model, for instance, a neural
network (NN). The obtained model must be validated on a separate
dataset to ensure the capability of the model of making accurate pre-
dictions on the new data. After the model has been validated, it can be
used to make predictions on newly obtained data.

In Fig. 4, a schematic overview of the data-driven modeling appli-
cation for Virtual Flow Metering is shown for the production system
shown in Fig. 1. In a data-driven VFM system, the collected data typi-
cally includes the pressures and temperatures at the bottomhole and
wellhead, the choke opening values as well as the parameters of the ESP
and the corresponding measurements of oil, gas and water flowrates.
The measurements of the flowrates can come from different sources.
One possibility is to use well test data and another possibility is to use
the data from hardware multiphase flow meters. In the latter case, if
MPFMs are installed at each wellhead, the data-driven model becomes a
back-up metering system for each well. However, if one MPFM is in-
stalled for a cluster of wells, its data can be used similar to well test and
separator data, so that the flowrate measurements from each well are
collected according to the well testing schedule. In this case, after
training and validation, the data-driven model can be used as a stan-
dalone VFM system. In the next section, we will describe the data-
driven workflow process in more detail.

4.2. Description of the data-driven VFM components and applied methods

4.2.1. Data collection and pre-processing

Before developing any data-driven model, the data must be col-
lected and pre-processed. In Virtual Flow Metering systems, the data
may include sensor readings from wells and processing facilities. In
addition, historical data from similar wells or fields can potentially be
used for model development. In the next step, the data is pre-processed
prior to training. Typically, the collected data are noisy, corrupted, may
include missing values, outliers and irrelevant inputs (Famili et al.,
1997). As such, the data needs to be cleaned and validated before
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Fig. 4. A schematic overview of a data-driven Virtual Flow Meter. First, the production system data is collected and pre-processed. Then, the pre-processed data is
used for model development and validation. When new measurement data is obtained, the validated model is used to estimate the well flowrates of oil, gas and water.

further usage. In principle, this is the same validation process as in the
data validation and reconciliation algorithm which is used in the first
principles VFM systems discussed before.

In the pre-processing step, data may also be transformed and ad-
ditional insights about the information contained in the data can be
obtained. This process is usually called feature engineering. Typical raw
features in VFM are shown in Fig. 4, i.e. pressures and temperatures
along the production system, choke openings and the information from
the ESP. There are many techniques which are used in feature en-
gineering, for instance, dimensionality reduction algorithms by Prin-
cipal Component Analysis (PCA), feature selection methods or linear
and non-linear combination of the raw features. A good overview of the
feature engineering methods is provided by Cunningham (2008). In
general, feature engineering may help the data-driven algorithm to find
complex relationships between the original data and the output vari-
able or remove redundant features which leads to lower computational
cost during training and prediction steps. In most of the cases, domain
knowledge of the field of interest is important to construct informative
features for further algorithm training and Virtual Flow Metering is not
an exception. Creating good features using the input data which can
describe the multiphase flow transport process may help to obtain
better predictions. However, as we will see in the next sections, in most
of the literature resources the production system sensor data are often
used as it is and the potential of good feature engineering for VFM
applications is not explored yet.

4.2.2. Model development

Model development is the process of developing an algorithm which
is able to map input features and output (target) variables. The mapping
process is also called training or learning during which the algorithm
adjusts the parameters in such a way that it estimates the target vari-
ables accurately. The adjusted parameters depend on the algorithm in
use. For instance, in case of a neural network, the parameters are

typically weights, which connect the neurons, while in case of regres-
sion trees the parameter can be the tree depth. The process of training is
achieved by minimizing a cost function which is formulated as the
difference between the algorithm predictions and true (measured) va-
lues. For regression problems as Virtual Flow Metering, the mean
squared error (MSE) is often used as a cost function which has the
following form:

N
1
MSE = N ; Olneas i = Ypredictea o (23)

where MSE denotes the mean squared error (cost function), ¥, ; — the
measured (true) value of the i-th training example, )p,,giceq; — the pre-
dicted value of the i-th training example, N — the number of training
examples, i — the index of the training example.

This expression resembles Eq. (19) for the data reconciliation al-
gorithm in the first principles VFM systems except for the fact that the
data-driven model training is typically an unconstrained optimization
problem while in data reconciliation the problem includes constrains as
well as uncertainty in the cost function. As such, the main idea behind
the first principles and data-driven VFM systems is the same — adjust the
model parameters such that the difference between the predictions
produced by the mathematical model and the measurement data is
small. However, the major difference is the mathematical formulation
of the model where the first principles models try to explain the mul-
tiphase flow transport using the physics behind the phenomenon while
the data-driven models try to learn the multiphase flow behavior di-
rectly from data.

After the model is trained, it must be validated and tested on a
different dataset to ensure that the trained model will perform well on
the data which the model has not seen during the training. The model
ability of producing accurate predictions on new data is called model
generalization (Abrahart et al., 2008). Another purpose of validation is
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to select accurate hyperparameters of the model to fit the data well.
Hyperparameters are the model parameters which are set prior to
training and are not learned during the training process. For instance, in
case of neural networks, the hyperparameters are the number of layers,
number of nodes in the hidden layers, regularization parameters, etc.
The regularization parameters are the hyperparameters which allow to
reduce the effect of noise and outliers on the final algorithm predic-
tions, so that the algorithm does not overfit the data. Bishop (2006)
provides a rigorous discussion on the influence of hyperparameters on
the model performance including its more detailed definitions.

There are different methods for validation. One of the most widely
used approach is standard K-fold cross-validation (Hastie et al., 2009)
which is shown in Fig. 5 (left). In this method, the available data is
divided into training and test parts. Then, the training set is again di-
vided into K-folds. Prior to training, a set of hyperparameters is selected
and then the model is trained with these parameters on K-1 folds and
the error between the actual values and the algorithm predictions is
checked on the remaining fold. This process is repeated K times and the
error is averaged over K folds. The obtained error corresponds to the
model error with the selected hyperparameters. Then, the hyperpara-
meters can be changed and the averaged error over K folds is computed
again. The best set of hyperparameters is the one which corresponds to
the lowest obtained error over K folds. The model with the best hy-
perparameters set can be re-trained on the entire training set to utilize
all the available data.

One of the main assumptions behind the K-fold cross-validation is
that the data points are independent from each other. However, in case
of Virtual Flow Metering this is an inadequate assumption because, for
instance, the bottomhole pressures at time instance t are dependent on
conditions at time instance t-1 unless the time difference between the
instances is large or during steady state operation with no pressure
variations. However, in most of the reported applications of data-driven
models in VFM, this fact has not been considered and the standard K-
fold cross-validation was performed as shown in Fig. 5 (left), see, for
instance, the works by Al-Qutami et al. (2017¢c, 2017a).

An alternative to the standard K-fold cross-validation can be nested
K-fold cross-validation, see Fig. 5 (right). In this case, the training set is
again divided into K-folds, however, the model is trained and validated
in a nested manner, for instance, trained on fold 1 and validated on fold
2, trained on folds 1 and 2 combined and validated on fold 3. In this
case, the algorithm does not use the future data in order to predict the
past outputs and misleading conclusions about the model performance
can be avoided. An application of the nested K-fold cross-validation in
data-driven VFM is described by Bikmukhametov and Jaschke (2019).

Ideally, the performance of the obtained validated model is checked
on a separate test dataset to make conclusions about the model gen-
eralization. Typically, two situations can happen when testing the
model performance:
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o The errors on the training and test sets are large.
o The error on the training set is small but large on the test set.

The first situation is called underfitting and often referred as the fact
that the trained algorithm has high bias. The second situation is called
overfitting and often referred as the fact that the trained algorithm has
high variance. In fact, finding an optimum value of both bias and
variance is the overall goal of the data-driven algorithm training and
called a bias-variance trade-off (Hastie et al., 2009). So, in summary, the
validation and testing are conducted in order to find the best set of hy-
perparameters which provides an optimal value of bias and variance. In this
case, the algorithm has good generalization and can be used for future
predictions with greater confidence. For a more detailed explanation
and the rigorous mathematical formulation of the data-driven model
assessment, we recommend the book by Hastie et al. (2009).

An alternative to K-fold cross-validation is early stopping approach
which has been extensively used for data-driven models training in-
cluding VFM applications (Al-Qutami et al., 2017b; Bikmukhametov
and Jaschke, 2019; Prechelt, 2012). In this case, the dataset is divided
into training, validation and test sets. During training, the error is
monitored on the training and validation sets. The training continues
until the error on the validation set keeps increasing a specified number
of training steps. The model can be further re-trained on the combi-
nation of the training and validation sets and evaluated on the test set.
Prechelt (2012) provides a thorough explanation of this approach and
the methodology for selecting the stopping criteria.

4.2.3. Applied methods for data-driven VFM systems

Having considered how data-driven model can be developed, in this
section, we will discuss data-driven methods which have been reported
to be used for VFM systems. Because VFM is a non-linear regression
problem, most of the data-driven VFM approaches are based on artifi-
cial neural networks alone or with some modifications, for instance,
ensemble algorithms. As such, we will separate the ANNs applications
from the other used methods. In addition, we distinguish recurrent
neural networks which are able to model dynamic problems.

4.2.3.1. Steady state artificial neural network VFM solutions. Feed-
forward neural networks (also often referred as Multilayer
Perceptrons (MLPs)) are a type of artificial neural networks which
aims to approximate a function based on a certain number of input
features without any recursive feedback connection between the
network outputs and inputs. They are inspired by cognitive abilities
of biological neural networks. The network is constructed using
interconnected cells (neurons). These neurons are structured in a
layered manner, so that the network usually consists of an input,
hidden and output layers (Goodfellow et al., 2016). The input layer is
required to read the variable (feature) values which are used for

Splitting Splitting
| Fold 1|Fold 2|Fold 3| Test | |Fold 1|Fold 2|Fold 3| Test |
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Train Valid Train | Valid
Train | Valid | Train Train | Train | Valid
Valid Irain Validated model
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Standard K-fold cross-validation

| Train |lesting

Nested K-fold cross-validation

Fig. 5. Standard (left) and nested (right) K-fold cross-validation schemes for data-driven models.
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training and for future predictions after training. In a VFM case, this can
be pressure and temperature measurements, choke opening or other
production system parameters. The hidden layers are used to produce
non-linear relationships between the input parameters and approximate
the function which describes the system behavior. In the output layer,
the values produced in the hidden layer go through an activation
function and then the network estimates the output variables (e.g.
flowrates). This type of neural networks has been a popular choice for
VFM technology because its key advantage is that it can approximate
any relationships and patterns between variables, so that it can be
considered as a universal approximator (Hornik et al., 1989). However,
in case of transient flow behavior, steady state solution provided by a
feed-forward neural network may not be accurate (Omrani et al., 2018).

One of the earliest attempts to estimate the multiphase flowrates
based on pressure sensor data using neural network models was done by
Qiu and Toral (1993). They used laboratory pressure transducers data as
an input to the neural network and predicted gas-liquid rates as outputs.
Since then, several examples of neural networks for VFM were reported.

A noticeable effort in applying neural networks for Virtual Flow
Metering systems is done by Al-Qutami et al. (2018, 2017a, 2017c,
2017b). Al-Qutami et al. (2017b) used a neural network trained by
Levenberg-Marquardt optimization algorithm. K-fold cross validation
technique was used to select the number of neurons. The model was
validated over 1.5 years of well test data. In order to avoid problems
with overfitting, the early stopping technique was utilized. In addition
to the evaluation of the trained model on the test data set, a sensitivity
study was performed. The study revealed that the estimated gas flow-
rate is the most sensitive to the choke position value while bottomhole
pressure is the most critical parameter for the oil flowrate predictions.

Al-Qutami et al. (2017a) discussed a hybrid ensemble learning by
combining the neural network and regression tree (RT) approaches
(NN-RTE). The idea behind the method is to generate a certain number
of learners using different algorithms (in this case NN and RT), use a
pruning technique to optimize this number (in this case simulated an-
nealing (SA)) and then use a combining strategy (in this case simple
averaging) to produce the final output. The paper compared the hybrid
approach (NN-RTE) with homogeneous ensemble approaches (NN and
RTE) and revealed a more accurate performance of the hybrid one.

Al-Qutami et al. (2017c) implemented a radial basis function network
(RBFN) which uses a Gaussian transfer function in the hidden layer in-
stead of a sigmoid function used in Al-Qutami et al. (2017a). The ad-
vantage of this method is the fact that it generally results in a faster
training. In order to train the RBFN, Orthogonal Least Squares algorithm
was used which is a common technique applied for RBFNs. A sensitivity
study was carried out by excluding bottomhole pressure and choke
opening form the model inputs. The results showed that the bottomhole
pressure did not change much the resulting estimates while the choke
opening was crucial for the network performance. This is a similar
conclusion to the one in Al-Qutami et al. (2017b) for the gas rate. The
authors concluded that further investigations in neural network sensi-
tivity are required to make a solid argument on robustness of the method.

Al-Qutami et al. (2018) considered a modified version of the en-
semble learning if compare to Al-Qutami et al. (2017b). In this case, the
homogeneous approach with neural network ensemble was used. Instead
of using another algorithm for learners, the diversity was achieved by
implemented different regularization criteria such as scaled conjugate
gradient and Bayesian regulation. In addition to the simple averaging,
weighted average and NN meta-learner combining strategies were used.
The results were compared before and after adaptive simulated an-
nealing with bagging and stacking ensemble methods.

Omrani et al. (2018) performed a rigorous study of applying feed-
forward neural networks to simulated and real field data. First, they
considered a NN for predicting oil and gas flowrates in steady state op-
eration and showed that the algorithm produces a good performance
while during transient operation the NN may give inaccurate results. In
addition, they considered sensitivity studies of the target variables with
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respect to uncertainty of the input data and revealed that in general NNs
are capable to produce accurate flowrate predictions even under noisy
input features unless the uncertainty increases dramatically. Finally, they
proposed a method for back-allocation of well flowrates using total flow
measurements from a separator, and the method showed a reasonable
performance and can be addressed in future research.

AlAjmi et al. (2015) used a neural network to predict the oil flowrate
through the choke. In addition to pressure, temperature, choke size and
WC data, they used some additional parameters for inputs including an
empirical correlation for the critical choke flow. When compared with
flowrate estimations obtained by using the choke empirical correlations,
the NN showed a reasonably better performance. It has to be noted that
the choke models used in the study were purely empirical and not me-
chanistic which usually make better flowrate predictions.

Berneti and Shahbazian (2011) and Ahmadi et al. (2013) compared
a conventional neural network approach with a hybrid approach by
introducing Imperialist Competitive Algorithm (ICA) to optimize the
initial values of weights in the network. Ahmadi et al. (2013) compared
also considered Particle Swarm Optimization (PSO) and Genetic Algo-
rithm for this purpose as well as utilized Fuzzy Logic approach to es-
timate the flows. Based on the study, superior capabilities of NN with
ICA were revealed compared to other hybrid methods and the con-
ventional NN training approach.

Zangl et al. (2014) constructed a neural network to estimate oil and
water rates by the use of multi-rate well tests. They trained the network
with a gradient descent method and the resulted network produced
good predictions on a test dataset. A similar work by Hasanvand and
Berneti (2015) shows a successful application of a three layers feed-
forward neural network trained by Levenberg-Marquardt algorithm to
predict oil flowrates using real field well test data from 31 wells col-
lected over 8 years of production.

Xu et al. (2011) and Shaban and Tavoularis (2014) used Principal
Component Analysis (PCA) in order to extract features from the ex-
periemntal data sets to produce input variables to neural networks. The
output flowrate estimates from the networks were in a good agreement
with the measured values.

In addition to the research oriented neural network VFM applications,
Baker Hughes has developed NeuraFlow software which is based on the
neural network model (Baker Huges, 2014; Denney et al., 2013). This
software is used to estimate the flowrates in systems with electric sub-
mersible pumps by applying the neural network approach. Similar to the
previously discussed NNs, this system takes pump intake and discharge
pressures as well as other measured parameters such as pump frequency as
an input and produces the flowrate estimates as the network output.

4.2.3.2. Dynamic artificial neural network VFM solutions. In addition to
the steady state feed-forward neural networks discussed above, there
are different NN modifications which are capable to model transient
phenomena. One example are recurrent neural networks (RNN) which
are extensively used in many applications such as speech recognition
and machine translation (Graves et al., 2013). The main idea behind
this approach is to use the data from the past to predict the current
target variable. For instance, in case of VFM, it takes the pressure and
temperature measurements from the previous time step in order to
estimate the flow at the current time step. In contrast, the feed-forward
neural networks typically consider the data from the current time step
only, so it performs steady state mapping only. In principle, it is
possible to also include the past data into the feed-forward neural
network, however, this approach has not been considered in the
literature so far. At the same time, the RNN approach has been used
in Virtual Flow Metering for transient flow estimation, and it is
important to emphasize this in a separate section.

One example of utilizing RNNs for VFM is the work by Andrianov
(2018). He used Long-Short Term Memory (LSTM) model which is a
type of recurrent neural networks. Using synthetic well test data, he
showed the capabilities of the LSTM method not only for estimating but
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also forecasting the flowrates in the future time. In addition, he also
considered the LSTM model for severe slugging prediction which is a
highly dynamic multiphase flow phenomenon which typically occurs in
risers. The results showed that the model was able to make accurate
predictions of the volumetric flowrate of the periodic slugging flow in
the riser.

Another example of RNN VFM system is the work by Loh et al.
(2018). They also used an LSTM model for gas rate predictions for two
natural gas wells. They trained the algorithm on the data of one well
and made predictions on the new data for both wells. The results
showed that the model is capable to predict the gas flowrates well in
general, however, for the well whose data was not used in training, the
predictions sometimes were not accurate. In addition to this analysis,
they also combined the LSTM model with ensamble Kalman filter which
we will discuss in the next chapter, and showed that adding the method
of combining the two approaches allows to obtain more accurate flow
estimates for both wells.

Omrani et al. (2018) compared performance of an LSTM neural
network with a feed-forward NN and showed that under dynamic
conditions such as shut-in and start-up of the well, the LSTM model has
a better performance and even able to track changes of liquid-gas ratio
during production.

Sun et al. (2018) used an LSTM NN for predicting oil, gas and water
flowrates from shale wells. Such an application is very promising be-
cause, in general, shale wells have highly transient behavior which can
be difficult to capture with feed-forward NNs and other steady state
data-driven algorithms. The authors showed that the LSTM model is
capable not only to predict the flowrates for the well whose historical
data was used for training but also it is possible to predict the flow for a
new well using the historical data from neighboring wells.

4.2.3.3. Other data-driven VFM solutions. In addition to the neural
networks, some other methods were used to estimate multiphase
flowrates from the collected measurements. One of the methods has
been developed and applied in actual oil and gas production systems.
FieldWare Production Universe (FW PU) is a data-driven VFM software
which is used in Shell's fields around the world. The idea for the
development of this software came from the Smart Fields initiative
which aimed to use smart equipment, technologies and processes to
optimize field production in Shell's fields (Bogaert et al., 2004; Poulisse
et al., 2006). By 2011, the system had been running on around 60% of
Shell's producing fields covering America, Europe, Africa, the Middle
and Far East (Cramer and Goh, 2009; Dolle et al., 2007; Gerrard et al.,
2007; Goh et al., 2008).

The data required for FW PU data-driven model is collected during
Deliberately Disturbed Well Test (DDWT). DDWT is a well test proce-
dure in which a well is routed to a test separator and then an operator
deliberately changes the parameters in a stepwise manner, track it with
the equipment and measures the single-phase flow at the test separator.
By testing the well at various conditions, it is possible to construct a
function which describes a well model. The function may have a gen-
eral form as the following (Poulisse, 2009):

qi(t) = fl:(gli(t)’ gzi([)’ .- gNi([))

where i — well number, g¢,(t) - flowrate, g,; — system parameter (e.g.
wellhead pressure).

By performing DDWTs for each well, the well models can be con-
structed for each well and then combined in the estimation of the total
field flowrate as:

(24

N
q(Oestimatea = D, %8 ()
estimate l=21 i8i (25)

In this expression, % is an unknown weight coefficient which must
be iteratively found from the fact that the estimated and monitored
(measured) flowrates should be substantially equal (Poulisse, 2009).
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In order to apply the FW PU data-driven models for a field start-up
phase, multiple runs of physical multiphase flow models can also be
used. These pre-generated synthetic production data are then used to
create the data-driven models (Poulisse et al., 2006). These models can
then be re-trained when actual production data become available.

Apart from the widely used method applied in FW PU, some other
data-driven methods have been used for VFM, mostly for research
purposes. For instance, Xu et al. (2011) utilized Support Vector Ma-
chine approach to predict the flowrates based on the Venturi pressure
difference values from the experiments which outperformed the neural
network approach.

Zangl et al. (2014) considered linear regression (LR) and random
forest (RF) for flowrate estimation, in addition to the backpropagation
neural network. All the methods showed a reasonable performance with
low average errors. The authors also used the models to perform Monte
Carlo analysis in order to test the sensitivity of the model to input
parameters. This study showed an advantage of using data-driven
models for flowrate predictions as the run time is quick which makes it
possible to perform many simulations for a reasonable time period.
Bello et al. (2014) also used a linear regression model with a pre-
liminary extraction of the training features using PCA. The resulted
hybrid intelligence system produced good oil and gas rate predictions.

Grimstad et al. (2015) applied B-spline surrogate models for the
flowrate estimation. In order to obtain the data for the algorithm, they
used the pressure drop, choke and inflow performance models from
Prosper and then fitted the results with the cubic spline interpolation
function. The estimation results were compared to OLGA and showed a
good performance.

Bikmukhametov and Jaschke (2019) applied gradient boosting al-
gorithm with regression trees as a VFM system to predict oil flowrates
in different field development cases. They considered the cases when
VFM is used as a back-up system for a MPFM and as a standalone so-
lution. The algorithm was trained on the data generated by OLGA
software. The results showed that the algorithm has a good potential for
multiphase flowrate predictions even having relatively small datasets
from the well tests and the measurements from the MPFM. In addition,
the algorithm can further be combined with neural networks within
ensembles to improve the flowrate prediction accuracy.

4.3. Field experience with data-driven VFM systems

In this section, we describe the real operational experience reported
in the literature using the data-driven models discussed in the previous
section. The number of field applications with data-driven models is
lower than with the first principles methods. The main reason for this is
the fact that the industry effort over the past 50 years was mostly fo-
cused on the development of the first principles models, so that many
vendors offer the products based on this approach. However, currently
the industry is also trying to utilize the enormous amount of data col-
lected in the fields every day and the research effort in this area has also
increased over the past several years as we observed in the previous
section.

Regarding the actual applications of data-driven methods in oil and
gas production, the FW PU showed a robust and accurate performance
for conventional and multizone wells and capable to track the dynamic
changes in production systems. The estimates produced by the software
can further be used for optimization and forecasting purposes (Cramer
et al., 2011; Goh et al., 2008; Poulisse et al., 2006). Law et al. (2018)
used FW PU Virtual Flow Meter for chemical injection optimization.

Denney et al. (2013) showed performance of NeuralFlow in a field
over nine months period without a need to be re-calibrated. There are
also some examples of applying data-driven VFM systems in fields
which were developed for a specific field case. Garcia et al. (2010)
developed a neural network to estimate the production and injection
rates in fields in Brazil using a typical set of pressure, temperature and
choke measurements for the network input and obtained the error level
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of 4-7%. Olivarez et al. (2012) overcame problems with empirical
choke flowrate estimations by developing a neural network solution
which improved reliability of the field metering system. Ziegel et al.
(2014) used a VFM system based on a neural network to predict oil and
gas flowrates in a field with gas coning in the North Sea using the data
from well tests. Al-Jasmi et al. (2013) developed a radial basis neural
network able to predict the flowrates 30 days ahead with 90% con-
fidence in wells with ESPs.

4.4. Summary of data-driven VFM applications

In Table 2, we give an overview of the discussed applications of
data-driven modeling in Virtual Flow Metering systems. The table
emphasizes the models features used in the works, the predicted vari-
ables, the input data for the training and the respective paper. In ad-
dition, we point out the origin of the training and test data and the fact
if the sensitivity analysis to the input data was conducted.

5. Application of state estimation for transient modeling in VFM
systems

5.1. Introduction

So far, we have discussed the first principles and data-driven mod-
eling methods applied for Virtual Flow Metering. Most of the discussed
methods describe steady state solutions meaning that they do not accu-
rately estimate transient flows. In order to estimate flows under transient
conditions, the time dependency of the system must be considered. This
requires two necessary conditions: (1) dynamic models that accurately
describe the transient behavior of the production system that may be
based on the first principles or data-driven approach; (2) dynamic for-
mulation of the training/optimization algorithm which considers the past
states of the system. As we saw in the description of the first principles
VFM systems, requirement (1) is typically satisfied, however, the re-
quirement (2) is not, because typically the data validation and re-
conciliation algorithm has a steady state formulation. In the data-driven
VFM systems, most of the methods do not satisfy both requirements.

One solution to this problem is using state estimation approach
together with first principles or data-driven models to estimate the
transient flows. In the literature, several application examples of state
estimation for Virtual Flow Metering are described, in which the au-
thors use first principles models and data-driven models together with
state estimation techniques to estimate the oil and gas flowrates under
transient conditions using the available measurement data. In this
section, we will describe the main idea behind the most often used state
estimation techniques for VFM such as Kalman filter modifications and
then consider its applications in Virtual Flow Metering.

5.2. Description of the state estimation techniques applied for dynamic VFM
systems

One of the most common state estimation techniques is the Kalman
filter (Kalman, 1960). The Kalman filter is an optimal estimator meaning
that, under some assumptions, the mean value of the estimation errors
sum goes to a minimum value (Singh and Mehra, 2015). Despite the fact
that the Kalman filter is extensively used in various applications, it is not
widely spread in the petroleum industry. This is because most of the
systems in this industry have non-linear behavior which restricts the
usage of the Kalman filter. To overcome this, several extensions were
developed to apply the Kalman filter concepts to non-linear systems.
Some of the most common extensions are extended Kalman filter (EKF)
(Jazwinski, 1970), ensemble Kalman filter (EnKF) (Eversen, 2003) and
unscented Kalman filter (UKF) (Julier et al., 2000). For estimation of
multiphase flowrates, the first two options have been considered.

The Kalman filter and its variants are algorithms that use a dynamic
model to propagate estimates of the states together with the variance-
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covariance matrices in time. While the original Kalman filter was de-
veloped for linear systems, the extended Kalman filter uses a linear-
ization of the non-linear model around the current estimate. Given the
system with available measurements, the idea behind the state esti-
mator is to predict the state values based on the noisy measurements
obtained from the system. To construct the EKF, we need to discretize a
state-space model of a non-linear system in time. The states of the
system typically include variables which we would like to estimate, for
example, in case of VFM, pressure, holdup or flowrates. The EKF will
integrate the discretized model over time considering the process noise
and the measurements. A good example of the adaptation of the con-
servation equations in the context of flow estimation to the state space
form is described by (Gryzlov et al., 2013).

The Ensemble Kalman filter allows to avoid linearization but gen-
erate the estimates of the state vector and the covariance using so-called
ensembles. The EnKF is able to solve highly non-linear problems more
accurately compared to the EKF, while for problems with small non-
linearities their performance is approximately the same. The compu-
tational time depends on the order of the system under consideration.
For higher order systems, the EnKF is usually the fastest option (Leskens
et al., 2008). More discussions about the comparison of the EKF and
EnKF can be found in Leskens et al. (2008) and Reichle et al. (2002).

Another estimation technique which has been used for VFM is
Moving Horizon Estimation (MHE). This approach is based on for-
mulating an optimization problem to find the states of a dynamic model
that best match measurement data during a specified time period
(horizon) in the past. When new measurement data become available.
The horizon is shifted, such that the oldest data point is discarded and
the newest point is included. This procedure is repeated at given sample
times. MHE is becoming a popular estimation technique for many in-
dustrial applications and a vast amount of literature is available on this
method. For a more detailed description about the method, please see
Rao et al. (2001).

5.3. Reported research on state estimation methods applied for dynamic
VFM systems

Despite the fact that state estimation methods for VFM applications
are not widely used in industry, there have been several research efforts
in this area. Bloemen et al. (2006) considered the extended Kalman
filter to predict the flowrates in gas-lift wells. To estimate the flowrates
of a two-phase flow, they assumed that noisy pressure measurements
are taken along the wellbore. For the model part, the drift-flux for-
mulation was considered. It was shown that under dynamic conditions
caused by the choke opening, the model was able to estimate the gas
and liquid flows accurately.

Leskens et al. (2008) considered a three-phase flow in a unilateral
horizontal well and applied the EKF for flowrate estimation. It was
assumed that five downhole pressure and four temperature sensors
were available for the EKF. The wellhead measurements were not
considered. The authors showed that without the noise the model
worked well while with the noise the method was unable to track the
flowrate changes.

To extend the work by Leskens et al. (2008), De Kruif et al. (2008)
considered both two and three-phase flows in unilateral and multi-
lateral wells using the EKF. In the two-phase case in the unilateral well,
six downhole pressure and temperature measurements were sufficient
to estimate the flow accurately. For the three-phase case, downhole
data were not enough for good estimations. However, wellhead pres-
sure sensors helped to improve the predictions. Another interesting
finding was the fact that using only wellhead data was sufficient to
predict the flowrates. However, the model was not able to track the
changes of the inflow in time. Instead, the time delay response was
observed. This led to the conclusion that the downhole sensors are
necessary in order to track flowrate changes accurately. As for the
multilateral case, the authors showed that even with the downhole and
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wellhead sensors, the model was not good enough to estimate the flow
correctly. This is because the model needs correction for the specific
branch of the multilateral well at the wellhead which is not possible as
the flows from all the branches commingle inside the wellbore.

Lorentzen et al. (2010a) used the ensemble Kalman filter to predict
the gas inflow at four different zones in the wellbore. To do this,
downhole temperature sensors were used together with the transient
drift-flux model. The model showed promising results by estimating the
flows accurately. In a similar work, Lorentzen et al. (2010b) considered
a well with two branches and used temperature measurements with and
without pressure sensor data to estimate the flow by use of the EnKF.
They showed that using only temperature sensors can be sufficient to
estimate the gas flowrate from a particular well branch.

Gryzlov et al. (2013) utilized the extended Kalman filter for the
flowrate estimation problem. Several cases were considered including
flowrate and holdup estimation. At first, it was assumed that in each of
50 discretization blocks the pressure measurements were available.
Then, the number of sensors were reduced by a factor of three and six.
The results showed that by reducing the number of sensors, the esti-
mation error increases. The conclusion was that each inflow point must
be equipped with at least two pressure sensors, however, this requires a
closer investigation.

Muradov and Davies (2009) applied the extended Kalman filter for
zonal rate allocation in synthetic and real multizone wells and com-
pared its performance with optimization techniques. The results
showed that even though all the methods were suitable for the appli-
cation, the EKF was the most suitable for noisy measurement data.

Binder et al. (2015) consider Moving Horizon Estimator for flowrate
estimation in a well with an ESP. For the input, bottomhole, downhole
and pump pressure sensors were considered together with pump
parameters. The method showed an accurate performance and was
suggested to be used for industrial applications.

In the works described above, the state estimation methods are
applied to the first principles models. However, it can also be applied to
the data-driven model if the model is dynamic, for instance, a recurrent
neural network. Loh et al. (2018) applied the ensemble Kalman filter
together with an LSTM network and compared the performance with a
pure LSTM model. The results showed that the ensemble Kalman filter
gives an opportunity for the LSTM model to better capture the flow
behavior and preform more accurate multiphase flowrate estimation.

In addition to the aforementioned studies, there are several works
which do not consider estimation methods for VFM directly but de-
scribe models which can be suitable for this purpose. Aarsnes et al.
(2016) conducted a review work on multiphase flow models which can
be used for estimation algorithms. Some aspects of implementing the
Kalman filter variations for drilling applications can be also accounted
when constructing a state estimator for VFM purpose. For such ex-
amples, please see Aarsnes et al. (2014a, 2014b) and Nikoofard et al.
(2017). The state estimation techniques can also be used to estimate the
multiphase flow model parameters such as slip and friction coefficients
(Lorentzen et al., 2003, 2001).

5.4. Discussion on using state estimation in dynamic VFM systems

State estimation methods can be a promising tool for dynamic es-
timation of multiphase flowrates in VFM systems. These methods have
the following advantages for VFM applications:

e Have a potential to use additional data from the production to im-
prove estimates in a simple manner

e Filter noisy measurements and solve the estimation problem within
one algorithm

e Have a potential in accurate flow estimation using MHE and data-
driven models that are fast to evaluate

e Can be used to estimate unmeasured variables
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However, apart from the positive sides, there are disadvantages
which make application of these methods in VFM systems challenging:

e The methods have not been used in the industrial VFM applications,
so that operational experience is absent

e It is a complex approach which includes physical and statistical
modeling, so the model development cost is high

e Difficult tuning

Taking the aforementioned points into account, we conclude that
the state estimation methods are a promising approach for VFM, but the
challenges with its construction complexity have to be overcome in
order to make these methods applied for VFM more often.

6. Comparison of VFM methods

In the previous sections, we described the VFM methods which have
been developed for industrial and academic applications. In this sec-
tion, we would like to emphasize the advantages and disadvantages of
using a particular VFM solution and also compare it with physical
multiphase flow meter. Marshall and Thomas (2015) compared VFM in
general with MPFM and test separators but did not distinguished the
difference between the VFM methods. In this section, we add the
comparison between the VFM methods and also specify other additional
points of interest. Table 3 shows the methods comparison. In addition
to this table, please see Bringedal and Phillips (2006) and Varyan
(2016) for more detailed discussions about potential savings and cost
reduction using VFM.

7. VFM literature summary

In this section, we give an overview of the available contributions
on Virtual Flow Metering. In Table 4, the material summary is struc-
tured in such a way that all the relevant papers can be found based on a
topic of interest. Here we aim to include all the works which con-
tributed to the VFM development. The works under each sub-section of
the table is presented by the published date order.

8. Challenges and opportunities for VFM development

Even though a vast research effort in the development of Virtual
Flow Metering systems has been conducted, there are still many op-
portunities for this technology to improve and become a more reliable
source of multiphase flowrates estimates. Based on the revised litera-
ture, in this section we propose several possible directions for the re-
search and development of first principles and data-driven VFM sys-
tems.

8.1. First principles VFM systems

A further evaluation of the VEM sensitivity to the input parameters
is required. As a starting point, one can take the evaluation by Amin
(2015), Toskey (2011), Varyan et al. (2015), Tangen et al. (2017) and
Lansagan (2012) and address the revealed contradictive points from the
studies which we emphasized before. In addition, a systematic eva-
luation of the accuracy of sub-models under various conditions can be
conducted. It can useful to see how separate models perform (e.g. choke
and thermal-hydraulic models) with changing GORs and sensor accu-
racy. This can lead to selecting a correct VFM strategy at different
stages of the field life cycle.

Another question is how accurate the models must be in order to
construct an accurate VFM system? Can the required accuracy of the
models be reduced by robust data validation and reconciliation tech-
niques? We saw that there are several commercial VFM systems avail-
able and each has its own accuracy level of the used models. Some
systems mostly rely on high fidelity multiphase models (e.g. OLGA and
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Table 3
Comparison of VFM methods, MPFM and test separators.
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Metering method Advantages

Disadvantages

VFM in
general

Virtual Flow
Metering

- Real-time or near-real-time monitoring
- Low cost solution

- Does not require physical intervention to fix the problem

unless most of the sensors fail

- Depends on the sensor accuracy
- Requires periodical tuning
- Depends on the model accuracy

- May be well integrated with other software to maximize

production

First principles
VFM

- Many vendors available

- Can be used to model other operational problems such as

slugging, erosion, hydrates occurrence

- Can be used to estimate unmeasured variables

- Uses well-proven and known modeling methods
- Operational experience is relatively long
- Well suited for steady state or near-steady state situations

- Require deep knowledge about the physics which describes
the system

- Quasi-steady state. Fit parameters in a certain point in time
having the previous solution, hence might have a delay to
capture dynamic situations

- Highly depends on PVT data accuracy

- Tuning process is not straightforward

- High computational cost compared to data-driven VFM

Data-driven

- Does not require deep knowledge about the physics which

- Not suitable when limited historical data is available

VFM describes the system - Most of the methods are steady state. Research on using this

- When the model is trained, it has low computational cost for VFM approach for dynamic situations is required.
flowrate predictions compared to other VFM methods - Limited operational experience

- Easy to update continuously with newly obtained data - Can be applied to data within or near the training data range,

- Easy to combine different parameters from different parts of otherwise calibration and re-training is required
the production system without constructing a complex - Advanced feature engineering requires process insights
physical model

Physical Flow MPFM - Vast operational experience because widely used in the - High cost technology

Metering industry

- Real-time monitoring

- Handles dynamic multiphase flow metering

- Many vendors are available

- Requires periodical calibration and accurate PVT data

- Exposed to failures, erosion and blockage

- Requires expensive physical intervention to fix problems

- May produce inaccurate measurements if conditions are out of
the operational range

Test separator - Accurate flowrate estimation

- Can be used as the reference with high confidence
- Allows to estimate other important parameters such as fluid

and reservoir properties

- No real-time monitoring

- Loss of production which leads to high cost of operation

- Requires vast experience of operators to make accurate well tests
- Performance of other wells may be affected during the well test

K-Spice VFM systems) while the others on the reconciliation techniques
(e.g. ValiPerformance). By answering these questions, we could un-
derstand what we should focus on in the future VFM development: an
accurate tuning and optimization strategy or accurate system models,
for instance, tubing and choke models.

Even when the VFM is tuned well, it will be necessary to re-tune the
model after some production time. The tuning requires the knowledge
about both operational and software features which make the process
complicated. As such, an auto-tuning strategy would be a valuable asset in
order to make VFM to be a standalone flow metering solution in the fields.

One of the issues influencing the VFM performance is the accuracy of
PVT data which has to be continuously updated. This is linked to the
tuning strategy discussed above. As such, one could also think of a more
robust implementation of the VFM system in terms of the PVT change. If
the system becomes less sensitive to the PVT error, this will result in less
frequent well testing for model tuning and the tuning in general. One
possible way may be measuring total mass flowrate, mixture densities
and water cut at wellhead conditions and using it as a tuning parameter.

We saw that state estimation methods can be a promising tool for
constructing an accurate dynamic first principles VFM system. The
methods may be useful in solving the following problems: flowrate es-
timation under transient conditions; removing the influence of noise and
even drift of measurement data on the VFM estimates; estimation of
zonal well inflow and flow from multilateral wells. However, to proceed
in incorporating these methods into the first principles VFM systems, the
following questions have to be answered first: how to perform a robust
tuning of the estimation methods; is the typical well configuration with
downhole and wellhead sensors enough for accurate estimation or more
sensors are needed; can the models be easily recalibrated for new field
conditions. In addition, more investigations using real field data are
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required. In this way, the potential of utilizing the state estimation
methods for the first principles VFM systems will actually be revealed.

In order to proceed in developing accurate transient flow estimation
using first principles VFM systems, it can be promising to develop
methods for numerical optimization of large-scale complex high-fidelity
dynamic models that provide real-time derivatives that can be used by
an optimization solver.

8.2. Data-driven VFM systems

Various data-driven models are considered in this work. One of the
emerging data-driven models in VFM is based on neural networks
which seems to have a big application potential. Despite the fact that
the academic results are promising, a lot of work has to be done in order
to make NNs to be widely applicable as an industrial VFM solution. In
addition to consideration of neural networks applications, other more
general research directions are given below.

Performance of data-driven models in general and neural networks
in particular is highly dependent on feature engineering. Oil and gas
productions systems include many parameters which influence a par-
ticular well, so may be potentially used as input features to the neural
network. At the same time, finding an optimal set of features as well as
hyperparameters of the neural network is a challenging task which is an
ongoing research in the field of machine learning. As such, develop-
ment of the approach which could identify the most informative fea-
tures and optimal set of neural network hyperparameters at the same
time will be a strong contribution towards accurate and robust flowrate
estimates from a data-driven VFM model.

So far, only maximum likelihood estimation approach has been used
for VFM modeling meaning that only the most likely value of the
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Table 4
Summary of VFM manuals and literature contributions.

First principles VFM systems

Commercial VFM systems (description of models and field experience)

OLGA Online:
(Schlumberger Limited., 2014) — description of models used in OLGA Online VFM (manual)
K-Spice:
(Patel et al., 2014) — implementation of K-Spice VFM in Alta field which showed a good performance during the tests
(Kongsberg, 2016) — description of models used in K-Spice VFM system (manual)
(Tangen et al., 2017) — sensitivity analysis of K-Spice VFM system under various conditions with a digital twin approach
(Couput et al., 2017) — summary of Total experience with K-Spice VFM. Emphasized that despite the advantages of the VFM costs, it still needs skilled people to tune and
calibrate the software which can be a challenge for operator companies
FlowManager:
(Rasmussen, 2004) — discusses principles and possible applications of VFM as well as field experience with FlowManager
(Holmas and Lovli, 2011) - describes models and numerical schemes used in FlowManager as well as field applications
(Holmas et al., 2013) — discusses applications of FlowManager as a flow assurance system in Ormen Lange and Vega fields in the North Sea and used as a back-up system to the
MPFMs
(Varyan et al., 2015) — performed several sensitivities studies with FlowManager and compared performance with MPFMs
(Lovli and Amaya, 2016) — shows six cases of FlowManager VFM applications including gas condensate and oil fields during normal conditions as well as start-up operations.
WMS:
(van der Geest et al., 2000) - describes the models used in WMS and its performance on synthetic data
(van der Geest et al., 2001) - discusses successful WMS applications in Troika field in the Gulf of Mexico
(Melbg et al., 2003) — discusses application of WMS in the North Sea including cases with unreliable sensor information
(ABB, 2004) - application of WMS VFM in Bonga field, Nigeria.
(Bringedal et al., 2006) — application of WMS VFM in Bonga field, Nigeria.
Virtuoso:
(Haldipur, 2011; Haldipur and Metcalf, 2008) — describes models and computational methods used in Virtuoso as well as various field applications
(Parthasarathy and Mai, 2006) — presents Virtuoso applications as a back-up, monitoring and substitute system for MPFMs
ValiPerformance:
(Couput et al., 2008) — discusses examples of the software installation in an onshore field in France and a complex subsea field as a back-up and reduction uncertainty system
(Wising et al., 2009) - discusses the models used in ValiPerformance and its implementation with DVR algorithm
(Couput and Renaud, 2010) — describes an example of the software performance in the Middle East operated by Total with 16 wells with ESPs
(Petukhov et al., 2011) — describes the software models and successful testing in Ceiba oil field in Equatorial Guinea
(Haouche et al., 2012a; 2012b) - describe the software models including ESP with density correction factor as well as field tests and operation
(Couput et al., 2017) — summary of Total experience with ValiPerformance VFM.

Rate&Phase:

(Foot et al., 2006; Heddle et al., 2012) - describe types of software models and its performance on more than 300 production and injection wells
FieldWatch:

(Roxar, 2015) — description of models used in FieldWatch VFM (manual)

Prosper:

(Acuna, 2016; Ma et al., 2016; Omole et al., 2011) — used Prosper as an engine for VFM in real field cases and then combined it with external optimization techniques to estimate
the flowrates continuously and optimize field production

(PETEX, 2017) — description of models used in Prosper (manual)

Sensitivity, comparative and economic studies:

(Bringedal and Phillips, 2006) — compares VFM with test separator and MPFM solutions from technological and economic points of view

(Toskey, 2011) — performs comparison of several VFM software based on synthetic data from OLGA which included several case studies with different set of parameters for
flowrate estimation. In addition, conducted a survey of vendors about the VFM product features

(Lansagan, 2012) - considers sensitivity study on influence of measurement degradation, input uncertainty and availability on VFM estimates

(Amin, 2015) — describes comparison of several VFM software based on real field data. In addition, performs a sensitivity study of VFM to the input PVT data

(Varyan et al., 2015) — describes a sensitivity study of FlowManager VFM with respect to the input parameters

(Mokhtari and Waltrich, 2016) — compares different wellbore and choke models for VFM

(Varyan, 2016) — discusses potential cost savings using VFM compared to test separators and MPFMs

(Tangen et al., 2017) - sensitivity analysis of K-Spice VFM under various conditions with a digital twin approach

(Bikmukhametov et al., 2018) — describes statistical analysis of effect of sensor degradation and failure as well as heat transfer modeling methods on VFM flowrate estimates

Choke model VFM

(Delarolle et al., 2005; Faluomi et al., 2006) — developed a choke model, validated it with experimental data and CFD analysis and applied the model at field conditions in Italy,
North and West Africa and the Gulf of Mexico
(Campos et al., 2010) — used a choke model as a VFM tool in an integrated production model of Urucu field
(Loseto et al., 2010) — used a choke model as a VFM tool in an integrated production model of Don fields
(Ajayi et al., 2012; Allen and Smith, 2012) — used models of downhole inflow control valves to construct a VFM system
(Moreno et al., 2014) — used a choke model as a VFM tool together with an optimization algorithm to optimize field production
(Espinoza et al., 2017; Hussain et al., 2016) — used empirical choke models to estimate the flowrate at field conditions
(Cheng et al., 2018) - combined choke model with thermal-hydraulic and IPR models for creating a VFM system which used in real field application in an offshore field

ESP model VFM

(Camilleri et al., 2016b; 2016¢; 2016a; 2015; Camilleri and Zhou, 2011) — consider ESP models with various modifications and field case studies in which ESP first principles models
act as Virtual Flow Meters
(Haouche et al., 2012a; 2012b) — describe the software models including ESP with density correction factor as well as field tests and operation

(continued on next page)
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Table 4 (continued)
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First principles VFM systems

Commercial VFM systems (description of models and field experience)

Data-driven VFM systems

Industrial applications (neural networks)

NeuraFlow:

(Denney et al., 2013) — describes the performance of NeuraFlow in field conditions

(Baker Huges, 2014) — describes the approach used for NeuraFlow software

Patchwork applications:

(Garcia et al., 2010)- describes a neural network application for production and injection rates estimation in fields of Brazil using a typical set of pressure, temperature and choke
opening measurements

(Olivarez et al., 2012) — describes a neural network for production estimation when choke models showed unsatisfying performance

(Al-Jasmi et al., 2013) - used a radial basis neural network to forecast oil production 30 days ahead in wells with ESPs

(Ziegel et al., 2014) — used a neural network as a VFM system to predict oil and gas flowrates in a field in the North Sea

Industrial applications (other methods)

FieldWare Production Universe:

(Bogaert et al., 2004; Poulisse et al., 2006) — discuss the first ideas of developing a data-driven VFM system as a part of Smart Fields production technologies

(Cramer et al., 2011; Cramer and Goh, 2009; Dolle et al., 2007; Gerrard et al., 2007; Goh et al., 2008; Law et al., 2018; Poulisse, 2009; van Den Berg et al., 2010) — describe FieldWare
application in many production examples from America, Europe, Africa and the Middle East to estimate the flowrates and optimize production

Research works (neural networks)

Feed-forward neural networks

(Qiu and Toral, 1993) - considers a neural network for oil and gas flowrates estimation using experimental data with pressure transducers

(Berneti and Shahbazian, 2011) — describes application of Imperialist Competitive Algorithm for initial weights optimization in a neural network for estimation of oil production
(Hasanvand and Berneti, 2015) - trained a neural network by Levenberg-Marquardt algorithm for oil rate predictions

(Xu et al., 2011) - used Principal Component Analysis in order to reduce dimensionality of the feature space from the experiemntal data sets to produce input variables for neural
networks

(Ahmadi et al., 2013) - describes application of various derivative free algorithms for weights optimization of a neural network to make accurate estimates of oil production
(Zangl et al., 2014) - constructed a neural network to estimate oil and water rates by the use of multi-rate well tests

(Shaban and Tavoularis, 2014) — used Principal Component Analysis in order to extract features from the experiemntal data sets to produce input variables for neural networks
(AlAjmi et al., 2015) — describes application of a neural network to predict the flow through a choke by including not only pressure and temperature measurements but also WC
and a choke model for critical flow

(Al-Qutami et al., 2017a) — describes ensemble learning by combining neural networks and regression trees to estimate oil production and compares the model performance with
homogeneous neural networks

(Al-Qutami et al., 2017b) — developed a neural network to estimate the flowrates based on real production data as well as performed sensitivity studies of input parameters

(Al-Qutami et al., 2017c) - used a radial basis neural network for the flowrate estimates as well as performed sensitivity studies of input parameters
(Al-Qutami et al., 2018) — considers different methods for ensemble learning with neural networks for production estimation

Recurrent neural networks

(Andrianov, 2018) — used LSTM recurrent neural networks on synthetic well test data to estimate and forecast oil production

(Loh et al., 2018) — compared performance of LSTM NN and LSTM NN combined with ensemble Kalman filter to predict transient oil flowrates

(Omrani et al., 2018) — compared LSTM with feed-forward NN under transient conditions, performed sensitivity analysis of NN predictions with respect to data uncertainty and
proposed a method for back-allocation of well flowrates using total flowrate measurements from a separator

(Sun et al., 2018) — used LSTM models for predicting oil, gas and water flowrates from unconventional shale production

Research works (other methods)

(Xu et al., 2011) — describes application of Support Vector Machine for flowrate estimation based on Venturi pressure difference from experiments
(Zangl et al., 2014) - describes comparison of neural networks with linear regression and random forest methods

(Bello et al., 2014) — describes a linear regression model with a preliminary extraction of the training features using PCA for flowrate estimation
(Grimstad et al., 2015) — used B-spline models to approximate models from a commercial simulator which are then used for VFM purposes
(Bikmukhametov and Jdschke, 2019) — used gradient boosting with regression trees to estimate oil flowrates for different field development cases

Application of state estimation methods for VFM

(Bloemen et al., 2006) — describes application of extended Kalman filter (EKF) for flowrate prediction in gas-lift wells
(Leskens et al., 2008) — shows application of EKF for three-phase flowrate estimation in a unilateral horizontal well
(De Kruif et al., 2008) — discusses EKF for two and three-phase flow estimation in unilateral and multilateral wells using different number and placement of measurements
(Muradov and Davies, 2009) - considers EKF for zonal rate allocation in synthetic and real multizone wells and compared its performance with optimization techniques
(Lorentzen et al., 2010a) — discusses application of EKF to predict the gas inflow at four different zones in the wellbore
(Lorentzen et al., 2010b) — considers a well with two branches and used temperature measurements with and without pressure sensor data to estimate the flow by use of the

ensemble Kalman filter

(Gryzlov et al., 2013) - considers different cases including flowrate and holdup estimation using EKF
(Binder et al., 2015) — consider Moving Horizon Estimation for flowrate estimation in a well with an ESP

flowrates is estimated by a data-driven algorithm. However, these es-
timates will always have uncertainty due to different distributions of
training and actual production data, noise in data, errors in reference
measurements of flowrates from well tests and sensors, etc. Accurate
estimation of these uncertainties in VFM applications may be valuable.
It will allow using reconciliation techniques for better flowrate esti-
mates using separator measurements as well as incorporating these
uncertainties into daily and long-term production optimization.

Most of the data-driven algorithms described in this paper are able to
model steady state systems and might fail to model transient fluid flow
accurately. As Andrianov (2018), Loh et al. (2018) and Omrani et al.
(2018) showed, there are neural network architectures which are able to
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capture the dynamic systems behavior. However, it is likely to happen
that recurrent neural networks will not always outperform other data-
driven methods even under transient conditions. As such, more work
should be done in this direction to reveal the full potential of recurrent
neural network architectures for making more accurate multiphase
flowrate estimations, especially under transient conditions. For instance,
identifying the required time frequency of the measurements and
strategy for tuning the time window size can be a valuable asset.

As the industry has good knowledge of the first principles models for
multiphase flow, it can also be valuable utilize this knowledge for
making hybrid solutions together with data-driven models. There are
different research directions to investigate. First, ensemble learning with
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data-driven and first principles models can be used. Another possibility
may be applying physical models for training purposes, for example, in
transient or lack of data situations. In addition, creating input features
based on the first principles of multiphase flow may help the algorithm to
map the input with output variables and produce better predictions.

Only a few works have been done on the ensemble learning of data-
driven algorithms for VFM, while it has been well investigated for many
other applications. With ensemble learning the model the behavior of
the model becomes less explainable, but it may produce better esti-
mates. At the same time, the model explanation may not always be
necessary for flow monitoring. The potential of ensemble learning for
VFM applications is certainly unrevealed and can be addressed in the
future research work in this area.

As Loh et al. (2018) showed, the state estimation methods can be
used not only with the first principle models but also with dynamic
data-driven models, for instance, an LSTM neural network. Using the
state estimation methods in this case can help the data-driven model
produce accurate flowrate estimates having even a small training da-
taset or noisy input data. However, since only one attempt has been
made in incorporating the state estimation methods in data-driven
models, this research direction has many opportunities for revealing
additional advantages of utilizing this approach.

9. Conclusions

Virtual Flow Metering is a promising approach for flowrate estimation
due to its low cost, real-time monitoring capabilities and an easy integra-
tion with other software solutions. There are different approaches to esti-
mate multiphase flowrates which are used in the industry or are at the
research phase. Currently, the first principles approach is the most often
used Virtual Flow Metering tool in operation as a standalone solution or as
a back-up system for physical multiphase flow meters. Despite an active use
of the first principles VFM systems, this approach still has many challenges
to solve, such as model and PVT data tuning and handing transient flow
behavior using dynamic optimization or state estimation techniques.

Data-driven methods are becoming more and more popular due to
an increasing amount of field data and recent advances in development
and understanding of data-driven algorithms as well as increase of
computational power used for algorithm training. State estimation
methods are still not often used in the industry and have mostly aca-
demic applications, however, the methods have several strong ad-
vantages, for instance, transient flow modeling integrated with noisy
measurement data. The main challenge associated with this method is
that it typically requires good models and is difficult to tune and these
points have to be addressed on the future research. In addition, there is
a potential in combining state estimation methods with data-driven
models where a detailed physical model is not required, while the ad-
vantage of incorporating noisy measurement data still holds.

Independently on the applied VFM approach, systematic model tuning is
one of the main reasons why VFM is not the main multiphase flow metering
solution. The first reason for this is the fact that obtaining accurate flowrate
measurements for tuning is difficult, especially in subsea fields, so it is
challenging to establish a robust procedure for VFM tuning. Also, the model
tuning itself is a hard task and requires a deep understanding of the models
and other underlying principles. As such, developing auto-tuning strategies
is an important task which has to be solved by VFM vendors to increase
popularity of VFM solutions for multiphase flow metering.

Another problem is estimating uncertainty of VFM predictions and
taking it into account to make accurate predictions. Depending on the
applied method, this includes uncertainty of models, measurements,
PVT data and reference flowrates. Accurate estimating and reducing
these uncertainties is an important issue which has to be addressed in
the future research for all the VFM methods.

A promising direction for research can be development of a VFM
system which uses approaches of first principles and data-driven mod-
eling together and takes advantages of each method. This approach can
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be called a hybrid VFM system. A hybrid model should be able to adapt
to conditions of a particular field such as measurement data availability,
stage of the field development, frequency of well tests for model tuning,
uncertainty of the measurements, etc. In addition, by combining several
VFM methods it will be possible to obtain several estimates of the same
quantity which can increase the estimation confidence.

Irrespectively of the method, VFM is one of the steps towards low
cost field development solutions which is steadily being integrated in
subsea oil and gas fields around the world. The trend of an efficient data
use in the industry also supports the concept of VFM. We believe that
the future research and pilot tests may strengthen capabilities of VFM
methods which will provide more trust for the operators to utilize VFM
technology in a reliable and effective manner.
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ANN: Artificial Neural Network
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DDWT: Deliberately Disturbed Well Test
DVR: Data Validation and Reconciliation
EKF: Extended Kalman Filter

EnKF: Ensemble Kalman Filter

EoS: Equation of State

ESP: Electric Submersible Pump

FL: Fuzzy Logic

FW PU: FieldWare Production Universe
GOR: Gas-Oil Ratio

GA: Generic Algorithm

ICA: Imperialist Competitive Algorithm
IPR: Inflow Performance Relationship
L-M: Levenberg-Marquardt

LR: Linear Regression

LSTM: Long-Short Term Memory

MHE: Moving Horizon Estimation
MPFM: Multiphase Flow Meter

MSE: Mean Squared Error

NN: Neural Network

NNE: Neural Network Ensemble

OPEX: Operating Expenditure

PCA: Principle Component Analysis
PCR: Principle Component Regression
PR: Peng-Robinson

PSO: Particle Swarm Optimization
PVT: Pressure Volume Temperature
RBFN: Radial Basis Function Network
RDP: Rotameter Pressure Drop

RF: Random Forest

RK: Redlich-Kwong

RNN: Recurrent Neural Network

RT: Regression Tree

RTE: Regression Tree Ensemble
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SQP: Sequential Quadratic Programming
SRK: Soave-Redlich-Kwong

SVM: Support Vector Machine

UKF: unscented Kalman filter

VDP: Venturi Pressure Drop

VFM: Virtual Flow Meter/Virtual Flow Metering
WC: Water Cut

WMS: Well Monitoring System

Nomenclature

Ay: cross-sectional area upstream the choke, m?

Ay: cross-sectional area at the choke throat, m?

By: linear Forchheimer equation constant

Co: profile parameter

Cp: backpressure equation constant

Cp: choke discharge coefficient

Cr: quadratic Forchheimer equation constant

Cop: choke opening

D: pipe diameter, m

e: specific heat exchange with the environment, m?/s*
Ey: total energy, m?/s?

firie® friction factor

Fji: interphase friction, kg/(m%s?)

Fip: wall friction term, kg/(m%s?)

Fior: total wall friction, kg/(m*s?)

g: gravitational constant, m/s*

g;: system parameter

h: fluid specific enthalpy, m?/s?

hy: k-phase specific enthalpy, m?/s>

i: index of the training example/well number

k: effective phase thermal conductivity, kg:m/(s>K)
rii: mass flow rate, kg/s

n: power constant

N: ensemble/training dataset size

Ok: additional momentum exchange terms, kg/| (m?%s?)
Oyor: total source term, kg/(m?s?)

p: system pressure, Pa

Pp: bubble point pressure, Pa
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Pgp: bottomhole pressure, Pa

Ppy: flowline pressure, Pa

Ppg: reservoir pressure, Pa

Pwpcy: wellhead upstream choke pressure, Pa
Pwrcp: wellhead downstream choke pressure, Pa
PI: productivity index, Pass/ m®

Gestimareq: €Stimated volumetric flowrate, m®/s
g;: volumetric flowrate of i-well, m®/s

g, gas volumetric flowrate, m>/s

g, oil volumetric flowrate, m®/s

do,max* Maximum oil volumetric flowrate, m®/s

Qexr: additional net external heat transfer sources, kg/(s*K)
Qi: interfacial heat transfer rate of k-phase with other fields, kg/(s>K)

Quw: phase transfer rate at pipe wall, kg/(s>K)

si: unmeasured variable

Smax : Minimum unmeasured value constraint

Smin © Minimum unmeasured value constraint

t: time, s

T: system temperature, K

Tg: bottomhole temperature, K

Ti: k-phase temperature, K

Tiwncy: wellhead upstream choke temperature, K
Tivrep: wellhead downstream choke temperature, K
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uq: drift velocity, m/s

ug: gas velocity, m/s

uk: k-phase velocity, m/s

up: mixture velocity, m/s

U: total heat source term, kg/ (ms?)

Uror: total source term including wall heat transfer, mass transfer and sources, kg?/(s* m*)
w: specific work done on the system, m?/s
Wy measurement noise

X: pipe axial coordinate, m

Ymeas i© Measured value

Ypredicted i Predicted value

Ymin ¢ Minimum measured value constraint
Ymax: Maximum measured value constraint
ay: k-phase volume fraction

¥%: weight coefficient

Ap: pressure drop across the choke/electric submersible pump, Pa
6: pipe/wellbore inclination angle

p: fluid density, kg/m*

pi: k-phase density, kg/m*®

P mixture density, kg/m>

0;: measurement uncertainty

¥: mass transfer source, kg/(m%s)

&: pump speed, rpm
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