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a b s t r a c t 

Machine learning models are often considered as black-box solutions which is one of the main reasons 

why they are still not widely used in operation of process engineering systems. One approach to over- 

come this problem is to combine machine learning with first principles models of a process engineering 

system. In this work, we investigate different methods of combining machine learning with first princi- 

ples and test them on a case study of multiphase flowrate estimation in a petroleum production system. 

However, the methods can be applied to any process engineering system. The results show that by adding 

physics-based models to machine learning, it is possible not only to improve the performance of the 

purely black-box machine learning models, but also to make them more transparent and interpretable. 

We also propose a step-by-step procedure for selecting a method for combining physics and machine 

learning depending on the process engineering system conditions. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Over the past several years, machine learning risen popularity

ue to advances in the development of deep neural networks and

omputational power of hardware which allows training of such

etworks with millions of parameters. Major advances of machine

earning applications and research are mainly related to computer

ision and natural language processing, and, in some cases, the

erformance of the developed algorithms reaches or even exceeds

he human performance ( Liu et al., 2019 ). The success of deep

earning also attracted attention of the process industry towards

arious machine learning models ( Qin and Chiang, 2019; Shang

nd You, 2019 ) where historically models are constructed based on

he first principles of physics resulting in mass, momentum and

nergy balances written for a system under consideration. These

odels are usually ”transparent” meaning that the change of the

odel input leads to the expected change of model output because

he relations between the input and output are written explicitly.
� The authors gratefully acknowledge the financial support from the center for 

esearch-based innovation SUBPRO, which is financed by the Research Council of 

orway, major industry partners, and NTNU. Particularly, the authors acknowledge 
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owever, the construction cost of these models may be high, espe-

ially if the process system is large and has a complex non-linear

ehavior. Also, deep understanding of the system is required to

reate an accurate model with a correct physical behavior. In ad-

ition, these models are often required to be tuned to the process

nder consideration to make accurate predictions of the estimated

ariable ( Matzopoulos, 2011 ). 

In contrast to first principles models, machine learning mod-

ls in process engineering systems estimate variables directly from

ata by exploiting the ability of finding complex patterns with-

ut providing an explicit form of it. This makes machine learn-

ng models easier to construct in comparison to first principles

odels. However, in addition to data requirements, a major draw-

ack of these models is their black-box nature, and making ma-

hine learning algorithms transparent is currently an active field

f research ( Roscher et al., 2019 ). In the recent review of oppor-

unities of machine learning for process data analytics, Qin and

hiang (2019) emphasized that in order to make machine learn-

ng algorithms widely applicable for process systems, we need

o incorporate first principles knowledge into machine learn-

ng algorithms, consider uncertainties and produce interpretable

olutions. 

In this paper, we address the issue of explainability of ma-

hine learning models through combining them with first princi-

les models. In addition, we show how combining machine learn-

ng models with first principles can improve their accuracy. To

emonstrate the performance of the proposed methods, we use a
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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multiphase flow estimation problem in oil and gas production sys-

tems. This case is well-suited for this purpose because multiphase

flow is a complex phenomenon which is usually modeled as using

first principles but can also be approached using machine learning

models for some applications. In the literature, most attempts for

combining first principles and machine learning models for pro-

cess engineering systems in general, and oil and gas applications in

particular, lead to estimation of first principles models parameters

using machine learning algorithms. The history of such methods

is relatively long. For instance, Psichogios and Ungar (1992) used

a neural network to estimate unmeasured cell growth rate in a

bioreactor process back in 90 ′ s. For the oil and gas applications,

a similar approach has been applied many times to estimate prop-

erties of an oil reservoir and multiphase flows in pipes such as per-

meability, porosity, rock type, reservoir fluid properties and liquid

hold-up ( Ahmadi and Chen, 2018; Anifowose et al., 2017; Klyuch-

nikov et al., 2019; Onwuchekwa et al., 2018; Kanin et al., 2019 ). 

In this work, we do not use machine learning for estimation

of first principles model parameters. Instead, we propose several

other approaches to combine machine learning algorithms and

first principles models. These approaches are much less investi-

gated in the literature and there is a need to address this impor-

tant issue. One example of such an approach, where, in addition

to parameter estimation using a machine learning model, an ap-

proach of parallel combination of first principles models and ma-

chine learning model for a industrial hydrocracking unit was dis-

cussed by Bhutani et al. (2006) . In this work, however, we en-

hance this approach proposing its several formulations and test-

ing them at different system behavior and provide guidelines on

which selecting the proper formulation depending on the system

conditions. 

As such, the main contributions of this paper are the following:

1. We propose new and enhance some of the previously re-

ported methods of combining first principles and machine

learning models and discuss advantages and disadvantages of

each method ( Section 2 ). In addition, we propose heuristic step-

by-step guidelines on selecting a method for combining physics

and machine learning for specific system conditions and de-

sired accuracy ( Section 6 ). 

2. We investigate how physics-aware machine learning algorithms

improve accuracy and explainability over pure data-driven es-

timation approaches via qualitative modeling of physical phe-

nomena and model-agnostic feature analysis. In our case study,

the analysis also shows how physics-aware machine learning

models become able to reveal complex pattern behavior of

the system, for instance, transient multiphase flow behavior

in wells, gas condensation and release of gas from a hydro-

carbon mixture ( Section 5 ). However, we do not create a for-

mal mathematical framework to get fully explainable machine

learning models. Instead, via case study we make one step to-

wards more transparent machine learning models by combining

formal interpretability approach, machine learning and physics

via a complex case study. 

3. We show how consistent tuning using Bayesian optimization

techniques contributes to consistent comparison of structurally

different combinations of first principles and machine learning

models ( Sections 2.3.1 and 5 ). 

In general, the problem of creating fully explainable machine

learning is difficult, because it requires a rigorous definition of ex-

plainability, which is an ill-defined problem, because what is obvi-

ous to one person may be difficult to understand to another. There-

fore, we adopt an engineering approach here in this paper, where

we present different approaches for combining machine learning

and simplified first principles models, and then analyze the re-

sults in terms of accuracy and feature influence. This feature im-
ortance is then analyzed and interpreted with physical systems

nderstanding. In our case, the feature importance analysis give us

ew insights into the system, that are not obvious when setting up

he model, as discussed in Section 5.1.2 . 

We believe that the results in this paper are a contribution

owards the overall goal of better machine learning models. The

verview of modelling approaches and the heuristic guidelines can

e useful for practitioners. At the same time, it can be valuable for

he research community to further test and develop methods and

nalyze the approaches. 

The case study used in this work considers oil and gas produc-

ion from a well which is a part of a petroleum production system.

 typical petroleum production system consists of several main

arts: a reservoir, production wells, flowlines, a processing facility,

njection wells and transportation pipelines ( Fig. 1 ). In the major-

ty of cases, oil and gas is extracted from a reservoir in a form of

 mixture and not as a single phase fluid. Often, in addition to oil

nd gas, formation water is present as another mixture phase. This

ixture goes through production wells and flowlines to a process-

ng facility where the phases are separated and processed. Then,

ater can be re-injected into the reservoir to enhance oil recovery

r disposed to the environment if sufficiently cleaned. A part of the

as may also be re-injected and the remaining gas is transported

ogether with oil for either further processing or usage as raw sub-

tances ( Falcone et al., 2001 ). In case of an offshore platform, oil is

ypically transported by tankers. 

Having good estimates of the produced volume of each phase

oil, gas and water) for each well allows to efficiently perform

roduction optimization and reservoir management ( Falcone et al.,

001 ). For instance, the reservoir model can be updated, so that

ater and gas re-injection strategies can be adjusted to increase

verall oil production. In addition, insights about flow assurance

ssues can be obtained such as hydrate formation, erosion and (se-

ere) slugging ( Falcone et al., 2001; Patel et al., 2014 ). 

A simple method to obtain the multiphase flowrates is to use

est separators at the processing facility, shown in Fig. 1 , by per-

orming well testing. Here, single phase flowrates are estimated us-

ng a separator and flow meters at the separator outlets. By chang-

ng openings of a production choke of the well of interest and

ecording the changes of the total phase flowrate at the separa-

or outlet, it becomes possible to estimate the rates of the well

 Idso et al., 2014 ). This method typically produces quite accurate

stimates of the flow. However, it has high operational expenses

ue to the production loss during the tests and requires high ex-

ertise from operating engineers. As such, such tests cannot be

erformed very often and usually the rates between the test are

ssumed to be constant which is generally not the case in prac-

ice. In addition, manipulating the production choke can often af-

ect operation of surrounding wells which can lead to the drift of

he operating points of these wells ( Idso et al., 2014 ). 

An alternative estimation method is the use of multiphase flow

eters (MPFM) - hardware installations capable of estimating the

ow in real time without separating the phases ( Falcone et al.,

009 ). However, despite the ability to estimate the flow in real

ime, these devices are expensive and exposed to failure which

ntroduces costly interventions, especially in offshore and subsea

elds. In addition, MPFMs need to be re-calibrated by well testing

rom time to time due to changes of fluid properties ( Falcone et al.,

001; Patel et al., 2014 ). 

Another alternative is to create a mathematical model of the

roduction system and estimate the flowrates by combining this

odel and readily available field measurements such as pres-

ure, temperature and choke opening. This approach is called Vir-

ual Flow Metering (VFM) and shown as a flow metering alter-

ative in Fig. 1 . A Virtual Flow Meter can work as a standalone

etering solution or as a back-up system for a multiphase flow
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Fig. 1. Schematic representation of a typical production system with a multiphase flow meter (MPFM) and a Virtual Flow Meter (VFM) together with available measurements 

and typical production and processing stages. In the measurements, P denotes the pressure, T- the temperature, BH - bottomhole, WHCU - wellhead choke upstream, WHCD 

- wellhead choke downstream, C op - the choke opening. 

Table 1 

Recent research work on machine learning applications for Virtual Flow Metering. 

Applied algorithm Short Summary Reference 

MLP neural network Estimated liquid and gas rates using a neural networkensemble trained with scaled conjugate gradient and 

Bayesianregulation. Explored usage of meta-learners for the output layer. 

AL-Qutami et al. (2018) 

Estimated gas rate with Gaussian radial basis function neuralnetwork to speed-up learning keeping good 

accuracy. 

AL-Qutami et al. (2017) 

Estimated gas and liquid rates using multi-rate welltest data. Compared neural network with random forest. Zangl et al. (2014) 

LSTM Estimated dynamic oil, gas and water rates for productionand severe slugging cases based on synthetic 

data. UsedLSTM to forecast the rates into the future. 

Andrianov (2018) 

Compared LSTM with MLP neural network at steady state anddynamic conditions and showed advantages 

of using LSTM. 

Shoeibi Om- 

rani et al. (2018) 

Used LSTM as a model in the Kalman filter to correct biasprediction of a vanilla LSTM. Loh et al. (2018) 

Used LSTM for multiphase flowrate estimation of transientunconventional wells data. Sun et al. (2018) 

Gradient boosting Used gradient boosting to create a VFM as a back-up system fora MPFM. Showed how to combine the 

algorithm with welltest to replace MPFM. Performed sensitivity studies withrespect to the dataset size and 

validation methods. 

Bikmukhametov and 

Jäschke (2019b) 

m  

V  

e  

p  

p  

m  

m  

r  

t  

t  

p  

t  

g  

r  

c

 

u  

t  

p  

c  

n  

n  

s  

a  

V

 

p  

t  

p  

i  

m  

i  

o  

r  

o  

t  

p  

t

 

d  

l  

S  

o  

m  

s  

c  

w  

p  

fi  

d

eter ( Lunde et al., 2013 ). There are two main alternatives for

FM modeling: first principles models and machine learning mod-

ls ( Bikmukhametov and Jäschke, 2019a ). In case of first princi-

les models, the mathematical model is constructed using laws of

hysics which describe the production system such as mass, mo-

entum and energy conservation equations of the multiphase flow

ixture though pipes and production choke valves. This approach

equires deep domain knowledge, and the accurate models are of-

en difficult to construct and solve numerically. In addition, due

o the embedded optimization problem for parameter tuning, first

rinciples VFM systems can perform very slowly for large produc-

ion systems. However, such models are transparent and provide

ood overview of the processes in the production systems and the

esults can further be used to describe system behavior at different

onditions. 

In case of a machine learning model, as discussed above, deep

nderstanding of the system behavior is not required and of-

en the flow is estimated directly from data with no or little

re-processing. Different algorithms have been applied for ma-

hine learning Virtual Flow Metering including feed-forward neural

etwork, gradient boosting and Long-Short-Term-Memory (LSTM)

eural network. The most recent and relevant publications are

ummarized in Table 1 . A comprehensive summary of the avail-

ble literature and aspects of first principles and machine learning

FM systems is provided by Bikmukhametov and Jäschke (2019a) . 
Despite a reasonable accuracy of machine learning in VFM re-

orted by the authors listed in Table 1 , machine learning VFM sys-

ems, as other data-driven process engineering systems, typically

rovide a black-box solution which is hard to interpret. In fact,

n all the mentioned works in Table 1 , the authors introduce raw

easurements directly into machine learning algorithms without

mplementing knowledge of multiphase flow physics. This is one

f the main reasons why machine learning VFM systems are still

arely used in practice ( Bikmukhametov and Jäschke, 2019a ). To

vercome this problem, we will investigate how different combina-

ions of machine learning algorithms with first principles may im-

rove accuracy and explainability of data-driven Virtual Flow Me-

ering models. 

This paper is organized as follows. In Section 2 , we start with

escriptions of the proposed methods, continue with machine

earning algorithms description and the procedure for its tuning. In

ection 3 , we describe the system which is modeled by the meth-

ds investigated in this work as well as show how exactly these

ethods are adopted to Virtual Flow Metering. In Section 4 , we de-

cribe case studies selected for investigation. In Section 5 , we dis-

uss the obtained results using the proposed methods. In Section 6 ,

e summarize the most important points from Section 5 and pro-

ose a step-by-step procedure for selecting a method to combine

rst principles and machine learning depending on different con-

itions. Finally, in Section 7 , we make conclusions from our work. 
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Fig. 2. Overview of the proposed combinations of first principles and machine learning models and main steps of their development for any process engineering system. 
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2. Methods 

In this section, we describe the proposed methods for combin-

ing machine learning with first principles models and the machine

learning algorithms which are used to implement the methods. We

also discuss which parameters of the algorithms are tuned as well

as the tuning procedure which is implemented using Bayesian Op-

timization approach. 

2.1. Proposed methods for combining first principles and machine 

learning 

2.1.1. Introduction to the proposed methods 

Up to now, in machine learning Virtual Flow Metering solutions

reported in the literature, the measurements of pressures and tem-

peratures available in the system have been used directly as input

features without advanced transformations ( Zangl et al., 2014; AL-

Qutami et al., 2017; 2018 ). Apart from that, in some cases, com-

plex structures have been used in order to create a model, for

instance, simulated annealing combined with different types of

learners within one algorithm ( AL-Qutami et al., 2018 ). This makes

the results from the obtained model even more unexplainable than

a plain neural network. 

To contribute to the improved explainability and accuracy of

machine learning models for process engineering systems in gen-

eral and petroleum production systems in particular, we propose

and test several different methods. The short summary of the

methods is shown in Fig. 2 . 

First, we propose to partition a big system under consideration

into small physically meaningful parts. In this context, it means

that the part may represent a part of the system, process or equip-

ment whose parameters influence the target variable. Please note,

that this action makes sense when it is viable physically and the

number and existence of sensors allow doing this. Then, physically

meaningful features should be developed which may include com-

binations of the original raw measurements alone or with external

data which can be generated based on the process knowledge. In
ddition, simple first principles models may be constructed which

re able to estimate the target variable at least qualitatively. In

his work we do not assume that the first principles models can

e build easily for the system under consideration. In many cases

t is difficult or impossible to do due to the complexity. However,

e do assume that the first principles models can be simplified to

he level of abstraction which is enough for the machine learning

odel to understand the qualitative behavior of the system, when

ombined with the simplified first principles model. Then, the ob-

ained features and models are used in several proposed methods.

n Section 2.1.2 , we describe each method in more detail, but in

eneral, all of proposed methods give an opportunity to evaluate

ach model separately, which makes it easier to interpret the sim-

lation result and the model behavior. In addition to the explain-

bility advantages, it helps to create more accurate solutions than

sing raw data directly. This is because the main task for a ma-

hine learning model is to reveal how to combine the given fea-

ures using the model parameters, for instance, weights of a neural

etwork, to accurately estimate the target. However, if we directly

ntroduce the way how original raw measurements should be com-

ined based on known physics of a process, we reduce the feature

pace and possibly create features which contain more informa-

ion about the target variable. Below, we provide the description

f each method. 

.1.2. Detailed description of the proposed methods 

Method 1 - Feature engineering. Feature engineering is a well-

nown method for constricting machine learning models, so, in

his work, we propose the guidelines on how this method may

e applied to get accurate and explainable results in physical pro-

ess systems. The proposed approach includes creating physically

eaningful features instead of using raw measurements directly.

y physically meaningful features we mean combinations of the

riginal raw measurements alone or with external data which can

e generated based on the process knowledge. Preferably, the de-

igned features should be well-interpretable, self-explanatory and

elated to a particular system part. At the same time, the fea-
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Fig. 3. Training and test procedures for Method 1 - feature engineering. 

Fig. 4. Training and test procedures for Method 2 - first principles model solutions and feature engineering. 
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ures should not necessarily be complex, but must contain some

nformation about the target variable. The form and parameters in-

luded in the features will be case dependent and rely on expert

omain knowledge. The general schematic representation of the

raining and test phases for feature engineering method is shown

n Fig. 3 . 

Physically meaningful features may be further divided into sim-

le features and complex first principles features. Simple features

re the ones which are linear or non-linear combinations of the

aw measurements. The complex first principles features may be,

or instance, features represented as a solution of the equation

hich aims to model the target variable using the raw measure-

ents and external data extracted using the process knowledge.

n Section 3.3 , we provide examples of features of the oil and gas

roduction system. 

Method 2 - First principles model solutions and feature en-

ineering. In this method, we use solutions from the developed

rst principles models for each part of the process system. The

btained solutions are then subtracted from the true value of the

arget variable, such that we obtain the mismatch between the de-

eloped model and the actual value of the target. Then, this error

s used as a target variable for a machine learning model. In this

ethod, we again use created features as the input to the machine

earning model to train the model to cover the mismatch. 

The hypothesis here is that the obtained solution from the first

rinciples model does not explain the system behavior, so that the

reated features are still well-correlated with the target variable

mismatch). As a result, by using them as the input machine learn-

ng features, we aim to learn the residual pattern of the system

ehavior. Fig. 4 summarizes the details of Method 2. 

Method 3 - First principles model solution and raw measure-

ents. This method is similar to Method 2. The major difference

s that we use raw measurements from the system as the input

o the machine learning models with the aim to explain the mis-

atch between the first principles model solution and the true tar-

et value. 

The hypothesis in this method is that the obtained mismatch

etween the first principles model solution and the target does not

ontain the information which can be described by simple or com-

lex first engineered features. For instance, it can be the case when

ome hidden patterns/disturbances exist in the system and is not

overed by the proposed physical relationships implemented. If so,
his method might work better than Method 2, in which we use

he first principles features as the input to the algorithm aiming to

over the mismatch. Fig. 5 shows the details of Method 3. 

Method 4 - Linear meta-model of models with created fea-

ures. In this method, we combine solutions from models created

n Method 1 using a linear meta-model. The idea here is to give

 weight to the prediction from each model of a particular system

art, for instance, choke and tubing, and then sum the weighted

redictions to get the final outcome. The weights for each sub-

odel are tuned using linear regression techniques, such that the

eighted sum of the sub-models accurately describe the system. 

The hypothesis here is that at certain conditions a particular

odel can produce better results than another model. If so, the

utput from this model multiplied by the associated weight will

ave a closer value to the target than another model. By combining

he solutions from several models, we can take the advantage each

odel and obtain the solution which is more accurate then the

olution from a single model. The schematic representation of the

raining and test phases for Method 4 is shown in Fig. 6 . 

Method 5 - Linear meta-model of the selected model with

reated features and model with raw data. In this method, we

ombine the solution of any of the models obtained using Method

, i.e. the model with the created features, with the model which

ses the raw data as features. 

The hypothesis here is that even by obtaining the best model

sing the created features, there is still some unrevealed data

tructure which cannot be described by the model while the raw

ata model can do it, at least partially. As such, the combined so-

ution will be more accurate than both the best feature engineered

odel and the model with raw input data. Fig. 7 shows the details

f Method 5. 

In some cases, one may argue that one specific model will be

ore accurate and another model will make the overall prediction

orse. However, we do not give these weights just by assigning

hem, they are learned from the data which means, on average,

he predictions from such a model will most likely be better on

he new test set. This idea is similar to a normal linear regression

ase. For a particular point in space one value of weight can be

etter because then the line will go exactly thorough one partic-

lar point. However, this mostly likely not be beneficial for other

oints. As such, the proposed method is simply linear regression,

ut instead of features, we are giving model values, which on av-
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Fig. 5. Training and test procedures for Method 3 - first principles model solutions and raw measurements. 

Fig. 6. Training and test procedures for Method 4 - linear meta-model of models with created features. 

Fig. 7. Training and test procedures for Method 5 - linear meta-model of the selected model with created features and model with raw data. 
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erage will produce more accurate predictions on the test set. In an

ideal case, one would want to have adaptive weights which know

that for this particular point it needs to use this particular model

is better and we just need to choose that model. However, this is

another direction of research and will not be covered in our paper.

2.2. Applied machine learning algorithms 

In this section, we provide a brief overview of the machine

learning algorithms used in this paper, namely Gradient boosting,

Multilayer Perceptron and Long-Short Term Memory Neural Net-

works. More specifically, we describe the selected hyperparameters

and its tuning and the role in the model training and predictive ca-

pabilities. 

2.2.1. Gradient boosting and tuned parameters 

The first algorithm used for machine learning VFM in this work

is gradient boosting with regression trees implemented in XGBoost

package ( Chen and Guestrin, 2016 ). Gradient boosting is based on
equential construction of shallow regression trees which form an

nsemble and perform the final value estimate as a sum of the

rees’ predictions ( Friedman, 2001 ). In XGBoost implementation,

he algorithm minimizes the following objective function in an it-

rative manner adding a regression tree at each iteration: 

 = 

N ∑ 

i =1 

(y i − [ ̂  y i 
(t−1) + f t (x i )]) 2 + �( f t ) (1)

ith 

( f t ) = γ Z + 

1 

2 

λGB ‖ w ‖ 

2 
2 (2)

here y i denotes the true value of the i − th example, i − the index

f a training example, t− the number of the currently constructed

egression tree, N− the number of examples in the training set,

ˆ  i 
(t−1) − the sum of the t − 1 trees, f t − the prediction of the cur-

ent tree on the i − th example, �( f t ) − the regularization term,

− the penalty term for the model complexity expressed as the

umber of leaves Z , λ − the penalty term of the weight values w .
GB 
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Table 2 

Hyperparameter space and other parameters used for machine learning algorithms training. 

Algorithm Hyperparameter Range (oil rate) Range (gas rate) Other parameters/concepts Approach 

Gradient maximum tree depth [3:12] [3:9] Splitting algorithm Greedy linear search 

boosting regularization λ [0.001:0.1] [0.0001:0.1] Maximum number of trees 200 

regularization γ [0.001:0.1] [0.0001:0.1] Framework XGBoost 

minimum child weight [1:3] [1:4] 

MLP learning rate [0.0001:0.001] [0.0001:0.001] Activation function ReLU 

neural 

network 

regularization [0.00005:0.005] [0.00005:0.05] Optimization algorithm Adam 

number of layers [1:5] [1:5] Maximum number of epochs 1000 

number of nodes [5:25] [10:30] Framework Tensorflow 

LSTM learning rate [0.0001:0.01] [0.0001:0.01] Activation function tanh 

window size [1:15] [1:15] Optimization algorithm Adam 

dropout rate [0.05:0.2] [0.05:0.2] Maximum number of epochs 3 

number of LSTM units [10:40] [10:40] Framework Keras 

number of LSTM layers [1:3] [1:3] 

 

t  

T  

i  

p  

I  

v  

t  

i  

w  

G  

g  

s  

m

2

a  

m  

u  

i  

t  

a  

w

J  

w  

o  

t

 

(  

f  

n  

i  

t  

(  

i  

t  

o  

d  

a

J  

w  

n

 

E  

p  

b  

t  

o

g  

s  

K  

p  

a  

t  

m  

T  

r

2

 

n  

a  

r  

r  

o  

s  

t  

t  

p  

p  

h

 

m

t  

p  

t  

s  

t  

a  

e

 

i  

c  

r  

n

 

o  

t  

m  
The algorithm minimizes the difference between the sum of all

he previous predictions and the true value by adding a new tree.

o manipulate the training of gradient boosting, we tune the max-

mum depth of regression trees which is responsible for the com-

lexity of the function which algorithm is able to approximate.

n addition, we tune regularizing coefficients γ and λGB to pre-

ent overfitting as well as the ”minimum child weight” parame-

er which identifies the minimum number of instances required

n each node to become a split. The larger the ”minimum child

eight”, the more conservative the algorithm becomes ( Chen and

uestrin, 2016 ). By adjusting these parameters, we try to find a

ood trade-off between the bias and variance of the model and

trengthen generalizing capabilities on unseen data. Table 2 sum-

arizes the hyperparameters and its ranges used for tuning. 

.2.2. MLP Neural network and tuned parameters 

Feed-forward (Multilayer Perceptron (MLP)) neural networks 

re one of the most popular types of artificial neural networks in

achine learning ( Goodfellow et al., 2016 ). They are constructed

sing neurons which are interconnected with weights and stacked

n layers. The weights are used in order to fit the algorithm to

he data which is typically done via backpropagation algorithm

nd gradient-based optimization method ( Rumelhart et al., 1988 )

hich usually minimizes the following objective function: 

 = 

1 

N 

N ∑ 

i =1 

( ̂  y i − y i ) 
2 (3)

here i denotes the index of a training example, N− the number

f training examples in the training set, ˆ y i − the estimated value of

he i − th example, y i − the true value of the i − th example. 

A feed-forward neural network is a universal approximator

 Hornik et al., 1989 ) which means that it can approximate any

unction given sufficient structural complexity. To approximate

onlinear functions, neural networks use an activation function

n each neuron. Among other alternatives, ReLU activation func-

ion is a popular choice for feed-forward neural network regression

 Agarap, 2018 ) because it does not suffer from exploding and van-

shing gradients, so we also use it in this work. Despite the advan-

age of strong approximating abilities, a neural network can easily

verfit the training data which will create high variance on unseen

ata. As such, often the objective function in Eq. 3 is adjusted with

 regularization term: 

 = 

1 

N 

N ∑ 

i =1 

( ̂  y i − y i ) 
2 + λNN ‖ w ‖ 

2 
2 (4)

here λNN denotes the regularization coefficient, ‖ w ‖ 2 2 − the l 2 -

orm of neural network weights. 
In this work, we use the objective function as shown in

q. (4) and consider the regularization coefficient λNN as a hy-

erparameter to be tuned. As in the case with gradient boosting,

y tuning the regularization coefficient, we aim at finding a good

rade-off between the bias and variance of the model and avoid

verfitting to the data noise. 

To minimize the cost function J in Eq. (4) , we use the ”Adam”

radient based optimization algorithm ( Kingma and Ba, 2014 ). De-

pite the fact that the learning rate is proposed to be adaptive in

ingma and Ba (2014) , in this work, we use it as a tuning hyper-

arameter to find a good initial guess of the learning rate for the

lgorithms. In addition, we also try to find the best architecture of

he network, so we also tune the number of layers and neurons si-

ultaneously with the learning rate and regularization coefficient.

able 2 summarizes hyperparameters of neural networks and its

anges used for tuning. 

.2.3. LSTM Neural network and tuned parameters 

Long-Short-Term-Memory is a special type of recurrent artificial

eural networks which is designed for sequential type of data such

s speech and text ( Hochreiter and Schmidhuber, 1997 ). In terms of

egression for Virtual Flow Metering, the sequence of data is a se-

ies of measurements in time. So, by using an LSTM for modeling

f the time dependent target, we use past measurements of pres-

ure and temperature in order to predict the flow at the current

ime step. As such, one of the goals in using LSTM in this study is

o evaluate how the sliding window approach which considers the

ast data can help in improving the current time step estimates. In

revious works on using LSTM for VFM, this important parameter

as not been investigated ( Loh et al., 2018; Sun et al., 2018 ). 

There are different possible configurations of LSTM such as

any(inputs)-to-many(outputs), many-to-one or one-to-many. In 

his work, we use many-to-one configuration, such that several in-

ut units (measurements back in time) are used in order to es-

imate the oil and gas flowrates respectively, at the current time

tep. As such, one of the hyperparameters of the network is the

ime window that is the number of time steps in the past which

re used for the current estimate. The number of time steps is then

qual to the number of cells in a LSTM layer. 

An LSTM neural network may consist of several layers, which

s also the case for this work, and the layers have many-to-many

onnections. We tune the number of LSTM layers because it di-

ectly influences the possible complexity of the function which the

etwork is able to approximate. 

Greff et al. (2016) showed that, in addition to the number

f layers and cells in the LSTM layer, it is also important to

une the learning rate in LSTM networks to achieve good perfor-

ance, so we include it as a tuning hyperparameter. To regular-
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ize LSTM and prevent overfitting, in the extensive LSTM tuning

by Greff et al. (2016) it was proposed to use input noise instead

of using ridge regularization as we do in the feed-forward (MLP)

neural network case ( Eq. 4 ). However, to experiment with more

tuning parameters and regularization techniques, we use dropout

( Cheng et al., 2017 ) on the weights which connect the last LSTM

layer and one dense layer which computes the final estimates of

the flowrate. The range of the LSTM hyperparameters and other

parameters are shown in Table 2 . 

2.3. Hyperparameter tuning and comparison procedure of case 

studies 

To be successfully applied to any data, machine learning algo-

rithms have to be well tuned. By this, we mean that a good algo-

rithm architecture has to be selected as well as the values of these

hyperparameters have to be tuned accurately. This is typically one

of the most difficult and critical parts of machine learning model-

ing. We need to find a good ”bias-variance trade-off” ( Hastie et al.,

2005 ) meaning that the model that has small bias and variance on

the training set must have comparable bias and variance on the

test set, so it has good generalizing capabilities. 

In general, it can be difficult to compare different algorithms

in a fair manner, because it is possible to give one algorithm (or

method) an advantage by making a more accurate tuning than

for another one if desired. In our case, in addition to have 3 al-

gorithms to compare, we also have 12 cases for each algorithm

( Section 4 ). To produce accurate and trustworthy results, we de-

veloped a pipeline for training and evaluation the methods which

is designed not to give an advantage to any case or algorithm. This

pipeline uses Bayesian optimization for algorithms tuning as a core

and searches the hyperparameters over the same space for all the

cases for the same machine learning algorithm. In the next sec-

tions, we present the main concept behind Bayesian optimization

and the developed tuning pipeline. 

2.3.1. Bayesian optimization 

Bayesian optimization is a suitable concept for optimiz-

ing a function which is computationally expensive to evaluate

( Frazier, 2018 ). Typically, this function does not have an analyt-

ical expression and can be a black-box which gives output val-

ues for a given input. The idea behind Bayesian optimization is

to create a surrogate model of the objective function with corre-

sponding uncertainties using Gaussian Processes regression. Gaus-

sian Processes is a Bayesian machine learning method that is why

this optimization approach is called Bayesian. Using this approach,

the algorithm decides where to evaluate the function next, given

the observed objective function values and corresponding uncer-

tainties ( Frazier, 2018 ). This problem is known as the ”exploration-

exploitation” trade-off ( Berger-Tal et al., 2014 ). 

To describe Bayesian optimization in more detail, let us define

the function to be optimized as f ( x ). Here, x ∈ IR 

d is the function

input where d is the dimension of the input space. In case of hy-

perparameter optimization for a machine learning algorithm, f ( x )

can be an error function on a validation set and d is the num-

ber of hyperparameters, for instance, d = 2 if we tune the learning

rate and regularization coefficient. Let us further assume that we

have already evaluated the objective function at x 1: n , where n is

the number of evaluated points. Our goal is to find such x ∗, so that

it gives the maximum (in case of hyperparameter optimization -

minimum) of the function at x given x 1: n , i.e.: 

x ∗ = arg max 
x 

(− f (x | x 1: n )) (5)

By solving Eq. (5) , we find the set of hyperparameters which

minimizes the error on the validation set. However, the only way
o evaluate f ( x ) is to give input x to the black-box function and ob-

ain output, so that we cannot simply evaluate gradients for find-

ng descent direction of the function. 

To solve this problem, we use the concept of Gaussian Processes

egression. First, we specify a normal prior distribution (typically

ith zero mean) over the entire parameter space IR 

N × d , such

hat: 

f (x 1: N ) ∼ N (0 , K(x 1: N , x 1: N )) (6)

here K ( x 1: N , x 1: N ) denotes the covariance between the points

 1: N and N− the number of parameter values. 

Then, given the observed values f ( x 1: n ), we compute the mean

nd variance of the posterior distribution of the function f ( x ) us-

ng the following expression for Gaussian Processes regression

 Rasmussen and Williams, 2017 ): 

n (x ) = K (x, x 1: n ) K (x 1: n , x 1: n ) 
−1 f (x 1: n ) (7)

n (x ) 2 = K(x, x ) − K(x, x 1: n ) K(x 1: n , x 1: n ) 
−1 K(x 1: n , x ) (8)

If at this point we were required to provide the best set of

yperparameters, we would say that this is x ∗ which gives f ∗n =
ax ( f (x 1: n )) . However, if we are allowed to take one more sam-

le anywhere in the hyperparameter space, we can check if we

an find a better set. After the new sample, the highest value of

he function can be f ( x ) in case f (x ) ≥ f ∗n or it is going to be still

f ∗n . As such, the possible improvement of the function is f (x ) − f ∗n .
herefore, we want to make a new evaluation at x which produces

he largest improvement. However, the challenge is that we do not

now the value f ( x ) until we take a sample of it. In this case, the

olution is the fact that we can take the expected value of this im-

rovement ( Frazier, 2018 ): 

I n (x ) = E n [ f (x ) − f ∗n ] (9)

here EI n ( x ) denotes the expectation of the posterior distribution

iven the values of f ( x 1: n ). 

Finally, we take a new sample where EI n ( x ): 

 n +1 = arg max 
x 

EI n (x ) (10)

The sampling stops when the specified number of sampling

teps is reached. This optimizing strategy (acquisition function) is

alled Expected Improvement and this is what we use in this work

o find an optimal set of hyperparameters for the machine learning

lgorithms. Further details about how to compute the closed form

f the acquisition function in Eq. (9) are provided by Frazier (2018) .

.3.2. Tuning pipeline 

To tune the algorithms, first, we need to split the data into

raining, validation and test parts. Since we have time depen-

ency in the data, we perform k-fold cross-validation with mixed

olds. Since we perform an extensive hyperparameter optimization

earch for many cases, we cannot use nested k-fold cross-validation

ecause it is computationally too costly. As such, we split the data

nto 60% for training, 25% for validation and 15% for test sets and

se only one set to validate the algorithms. 

Another challenge is to choose how to perform fine tuning of

pochs and trees together with other hyperparameters. The proce-

ure we propose is to fix a certain number of epochs/trees which

orresponds to a relatively deep training. Then, for this fixed num-

er, we select hyperparameters using Bayesian optimization based

n the validation set error. Then, using the obtained set of hyper-

arameters for each algorithm, we perform fine tuning of the num-

er of epochs/trees using early stopping by monitoring the error on

he validation set. The same hyperparameter space is used for all

he cases within one algorithm. 

Having the algorithm ready, we re-train it on the combined

raining and validation sets by taking advantage of all the data
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Fig. 8. Proposed pipeline for algorithms tuning and case comparison. 
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Fig. 9. Schematic representation of the investigated system with available measure- 

ments. 
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Gas flowrate ( Q gas ). 
vailable for training and finally evaluate it on the test set. A

ummary of the proposed tuning pipeline is shown in Fig. 8 .

able 2 shows hyperparameters and their range used in the tun-

ng pipeline. 

Note that the procedure above is designed such that we: 

• Do not give any preference to any particular case and any par-

ticular algorithm; 
• Select a good set of hyperparameters via extensive Bayesian op-

timization search; 
• Avoid overfitting via early stopping and regularization; 
• Allow another possibility for overfitting control by changing the

hyperparameter space boundaries. 

.4. Feature analysis methods 

Machine learning algorithms are often treated as black-box so-

utions which are hard to interpret. In this work, we investigate if

eatures which are based on physics principles can contribute to a

etter understanding of machine learning models behavior. 

There are several methods which can be used to interpret ma-

hine learning models. A good review of these methods is provided

y Molnar et al. (2018) . For non-linear models, the methods can be

ivided into model-specific and model-agnostic methods. For in-

tance, tree-based algorithms such as gradient boosting and ran-

om forest have embedded model-specific methods which evalu-

te feature importance based on the selected criteria ( Chen and

uestrin, 2016; Genuer et al., 2010 ). However, sometimes, differ-

nt criteria produce different feature importance for the same al-

orithm, which can make results confusing. 

As we compare different algorithms in this work and also aim

o avoid misleading conclusions within each algorithm, we use

odel-agnostic approach for evaluation of feature importance. This

eans that such methods are applicable to any machine learning

odel and use the same principles independently of the algorithm

nder evaluation. This will allow us to compare different algorithm

sing the same principles, so the conclusions can be well general-

zed. We use the feature importance and partial dependence plots

mplemented in Skater Python library ( Kramer et al., 2018 ). In this

ackage, feature importance evaluation is based on the theoretic

nformation criterion which estimates the entropy of the prediction

hange supplied by a perturbation of a feature. The partial depen-

ence plots are adopted from Hastie et al. (2005) , and describe the

lobal influence of a particular feature given that other features

re kept constant. As such, both methods are global interpretation

ethods, so that they analyze the influence of features over the

ntire dataset, rather than explaining the local behavior as, for in-

tance, LIME method does ( Ribeiro et al., 2016 ). We use global in-

erpretation because, in this work, we are interested in the overall

elationships between the features and the targets. However, lo-

al interpretations may also be useful for Virtual Flow Metering,

or instance, when the flow pattern is changed and we are inter-

sted in the analysis of the conditions at which it happens. We

eep these local investigations for future work. 

We applied the methods discussed above to gradient boosting

nd feed-forward neural networks, but have not applied to the

STM networks due to its dependency on a particular feature in

ime. Such analysis has not been implemented yet neither in the
ackage nor by us, so we also keep this analysis for future work

oo. 

. Description of the system and data 

.1. System and data 

.1.1. Overview 

To test the proposed approaches, we use field data from one of

he subsea fields on the Norwegian Continental Shelf. The system

nd the available measurements are shown in Fig. 9 . For the input

o the algorithms, the following data is available: 

• Pressure and temperature at the bottomhole of the well ( P BH ,

T BH ); 
• Pressure and temperature upstream of the choke ( P WHCU ,

T WHCU ); 
• Pressure and temperature downstream of the choke ( P WHCD ,

T WHCD ); 
• Choke opening ( C op ); 
• Well tubing length ( L tubing ); 
• Well tubing diameter ( D tubing ); 
• Fluid composition. 

In this system, a multiphase flowmeter (MPFM) is installed at

he wellhead which measures oil and gas flowrates, Q oil and Q gas 

espectively. The measurements of pressures, temperatures, choke

pening and flowrates are available at every minute. The length

nd diameter of the tubing are fixed by the system design and do

ot change during operation. The data available for training is the

istoric production for 210 days and shown in Fig. 10 . As we see in

ig. 10 , the system has a very unstable behavior during the entire

roduction time. The flowrates of oil and gas fluctuate a lot which

akes difficult it for a machine learning algorithm to estimate it

ccurately. 

We will construct machine learning algorithms based on the

owrate measurements from the meter, so that the machine learn-

ng model will work as a back-up system. If the multiphase

owmeter fails or starts producing unrealistic results, the VFM so-

ution will infer the current flowrates. As such, the target variables

or training are ( Fig. 10 ): 

• Oil flowrate ( Q oil ); 
•
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Fig. 10. Normalized oil and gas flowrates from the subsea well under consideration. 
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In oil and gas production operation, the fluid composition is not

always available. In the dataset used in this work, the fluid com-

position is given, however, this information is assumed to be very

unreliable, because it comes from measurements that were taken a

long time ago, and the composition may have changed over time.

As such, the fluid properties estimated using this composition can

be misleading and give a noticeable estimation error. Therefore, we

would like to avoid using estimates of fluid properties such as den-

sity or viscosity as much as we can in the first principles models,

while maintaining the qualitative physical behavior of the created

models. 

In practice, there may be a possibility to re-estimate the fluid

properties given a new Gas-Oil-Ratio (GOR) by performing a new

well test, however, this information is not available in our setting.

However, it is useful and interesting to investigate predictive capa-

bilities of physics-aware machine learning algorithms under these

realistic conditions. 

3.2. Applied first principles models 

In this section, we introduce the first principles models which

are used in combinations with machine learning algorithms using

the proposed methods discussed in Section 2.1 . To create a com-

bined Virtual Flow Metering systems with machine learning and

physics of the multiphase flow in petroleum systems, we propose

to use two first principles models: Bernoulli model for choke and

No-Pressure-Wave drift flux model for tubing. 

3.2.1. Choke model 

The Bernoulli equation is often used to describe single phase

flow in hydraulic systems and it is the basis for the simplest model

used to describe fluid flow over a choke. The equation describes

the fluid momentum between two points: 

P 1 − P 2 = 

ρ

2 

(U 

2 
2 − U 

2 
1 ) (11)

where P 1 denotes the pressure at point 1, P 2 - the pressure at point

2, ρ - the fluid density, U 1 - the fluid velocity at point 1, U 2 - the

fluid velocity at point 2. 

Typically, a choke is modeled as a sudden contraction which is

called choke throat. In this case, Eq. (11) is applied between the

point before the throat (point 1) and at the throat (point 2). Con-

sidering the fact that the volumetric flowrate Q = A · U, we obtain:
 = C d A 2 

√ √ √ √ 

2(P 1 − P 2 ) 

ρ
(

1 −
(

A 2 
A 1 

)
2 

) (12)

here C d denotes the discharge coefficient, A 1 − the pipe cross sec-

ional area before the choke, A 2 −the area of the choke throat. 

The discharge coefficient C d is typically a function of the choke

pening C op , and used to tune the model to the data at hand. Be-

ause measuring pressure at the choke throat is difficult, pressure

easurement after (downstream) the choke is often considered as

 2 . As such, according to the introduced notation in Figs. 1 and 9 ,

 1 = P W HCU and P 2 = P W HCD . 

Eq. (12) is valid for single phase flow. To apply this to a mul-

iphase flow case, the single phase flowrate is usually multiplied

y a two-phase multiplier, for instance, the Chisholm multiplier

 Chisholm, 1983 ) which depends on the fluid properties at mea-

ured conditions. Because the fluid properties may change over

ime, and a two-phase multiplier as well as mixture density may

e inaccurate in this case, we will not introduce two-phase mul-

iplier into the choke model and will use the model outputs as

omputed below. 

In addition, the mixture density ρmix must be introduced in-

tead of single phase density ρ . The ratio A 2 / A 1 can be consid-

red as the choke opening ( C op ) because A 1 is the constant area

f the pipe and A 2 is changing depending on how open the choke

s. As the discharge coefficient C d is a function of the choke open-

ng which form we do not necessarily know, we simplify it by as-

uming a linear relationship. Considering this, we obtain a simple

xpression for the mixture volumetric flowrate across the choke

 

choke 
mix 

which is used in this work: 

 

choke 
mix = C op A 2 

√ 

2(P W HCU − P W HCD ) 

ρmix 

(
1 − C 2 op 

) (13)

Finally, by multiplying Q 

choke 
mix 

with volumetric fraction of a

uid phase (for instance, oil), we can obtain the phase volumetric

owrate. The remarks on how the volumetric fractions are found

re discussed in Section 3.2.3 . 

.2.2. Tubing model 

For the tubing model, we use a ”No-Pressure-Wave” form of the

rift flux multiphase flow model ( Masella et al., 1998 ) which is de-

cribed by the following equation: 

dP 

dl 
= 

ξmix ρmix U 

2 
mix 

2 D tubing 

+ ρmix g sin (β) (14)

here P denotes the fluid pressure, l− the pipe axial coordinate,

mix − the friction factor coefficient, U mix − the mixture velocity,

 pipe − the tubing diameter, ρmix − the mixture density, g− the
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ravitational acceleration constant, β− the inclination angle of the

ipe. 

This equation is a simplification of the transient drift flux model

 Masella et al., 1998 ). Here, it is assumed that the flow is at steady

tate and that the effect of acoustic waves is negligible for the con-

idered time scale. We can solve this equation given the pressures

t the bottomhole and the wellhead and the fluid properties for

he mixture. The same as for the choke model, the fluid properties

an be the bottleneck for accurate predictions of the flow due to it

s potential inaccuracy. Moreover, the friction coefficient is also de-

endent on them. As such, to avoid additional source of inaccuracy,

e keep the friction coefficient constant. 

Typically, Eq. (14) is solved numerically together with the mass

alances for each phase in each discretization mesh point along

he pipe axial coordinate. In this work, we test simplified first prin-

iples modeling approaches and want to use machine learning to

ake care of the model inaccuracies. As such, by averaging the fluid

roperties and the geometry over the pipe axial direction and inte-

rating Eq. (14) , the solution for the multiphase mixture in tubing

ecomes: 

 

tubing 
mix 

= 

√ 

(P BH − P W H − ρ̄mix gH) π2 D 

5 
tubing 

8 ξmix L tubing ̄ρmix 

(15) 

ith 

¯mix = 

ρmix @ W H + ρmix @ BH 

2 

(16) 

here P BH and P WH denote bottomhole and wellhead pressure re-

pectively, ρmix @ WH and ρmix @ BH − the mixture density at the well-

ead and bottomhole conditions respectively, H− the height (ele-

ation) of the tubing, L tubing − the tubing length, ξmix − the friction

actor coefficient, β− the inclination angle of the tubing. 

.2.3. Remarks on fluid properties computation for first principles 

odels 

We see that even the simplest process models require accurate

easurements and fluid properties data to compute the flowrate

ccurately. As discussed, in our case, the fluid properties can be

elatively inaccurate because the composition is provided at the

eginning of production when the system was installed, while the

roduction data is at the late stage. This is exactly the place where

achine learning can enter and solve the problem with less ef-

ort. As we still need some approximations of the fluid properties,

e use the given (uncertain) fluid composition and Soave-Redlich-

wong (SRK) Equation of State (EoS) ( Soave, 1972 ) implemented

n a commercial thermodynamic package. To obtain the phase vol-

metric fractions and densities, we use simple flashing. We iter-

te over the pressure and temperature condition range met in the

roblem, save the results in look-up tables and then interpolate the

roperties for any given pressures and temperatures at any time

tep. This approach is commonly used in first principles simulators

f multiphase flow. 

.3. Adaptation of methods for combining machine learning and first 

rinciples for VFM 

In this section, we discuss how the developed first principles

odels and features are used within the methods proposed in

ection 2.1 . The overall summary of the used features for the in-

ut in each method and case study can be found in Table 3 in

ection 4 . 

Please note, that all the developed models in this work use

 single output, such that we estimate only one target variable

ach time. As such, we constructed separate models for oil and gas

ates. From our experience, making separate models for oil and gas

i.e. for different outputs) produces better results and allows much
ore flexible tuning. On the other hand, neural networks also al-

ow multiple output regression without any single problem. As for

radient boosting, in this case, two separate algorithms are always

eeded. 

.3.1. Adaptation of method 1 - feature engineering 

As discussed, we partition the system into the tubing and choke

arts and create the following features: 

• Pressure drop over the choke ( 
P choke = P W HCU − P W HCD ); 
• Pressure drop over the tubing ( 
P tubing = P BH − P W HCU ); 
• Temperature drop over the choke ( 
T choke = T W HCU − T W HCD ); 
• Temperature drop over the tubing ( 
T tubing = T BH − T W HCU ). 

Despite being simple, these features have direct relationships

ith the target variables - the oil and gas flowrates. This is because

n any process system, pressure difference is the main driving force

or the flow to go from one point to another. As such, pressure

rop over the well tubing and choke can be a good indicator of the

ow magnitude. At the same time, the flow magnitude and distur-

ances is what define the temperature drop over the tubing and

hoke. In terms of explainability, these features make more sense

han raw pressure and temperature measurements which can be

ard to interpret with respect to the change of the target variable

flowrate). 

As we propose in Fig. 2 , we can also use outputs from the cre-

ted first principles models as input features to machine learning

odels. As such, we use the following additional features: 

• Choke mixture volumetric flow ( Q 

choke 
mix 

) ( Eq. (13) ); 

• Tubing mixture volumetric flow ( Q 

tubing 
mix 

) ( Eq. (15) ). 

The reason why we use mixture volumetric flow and not the

eparate oil and gas volumetric flows is the fact that we know

hat the fluid properties are inaccurate in our case, so we want

o avoid using them as much as possible. At the same time, the

ixture flow can be sufficient to give the machine learning al-

orithms additional insights about the qualitative behavior of the

ultiphase flow and improve prediction accuracy. Fig. 11 summa-

izes the adaptation of training and testing procedures shown in

ig. 3 for Virtual Flow Metering. 

.3.2. Adaptation of method 2 - first principles model solutions and 

eature engineering 

In this method, we use solutions of Eqs. (12) and Eq. (15) trans-

ormed to the phase volumetric flowrates via multiplying it by

he phase volumetric fractions pre-computed in a thermodynamic

ackage. The obtained solutions are then subtracted from the true

hase rate, such that we obtain the mismatch between the de-

eloped model and the actual flow measurements from the field.

hen, this error is used as a target variable for a machine learn-

ng model. The procedure of training and testing the algorithms

or Method 2 shown in Fig. 4 is adapted for Virtual Flow Metering

n Fig. 12 . 

.3.3. Adaptation of method 3 - first principles model solution and 

aw measurements 

As discussed before, Method 3 is similar to Method 2, while the

ain difference is that raw measurements are used as the input to

he machine learning models with the aim to cover the mismatch

etween the first principles model solution and the target. When

dapting this method to the Virtual Flow Metering example, pres-

ure and temperature measurements along the systems are used

s the input features to the machine learning models. Fig. 13 illus-

rates the adaptation of the method to Virtual Flow Metering. 
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Table 3 

Summary of the considered case studies. 

Case study ML algorithm input 

First principles Training 

model solution target 

Case 1 P BH , T BH , P WHCU , not used Q true 
phase 

T WHCU , P WHCD , T WHCD 

Case 2.1 
P choke , 
T choke , Q 
choke 
mix 

not used Q true 
phase 

Case 2.2 
P choke , 
T choke Choke model mismatch = Q true 
phase 

− Q choke 
phase 

Q choke 
mix 

Q choke 
phase 

= Q choke 
mix 

αphase @ WH 

Case 2.3 P BH , T BH , P WHCU , Choke model mismatch = Q true 
phase 

− Q choke 
phase 

T WHCU , P WHCD , T WHCD Q choke 
phase 

= Q choke 
mix 

αphase @ WH 

Case 3.1 
P tubing , 
T tubing , Q 
tubing 
mix 

not used Q true 
phase 

Case 3.2 
P tubing , 
T tubing Tubing model mismatch = Q true 
phase 

− Q tubing 

phase 

Q tubing 
mix 

Q tubing 

phase 
= Q tubing 

mix 
αphase @ WH 

Case 3.3 P BH , T BH , P WHCU , Tubing model mismatch = Q true 
phase 

− Q tubing 

phase 

T WHCU , P WHCD , T WHCD Q tubing 

phase 
= Q tubing 

mix 
αphase @ WH 

Case 4.1 
P choke , 
T choke , Q 
choke 
mix 

not used Q true 
phase 


P tubing , 
T tubing , Q 
tubing 
mix 

not used 

Case 4.2 
P choke , 
T choke , Q 
choke 
mix 

Choke and tubing model mismatch = 

Q true 
phase 

− Q̄ choke/tubing 

phase 

P tubing , 
T tubing , Q 

tubing 
mix 

Q̄ choke/tubing 

phase 
= 

(Q choke 
ophase 

+ Q tubing 

phase 
) / 2 

Case 4.3 P BH , T BH , P WHCU , Choke and tubing model mismatch = 

Q true 
phase 

− Q̄ choke/tubing 

phase 
T WHCU , P WHCD , T WHCD Q̄ choke/tubing 

phase 
= 

(Q choke 
phase 

+ Q tubing 

phase 
) / 2 

Case 5 Q choke 
phase 

, Q tubing 

phase 
not used Q true 

phase 

Case 6 Q choke 
phase 

or Q tubing 

phase 
or not used Q true 

phase 

Q choke/tubing 

phase 
and Q Case 1 

phase 

Fig. 11. Method 1 (feature engineering) adapted for Virtual Flow Metering. 

Fig. 12. Method 2 (first principles model (choke and tubing) solutions and feature engineering) adapted for Virtual Flow Metering. 
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3.3.4. Adaptation of method 4 - linear meta-model of models with 

created features 

In this method, we combine solutions from models created in

Method 1 for the choke and tubing system parts and then sum the

weighted predictions to get the final outcome. Fig. 14 shows the

adaptation of the method to Virtual Flow Metering. 

3.3.5. Adaptation of method 5 - Linear meta-model of the selected 

model with created features and model with raw data 

In this model, any of the models (choke or tubing or choke

and tubing) with created features can be used together with
he model which uses raw measurements as the input. In this

ork, we use the model with both choke and tubing features.

ig. 15 shows how the method is applied for Virtual Flow Metering

ystems. 

. Case studies 

This section provides an overview of the considered case stud-

es. The summary of the selected case studies, input features, used

rst principles models and training targets is shown in Table 3 . 
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Fig. 13. Method 3 (first principles model (choke and tubing) solution and raw measurements) adapted for Virtual Flow Metering. 

Fig. 14. Training and test procedures Method 4 - linear meta-model of models with created features. 

Fig. 15. Training and test procedures Method 5 - Linear meta-model of the selected model with created features and model with raw data. 
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Case 1 is the base case which is used for comparison with all

he other cases. In this case study, raw measurements are used as

he input to the machine learning algorithms without any trans-

ormation. This is the approach which has been used in the data-

riven Virtual Flow Meters in the literature so far and often used

n estimation of parameters in process engineering systems using

achine learning. This base case will be compared with the pro-

osed approaches of combining machine learning with first princi-

les models. 

Case 2 considers methods 1, 2 and 3 applied to the production

hoke. More specifically, Case 2.1 considers using Method 1 (fea-

ure engineering) applied for the choke, so that the inputs to the

achine learning algorithms are 
P choke , 
T choke and Q 

choke 
mix 

. This

ase will show if the measurements related to the choke only can

escribe the flow accurately. 

In Case 2.2 , Method 2 (first principles model solution + feature

ngineering) is used such that the solution of the choke model

or Q oil / gas is obtained and the mismatch between the solution and
he true value is covered using an algorithm with choke features

P choke , 
T choke and Q 

choke 
mix 

as inputs. 

In Case 2.3 , Method 3 (first principles model solutions + raw

easurements) is used and raw measurements are used for the

lgorithm which is trained to cover the mismatch. Table 3 summa-

izes the used combinations for the cases. 

Case 3 is similar to Case 2, but it considers methods 1, 2 and

 applied to the production tubing. As such, Cases 3.1, 3.2 and

.3 are conceptually identical to Cases 2.1, 2.2 and 2.3, but in-

tead of choke, tubing first principles model and features are used

 Table 3 ). 

Case 3 considers method 1, 2 and 3 applied to choke and tubing

ombined. More specifically, Case 4.1 considers all the features for

hoke and tubing combined as the inputs to the machine learning

odel, so it again follows Method 1. 

In Case 4.2 , to use Method 2 we used averaged solution from

he choke and tubing models for Q oil and then cover the mismatch

sing both tubing and choke features. 
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In Case 4.3 , we cover the mismatch by using the raw measure-

ments as features. Again, the discussed case studies are summa-

rized in Table 3 . 

Case 5 considers Method 4 - using a linear meta-model for the

algorithms which are based on the engineered features. We con-

sider this case only for the choke (Case 2.1) and tubing models

(Case 3.1) combination. This is because this is the simplest yet ef-

fective way to combine all the available models and measurements.

Case 6 considers Method 5 - using a linear meta model which

combines the selected model with engineered features (we se-

lected the model from Case 4.1) with the model from Case 1 which

uses the raw data as the input. 

Remarks on other possible case studies. It is possible to cre-

ate a meta-model over the other cases, and even a meta-model on

top of other two meta-models which combine, for instance, first

principles models solution and mismatches. However, it will intro-

duce additional unexplanability of the models as well as it leads

to a tricky implementation without necessarily providing a better

accuracy. 

5. Results and discussion 

In this section, we describe the estimation results for gradient

boosting, MLP neural networks and LSTM and feature analysis for

gradient boosting and MLP neural networks. First, we thoroughly

describe the estimation results from gradient boosting including

the estimation accuracy and transparency of the data-driven mod-

els which is developed through combining first principles and ma-

chine learning models. After that, we discuss the results of neural

networks and LSTM mostly focusing on the differences between

the results of these algorithms and gradient boosting to avoid rep-

etition of similar conclusions. We also discuss the differences be-

tween static algorithms (MLP neural network and gradient boost-

ing) and dynamic algorithm (LSTM). Please note, that we do not

provide a feature analysis of LSTM neural networks, because the

current version of the feature analysis tool (Skater) does not pro-

vide such capabilities due to its dependency on a particular feature

in time. Nevertheless, we decided to include the estimation results

of the LSTM, because they provide insights about the importance

of considering past time steps data in estimating the current time

target value. As such, it provides the basis for conclusions on the

conditions at which dynamic methods should be preferred over the

static ones. 

5.1. Analysis of gradient boosting results 

5.1.1. Overview of flowrate estimation results 

In this section, we analyze the results of oil and gas flowrate es-

timation using gradient boosting based models. While the original

time resolution of the data is 1 minute, for better visualization, the

estimation results are averaged over the period of 5 minutes. This

allows to see if the algorithm is able to capture the general multi-

phase flow trends rather than occasional flowrate spikes which are

not essential to capture. The results for oil and gas flow estimation

using gradient boosting based models are shown in Fig. 16 . 

When to use feature engineering (Method 1) and when to use first

principles-based models (Method 2 and 3)? 

The first observation in Fig. 16 is that in some cases, feature en-

gineering methods outperform other methods while in other they

do not. As feature engineering method is the simplest one in terms

of construction cost, it is useful to know under which conditions it

can be effectively applied which will allow to avoid constructing

more complex combinations of first principles and machine learn-

ing models. 

First, consider the oil rate estimation case ( Fig. 16 a) and com-

pare the feature engineering-based methods with other proposed
ethods. The accuracy of these models in comparison with the

ase case is discussed in the next sections. 

We see that the cases with engineered features (Case 2.1, 3.1

nd 4.1) generally outperform all the other models using the pro-

osed methods (Case 2.2 and 2.3, Case 3.2 and 3.3, Case 4.2 and

.3 respectively) except the meta-model approaches. However, in

he gas flow estimation ( Fig. 16 b), when the first principles mod-

ls are combined with the raw measurements (Case 2.3, 3.3 and

.3), such models generally perform equally good or better than

he feature engineering models. 

The major difference between the oil and gas flowrates is the

omplexity of the system behavior. From the test set representa-

ion in Fig. 16 as well as from the entire dataset in Fig. 10 , we see

hat the oil rate behavior is much more unstable and does not have

he same trend in the train and test sets, while the gas rate has

uch smaller fluctuations and the trend is observable. As such, we

ee that when the system behavior is relatively complex (in this

ase - oil rate behavior) and the constructed first principles mod-

ls are relatively simple as in this work, it is better to use feature

ngineering methods as a simple yet accurate solution. This is be-

ause for a complex system behavior, simple first principles mod-

ls may not be accurate enough to accurately represent it. At the

ame time, well-engineered features may be well-correlated with

he target variable (in this case - the oil flowrate), such that the

odel produces accurate results. 

When the system behavior has a moderate complexity, (in this

ase - gas rate behavior), so that even simple first principles mod-

ls are accurate enough, its combination with the raw data may be

 good choice as it can be seen in Fig. 16 (Case 2.3, 3.3 and 4.3). 

As for the Method 2, when the first principles models are used

ogether with the simple and complex first principles features, it

oes not improve the performance as we see from Fig. 16 (Case

.2, 3.2 and 4.2) for both oil and gas rates. The reason for this may

e the fact that the features are better correlated with the origi-

al target variable and not the mismatch, while the first principles

odels solution may also not be very accurate, which in total de-

eriorates the performance, as we see in Fig. 16 (Case 2.2, 3.2 and

.2), especially for the oil rate estimation. 

Influence of first principles models accuracy on estimation ac-

uracy and on capturing physical effects The next important dis-

ussion is related to the one in the section above with a particular

ocus on the influence of the accuracy of the first principles models

n the estimation accuracy. 

Comparing the choke-based (Case 2.1, 2.2 and 2.3) and tubing-

ased (3.1, 3.2 and 3.3) machine learning models, we see that the

roposed first principle choke model is not a solid basis to accu-

ately represent the oil rate behavior, such that it has a lower accu-

acy than the base case (Case 1) with just raw measurement input

ata. However, the choke-based machine learning models show a

oderate accuracy for the gas estimation case and Case 2.3 even

utperform the model in Case 1. 

At the same time, the first principles tubing model and related

eatures are relatively accurate to represent the flow well. Even

hough the model may not be able to account for high oil flowrate

uctuations, the general flow behavior is accurately represented

nd all the constructed tubing-based machine learning models out-

erform the model from Case 1. 

As such, we conclude that in order to be applied alone for oil

ate estimation within machine learning VFM, the proposed first

rinciples choke model must be improved for this specific case.

ne possibility to do that is to change the model type which re-

olves the flow more accurately and accounts for more complex

hysics such as gas slip, as suggested by Schuller et al. (2006) , who

ound that by introducing the slip relationship, a choke model typ-

cally produces more accurate estimates. Another possibility is to

erform some pre-tuning of the model using simple linear regres-
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Fig. 16. Oil and gas rates estimation by gradient boosting based models. The results are averaged over 5 minutes period, i.e. one point - 5 minute averaged rate. 
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ion techniques and then use the model as the basis for the com-

inations with machine learning algorithms as proposed in this

ork. 

Despite the fact that the first principles tubing model shows a

easonable accuracy, it can also be further improved. For instance,

he model can be solved numerically for a small number of mesh

oints along the tubing and only then combined with machine

earning, so that the model will provide a more accurate solution

han the one presented here. We keep these investigations for fu-

ure work. 

It is worth noting that despite the choke model alone is not ac-

urate enough, it can still be used to further improve the accuracy
f the tubing model results. We can see that Case 4.1 for both oil

nd gas rates produces one of the most accurate results, if not con-

idering the meta-models from Case 6. This is likely because the

hoke and tubing models in this case can be better at estimating

ifferent flow conditions. In fact, we see that for the oil rate pre-

ictions, the choke model based algorithms (Case 2) follow a more

ransient behavior of the system, such that we see predictions of

owrate fluctuations with some occasional spikes which try to cap-

ure even higher fluctuations, but often overestimating them. This

s different from the cases with the tubing model based machine

earning models (Case 3), where we see a more smooth flow. This

ehavior is physically meaningful because the choke model is a lo-
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cal (static) model which means that any flow disturbance across

the choke will suddenly be reflected in the change of pressures

and temperatures taken at the inlet and outlet of the system. On

the other hand, if a flow disturbance occurs at the bottomhole of

the well, this will be reflected at the bottomhole measurements

first and only after some time reach the wellhead measurements.

For the gas flow cases, the behavior of both models is relatively

similar due to low flow fluctuations. 

Improved model generalization One of the potential advantages

in including physics information into machine learning models can

potentially be improved model generalizability. This is the ability

of the model perform well on the unseen data. In physical and

process engineering systems, this can be exemplified if the ma-

chine learning model is able to describe system under conditions,

which have been barely seen in the training set. In our case, the

model generalization is seen to be improved significantly for sev-

eral cases. indeed, in Case 4.1, we see that by combining the first

principles models as features, we are able to capture the rising

oil rate trend at the end of the estimation period as well as the

decreasing gas rate trend, while when using the pure data-driven

models (Case 1), it is not possible. As such, by combining the mod-

els, we can achieve improved machine learning model generaliza-

tion and the overall improvement of the results. This strength-

ens the fact that the combined approach of physics-based machine

learning modelling may be able to significantly improve machine

learning model generalization, especially compared to a pure data-

driven approach. 

Meta-models performance 

The next important discussion concerns the meta-models per-

formance. While the meta-models have the highest construction

cost, they may not necessarily have the highest accuracy. For

instance, we see that the accuracy of Case 6 for both oil and

gas rates is the highest among the cases, while Case 5 meta-

models are not as accurate. The reason for this is the accuracy

of the sub-models used in the meta-models. Since the accuracy

of the model with choke-based features (Cases 2.1) is not high,

it deteriorates the results of the meta-model. As such, we con-

clude that it is better to combine the models using engineered

features within one algorithm (such as in Case 4.1), than in a

meta-model (Case 5), if the performance of separate models is

not accurate. However, if the models are accurate enough, the

joint meta-model can further improve the performance, such as in

Case 6. 

Also, we conclude that when using the raw data models within

a meta-model, we can improve the performance of the physics-

based machine learning models and, at the same time, keep the

overall model explainable because the weight of the raw data

model in the meta-model shows its contribution to the overall so-

lution. As such, we are able to see which part of the process is

resolved by the physics-aware algorithms and which part is still

unresolved and covered using the raw data algorithm. A detailed

analysis is shown in Section 5.1.2 . 

Advantages of comparing different physics-aware machine learning

models using the proposed approach 

The observed results in the sections above emphasize one of

the most important conclusions from this work: by analyzing and

comparing the simulation results using the proposed approaches

with physically meaningful features, separating the system into

sub-parts and creating first principles models for each system part,

it becomes possible to better understand the physical behavior of

the system, make conclusions about the drawbacks of the applied

models and propose solutions to create more accurate approaches.

This is not the case when raw measurements are used directly. In

that case, even if the solution is accurate, it is hard or impossible

to comprehend if the solution is physically meaningful or not and

propose future improvements. 
In Table 4 , we suggest possible cases which can be met by con-

ucting simultaneous model analysis using Method 1 (feature engi-

eering), Method 2 (first principles model solution + feature engi-

eering) and Method 3 (first principles model solution + raw data).

ere, we propose possible solutions to the problems which can

rise during such analysis, so that the table can be used as an ini-

ial reference when the proposed methods applied to any process

ngineering system. For instance, if we see that feature engineering

ethod produces low accuracy, while the combinations of the first

rinciples models with raw data has high accuracy and adding fea-

ures to such model reduces the accuracy (the first raw in the ta-

le), it is evident that in this case the features are poorly designed.

s such, to further improve the accuracy, the features should be

e-designed. 

Of course, other situations may occur during the analysis which

re not shown in Table 4 , for instance, the accuracy of two meth-

ds are identically high or low, but using the logic in the table, it

ill be easy to comprehend the solution for any case. 

.1.2. Feature analysis 

Apart from the potential of improving the accuracy of the mod-

ls, first principles-based algorithms allow to check if the model

ollows the expected physical behavior. Also, it can help to re-

eal some additional patterns in the data. To explore these op-

ortunities, we perform a feature analysis of the constructed mod-

ls. Fig. 17 shows the feature importance while Fig. 18 shows the

artial dependence plots for oil and gas rate (or oil and gas rate

ismatch) prediction models based on the gradient boosting algo-

ithm. As the values are standardized in model training and test-

ng, they are removed from the partial dependencies plots because

hey do not add any value, while removing them allows a better vi-

ualization. The plots are used to identify the qualitative behavior

f the models. It is also worth noting that the partial dependence

lots are not produced for Case 5 and Case 6, because in these

ases the meta-models are considered, so that the partial depen-

ence plots will be identical to the plots of the meta-model sub-

odels and the importance of sub-models is shown in Fig. 17 . 

Poor features identification 

The first interesting observation is that in the oil rate estima-

ion case, the choke flow constructed feature has high importance

hen used in the separate choke model cases (Case 2.1 and 2.2),

hile when used with all the other features in Case 4.1, the feature

as low importance. At the same time, the tubing mixture volume

ow feature has high importance in both Case 3.1 and 4.1. From

his observation, we conclude that the choke mixture flow feature

s not representative enough to describe the flow behavior. This

onclusion is supported by the rate estimation results shown in

ig. 16 a where we see that the accuracy of Case 2.1 and 2.2 is low.

e observe that by relying on the choke mixture flow feature, the

lgorithm makes poor flow estimates. At the same time, the tubing

ixture flow feature is better designed and this is again confirmed

y the results from Fig. 16 a where the tubing based models are rel-

tively accurate. When all the features are combined (Case 4.1 and

.2), the gradient boosting algorithm is capable to distinguish good

eatures (tubing model related), make the full use of relatively poor

eatures (choke model related) and improve the estimates. 

Transparency of meta-models 

As for the importance of the meta-models features,

ig. 17 shows the absolute values of the meta-model weights.

e see that the meta-models rely on the more accurate models

tubing and tubing/choke) which is what we would like to have.

e see that in the gas estimation case, the meta-model gives

igher weights to the raw data model than in the oil case. This

oincides with what we saw in the rate estimation section, where

dding the raw data model to the first principles model improved

as rate estimation accuracy (Case 2.3, 3.3 and 4.3) while in the
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Table 4 

Analysis of methods for combining first principles with machine learning and proposed problem solutions. 

Accuracy 

Feature engineering First principlesmodel 

solution + mismatch 

withfeature engineering 

First principlesmodel 

solution + mismatch 

withraw data 

Conclusion Solution 

low average high Accurate first principles model,but 

features are poorly designed(too simple) 

to describe the system. 

Re-design featuressuch that they 

describethe target more accurately 

low high average Accurate first principles model,features 

are somewhat correlated withmismatch 

but generally poorly designed 

Re-design existing features makingthem 

more complex andaccurate than the 

created ones 

average low high Inaccurate first principles modeland 

features, raw data betterdescribe the 

system behavior 

Entirely revise the modeland engineered 

features 

average high low Inaccurate first principles modelbut well 

designed features 

Revise the model to furtherimprove 

accuracy of the solution 

high low average Inaccurate first principles modeland 

features are not correlated withthe 

mismatch 

Revise the model, make itmore complex 

such that it betterdescribes the system 

behavior 

high average low Inaccurate first principles modelbut 

well-designed features 

Revise the model, make it morecomplex 

such that it betterdescribes the system 

behavior 

o  

n  

a  

e  

(  

b  

A  

m  

b  

l

 

g  

p  

t  

b  

m  

e  

t  

m  

t  

b  

s  

o  

b  

i  

b  

m  

b  

v  

t  

a

 

a  

t  

d

 

f  

t  

fl  

w  

m  

o  

a  

d  

B  

t  

b  

b  

a  

C  

f

 

v  

t  

t  

i  

m  

c  

w  

t  

t

 

t  

a  

o  

t  

r  

t  

m  

f  

a  

t  

m  

p  

w  

i  

i  

t  

s  

t  

c

 

a  

i  

r  
il rate estimation, this does not improve the performance as sig-

ificantly. As such, we can say that the constructed models which

re based on the physics-based features (Case 4.1) are better in

xplaining the given dataset than the raw measurement models

Case 1), especially for estimation of the oil rate, because of its

etter performance and higher weight values in the meta-models.

t the same time, there is still a potential in improving the created

odel accuracy which should increase importance of the physics-

ased machine learning model even further when combined in a

inear meta-model with the raw measurement model. 

From the estimation and feature importance observations re-

arding the meta-models, we conclude that, in addition to the im-

roved estimation accuracy by using the linear meta-model struc-

ures, we can also evaluate the potential of improving the physics-

ased machine learning models itself. For instance, in Case 5-type

eta-models, these improvements consider separate models for

ach system part, i.e. we can check if, for instance, by introducing

he slip relation into the choke model, the importance of the choke

odel in the meta-model increases or decreases and compare with

he obtained estimation results. More importantly, the same can

e said for the physics-based machine learning model of the entire

ystem used in Case 6. That is, by creating different (more complex

r less complex) physics-aware models and comparing their contri-

ution in the meta-model with the raw data models, we can check

f the new proposed model reduces the influence of the raw data

ased model. The higher the influence of the model, the better the

odel is, because in such a case, the new constructed model will

etter explain the data and reveal the patterns which were pre-

iously unrevealed by a simpler model. Again, it is expected that

he model with the higher importance will have higher estimation

ccuracy. 

Insights about physical behavior of the system 

In addition to the better explainability of the machine learning

lgorithms, we can get extract insights about the fluid behavior in

he system using the constructed feature importance and partial

ependencies plots. 

Temperature drop effect . Consider the partial dependence plots

or Case 3.1 for both oil and gas predictions. We see that for the

ubing case, the larger the temperature drop is, the higher oil

owrate is. This is the opposite to the gas case, where we see that

ith the rise of the temperature drop, the gas rate decreases. Such

odel behavior well corresponds to the thermodynamic behavior

f a hydrocarbon mixture. That is, with the decrease of temper-
ture of the mixture, more hydrocarbon mass starts being con-

ensed from the gas phase and accumulated in the liquid phase.

y considering that the reservoir temperature is relatively constant,

he decrease of the temperature of the fluid will be mainly caused

y the heat transfer along the well tubing. As such, more hydrocar-

on will be observed in the liquid phase if the temperature drop

long the tubing rises. Such behavior is more difficult to see for

ase 4.1 because the algorithms rely less on the temperature drop

eature, so that such partial dependence is less identifiable. 

Explanation of complex multiphase flow behavior . Another obser-

ation for the tubing model is that with the increase of the mix-

ure flow feature value, we see the increase of the gas rate and

he decrease of the oil rate. As such, the model tells us that the

ncrease of the mixture volumetric flowrate from the well will

ainly correspond to the increase of the gas production and de-

rease of the oil production. This is exactly the behavior of most

ells at the late production stage, when we see the increase of

he gas and/or water production and decrease of the oil produc-

ion. The model captures this relation from the training set. 

At the same time, for the choke model in Case 2.1, we see

hat the increase of the constructed feature of the mixture flow

nd pressure drop corresponds to the increase of rates with some

ccasional non-linear fluctuations caused by the flow irregulari-

ies and non-smooth solutions produced by gradient boosting algo-

ithm. For the oil rate, however, this dependence is more difficult

o see because of the low importance for the algorithm when esti-

ating the flow, as we observed in Fig. 17 a. Such behavior gives us

urther insights about the system. In our case, the choke opening is

lmost always constant, so the increase of the pressure drop over

he choke will correspond to the increase of the flowrate. As the

ixture flowrate feature is also proportionally dependent on the

ressure drop, it is positively correlated with the rates. The reason

hy the choke model behaves differently from the tubing model

n terms of the increase/decrease of the phase rate when increas-

ng the choke mixture rate is that the flowrate measurements are

aking at the end of the tubing and before the choke ( Fig. 9 ), as

uch the degassing/liquid accumulation effects are considered in

he tubing model through the fluid density change, while in the

hoke model such effect is not considered. 

Another observation is that the pressure related features such

s pressure drop across the choke and tubing is generally more

mportant for the gas estimation than for the oil estimation. This

esults is physically meaningful because the gas behavior is much
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Fig. 17. Feature importance analysis for gradient boosting based estimation algorithms. 
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more affected by the pressure changes due to its high compress-

ibility. 

As such, through the provided analysis we see that it is possible

to answer two questions: ”Can we trust the model?” and ”Can we

get the new insights about the system?”. More specifically, when

we observe that the model is able to describe even a simple sys-

tem behavior in a correct way, the trust in the model increases.
n addition, after getting deeper insights about the model behavior

horough the analysis, we can dig into a more complex physics, for

nstance, which we did not think of before the analysis, e.g., the

ocal degassing effects of the multiphase flow in case of our work. 

Advantages of using the proposed feature analysis 

Generally, we can say that, in addition to the evaluation of the

lgorithms transparency, the evaluation of the feature importance
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Fig. 18. Partial dependence plots for gradient boosting based models. The plots show the qualitative relationship between the features and the target variable. Occasional 

spikes are associated with flow irregularities and non-smooth solutions provided by the gradient boosting algorithm. 
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nd partial dependencies shows possible directions for improving

he estimation capabilities of each particular model. This means

hat by taking the discussed evaluation into account, we can dis-

inguish which features and models behave non-physically, so that

e can identify the bottlenecks and try to improve the models and

eatures such that they better correspond to the expected physical

ehavior of the system. As a result, improvements of the estima-

ion accuracy can be expected. 

All the discussed observations would be hard or impossible to

ecover from the plots related to Case 1 only. An importance of

 particular measurement can tell us much less than a physically

nterpretable feature as well as a comparative study of combi-

ations of the first principles with machine learning algorithms.

owever, analysis of raw measurements can still be useful to con-

uct even for the model which uses raw measurements in order

o see which measurements can be totally irrelevant and not in-

luded into the first principles features and models. For instance,

n this case, this is the choke opening measurement in Case 1. This

an be especially useful for modeling and analyzing of large scale

ystems. 
.2. Analysis of neural network results 

.2.1. Flowrate estimation results 

Results overview and similarities between MLP neural network and

radient boosting results Fig. 19 shows the estimation results of the

il and gas flowrates using MLP neural networks. Generally, we

ee that the behavior of the models corresponds to the results ob-

ained using the gradient boosting based models, such that most of

he trends observed in the gradient boosting case, can also be ob-

erved here. For instance, we see that the combinations of choke

nd tubing features are able to improve the performance and to re-

onstruct the rising oil rate trend and decreasing gas rate trend at

he end of the estimation period (Case 4.1). Apart from that, adding

he raw data to the choke and tubing models in the gas estima-

ion case boosts the performance (Case 2.3, 3.3 and 4.3). The same

s with gradient boosting, the meta-model from Case 6 achieves

he highest performance for both oil and gas rates. We will not go

nto detail about the neural networks behavior in cases where it is

imilar to the gradient boosting behavior, because these trends are

ell discussed in sections related to the gradient boosting results.
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Fig. 19. Oil and gas rates estimation by MLP neural network based models. The results are averaged over 5 minutes period, i.e. one point - 5 minute averaged rate. 

 

 

 

 

 

 

 

 

 

 

m  

d  

d  

m  

t  

t  

t

 

M  

t  

i  

n  
Instead, we will focus on the differences between gradient boost-

ing and neural networks. To compare the results between two al-

gorithms closer, Tables 5 and 6 show the comparative summary of

the estimation results. 

Differences between MLP neural network and gradient boosting re-

sults 

The first difference between the results is that the neural net-

works are not able to use the tubing model and related features

(Case 3.1, 3.2 and 3.3) as efficiently as gradient boosting provid-

ing less accurate results closer to the base case (Case 1) accuracy,

while still more accurate. The reason for this may be the fact that,

as will be shown in Section 5.2.2 , the neural networks rely very
uch on the ”Tubing mixture volume flow” feature and almost

o not consider ”Tubing pressure drop” and ”Tubing temperature

rop” features. However, the ”Tubing mixture volume flow” alone

ay be too simple to accurately describe the flow. At the same

ime, gradient boosting based models do consider pressure and

emperature drop features ( Fig. 17 a) which is likely why it helps

he algorithm to better estimate the flowrates. 

We also see that for the gas estimation cases, in each case the

LP neural networks outperform gradient boosting, which is not

he same for the oil estimation. The exact reason for such behav-

or is unclear, but one explanation for such behavior may be that

eural networks in general and MLP neural networks in particu-
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Fig. 20. Feature importance analysis for MLP neural network. 
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ar may be better at regression of more smooth values and sys-

em behavior (in this case - gas flow) because neural networks are

ypically better than gradient boosting in interpolation tasks. This

s because gradient boosting with regression trees produces piece-

ise constant predictions while neural networks produce smooth

nterpolation approximations. This hypothesis will also be checked

nd discussed later for LSTM neural networks. 
.2.2. Feature analysis 

Feature analysis overview and similarities between MLP neural

etwork and gradient boosting results 

Fig. 20 shows the feature analysis of the MLP neural networks

ased models. We see that for most of the cases with physics-

ased features, the feature importances are similar between the

eural networks and gradient boosting. Some minor differences
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Fig. 21. Partial dependence plots for MLP neural network based models. The plots show the qualitative relationship between the features and the target variable. The plots 

do not have non-convex spikes as in the gradient boosting case due to smooth solutions provided by neural networks. 
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exist, but they are caused by differences in the algorithms na-

ture. What is more important is that the partial dependencies plots

shown in Fig. 21 produce similar trends in most of the cases be-

tween neural networks and gradient boosting, except the fact that

the plots produced by neural networks are more smooth. As such,

we see that the algorithms interpret the physical behavior of the

system in a similar way. This emphasizes that the consistent ap-

proach for machine learning modeling with first principles pro-

posed in this work allows to produce consistent results and re-

veal the main structure of the data. It also emphasizes the fact

that using a model-agnostic approach for feature evaluation can

be more suitable and insightful than model-specific ones and gives

the opportunity to better evaluate the validity of the produced

estimates. 

Differences between MLP neural network and gradient boosting

feature analysis results 

The major difference between MLP neural networks and gra-

dient boosting partial dependencies plots is that the neural net-

works estimate the decrease of the oil flow when the choke mix-

ture flow increases when used in Case 2.1 and 2.2. This is dif-

ferent from what gradient boosting suggests and what we would
 t  
xpect based on the physical understanding of the system. At the

ame time, when all the features are used together (Case 4.1 and

.2), the neural networks give a more similar behavior to the gra-

ient boosting which we found to be physically meaningful. The

eason why the neural network gives this unreasonable evaluation

f the choke mixture flow feature when used in the choke model

lone is hard to explain and kept for future investigations. Despite

ome small differences, we can still see the big advantage of us-

ng physics-based features in terms of improved and consistent ex-

lainability of different models and algorithms, when compared to

he raw data models. 

.3. Analysis of LSTM results 

.3.1. Flowrate estimation results 

As discussed, for the LSTM neural network, only the estima-

ion results are analyzed while the feature importance analysis is

ot conducted because the LSTM dependence on time step features

hich is not implemented in the Skater library used for the analy-

is. Despite the absence of feature importance analysis, we decided

o include these results because it allows to analyze the depen-



T. Bikmukhametov and J. Jäschke / Computers and Chemical Engineering 138 (2020) 106834 23 

Fig. 22. Oil and gas rates estimation by LSTM neural network. The results are averaged over 5 minutes period, i.e. one point - 5 minute averaged rate. 
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ence of the results accuracy at the current time step on the data

rom the past time steps and compare it with the static approach

sed in MLP neural networks and gradient boosting. 

Results overview and similarities between LSTM and gradient

oosting/MLP neural network results 

Fig. 22 shows the simulation results for the oil and gas flowrate

stimation using LSTM neural networks. From the results we see

ome of the trends observed for gradient boosting and MLP neu-

al networks can also be observed here. For instance, for the oil

owrate estimation, the pure choke-based machine learning mod-

ls (Case 2.1, 2.2 and 2.3) do not perform well while try to capture
ynamic behavior of the system which is represented by flowrate

pike estimates. Also, similar to MLP neural networks and gradient

oosting, the tubing-based machine learning models (Case 3.1, 3.2

nd 3.3) capture a more steady state behavior of the system pro-

ucing smooth oil flow estimation results. We also see that, similar

o MLP neural networks, LSTM neural networks produce better re-

ults for gas rate estimation case, while in oil rate estimation cases

radient boosting is generally more accurate. This fact confirms the

ypothesis, made for MLP neural networks previously, that the rea-

on for such behavior is that neural network are generally better

t predicting smooth regression trends due to their high interpola-



24 T. Bikmukhametov and J. Jäschke / Computers and Chemical Engineering 138 (2020) 106834 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

s  

a  

p  

i  

c  

a  

t  

a  

s

 

o  

R  

R  

fl  

n  

c  

t  

p  

u  

n  

r  

s  

o  

t  

m  

i  

v

 

g

 

t  

t  

o  

a  

s  

b  

g  

e  

t  

c  

g  

n  

c  

g

 

b  

m

 

c  

a  

m  

F  

b  

a  

e  

a  

A  

i

 

f  

t  

b  
tion capabilities. However, trends with high fluctuations may be, in

some cases, better described by piecewise constant approximations

by gradient boosting. 

Differences between LSTM and gradient boosting/MLP neural net-

work results 

The first difference between the algorithms to notice is that

even when combining choke and tubing features in the oil case

(Case 4.1), the rising trend at the end of the estimation period

is not captured. So, we can see that, despite the LSTM network

uses the previous measurements to predict the flow at the cur-

rent time step, it does not necessarily help to produce an accurate

estimate. In fact, we observed that the MLP neural network and

gradient boosting, being totally different algorithms but both tak-

ing only the current time step measurements, were able to esti-

mate the increasing flowrate trend accurately. The LSTM, however,

in Case 4.1, takes 15 past time step measurements to make a pre-

diction. As such, we conclude that it is not always a good idea to

take the past measurements into account in order to predict the

target variable value at the current time step. For instance, in case

of the oil flowrate, the flow behavior is irregular which makes it

difficult for the LSTM network to accurately reconstruct the time

dependent flow pattern. 

For the gas case, however, the LSTM generally performs much

better than gradient boosting and MLP neural networks. We see

that the gas flow behavior is much more stable, so that it is eas-

ier for the LSTM to reconstruct the time dependent pattern of

the flow. The average time window chosen by the LSTM networks

among the cases for the gas rate estimation via Bayesian optimiza-

tion is 10, however, the exact value is case dependent. 

When should we use LSTM in estimation of process system vari-

ables? 

Summarizing all the results on LSTM and comparing it with

static models of MLP neural networks and gradient boosting, we

can conclude that using LSTM may be beneficial when the trend

of the target variable is relatively smooth, but more importantly,

assumed to have a time dependent pattern. In this work, the

gas flowrate follows such a trend. This can be seen not only on

the estimation result of the test data set show in Fig. 22 b, but

also in Fig. 10 where the entire gas flowrate trend is shown.

In fact, in Fig. 10 we see that despite the fluctuating behav-

ior, the gas flowrate has a systematic decreasing trend in time.

The oil flowrate, however, has many irregular ups and downs,

such that it is nearly impossible for a machine learning algo-

rithm to reconstruct such a behavior. Therefore, when an LSTM is

used to estimate it, the algorithm may try to learn the trend in

time which simply does not exist which leads to high estimation

error. 

6. Results summary 

In this section, we summarize the results of 72 cases which

consider 12 different case studies of combining machine learning

with first principles using 3 different machine learning algorithms.

First, using Fig. 23 , we describe how the reader can choose a suit-

able method for combining first principles models with machine

learning depending on the process system under consideration by

following a step-by-step approach. In Table 5 , we summarize and

average the RMSE for each algorithm and each flowrate. Such com-

parison is intended to shown which algorithm was the most accu-

rate on average over the case studies conducted in this work for

different system behaviors (oil and gas rates). Table 6 shows the

average error over the algorithms (MLP neural network, gradient

boosting, LSTM) for each first principles model as well as the aver-

aged meta-model results to give more insights about the accuracy

of the proposed methods. Then, we discuss the overall applicability

of each method and its potential improvements. 
How to choose the best method for your system? 

In this work, we extensively tested several methods which vary

y their accuracy, construction cost and applicability to different

ystem conditions. In Fig. 23 , we summarize the procedure of how

ll the proposed methods can be most effectively used when ap-

lied to modeling of a new process engineering system. By follow-

ng these guidelines, the reader will hopefully be able to quickly

hoose the method which satisfies the desired accuracy and the

mount of time available for model construction. Below in this sec-

ion, we summarize the results which we observed in this work

nd which became the basis for creating Fig. 23 with the proposed

election guidelines. 

Most accurate algorithms for oil and gas flowrates 

From Table 5 , we see that, among the algorithms, in the

il case, MLP neural network performs best on average (mean

MSE = 0.0458), while gradient boosting shows slightly worse mean

MSE and LSTM performs relatively poorly. However, for the gas

owrate, the mean RMSE of LSTM is much lower than for MLP

eural network and gradient boosting. As such, we confirm so-

alled ”No Free Lunch” theorem ( Wolpert et al., 1997 ) which states

hat there is no single algorithm which fits best for all cases. In this

articular case, since the oil flowrate fluctuations are highly irreg-

lar, the time dependent pattern which LSTM is trying to find may

ot exist, so that the learning of the non-existing pattern deterio-

ates the results. As such, the algorithms which use only one time

tep measurements (MLP neural network and gradient boosting)

utperform LSTM and perform almost equally well. At the same

ime, when the flow fluctuations have a more regular behavior and

ay have a time dependent pattern as in the gas rate case, LSTM

s able to fit the data much better by taking advantage of the pre-

ious time step data. 

Superior accuracy of meta-models and applicability of feature en-

ineering 

From Table 6 we see that in the meta-model which combines

he model with all the created features for choke and tubing with

he raw data model (Method 5) outperforms all the other meth-

ds which results in the best averaged performance (RMSE = 0.0340

nd 0.0233). If choosing between the methods which do not con-

ider meta-modeling, feature engineering (Method 1) shows the

est performance (italic values). From this we conclude that if the

oal of modeling is to achieve the highest performance, the lin-

ar meta-models which combines most of the available informa-

ion is a good choice. Such models are slightly more difficult to

onstruct, but they still maintain the interpretable behavior and

enerally improve the performance. Otherwise, the feature engi-

eering method is another possibility which is slightly easier to

onstruct that the meta-models, less accurate but still shows a

ood performance. 

Applicability and future improvements of Methods 2 and 3 - com-

inations of first principles model solutions and machine learning

odels 

As for the other methods of combining first principles and ma-

hine learning (Method 2 and 3), in this case, they performed less

ccurately than other discussed methods. However, this does not

ean that we should not consider them to apply for other cases.

or instance, as we observed for the gas estimation case, the com-

ination of the first principles models with raw data (Case 2.3, 3.3

nd 4.3) produced accurate performance. However, in the oil rate

stimation case which has irregular behavior, the proposed models

ppear to be too simple to describe the system behavior accurately.

s such, to be successfully applied, the models would need to be

mproved prior to modeling. 

One possibility to do this is to pre-solve the models numerically

or a small number of mesh points while maintaining the compu-

ational efficiency, so that the solution may not be very accurate,

ut still much better than one averaged over the entire system. An-



T. Bikmukhametov and J. Jäschke / Computers and Chemical Engineering 138 (2020) 106834 25 

Fig. 23. Summary of the method selection for process system modeling by combining first principles and machine learning models. 

Table 5 

RMSE summary for the conducted case studies. Underlined values - lowest error 

within the algorithm for each flowrate, bold values - lowest error for each flowrate 

within all algorithms, italic bold values - lowest mean error for each flowrate for all 

cases. 

Case Oil rate Gas rate 

XGBoost MLP NN LSTM XGBoost MLP NN LSTM 

Case 1 0.044 0.052 0.043 0.040 0.035 0.033 

Case 2.1 0.056 0.054 0.060 0.045 0.041 0.038 

Case 2.2 0.060 0.063 0.062 0.048 0.042 0.042 

Case 2.3 0.064 0.040 0.061 0.035 0.031 0.030 

Case 3.1 0.038 0.048 0.041 0.038 0.034 0.025 

Case 3.2 0.042 0.047 0.043 0.036 0.031 0.023 

Case 3.3 0.040 0.043 0.040 0.031 0.030 0.021 

Case 4.1 0.037 0.038 0.045 0.028 0.027 0.020 

Case 4.2 0.057 0.038 0.053 0.037 0.035 0.021 

Case 4.3 0.047 0.045 0.040 0.030 0.028 0.023 

Case 5 0.041 0.050 0.042 0.048 0.036 0.037 

Case 6 0.030 0.031 0.041 0.024 0.023 0.020 

Mean error 0.0463 0.0458 0.0476 0.0367 0.0328 0.0278 

o  

i  

m  

c  

t  

t  

b  

p  

t  

r  

t  

l

ther possibility is to slightly pre-tune the model to the data, for

nstance, using a linear model, and then use in combination with

achine learning. Finally, the complexity of the models can be in-

reased, so that the model become able to better resolve the sys-

em behavior, for instance, in this case, this can be a slip model for

he choke equation. However, still computational efficiency should
e considered, so that the models should not become very com-

lex. All these proposed improvements will lead to the fact that

he solutions from the first principles model will be more accu-

ate, as such the mismatch between the actual target value and

he solution will be lower and easier to be covered by a machine

earning algorithm. 
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Table 6 

Summary of RMSE averaged over the algorithms for each method and each flowrate, e.g. choke oil RMSE of 0.0566 = (0.056 + 0.054 + 0.060)/3. Underlined values - 

the lowest error within each method for each flowrate, italic values - the lowest error among the methods excluding meta-models, bold values - lowest error for each 

flowrate among all methods. 

Method 

Model Base method Method 1 Method 2 Method 3 Method 4 Method 5 

Raw data Feature First principles First principles Linear meta-model Linear meta-model of 

measurements engineering model solution + model solution + of models with selected model with created 

as features feature engineering raw data model created features features and raw data model 

(Case 2 and 3) (Case 4 and base case) 

Oil Gas Oil Gas Oil Gas Oil Gas Oil Gas Oil Gas 

Choke (Case 2) - - 0.0566 0.0413 0.0616 0.0440 0.0550 0.0320 0.0443 0.0403 - - 

Tubing (Case 3) - - 0.0423 0.0323 0.0440 0.0300 0.0410 0.0273 

Choke and - - 0.0400 0.0250 0.0467 0.0310 0.0440 0.0270 - - 0.0340 0.0223 

tubing (Case 4) 

Raw data 0.0463 0.0360 - - - - - - 

(base case) 
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7. Conclusions 

In this paper, we propose and analyze several methods for com-

bining first principles models with machine learning applied to

multiphase flowrate estimation problem in petroleum production

systems. For the machine learning algorithms, MLP and LSTM neu-

ral networks and gradient boosting were chosen. The proposed

methods for combining first principles with machine learning were

applied to all the aforementioned algorithms. The algorithms were

systematically tuned via a pipeline which is based on the Bayesian

optimization approach which ensures fair and accurate model tun-

ing and comparison. 

We found that by introducing first principles models into ma-

chine learning algorithms, it becomes possible to improve the es-

timation performance if compared to approaches when raw mea-

surement data is used directly, as it has been done for the con-

sidered problem in many other works reported in the literature.

We found that for the irregular system behavior, it is better to

use static models such as MLP neural networks or gradient boost-

ing and not take past measurements into account. On the other

hand, when the system behavior is less complex and has a time-

dependent pattern, LSTM neural networks which consider the past

measurements show the superior performance. 

We discovered that linear meta-models which combine physics-

aware machine learning algorithms with raw measurement mod-

els show the most accurate performance while maintaining good

interpretability. Feature engineering method can also be a good

choice to incorporate first principles into machine learning because

it has lower development cost than linear meta-models while

maintains a reasonable performance. The methods which combine

first principles models solution with machine learning showed less

accurate performance for complex system behavior than the meta-

models and feature engineering approach, while in less complex

system they were accurate enough. As such, to be applied for com-

plex systems, the first principles models should be relatively accu-

rate, such that they produce a reasonable solution and small mis-

match between its solution and the true target value which can

further be covered by machine learning algorithms. 

Another important finding is that by introducing physics-based

features into machine learning algorithms, it is possible to create

much more interpretable models than models which use raw data

directly. We showed that by using model-agnostic feature impor-

tance evaluation methods and revealing partial dependences be-

tween the features and the target, it is possible not only to ensure

that the obtained machine learning model behaves physically fea-

sible, but also reveal additional insights about the complex system

behavior, hidden patterns, physical phenomena and identify possi-

ble directions for the model improvements. 
Overall, we conclude that to successfully apply machine learn-

ng to complex process engineering systems in general and Virtual

low Metering in particular, we need to incorporate first principles

pproaches into machine learning algorithms. This approach cre-

tes more accurate and, more importantly, more transparent data-

riven solutions which will develop more trust to these systems

mong the operating professionals and will further contribute to a

ore efficient and reliable systems operation. 
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