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Abstract

In this paper we apply self-optimizing control (SOC) to a cascaded LNG

liquefaction plant. We �rst introduce the model, and then de�ne the opera-

tional objective, which is to achieve minimal energy consumption while satisfy-

ing operational constraints. Four control structures are compared; a "standard"

temperature control structure, an SOC structure with two plant measurements,

an SOC structure that uses a combination of plant measurements as controlled

variable, and an SOC structure where we also include measurements of distur-

bances in addition to the plant measurements. We �nd that the SOC structures

signi�cantly reduce the average steady-state loss when the operating conditions

change. We furthermore �nd that using more plant measurements in the SOC

structure results in lowered losses. In particular, for the disturbances consid-

ered, the steady-state loss becomes acceptably low, such that there is no need

for a supervisory real-time optimization layer. Finally, it has been found that in-

cluding disturbance measurements results in somewhat reduced losses, although

the improvement was insigni�cant for the studied case. The e�ectiveness of the

SOC framework is shown by closed-loop step responses to selected disturbances.
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1. Introduction

E�cient energy use is a growing industrial challenge in today's competitive

markets. This is especially true for large, energy-demanding processes such

as refrigeration cycles used for the liquefaction of natural gas. Due to their

signi�cant power consumption, optimizing the operation of such processes is5

essential to reduce unnecessary energy usage [1].

Finding the optimal operation strategy of complex processes is a non-trivial

task, as the presence of disturbances, implementation errors, changing operat-

ing conditions and non-linear system behavior must be addressed adequately.

An increasingly popular method for achieving optimal operation at all times is10

"on-line optimization" [2]. On-line optimization, or economic model-predictive

control (EMPC) [3], requires the repeated computation of an input trajectory

by solving a (non-linear) optimization problem over a prediction horizon. De-

spite the advances in both software and hardware, there are still some draw-

backs associated with these on-line methods. Depending on the complexity of15

the model, this dynamic optimization can be very computationally intensive.

Another drawback may be that economic model predictive control requires a

detailed and exact dynamic model of the process. Model-predictive control of

refrigeration cycles is discussed in e.g. [4] and [5]. Speci�cally, the application

of MPC to grocery refrigeration is discussed in [6, 7, 8].20

A simpler approach to achieve optimal operation is to use traditional feed-

back control to control self-optimizing variables. It has been found that it is

often possible to achieve acceptably small loss by controlling a combination of

carefully chosen variables to a constant set-point [9, 10].

In this paper we design a self-optimizing control structure for an LNG liq-25

uefaction plant. The aim is to ensure near optimal operation under varying op-

erating conditions and when the sensors are prone to measurement errors. The

paper is an extension of [11], but instead of considering a single (multi-stage)

refrigerant cycle, we consider multiple cascaded refrigerant cycles. Similar LNG

liquefaction plants were also discussed in [12, 13, 14], where the authors discuss30
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the optimal operating points and self-optimizing control strategies.

The main contributions of this paper are:

1. A model description of a cascaded LNG plant

2. The development and application of a di�erent control structure for the

LNG plant.35

We apply the exact local method [15] to �nd the optimal combination of mea-

surements for self-optimizing control, and show how measured disturbances can

be used to augment the controlled variables to achieve better performance [16].

The optimal subset of measurements is found by a branch and bound method

[17]. Finally, the derived control structures are compared with traditional tem-40

perature control and shown to be superior in terms of their steady-state losses.

The remainder of this paper is structured as follows: In section 2, we give a

quick overview over self-optimizing control. In section 3, we introduce the model

of the studied LNG plant. In section 4, we formulate the problem of optimal

operation, and show the nominal solution thereof. The four di�erent control45

structures are discussed in section 5. A comparison of the control structures

in terms of their steady-state losses and their closed loop responses is shown in

section 6. Finally, a discussion of the results and concluding remarks are given

in section 7.

2. Self-optimizing control50

A quick overview over self-optimizing control is given in this section. For a

comprehensive review of the topic, see e.g. the survey paper by [10].

2.1. General principle

We assume that the problem of optimal operation can be formulated as an

optimization problem

min
ū

J(ū,d) (1a)

s.t. g(ū,d) ≤ 0, (1b)
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where ū ∈ Rnū are the inputs, d ∈ Rnd are the disturbances, J is the scalar

objective function and g : Rnū×nd → Rng denote the inequality constraints.

Assuming further that the set of active constraints does not change, we can for-

mally eliminate the active constraints and obtain an unconstrained optimization

problem

min
u

J(u,d), (2)

where, u ∈ Rnu denote the remaining unconstrained degrees of freedom.

The purpose of self-optimizing control (SOC) is to achieve near-optimal op-55

eration by controlling carefully selected variables c ∈ Rnu at their constant

set-points [9]. If keeping these variables at their set-points results in an ac-

ceptably low loss during operation (in spite of varying disturbances), then self-

optimizing control is achieved. In essence, we are trying to counteract the e�ect

of unmeasured disturbances d by using feedback from the right combination of60

measurements.

The controlled variable c is often selected as a linear function of measure-

ments

c = Hy, (3)

or in terms of deviation variables

∆c = H∆y, (4)

where H is the selection matrix and y are the plant measurements. If H only

has a single 1 as entry per row, we control single measurements. If the rows

of H can take arbitrary values, we control a combination of measurements. A

block diagram of the self-optimizing control structure is shown in Fig. 165

We choose the matrix H such that if we keep ∆c = 0, the loss is minimized.

The loss is de�ned as the di�erence between the objective function evaluated at

the current point and the optimal objective function value for that particular

disturbance.

L = J (u,d)− J
(
uopt,d

)
. (5)
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Figure 1: Block diagram of the self-optimizing control structure.

Evaluating the nonlinear loss function L for all possible control structures and

disturbances is very computationally expensive. Therefore we approximate the

nonlinear loss function (5) by a second order Taylor expansion around the op-

timal operating point [18]:

J(u,d) ≈ J(uopt,d) + Ju(uopt,d)∆u +
1

2
∆uᵀJuu(uopt,d)∆u, (6)

where Ju(uopt) and Juu(uopt) are the Jacobian and Hessian of the objective,

evaluated at the optimal point, respectively. Subtracting J (uopt,d) from both

sides of (6), and taking into account that the gradient of the objective function

Ju (uopt,d) is zero at the optimum, we obtain

L = J (u,d)− J
(
uopt,d

)
(7)

≈ 1

2
∆uᵀJuu∆u. (8)

2.2. Exact local method70

In order to �nd the measurement selection matrix H that minimizes the

loss, we need to be able to evaluate the loss for a given set of candidate control

structures. The exact local method by Alstad et al. [15] allows us to to evaluate

the average loss for a set of given disturbances and measurement noise.

We use a linearized plant model, in which the measurements y can be written

as

∆y = Gy∆u + Gy
dWd∆d + Wnn. (9)

Above, Wny and Wd are diagonal matrices of appropriate sizes containing the75

variances of the measurement errors (noise) n and the disturbances d , respec-
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tively. We assume further that both the measurement errors and the distur-

bances are normally distributed with known standard deviations and expected

values.

Assuming the quadratic approximation of the loss in (8) is valid in a local

neighbourhood of the optimal point, Kariwala et al. [19] show that the average

loss can be expressed as

Lavg =
1

2
‖[Md Mn]‖2F , (10)

where ‖·‖F is used to denote the Frobenius norm, and where

Md = −Juu
0.5 (HGy)

−1
HFWd (11)

Mn = −Juu
0.5 (HGy)

−1
HFWn, (12)

with the sensitivity matrix F is de�ned as [18]

F =
dyopt

dd
(13)

= Gy
d −GyJuu

−1Jud. (14)

The optimal sensitivity matrix F describes the optimal change of the measure-

ment y with respect to disturbances d. We can then write

[Md Mny ] = Juu
1/2 (HGy)

−1
HY, (15)

where

Y = [FWd Wny ] . (16)

Putting everything together, we have that the selection matrix H that min-

imizes the average loss in (10) is

H = arg min
H

=
∥∥∥Juu

1/2 (HGy)
−1

HY
∥∥∥
F
. (17)

An analytical solution of (17) is: [20]

H̃ᵀ = (YYᵀ)
−1

Gy. (18)
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2.3. Inclusion of measured disturbances and optimal variations thereof80

Sometimes it is easy and cheap to measure disturbance variables, and in

that case they may be included into the measurement combination matrix H.

Including measurements of the disturbances in H may result in reduced loss [16].

The reason for this is that detailed knowledge of the system can be incorporated

in the control structure, giving a proactive approach to disturbance rejection85

rather than a reactive one. This results in a combined feed-forward-feedback

control structure.

Including the measured disturbances into an augmented measurement vector

yields

∆yaug =

 ∆y

∆dm

 , (19)

and we can de�ne the augmented linearized model

∆yaug = Gy,aug∆u + Gy,aug
d ∆daug, (20)

where

Gy,aug =

 Gy

0ndm ·nu

 (21)

and

Gy,aug
d =

Gy
d

Idm

 , (22)

to select H with the previously described approach. The new controlled variable

is then

∆c = Haug∆yaug. (23)

The variances of the measurement errors, Waug
ny are

Waug
ny =

Wny 0

0 Wndm

 . (24)

This can also be interpreted as a set-point adaptation scheme, where instead

of keeping

∆caug = H∆y + Hd∆dm = 0, (25)
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Figure 2: Block diagram of the set-point adaptation scheme for a self-optimizing control

structure with measured disturbances, adapted from [10].

we instead control ∆c = H∆y to the adapted set-point ∆cs = −Hd∆dm, as

illustrated in Fig. 2 [10].

2.4. Selecting subsets of measurements90

The expressions above (18) generate measurements combinations that in-

clude all available measurements. In practice, however, this is not necessary, as

it is found that beyond a certain number of measurements, the loss does not

decrease signi�cantly [17]. On one hand, more measurements improve the ac-

curacy (average loss) of the control structure, since the impact of disturbances95

and noise is reduced. On the other hand, every added sensor increases the in-

vestment cost and the chance of failure. The optimal set of measurements for a

given control structure lies on a Pareto frontier, as illustrated in Fig. 3. Heuris-

tics can give a good indication of which plant measurements to include when

designing the control structure, but this approach requires system understand-100

ing and quickly becomes infeasible as the complexity of the plant grows. As

an alternative, the best subset of measurements can be determined systemati-

cally using optimization. One such method is the branch and bound algorithm

proposed by Kariwala et al. [17]. This method systematically selects the best

subset of measurements, and will be used in this work. Another method to se-105

lected the optimal measurement set is by formulating the problem as an MIQP,
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Figure 3: Illustration of average loss vs number of measurements for a self-optimizing control

structure. The optimal set of a given number of measurements lies on the Pareto frontier.

where the integer variables indicate whether a measurement is active or not [20].

For the case studied in this paper, it was found that both methods found the

same optimal solution, resulting in the same measurement sets.

3. Process description110

The process studied in this work is a cascaded LNG refrigeration plant,

similar to [21]. The operational goal is to cool the pretreated natural gas to a

su�ciently low temperature such that it stays in liquid phase when the pressure

is lowered to ambient pressure. A temperature of no higher than −150 ◦C is

required to ensure this. After refrigeration, the LNG is sent to storage facilities.115

The cascaded refrigeration plant consists of multiple, increasingly cold, closed

cycles which exchange heat with each other. The advantage of such a design

is that the mean temperature di�erence between the hot and cold streams can

be kept small, resulting in lower energy consumption. This particular plant has

three separate refrigerant cycles; propane, ethane and methane. An illustration120

of the full process is shown in Fig. 4.
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Figure 4: Process �ow diagram of the studied process. It consists of three interconnected

refrigeration cycles. P, E and M are used to refer to the refrigerants; propane, ethane and

methane, respectively. HP and LP refer to the high and low pressure sides of the cycles. The

condensing section of each cycle is indicated in red and the evaporation section is indicated
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Each of the three cycles consists of a compressor, a condenser, an expansion

valve and an evaporator. For simplicity, we assume that the compression occurs

in a single-stage compressor. The compressor is driven by a turbine, which

allows the compressor speed to be adjusted.125

After compression, the superheated refrigerant enters the condensing section,

in which the vapor is cooled and condensed using sea water. For a refrigera-

tion plant consisting of 3 cascaded refrigerant cycles, the condensing section of

the propane cycle can be modeled as a water-cooled condenser followed by a

propane/ethane heat exchanger and a propane/methane heat exchanger. The130

ethane refrigerant enters the propane/ethane heat exchanger on the hot side of

the exchanger and the ethane/methane heat exchanger on the cold side of the

exchanger. In reality, heat is transferred in a large, multi-stream heat exchanger

to avoid unnecessary investment cost and heat loss. However, for simplicity, we

chose to model it as a series of two-stream heat exchangers.135

On the low-pressure side of the cycle, the refrigerant is evaporated in a series

of cross-cycle heat exchangers and an LNG heat exchanger.

In the following subsection, we describe the system model. To generalize

and avoid unnecessary repetition of equations, we introduce the subscript i ∈
{propane, ethane, methane} for the three refrigerants.140

Model parameters for the various units are given in the Appendix B.

3.1. Thermodynamics

The enthalpies of gaseous and liquid refrigerant, their saturation temper-

atures and pressures are determined using the AllProps software [22], which

utilizes the Helmholtz equation of state to calculate the thermodynamic prop-145

erties. Surrogate models are �tted to the data calculated by AllProps and used

in the optimization.

The saturation temperature is �tted to a model on the form

Tsat,i =

2∑
j=0

cTsat,i,j log(Pi)
j , (26)
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where Pi is the pressure of refrigerant i, and cTsat,i,j are the model parameters,

which can be found in Tab. A.4. The speci�c saturation enthalpies of liquid

and vapor phases are �tted to polynomial expressions on the form

Ĥliq,i =

6∑
j=0

cĤliq,i,j
P ji (27)

Ĥvap,i =

6∑
j=0

cĤvap,i,j
P ji . (28)

The coe�cients cHliq,i,j and cĤvap,i,j
are shown in Tab. A.5 and Tab. A.6.

Heat capacities for vapor refrigerant i, Cp,i, are calculated as a function of

temperature Ti
Cp,i
R

= cCp,i,1 + cCp,i,2Ti + cCp,i,3T
2
i , (29)

where R is the universal gas constant. The coe�cients cCp,i,j are found in Tab.

A.7. In the liquid phase, the heat capacities are assumed to be constant.

The compressibility factor Zi is calculated using Dranchuk and Abou-Kassems

equation of state [23].

Zi = 1 +

(
cZi,1 +

cZi,2
(Tr,i)

+
cZi,3

(Tr,i)
3 +

cZi,4

(Tr,i)
4 +

cZi,5

(Tr,i)
5

)
B (30)

+

(
cZi,6 +

cZi,7
(Tr,i)

+
cZi,8

(Tr,i)
2

)
B2

−
(
cZi,7
(Tr,i)

+
cZi,8

(Tr,i)
2

)
cZi,9B

5

+ cZi,10
(
1 + cZi,11B

2
)( B2

T 3
r,i

)
exp

(
−cZi,11B2

)
,

where

B =
0.27Pr,i
ZiTr,i

. (31)

In the above equations, Tr,i and Pr,i are the reduced temperatures and pressures

of the vapor, respectively. These are de�ned as

Tr,i =
Ti
Tc,i

(32)

Pr,i =
Pi
Pc,i

, (33)
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where Tc,i and Pc,i are the critical temperatures and pressures. The coe�cients150

for (30) can be found in Tab. A.8

3.2. Compressors

Polytropic compression models are used for the compressors. For a poly-

tropic compressor, the following relationship is valid(
Tdischarge,i
Tsuction,i

)
=

(
Pdischarge,i
Psuction,i

)1/ki

, (34)

where the Tdischarge,i, Tsuction,i, Pdischarge,i and Psuction,i are temperature and

pressure at the compressor inlet and outlet, and ki is the polytropic coe�cient,

which is de�ned as

ki = ηi
γi

γi − 1
. (35)

Here, ηi is the polytropic e�ciency, and γi is the average adiabatic heat ratios

at compressor discharge and suction:

γi =
1

2

(
Cp,suction,i

Cp,suction,i −R
+

Cp,discharge,i
Cp,discharge,i −R

)
(36)

The polytropic head is

hpoly,i =
kiZsuction,iR

gMm,i
(Tdischarge,i − Tsuction,i) , (37)

where Zsuction,i is the compressibility factor at the compressor inlet, R is the

universal gas constant, g is the gravitational constant, Mm,i is the molar mass,

The e�ciencies ηi and compressor heads hpoly,i are given by compressor

maps, which are of the form

ηi = cηi,1hpoly,scaled,i + cηi,2 − 10(cηi,3hpoly,scaled,i−cηi,4) (38)

and
qsuction

(ucomp.
i )

ccomp,1 =
ccomp,2hpoly,scaled,i − ccomp,3

ccomp,4
, (39)

where qsuction is the suction volumetric �ow rate, which can be expressed as

qsuction,i =
ṅsuction,iRTsuction,i

Psuction,i
, (40)
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where ṅsuction,i is the molar �ow rate of refrigerant at the compressor inlet, and

hpoly,scaled,i =
hpoly,i

(ucomp.
i )

chpoly,scaled,i,1
(41)

is the scaled compressor head. ucomp.i ∈ [0.6, 1.1] is the normalized compressor155

speed. The coe�cients for the above equations are shown in Tab. A.9-A.11 in

Appendix B.

3.3. Valves

The �ow through the valves is given by the valve equation

ṅi = uvalvei cchoke,i
√
Pout − Pin (42)

where cchoke,i is the valve constant, see Tab. A.12, and uvalvei ∈ [0, 1] is the

valve opening.160

3.4. Evaporators and condensers

Heat transfer in the evaporators and condensers is calculated using the log-

arithmic mean temperature di�erence method

Q̇i = UAi
∆T1 −∆T2

log ∆T1 − log ∆T2
(43)

= Ḣcold,out − Ḣcold,in (44)

= Ḣhot,in − Ḣhot,out, (45)

where

∆T1 = Thot,in − Tcold,out, (46)

∆T2 = Thot,out − Tcold,in. (47)

3.5. Dynamics

The dynamics of the system are introduced by the liquid receivers following

the condensers. The dynamic energy balances of the three receivers can be

14



Table 1: Expected values of the disturbances and their standard deviations

Disturbance Expected value Std. deviation

T401 20 [◦C] 2 [◦C]

ṁ401 3.074 · 104 [kgmole/h] 1.5 · 103 [kgmole/h]

Tambient 5 [◦C] 1 [◦C]

UAcond,P 0.51 [-] 0.0255 [-]

UAcond,E 0.45 [-] 0.0225 [-]

UAcond,M 0.27 [-] 0.0135 [-]

written as165

dTreceiver,P
dt

=
ṅ103

nreceiver
(T103 − T104) (48)

dHreceiver,E

dt
= Ḣ204 − Ḣ205 = ṅ204Ĥ204 − ṅ205Ĥ205 (49)

dHreceiver,M

dt
= Ḣ305 − Ḣ306 = ṅ305Ĥ305 − ṅ306Ĥ306 (50)

(51)

We assume that the levels are perfectly controlled, thus simplifying the dynamic

mass balances to algebraic equations.

4. De�ning the optimization problem to �nd the nominal operating

point

4.1. Expected disturbances170

Under operation we assume that the following parameters can vary (dis-

turbances): the inlet temperature T401 and �ow rate ṁ401 of the natural gas,

the ambient water temperature Tambient in the condensers and the heat trans-

fer e�ciency UA of each of the three condensers. Lower e�ciency in the heat

exchangers could be caused by e.g. fouling. The expected magnitudes of the175

disturbances are shown in Tab. 1.

15



4.2. Operational degree of freedom analysis

Using the method described by Jensen and Skogestad [24] for identi�cation

of degrees of freedom in refrigeration cycles, this plant can be shown to have

�ve potential steady-state degrees of freedom per cycle. These �ve degrees of180

freedom are

1. Compressor power

2. Choke valve opening

3. Active charge (the amount of refrigerant circulating in the refrigeration

cycle)185

4. Transferred heat in condenser

5. Transferred heat in evaporator

Adjusting the transferred heat in the evaporator can be achieved by adjusting

the load, or by bypassing the heat exchanger. For a given load, however, it is

usually optimal to utilize the heat exchanger to its full potential. Furthermore,190

our refrigeration cycle lacks a way to adjust the active charge, thus resulting in

zero sub-cooling by design. The liquid receiver consequently contains saturated

liquid. [25] show that this design, although very common in industry, is sub-

optimal. This liquefaction plant therefore has three degrees of freedom per cycle,

for a total of nine degrees of freedom.195

4.3. Optimization problem for optimal nominal operation

The overall aim is to minimize the energy consumption of the liquefaction

plant for a given LNG load. The nominal operating point is found by solving

the energy-minimizing optimization problem. We de�ne the objective as

J(u) =
∑
i

W compressor
i , (52)

where W compressor
i is the work performed by compressor i.

The optimization is subject to a number of operational constraints, which

are summarized in Tab. 2
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Table 2: Process constraints and variable bounds for the steady-state optimization problem.

Constraint Explanation

T404 ≤ −150 ◦C Maximum LNG outlet temperature

Pi01 ≥ 0.4 bar Minimum pressure in cycle

i = {propane, ethane, methane}
0.0 ≤ uchokei ≤ 1.0 Bounds on normalized choke openings

i = {propane, ethane, methane}
0.0 ≤ ucond.i ≤ 0.5 Bounds on normalized condenser �ow rate

i = {propane, ethane, methane}
0.6 ≤ ucomp.

i ≤ 1.1 Bounds on normalized comp. speeds

i = {propane, ethane, methane}

4.4. Nominal solution200

Given the cost function (52) and the constraints from Tab. 2, a nonlinear

programming problem (NLP) was formulated and implemented in MATLAB us-

ing Casadi 3.0.0 [26] and solved using IPOPT 3.12.3 [27]. The nominal solutions

of some key variables are shown in Tab. 3.

The nominal solution features four active constraints, namely:205

1. Upper bound of the LNG outlet temperature

2-4. Maximum condenser duty in each cycle (3 constraints)

Our optimal solution is qualitatively similar to the one found by [13], but di�ers

from [12] in that no lower pressure constraint is active. While [12] assumed

a constant isentropic e�ciency for the compressors, we have used compressor210

maps, as discussed in Sec. 3. As a result of this, optimal operation favors

maximum e�ciency, if permitted by the other operational constraints. Opti-

mal e�ciency is achieved at the compressor "sweet spot", which gives inactive

pressure constraints.

At the optimal operating point, the overall compressor duty is 75 MW.215
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Table 3: Nominal values of key variables

Variable Nominal value Variable Nominal value

T101 −43.5 ◦C T102 41.4 ◦C

T103 13.2 ◦C T201 −98.1 ◦C

T202 79.6 ◦C T203 12.8 ◦C

T204 −39.4 ◦C T301 −154.9 ◦C

T302 82.8 ◦C T303 12.9 ◦C

T304 −40.0 ◦C T305 −93.0 ◦C

T401 20.0 ◦C T402 −42.8 ◦C

T403 −92.3 ◦C T404 −150.0 ◦C

plowpropane 0.89 bar phighpropane 6.95 bar

plowethane 0.41 bar phighethane 7.90 bar

plowmethane 1.76 bar phighmethane 33.25 bar

plowLNG 39.00 bar phighLNG 39.00 bar

W total
comp. 75 MW

5. Control structure design

5.1. Active constraint control and stabilization

In each of the refrigeration cycles, all liquid inventories except one must

be stabilized in accordance with Aske and Skogestads [28] rules for consistent

inventory control, to avoid over�lling or draining the tank. For this purpose,220

we chose to use the chokes to control the levels of the liquid receivers after the

condensers. The LNG outlet temperature is controlled using the methane com-

pressor speed. The condenser duties in all three cycles are nominally maximized,

resulting in the usage of three potential degrees of freedom. After controlling

the active constraints and the levels, we are left with a total of two degrees of225

freedom for the entire liquefaction plant. An illustration of the process with the

stabilizing control and active constraint control structures is shown in Fig. 5.
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Figure 5: Illustration of stabilizing control and active constraint control structures. Stabilizing

control loops are shown in red and active constraint control loops are shown in orange. (3

condenser duties at max �ow, and LNG outlet temperature controller)
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5.2. Control structure design for unconstrained degrees of freedom

In this section we consider how the two degrees of freedom remaining after

controlling the active constraints can be used to optimize the plant performance.230

We devise four control structures; control structure 1 is a "standard" temper-

ature control, whereas control structures 2, 3 and 4 are self-optimizing control

structures where we control linear combinations of plant measurements. In con-

trol structure 2 we use two plant measurements, and in control structures 3 and

4 we use eight measurements. The di�erence between control structures 3 and235

4 is that while control structure 3 only uses plant measurements, control struc-

ture 4 includes measurements of the disturbances as well, as discussed in Sec.

2.3. There are a total of 49 measurement candidates, primarily temperature-

, pressure- and �ow measurements, which we can use to construct the linear

combinations for self-optimizing control.240

As discussed in Sec. 2.4, the number of measurements in the self-optimizing

control structure should be limited to avoid unnecessary expense and complex-

ity. Ideally, a cost-bene�t-analysis should be performed to �nd the optimal

instrumentation for the plant. Fig. 6 shows the average loss for the best set

of n measurements for SOC structures. A large reduction in average loss is245

seen when using three or more measurements. It was decided that eight mea-

surements would give a reasonable trade-o� between average loss and complex-

ity/cost, which is why it was chosen to use eight measurements when comparing

control structures 3 and 4 in the following sections. Furthermore, we observe

that disturbance measurements are not included in the measurement subset250

unless seven or more measurements are used. "Regular" plant measurements

are preferred, as they can be used to infer information about more than one

disturbance.

We construct the scaling matrix Wny assuming that the noise of each mea-

surement is 1% of its nominal value, with the exception of temperature and255

pressure measurements. For all temperature measurements we assumed that

the magnitude of the noise is 1 ◦C. For all pressure measurements, we assumed

that the noise has a magnitude of 0.2 bar for pressures on the low pressure side
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Figure 6: Average loss vs. number of measurements for a combination of plant measurements

(control structure 2) shown in red and a combination of plant- and disturbance measurements

(control structure 3) in blue.

of the cycle and 1 bar for pressures on the high pressure side of the cycle.

5.3. Control structure 1: "Standard" temperature control260

One of the simplest operational strategies is single input - single output

(SISO) feedback temperature control. Controlling the LNG outlet temperatures

from the evaporators, as well as the condenser temperatures, is an intuitive way

to control the process [25]. The selection matrix H will in that case be

H1 =

1 0

0 1

 (53)

with

y1 =
[
T402 T403

]ᵀ
. (54)

It can be imagined that keeping the temperatures at prede�ned set-points

may be sub-optimal in the event of e.g. loss of e�ciency in one of the cy-

cles. Additionally, �xing the outlet temperature from each LNG heat exchanger
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means that we lose operational �exibility in terms of how to distribution the

load between the three cycles. Nevertheless, this strategy is expected to give

acceptably small losses if the disturbances are reasonably small [25]. For larger

disturbances, this control structure is expected to be sub-optimal or even infea-

sible. We calculate the average loss of this control structure using (18), giving

Lavg.,1 = 1710.4 kW. (55)

This average loss is about twice the loss expected for a control structure with

two plant measurements, as seen from Fig. 3.

An illustration of the proposed control structure is shown in Fig. 7. In the

proposed control structure, the choke at the outlet of the receiver tanks is used to

control one of the corresponding receiver level, the condenser duty is maximized,

and the compressor is used to control the evaporator outlet temperature. The

controller pairing is based on the "pair-close" rule of thumb, but is con�rmed

by calculating the steady-state RGA of system [29]:

RGA1 =

[
1.0108 −0.0108

−0.0108 1.0108

]
. (56)

From the RGA it is clear that a diagonal pairing should be choosen, i.e.

ucond.C3H8
→ T103 (57a)

ucond.C2H6
→ T203 (57b)

5.4. Control structure 2: Controlling a combination of two plant measurements

Using the branch and bound algorithm by Kariwala et al. [17], we can �nd

the combination of two measurements which give the lowest average loss. These

two measurements are found to be

y2 =
[
T104 P302

]ᵀ
, (58)

with the corresponding measurement selection matrix

H2 =

[
1 0

0 1

]
(59)

22



102 103

104

105

106

107

108

101

202 203 204

205

206

207

208

201

302 303 304 305

306

307

308

301

401 402 403 404

HEX
P-E

HEX
P-M

HEX
P-L

HEX
E-L

HEX
E-M

HEX
M-L

Pre-treated
Natural gas LNG

TC

LC

LC

LC

TC

TC

Figure 7: Illustration of proposed control structure 1. Stabilizing control loops are shown

in red, active constraint control loops are shown in orange and optimizing control loops are

shown in blue.
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Using (18), this control structure results in an average local loss of

Lavg.,2 = 781.3 kW. (60)

The controller pairings are found from the RGA:

RGA2 =

[
1.010 −0.010

−0.010 1.010

]
, (61)

from which we get the following265

ucond.C3H8
→ H(1) (62a)

ucond.C2H6
→ H(2). (62b)

5.5. Control structure 3: Controlling a combination of eight plant measurements

A combination of measurements may result in a better performing control

structure, as discussed in Sec. 2. An illustration of the resulting MIMO control

structure is shown in Fig. 8.

5.5.1. Optimal measurement selection270

Using the branch and bound algorithm by Kariwala et al. [17], we can

�nd the combination of eight measurements which give the lowest average loss.

These eight measurements are found to be

y3 =
[
T202 T203 P205 P206 T304 P304 Wcomp,E Wcomp,M

]ᵀ
, (63)

with the corresponding measurement selection matrix

H3 =

[
0.120 0.042 −0.824 −3.210 0.087 −0.010 0.557 0.457

0.247 0.088 −0.286 −7.457 −0.117 −0.100 0.720 −1.047

]
(64)

Note that we have scaled the variables in the model to avoid ill-conditioned ma-

trices. In the above H matrix, and all subsequent H matrices, the temperature

are in K · 102, the pressures are in bar · 101, and the compressor duties are in

MW · 102.

Using (18), this control structure results in an average local loss of

Lavg.,3 = 3.438 kW. (65)
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25



The controller pairings are found from the RGA:

RGA3 =

[
1.2311 −0.2311

−0.2311 1.2311

]
, (66)

from which we get the following275

ucond.C3H8
→ H(1) (67a)

ucond.C2H6
→ H(2). (67b)

5.6. Control structure 4: Controlling a combination of plant- and disturbance

measurements

Using the branch and bound algorithm once more, this time also including

disturbance measurements, we �nd that the measurements

y4 =
[
P205 P206 P304 Wcomp,P Wcomp,E Wcomp,M UAcond,P UAcond,M

]ᵀ
(68)

result in the lowest average loss. When compared to control structure 3, we

see that control structure 4 contains a di�erent set measurements. Notably we

now have a measurement of the disturbances UAcond,P and UAcond,M . Note

that these "measurements" are really non-linear soft-sensor estimates of the

disturbances, since it is not possible to measure them directly, on-line. Due to

the inclusion of the disturbance measurements, control structure 4 is expected

to reject these disturbances more e�ciently, thus reducing the average loss. The

measurement selection matrix is

H4 =

[
1 0 −0.0629 −0.4587 −0.2348 −1.4381 −0.0463 0.0304

0 1 0.0139 0.0100 −0.1082 0.1375 0.0001 −0.0034

]
(69)

Using (18), this control structure results in an average local loss of

Lavg.,4 = 3.158 kW, (70)

which is slightly lower than that of control structure 3, due to the ability to

detect and reject changes in the condenser e�ciencies more e�ciently.
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The controller pairings are found from the RGA:

RGA4 =

[
1.1267 −0.1267

−0.1267 1.1267

]
, (71)

from which we get a diagonal pairing280

ucond.C3H8
→ H(1) (72a)

ucond.C2H6
→ H(2). (72b)

6. Comparison control structures

6.1. Steady-state losses for larger disturbances in a dynamic simulation

Fig. 9 shows the performance of the four control structures in terms of their

steady-state losses for four disturbances, evaluated on the nonlinear model. The

self-optimizing control structures clearly outperform the simple temperature285

control structure. We also observe that control structure 3 and 4 perform about

equally well, with both giving very small losses for most disturbances. Note that

disturbances in the LNG �ow rate are expected to result in signi�cantly higher

losses than the other disturbances. This is reasonable, since the load directly

in�uences the energy consumption. Control structures 3 and 4 give much lower290

losses than control structures 1 and 2 for this disturbance, which signi�cantly

impacts the expected average loss.

6.2. Comparison of closed-loop responses

Fig. 10 shows the performance of the four control structures in terms of

their closed-loop responses or a dynamic simulation to selected disturbances.295

Again, it can be seen that the SOC structures outperform control structure 1 in

terms of the steady-state losses. All responses can be seen to be quite slow, with

a time constant of around 50 seconds. The hold-ups of the tanks were chosen

quite large, which leads to the slow responses.

We observe that the SOC structures have slightly higher transient losses,300

before settling at lower steady-state losses. The transient losses are not opti-

mized by regular self-optimizing control, as self-optimizing control is inherently
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Figure 9: Steady state losses for the three di�erent control structures: control structure 1 in

blue, control structure 2 in red, control structure 3 in yellow and control structure 4 in purple.

Note the di�erence in scales.

a steady-state method. Although the extension of SOC to dynamic problems

has been attempted by some authors, it is currently an immature research �eld

[10] and falls outside the scope of this paper. It should also be noted that305

even though the transient losses can be negative (as illustrated in Fig. 10), the

steady-state losses can not. This is because strictly speaking, the loss is de�ned

in terms of the steady-state value alone.

7. Discussion and conclusion

In this paper we investigated the possibilities of applying self-optimizing310

control to an LNG liquefaction plant. After implementing a model of the plant,

we found the optimal operating point by minimizing the energy consumption of

the compressors, subject to operational constraints. At the nominal operating

point it was found that the minimum outlet temperature speci�cation was active

in addition to the maximum condenser duties, which left us with two degrees315
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Figure 10: Closed-loop responses of the four control structures to selected disturbances.

of freedom for optimizing operation after controlling the levels and the active

constraints.

We implemented four di�erent control strategies which utilized these degrees

of freedom to achieve self-optimizing control. The �rst control strategy was to

keep the LNG temperatures at the outlet of the evaporators constant at their320

nominal operating points. This strategy resulted in relatively large steady state

losses.

The second control structure was based on controlling a linear combination

of variables to a set-point. We �rst identi�ed the optimal subset of two plant

measurements, and then found the combination matrix H using the exact local325

method. This self-optimizing control strategy showed signi�cantly better per-

formance than the constant-temperature-policy. The third control structure is

similar to the second, but instead of using only two plant measurements, this

control structured used eight plant measurements in H. We observed that these

additional measurements lowered the average steady-state losses signi�cantly.330

The �nal control structure is similar to the third, with the only di�erence

being that we now include measurements of the disturbances in addition to
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the plant measurements. Due to the inclusion of disturbance measurements,

the fourth control structure gave slightly lower steady-state losses than the

third control structure for the same number of measurements, both in terms335

of the average local losses and the global losses for selected (large) disturbances.

However, it seems that including measured disturbances does not signi�cantly

improve operation in this case (compared to the improvement of using eight

instead of two measurements).
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AppendixA. Design parameters

Table A.4: Design parameters for calculating the saturation temperature in (26)

Parameter Value

Propane Ethane Methane

cTsat,i,0 3.0053 2.4141 1.4966

cTsat,i,1 0.93582 0.77135 0.51530

cTsat,i,2 0.24817 0.21080 0.13110

Table A.5: Design parameters for calculating the speci�c liquid saturation enthalpy in (27)

Parameter Value

Propane Ethane Methane

cĤliq,i,0
-9992.7 -9447.4 -15187

cĤliq,i,1
15991 12605 5974.2

cĤliq,i,2
-11110 -12132 -5488.7

cĤliq,i,3
4838.4 7061.9 3138.6

cĤliq,i,4
-970.54 -2146.5 -943.33

cĤliq,i,5
50.621 319.1 138.42

cĤliq,i,6
4.8879 -18.124 -7.6457
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Table A.6: Design parameters for calculating the vapor saturation enthalpy in (28)

Parameter Value

Propane Ethane Methane

cĤvap,i,0
9036.9 5906 -6622.6

cĤvap,i,1
11005 6200.8 2117.7

cĤvap,i,2
-12980 -7884.9 -1650.9

cĤvap,i,3
9271.9 5412.9 518.47

cĤvap,i,4
-3644.6 -1973 -59.04

cĤvap,i,5
721.52 356.06 0

cĤvap,i,6
-56.405 -25.103 0

Table A.7: Design parameters for calculating the heat capacity in (29)

Parameter Value

Propane Ethane Methane

cCp,i,1 1.702 1.131 1.213

cCp,i,2 9.081·10−3 19.225·10−3 28.785·10−3

cCp,i,3 -2.164·10−6 -5.561·10−6 -8.824·10−6
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Table A.8: Design parameters for calculating the compressibility factor in (30)

Parameter Value

cZi,1 0.3265

cZi,2 -1.0700

cZi,3 -0.5339

cZi,4 0.01569

cZi,5 -0.05165

cZi,6 0.5475

cZi,7 -0.7361

cZi,8 0.1844

cZi,9 0.1056

cZi,10 0.6134

cZi,11 0.7210

Table A.9: Design parameters for calculating the compressor e�ciency in (38)

Parameter Value

Propane Ethane Methane

cηi,1 0.061733 0.03448682 0.0251571

cηi,2 -0.074 -0.074 -0.074

cηi,3 0.338767 0.18925109 0.138053

cηi,4 6.5963 6.5963 6.5963
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Table A.10: Design parameters for calculating the polytropic head in (39)

Parameter Value

Propane Ethane Methane

ccomp,1 1.79 1.79 1.79

ccomp,2 1.9928 1.9928 0.27146

ccomp,3 35.1962 63.00 11.765

ccomp,4 18.3546 32.855 45.040

Table A.11: Design parameters for calculating the polytropic head in (41)

Parameter Value

Propane Ethane Methane

chpoly,scaled,i,1 2.11 2.11 2.11

Table A.12: Design parameters for calculating the molar �ow through the valve in (42)

Parameter Value

Propane Ethane Methane

cchoke,i 13.0 8.4 3.4
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