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Abstract

In this paper we apply self-optimizing control (SOC) to a cascaded LNG
liquefaction plant. We first introduce the model, and then define the opera-
tional objective, which is to achieve minimal energy consumption while satisfy-
ing operational constraints. Four control structures are compared; a "standard"
temperature control structure, an SOC structure with two plant measurements,
an SOC structure that uses a combination of plant measurements as controlled
variable, and an SOC structure where we also include measurements of distur-
bances in addition to the plant measurements. We find that the SOC structures
significantly reduce the average steady-state loss when the operating conditions
change. We furthermore find that using more plant measurements in the SOC
structure results in lowered losses. In particular, for the disturbances consid-
ered, the steady-state loss becomes acceptably low, such that there is no need
for a supervisory real-time optimization layer. Finally, it has been found that in-
cluding disturbance measurements results in somewhat reduced losses, although
the improvement was insignificant for the studied case. The effectiveness of the
SOC framework is shown by closed-loop step responses to selected disturbances.
Keywords: Self-optimizing control, LNG liquefaction, refrigeration cycle,

optimal operation, control structure design
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1. Introduction

Efficient energy use is a growing industrial challenge in today’s competitive
markets. This is especially true for large, energy-demanding processes such
as refrigeration cycles used for the liquefaction of natural gas. Due to their
significant power consumption, optimizing the operation of such processes is
essential to reduce unnecessary energy usage [I].

Finding the optimal operation strategy of complex processes is a non-trivial
task, as the presence of disturbances, implementation errors, changing operat-
ing conditions and non-linear system behavior must be addressed adequately.
An increasingly popular method for achieving optimal operation at all times is
"on-line optimization" [2]. On-line optimization, or economic model-predictive
control (EMPC) [3], requires the repeated computation of an input trajectory
by solving a (non-linear) optimization problem over a prediction horizon. De-
spite the advances in both software and hardware, there are still some draw-
backs associated with these on-line methods. Depending on the complexity of
the model, this dynamic optimization can be very computationally intensive.
Another drawback may be that economic model predictive control requires a
detailed and exact dynamic model of the process. Model-predictive control of
refrigeration cycles is discussed in e.g. [4] and [5]. Specifically, the application
of MPC to grocery refrigeration is discussed in [6, [7} [§].

A simpler approach to achieve optimal operation is to use traditional feed-
back control to control self-optimizing variables. It has been found that it is
often possible to achieve acceptably small loss by controlling a combination of
carefully chosen variables to a constant set-point [9} [10].

In this paper we design a self-optimizing control structure for an LNG lig-
uefaction plant. The aim is to ensure near optimal operation under varying op-
erating conditions and when the sensors are prone to measurement errors. The
paper is an extension of [I1], but instead of considering a single (multi-stage)
refrigerant cycle, we consider multiple cascaded refrigerant cycles. Similar LNG

liquefaction plants were also discussed in [12} [13], [14], where the authors discuss
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the optimal operating points and self-optimizing control strategies.

The main contributions of this paper are:

1. A model description of a cascaded LNG plant
2. The development and application of a different control structure for the

LNG plant.

We apply the exact local method [15] to find the optimal combination of mea-
surements for self-optimizing control, and show how measured disturbances can
be used to augment the controlled variables to achieve better performance [16].

The optimal subset of measurements is found by a branch and bound method
[I7]. Finally, the derived control structures are compared with traditional tem-
perature control and shown to be superior in terms of their steady-state losses.

The remainder of this paper is structured as follows: In section [2] we give a
quick overview over self-optimizing control. In section |3 we introduce the model
of the studied LNG plant. In section [ we formulate the problem of optimal
operation, and show the nominal solution thereof. The four different control
structures are discussed in section [5] A comparison of the control structures
in terms of their steady-state losses and their closed loop responses is shown in
section [6] Finally, a discussion of the results and concluding remarks are given

in section [7]

2. Self-optimizing control

A quick overview over self-optimizing control is given in this section. For a

comprehensive review of the topic, see e.g. the survey paper by [10].

2.1. General principle

We assume that the problem of optimal operation can be formulated as an
optimization problem

min J(a@,d) (la)

s.t. g(a,d) <0, (1b)
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where i € R™® are the inputs, d € R™¢ are the disturbances, J is the scalar
objective function and ¢ : R"*"a — R"s denote the inequality constraints.
Assuming further that the set of active constraints does not change, we can for-
mally eliminate the active constraints and obtain an unconstrained optimization
problem

m&n J(u,d), (2)

where, u € R™ denote the remaining unconstrained degrees of freedom.

The purpose of self-optimizing control (SOC) is to achieve near-optimal op-
eration by controlling carefully selected variables ¢ € R™ at their constant
set-points [9]. If keeping these variables at their set-points results in an ac-
ceptably low loss during operation (in spite of varying disturbances), then self-
optimizing control is achieved. In essence, we are trying to counteract the effect
of unmeasured disturbances d by using feedback from the right combination of
measurements.

The controlled variable c is often selected as a linear function of measure-
ments

c = Hy, (3)

or in terms of deviation variables
Ac = HAy, (4)

where H is the selection matrix and y are the plant measurements. If H only
has a single 1 as entry per row, we control single measurements. If the rows
of H can take arbitrary values, we control a combination of measurements. A
block diagram of the self-optimizing control structure is shown in Fig.

We choose the matrix H such that if we keep Ac = 0, the loss is minimized.
The loss is defined as the difference between the objective function evaluated at
the current point and the optimal objective function value for that particular
disturbance.

L=J(u,d)—J(u®,d). (5)
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Figure 1: Block diagram of the self-optimizing control structure.

Evaluating the nonlinear loss function L for all possible control structures and
disturbances is very computationally expensive. Therefore we approximate the
nonlinear loss function by a second order Taylor expansion around the op-

timal operating point [I8]:
1
J(u,d) = J(u°",d) + J,(u°*, d)Au + iAuTJuu(u"pt, d)Au, (6)

where Jy,(uP') and Juu(u®Pt) are the Jacobian and Hessian of the objective,
evaluated at the optimal point, respectively. Subtracting J (u°P*,d) from both
sides of @, and taking into account that the gradient of the objective function

Ju (u°Pt d) is zero at the optimum, we obtain

L = J(ud)—J(u™,4d) (7)

Q

1
§AuTJuuAU. (8)

2.2. Ezact local method

In order to find the measurement selection matrix H that minimizes the
loss, we need to be able to evaluate the loss for a given set of candidate control
structures. The exact local method by Alstad et al. [15] allows us to to evaluate
the average loss for a set of given disturbances and measurement noise.

We use a linearized plant model, in which the measurements y can be written

as

Ay = GYAu + G¥W4Ad + Wyn. (9)

Above, W,y and Wy are diagonal matrices of appropriate sizes containing the

variances of the measurement errors (noise) n and the disturbances d , respec-



tively. We assume further that both the measurement errors and the distur-
bances are normally distributed with known standard deviations and expected
values.

Assuming the quadratic approximation of the loss in is valid in a local
neighbourhood of the optimal point, Kariwala et al. [19] show that the average

loss can be expressed as

1 2
Ly = 3 IMa - MLJJ (10)
where ||-||F is used to denote the Frobenius norm, and where

Mg = —Ju™® (HGY) ' HFW4 (11)

M, = —Juw"’ (HGY) ' HFW,,, (12)

with the sensitivity matrix F is defined as [I8]

dyopt
F== (13)
=G - G Jyy Tua (14)

The optimal sensitivity matrix F describes the optimal change of the measure-

ment y with respect to disturbances d. We can then write
Mg My =J.'"? (HGY) "HY, (15)

where

Y = [FWyq Wyl (16)

Putting everything together, we have that the selection matrix H that min-

imizes the average loss in (10) is

H = arg min = ‘JWW (HGY)*HYHF. (17)
An analytical solution of is: [20]

H = (YYT) 'GY. (18)
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2.8. Inclusion of measured disturbances and optimal variations thereof

Sometimes it is easy and cheap to measure disturbance variables, and in
that case they may be included into the measurement combination matrix H.
Including measurements of the disturbances in H may result in reduced loss [16].
The reason for this is that detailed knowledge of the system can be incorporated
in the control structure, giving a proactive approach to disturbance rejection
rather than a reactive one. This results in a combined feed-forward-feedback
control structure.

Including the measured disturbances into an augmented measurement vector

yields

A
Ayaug = Ad}:n s (19)

and we can define the augmented linearized model

Ay?'e = GV Au + Gﬁ’a“gAda“g , (20)
where
Gy
GY-aug — (21)
Ondm~nu
and
Gy
Gye= | T4, (22)
Idm

to select H with the previously described approach. The new controlled variable
is then

Ac = H*™EAy?"8, (23)
The variances of the measurement errors, Wiay® are

Wi, 0
waue — | : (24)
0 Wiym
This can also be interpreted as a set-point adaptation scheme, where instead
of keeping
Ac®® = HAy + HYAd™ =0, (25)
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Figure 2: Block diagram of the set-point adaptation scheme for a self-optimizing control

structure with measured disturbances, adapted from [I0].

we instead control Ac = HAy to the adapted set-point Ac, = —HIAd™, as
illustrated in Fig. [2| [10].

2.4. Selecting subsets of measurements

The expressions above generate measurements combinations that in-
clude all available measurements. In practice, however, this is not necessary, as
it is found that beyond a certain number of measurements, the loss does not
decrease significantly [I7]. On one hand, more measurements improve the ac-
curacy (average loss) of the control structure, since the impact of disturbances
and noise is reduced. On the other hand, every added sensor increases the in-
vestment cost and the chance of failure. The optimal set of measurements for a
given control structure lies on a Pareto frontier, as illustrated in Fig. [3| Heuris-
tics can give a good indication of which plant measurements to include when
designing the control structure, but this approach requires system understand-
ing and quickly becomes infeasible as the complexity of the plant grows. As
an alternative, the best subset of measurements can be determined systemati-
cally using optimization. One such method is the branch and bound algorithm
proposed by Kariwala et al. [I7]. This method systematically selects the best
subset of measurements, and will be used in this work. Another method to se-

lected the optimal measurement set is by formulating the problem as an MIQP,
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Figure 3: Illustration of average loss vs number of measurements for a self-optimizing control

structure. The optimal set of a given number of measurements lies on the Pareto frontier.

where the integer variables indicate whether a measurement is active or not [20].
For the case studied in this paper, it was found that both methods found the

same optimal solution, resulting in the same measurement sets.

3. Process description

The process studied in this work is a cascaded LNG refrigeration plant,
similar to [2I]. The operational goal is to cool the pretreated natural gas to a
sufficiently low temperature such that it stays in liquid phase when the pressure
is lowered to ambient pressure. A temperature of no higher than —150 °C is
required to ensure this. After refrigeration, the LNG is sent to storage facilities.

The cascaded refrigeration plant consists of multiple, increasingly cold, closed
cycles which exchange heat with each other. The advantage of such a design
is that the mean temperature difference between the hot and cold streams can
be kept small, resulting in lower energy consumption. This particular plant has
three separate refrigerant cycles; propane, ethane and methane. An illustration

of the full process is shown in Fig. [
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Figure 4: Process flow diagram of the studied process. It consists of three interconnected
refrigeration cycles. P, E and M are used to refer to the refrigerants; propane, ethane and
methane, respectively. HP and LP refer to the high and low pressure sides of the cycles. The
condensing section of each cycle is indicated in red and the evaporation section is indicated

in blue.
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Each of the three cycles consists of a compressor, a condenser, an expansion
valve and an evaporator. For simplicity, we assume that the compression occurs
in a single-stage compressor. The compressor is driven by a turbine, which
allows the compressor speed to be adjusted.

After compression, the superheated refrigerant enters the condensing section,
in which the vapor is cooled and condensed using sea water. For a refrigera-
tion plant consisting of 3 cascaded refrigerant cycles, the condensing section of
the propane cycle can be modeled as a water-cooled condenser followed by a
propane/ethane heat exchanger and a propane/methane heat exchanger. The
ethane refrigerant enters the propane/ethane heat exchanger on the hot side of
the exchanger and the ethane/methane heat exchanger on the cold side of the
exchanger. In reality, heat is transferred in a large, multi-stream heat exchanger
to avoid unnecessary investment cost and heat loss. However, for simplicity, we
chose to model it as a series of two-stream heat exchangers.

On the low-pressure side of the cycle, the refrigerant is evaporated in a series
of cross-cycle heat exchangers and an LNG heat exchanger.

In the following subsection, we describe the system model. To generalize
and avoid unnecessary repetition of equations, we introduce the subscript i €
{propane, ethane, methane} for the three refrigerants.

Model parameters for the various units are given in the Appendix B.

3.1. Thermodynamics

The enthalpies of gaseous and liquid refrigerant, their saturation temper-
atures and pressures are determined using the AllProps software [22], which
utilizes the Helmholtz equation of state to calculate the thermodynamic prop-
erties. Surrogate models are fitted to the data calculated by AllProps and used
in the optimization.

The saturation temperature is fitted to a model on the form

2

Tsati = Y CTne 1. 108(P), (26)
=0

11



where P; is the pressure of refrigerant ¢, and cr,,, , ; are the model parameters,
which can be found in Tab. [AZ4] The specific saturation enthalpies of liquid

and vapor phases are fitted to polynomial expressions on the form

6
Hyiq,i = Z CHyiqi ,jpij (27)
§=0
6 .
Hyapi = _cq,, . ;P (28)
§=0

The coefficients cp,,,,; and cg . are shown in Tab. |£5| and Tab. @
Heat capacities for vapor refrigerant i, Cp;, are calculated as a function of

temperature T;
Cp,i
R

where R is the universal gas constant. The coefficients c¢, , ; are found in Tab.

=cc,,1+cc,, 2T +cc,, 3T7, (29)

[A77 In the liquid phase, the heat capacities are assumed to be constant.
The compressibility factor Z; is calculated using Dranchuk and Abou-Kassems

equation of state [23].

Cz;,2 Cz;,3 Cz; 4 CZ;5
Zi — 1+ CZi,l + k2] + (3 . + (2 + k2] B (30)
< (TT',i) (TT)Z')S ')4 Ty 5

Cz;,7 Cz;,8 2
+lcz,6t+ + B
( (Ti) (va)2>
Cz;,7 Cz;.8 5
— + : CZ,;,QB
((Tm) (va)2>
B2
+c¢z;,10 (1 + Czi,nBz) T3 | &P (—Cz,i,11B2) ,

where
0.27F,;

ZiTr;

In the above equations, T;. ; and P, ; are the reduced temperatures and pressures

B= (31)

of the vapor, respectively. These are defined as

T

T, = 32
e (32)
P;
Pri = )
= (33)

12
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where T, ; and P.; are the critical temperatures and pressures. The coefficients

for can be found in Tab.

3.2. Compressors

Polytropic compression models are used for the compressors. For a poly-

tropic compressor, the following relationship is valid

ki
(Tdischarge,i ) _ <Pdischarge,i ) Y (34)

Tsuction,i Psuction,i

where the Tdischarge,ia Tsuction,ia Pdischa'rge,i and Psuction,i are temperature and
pressure at the compressor inlet and outlet, and &; is the polytropic coefficient,

which is defined as
T
Ty -1

Here, 7; is the polytropic efficiency, and ~y; is the average adiabatic heat ratios

ki=mn (35)

at compressor discharge and suction:

v = ( Cp,suction,i + Cp,discharge,i R) (36)

Cp,suction,i -R Cp,discharge,i -

N | =

The polytropic head is

ki Zsuction.iR
hpoly,i = suction (Tdischarge,i - Tsuction,i) ) (37)
ng,i

where Zgyction,i 1S the compressibility factor at the compressor inlet, R is the
universal gas constant, g is the gravitational constant, M, ; is the molar mass,
The efficiencies 77; and compressor heads hpoiy,; are given by compressor

maps, which are of the form
i = Cm,lhpoly,scaled,i + Cni2 — 10(6%’3hp0ly’smled’i_cni’4) (38)

and

comp.\ Ce 1 s
(u; ) Ccomp,4

Gsuction Ccomp,tholy,scaled,i — Ccomp,3 (39)

where ggyction 18 the suction volumetric flow rate, which can be expressed as

nsuction,insuction,i (40)

)

Gsuction,i = P
suction,i

13
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where M5yction,: s the molar flow rate of refrigerant at the compressor inlet, and

h .

o poly,i

hpoly,scaled,l - (u?omp')Chpoly,scaled,i>1 (41)
%

is the scaled compressor head. u;”""" € [0.6,1.1] is the normalized compressor
speed. The coefficients for the above equations are shown in Tab. [A.9| in
Appendix B.

3.3. Valves

The flow through the valves is given by the valve equation

valve

n; = Uu; Cchoke,i Py — B (42)

where Cepoke,i is the valve constant, see Tab. [A.12] and uyev¢ € [0,1] is the

valve opening.

3.4. Fvaporators and condensers

Heat transfer in the evaporators and condensers is calculated using the log-

arithmic mean temperature difference method

. ATy, — ATy
@ v log ATy — log AT, (43)
= h cold,out — Hcold,in (44)
= Hhot,in - Hhot,outv (45)
where
ATl = Thot,in - Tcold,outa (46)
ATQ = Thot,out - Tcold,in- (47)

3.5. Dynamics

The dynamics of the system are introduced by the liquid receivers following

the condensers. The dynamic energy balances of the three receivers can be

14



Table 1: Expected values of the disturbances and their standard deviations

Disturbance Expected value Std. deviation

Tao01 20 |°C| 2 [°C]

Mao1 3.074 - 10* [kgmole/h] 1.5-10% [kgmole/h]
Tambient 51[°C 11[°C]
UAcona,p 0.51 [-] 0.0255 [-]
UAcona,E 0.45 [-] 0.0225 [-]
UAcond,m 0.27 [-] 0.0135 [-]

1es  written as

dTreceiver P h103

—receiver,P 198 (s — T 48
dt Nreceiver ( 103 104) ( )

dHreceiver :. :. . 3 . -
—a P = Hapa — Haos = iaoaHaos — 71205 Haos (49)

dHreceiver M : : . s . -
—a : = Hso5 — H306 = 1305H305 — 1306 H306 (50)
(51)

We assume that the levels are perfectly controlled, thus simplifying the dynamic

mass balances to algebraic equations.

4. Defining the optimization problem to find the nominal operating

point

1o 4.1. Fxpected disturbances

Under operation we assume that the following parameters can vary (dis-
turbances): the inlet temperature Tyo; and flow rate rgo; of the natural gas,
the ambient water temperature T,,piene in the condensers and the heat trans-
fer efficiency UA of each of the three condensers. Lower efficiency in the heat

17s  exchangers could be caused by e.g. fouling. The expected magnitudes of the

disturbances are shown in Tab. [l

15
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4.2. Operational degree of freedom analysis

Using the method described by Jensen and Skogestad [24] for identification
of degrees of freedom in refrigeration cycles, this plant can be shown to have
five potential steady-state degrees of freedom per cycle. These five degrees of

freedom are

1. Compressor power

2. Choke valve opening

3. Active charge (the amount of refrigerant circulating in the refrigeration
cycle)

4. Transferred heat in condenser

5. Transferred heat in evaporator

Adjusting the transferred heat in the evaporator can be achieved by adjusting
the load, or by bypassing the heat exchanger. For a given load, however, it is
usually optimal to utilize the heat exchanger to its full potential. Furthermore,
our refrigeration cycle lacks a way to adjust the active charge, thus resulting in
zero sub-cooling by design. The liquid receiver consequently contains saturated
liquid. [25] show that this design, although very common in industry, is sub-
optimal. This liquefaction plant therefore has three degrees of freedom per cycle,

for a total of nine degrees of freedom.

4.8. Optimization problem for optimal nominal operation

The overall aim is to minimize the energy consumption of the liquefaction
plant for a given LNG load. The nominal operating point is found by solving

the energy-minimizing optimization problem. We define the objective as
J(u) — Z Wicompressor, (52)
i

where W "P"**" ig the work performed by compressor i.
The optimization is subject to a number of operational constraints, which

are summarized in Tab.

16



Table 2: Process constraints and variable bounds for the steady-state optimization problem.

Constraint Explanation
Tuos < —150 °C Maximum LNG outlet temperature
P;p1 > 0.4 bar Minimum pressure in cycle

i = {propane, ethane, methane}
0.0 < uf’“’ke <1.0 Bounds on normalized choke openings
i = {propane, ethane, methane}
0.0< uf"”d' < 0.5 Bounds on normalized condenser flow rate
i = {propane, ethane, methane}
0.6 <u;”™ <1.1 Bounds on normalized comp. speeds

i = {propane, ethane, methane}

200 4.4. Nominal solution

Given the cost function and the constraints from Tab. a nonlinear
programming problem (NLP) was formulated and implemented in MATLAB us-
ing Casadi 3.0.0 [26] and solved using IPOPT 3.12.3 [27]. The nominal solutions
of some key variables are shown in Tab.

205 The nominal solution features four active constraints, namely:

1. Upper bound of the LNG outlet temperature

2-4. Maximum condenser duty in each cycle (3 constraints)

Our optimal solution is qualitatively similar to the one found by [I3], but differs
from [12] in that no lower pressure constraint is active. While [12] assumed

210 @ constant isentropic efficiency for the compressors, we have used compressor
maps, as discussed in Sec. [3] As a result of this, optimal operation favors
maximum efficiency, if permitted by the other operational constraints. Opti-
mal efficiency is achieved at the compressor "sweet spot", which gives inactive
pressure constraints.

215 At the optimal operating point, the overall compressor duty is 75 MW.

17
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Table 3: Nominal values of key variables

Variable Nominal value | Variable Nominal value
Tio1 —43.5 °C Tio2 414 °C
Tios 13.2 °C Too —98.1 °C
Tao2 79.6 °C Tao3 12.8 °C
Thos —~39.4 °C T301 ~154.9 °C
Ts02 82.8 °C T303 12.9 °C
T304 —40.0 °C T305 —93.0 °C
Tao1 20.0 °C Tao2 —42.8 °C
Tho3 —92.3 °C Tao4 ~150.0 °C

PR e 0.89 bar phigh e 6.95 bar

plow 0.41 bar plish 7.90 bar

P e 1.76 bar P . 33.25 bar
ples,  39.00bar | phh 39.00 bar

Wiotal 75 MW

5. Control structure design

5.1. Active constraint control and stabilization

In each of the refrigeration cycles, all liquid inventories except one must
be stabilized in accordance with Aske and Skogestads [28] rules for consistent
inventory control, to avoid overfilling or draining the tank. For this purpose,
we chose to use the chokes to control the levels of the liquid receivers after the
condensers. The LNG outlet temperature is controlled using the methane com-
pressor speed. The condenser duties in all three cycles are nominally maximized,
resulting in the usage of three potential degrees of freedom. After controlling
the active constraints and the levels, we are left with a total of two degrees of
freedom for the entire liquefaction plant. An illustration of the process with the

stabilizing control and active constraint control structures is shown in Fig.

18
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Figure 5: Illustration of stabilizing control and active constraint control structures. Stabilizing
control loops are shown in red and active constraint control loops are shown in orange. (3

condenser duties at max flow, and LNG outlet temperature controller)
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5.2. Control structure design for unconstrained degrees of freedom

In this section we consider how the two degrees of freedom remaining after
controlling the active constraints can be used to optimize the plant performance.
We devise four control structures; control structure 1 is a "standard" temper-
ature control, whereas control structures 2, 3 and 4 are self-optimizing control
structures where we control linear combinations of plant measurements. In con-
trol structure 2 we use two plant measurements, and in control structures 3 and
4 we use eight measurements. The difference between control structures 3 and
4 is that while control structure 3 only uses plant measurements, control struc-
ture 4 includes measurements of the disturbances as well, as discussed in Sec.
23] There are a total of 49 measurement candidates, primarily temperature-
, pressure- and flow measurements, which we can use to construct the linear
combinations for self-optimizing control.

As discussed in Sec. 2.4] the number of measurements in the self-optimizing
control structure should be limited to avoid unnecessary expense and complex-
ity. Ideally, a cost-benefit-analysis should be performed to find the optimal
instrumentation for the plant. Fig. [6] shows the average loss for the best set
of n measurements for SOC structures. A large reduction in average loss is
seen when using three or more measurements. It was decided that eight mea-
surements would give a reasonable trade-off between average loss and complex-
ity /cost, which is why it was chosen to use eight measurements when comparing
control structures 3 and 4 in the following sections. Furthermore, we observe
that disturbance measurements are not included in the measurement subset
unless seven or more measurements are used. "Regular" plant measurements
are preferred, as they can be used to infer information about more than one
disturbance.

We construct the scaling matrix Wy, assuming that the noise of each mea-
surement, is 1% of its nominal value, with the exception of temperature and
pressure measurements. For all temperature measurements we assumed that
the magnitude of the noise is 1 °C. For all pressure measurements, we assumed

that the noise has a magnitude of 0.2 bar for pressures on the low pressure side

20
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Figure 6: Average loss vs. number of measurements for a combination of plant measurements
(control structure 2) shown in red and a combination of plant- and disturbance measurements

(control structure 3) in blue.

of the cycle and 1 bar for pressures on the high pressure side of the cycle.

5.3. Control structure 1: "Standard” temperature control

One of the simplest operational strategies is single input - single output
(SISO) feedback temperature control. Controlling the LNG outlet temperatures
from the evaporators, as well as the condenser temperatures, is an intuitive way

to control the process [25]. The selection matrix H will in that case be

1 0
H, = (53)
0 1
with
.
yi= [T402 T403} . (54)

It can be imagined that keeping the temperatures at predefined set-points
may be sub-optimal in the event of e.g. loss of efficiency in one of the cy-

cles. Additionally, fixing the outlet temperature from each LNG heat exchanger
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means that we lose operational flexibility in terms of how to distribution the
load between the three cycles. Nevertheless, this strategy is expected to give
acceptably small losses if the disturbances are reasonably small [25]. For larger
disturbances, this control structure is expected to be sub-optimal or even infea-

sible. We calculate the average loss of this control structure using , giving

Lavg.1 = 1710.4kW. (55)

This average loss is about twice the loss expected for a control structure with
two plant measurements, as seen from Fig.

An illustration of the proposed control structure is shown in Fig. [7] In the
proposed control structure, the choke at the outlet of the receiver tanks is used to
control one of the corresponding receiver level, the condenser duty is maximized,
and the compressor is used to control the evaporator outlet temperature. The
controller pairing is based on the "pair-close" rule of thumb, but is confirmed

by calculating the steady-state RGA of system [29]:

1.0108  —0.0108
RGAL = [0.0108 1.0108:| (56)
From the RGA it is clear that a diagonal pairing should be choosen, i.e.
u@ig, = Thos (57a)
u@ig, —  Thos (57b)

5.4. Control structure 2: Controlling a combination of two plant measurements

Using the branch and bound algorithm by Kariwala et al. [17], we can find
the combination of two measurements which give the lowest average loss. These

two measurements are found to be

y2 = [T104 133()2]T s (58)

with the corresponding measurement selection matrix
1 0
H; = [ ] (59)
0 1
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Figure 7: Illustration of proposed control structure 1. Stabilizing control loops are shown

in red, active constraint control loops are shown in orange and optimizing control loops are

shown in blue.
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Using , this control structure results in an average local loss of
Lavg. 2 = 7T81.3kW. (60)

The controller pairings are found from the RGA:

1.010 -0.010
RGA, = ] ; (61)
—0.010 1.010
from which we get the following
ugnd —  H(1) (62a)
ught — H(2). (62b)

5.5. Control structure 3: Controlling a combination of eight plant measurements

A combination of measurements may result in a better performing control
structure, as discussed in Sec. [2] An illustration of the resulting MIMO control

structure is shown in Fig. [§

5.5.1. Optimal measurement selection
Using the branch and bound algorithm by Kariwala et al. [17], we can
find the combination of eight measurements which give the lowest average loss.

These eight measurements are found to be

T
y3 = [T202 To03 Paos P06 T304 Pzoa Weomp,E Wcomp,M] ) (63)

with the corresponding measurement selection matrix

__|0.120 0.042 -0.824 -3.210 0.087 —0.010 0.557  0.457
0.247 0.088 —0.286 —7.457 —0.117 —0.100 0.720 —1.047

] (64)

Note that we have scaled the variables in the model to avoid ill-conditioned ma-
trices. In the above H matrix, and all subsequent H matrices, the temperature
are in K - 102, the pressures are in bar - 10!, and the compressor duties are in
MW - 102.

Using , this control structure results in an average local loss of

Lavg. 3 = 3.438kW. (65)
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Figure 8: Illustration of proposed control structures 2, 3 & 4. The self-optimizing control

structure uses plant measurements y to find the appropriate control actions for the two com-

pressors speeds. Stabilizing control loops are shown in red, active constraint control loops are

shown in orange and optimizing control loops are shown in blue.

25



The controller pairings are found from the RGA:

1.2311 —0.2311
RGA; — l 02 ] , (66)
—0.2311 1.2311
from which we get the following
ugntd — H(1) (67a)
ugnd —  H(2). (67h)

5.6. Control structure 4: Controlling a combination of plant- and disturbance

measurements

Using the branch and bound algorithm once more, this time also including

disturbance measurements, we find that the measurements

yi = [ons Py P304 Weomp,p Weomp,E  Weomp,m  UAcona,p UAcond,Mi|T

(68)
result in the lowest average loss. When compared to control structure 3, we
see that control structure 4 contains a different set measurements. Notably we
now have a measurement of the disturbances UAconqg p and UAcona,n. Note
that these "measurements" are really non-linear soft-sensor estimates of the
disturbances, since it is not possible to measure them directly, on-line. Due to
the inclusion of the disturbance measurements, control structure 4 is expected
to reject these disturbances more efficiently, thus reducing the average loss. The

measurement selection matrix is

H 1 0 —-0.0629 —0.4587 —0.2348 —1.4381 —0.0463 0.0304 (69)
4 =
0 1 0.0139 0.0100 —0.1082  0.1375 0.0001  —0.0034

Using (18), this control structure results in an average local loss of

Lavg.4 = 3.158 kW, (70)

which is slightly lower than that of control structure 3, due to the ability to

detect and reject changes in the condenser efficiencies more efficiently.
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The controller pairings are found from the RGA:

1.1267 —0.1267
RGA, = l , (71)
—0.1267  1.1267
from which we get a diagonal pairing
ugnd —  H(1) (72a)
ugig, — H(2). (72b)

6. Comparison control structures

6.1. Steady-state losses for larger disturbances in a dynamic simulation

Fig. 0] shows the performance of the four control structures in terms of their
steady-state losses for four disturbances, evaluated on the nonlinear model. The
self-optimizing control structures clearly outperform the simple temperature
control structure. We also observe that control structure 3 and 4 perform about
equally well, with both giving very small losses for most disturbances. Note that
disturbances in the LNG flow rate are expected to result in significantly higher
losses than the other disturbances. This is reasonable, since the load directly
influences the energy consumption. Control structures 3 and 4 give much lower
losses than control structures 1 and 2 for this disturbance, which significantly

impacts the expected average loss.

6.2. Comparison of closed-loop responses

Fig. shows the performance of the four control structures in terms of
their closed-loop responses or a dynamic simulation to selected disturbances.
Again, it can be seen that the SOC structures outperform control structure 1 in
terms of the steady-state losses. All responses can be seen to be quite slow, with
a time constant of around 50 seconds. The hold-ups of the tanks were chosen
quite large, which leads to the slow responses.

We observe that the SOC structures have slightly higher transient losses,
before settling at lower steady-state losses. The transient losses are not opti-

mized by regular self-optimizing control, as self-optimizing control is inherently
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Figure 9: Steady state losses for the three different control structures: control structure 1 in
blue, control structure 2 in red, control structure 3 in yellow and control structure 4 in purple.

Note the difference in scales.

a steady-state method. Although the extension of SOC to dynamic problems
has been attempted by some authors, it is currently an immature research field
[10] and falls outside the scope of this paper. It should also be noted that
even though the transient losses can be negative (as illustrated in Fig. , the
steady-state losses can not. This is because strictly speaking, the loss is defined

in terms of the steady-state value alone.

7. Discussion and conclusion

In this paper we investigated the possibilities of applying self-optimizing
control to an LNG liquefaction plant. After implementing a model of the plant,
we found the optimal operating point by minimizing the energy consumption of
the compressors, subject to operational constraints. At the nominal operating
point it was found that the minimum outlet temperature specification was active

in addition to the maximum condenser duties, which left us with two degrees
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Figure 10: Closed-loop responses of the four control structures to selected disturbances.

of freedom for optimizing operation after controlling the levels and the active
constraints.

We implemented four different control strategies which utilized these degrees
of freedom to achieve self-optimizing control. The first control strategy was to
keep the LNG temperatures at the outlet of the evaporators constant at their
nominal operating points. This strategy resulted in relatively large steady state
losses.

The second control structure was based on controlling a linear combination
of variables to a set-point. We first identified the optimal subset of two plant
measurements, and then found the combination matrix H using the exact local
method. This self-optimizing control strategy showed significantly better per-
formance than the constant-temperature-policy. The third control structure is
similar to the second, but instead of using only two plant measurements, this
control structured used eight plant measurements in H. We observed that these
additional measurements lowered the average steady-state losses significantly.

The final control structure is similar to the third, with the only difference

being that we now include measurements of the disturbances in addition to
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the plant measurements. Due to the inclusion of disturbance measurements,
the fourth control structure gave slightly lower steady-state losses than the
third control structure for the same number of measurements, both in terms
of the average local losses and the global losses for selected (large) disturbances.
However, it seems that including measured disturbances does not significantly
improve operation in this case (compared to the improvement of using eight

instead of two measurements).
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AppendixA. Design parameters

Table A.4: Design parameters for calculating the saturation temperature in (26)

Parameter Value

Propane Ethane Methane

CTa..0 | 30053 24141  1.4966
Cra..1 | 093582 0.77135  0.51530
sz | 0.24817  0.21080  0.13110

Table A.5: Design parameters for calculating the specific liquid saturation enthalpy in ([27)

Parameter Value

Propane Ethane Methane

Ch o | 99927 04474 15187
Cht i 15991 12605  5974.2
Cpn | -11110 12132 -5488.7
Chr.s | 48384 70619  3138.6
Choa | 97054 21465  -943.33
C. .5 | 50621 3191 13842
C.e | 48879  -18.124  -7.6457
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Table A.6: Design parameters for calculating the vapor saturation enthalpy in (28))

Parameter Value

Propane Ethane Methane

Ch, o | 90369 5906 -6622.6
C, .1 | 11005 62008  2117.7
Chr, .o | 12080 78849  -1650.9
Ch. .5 | 92719 54129 51847
Chr.. .4 | 36446  -1973  -59.04
Chr. .5 | 72152  356.06 0

-56.405  -25.103 0

cI:Ivap,i76

Table A.7: Design parameters for calculating the heat capacity in

Parameter Value
Propane Ethane Methane
CCpil 1.702 1.131 1.213

cc,.i2 9.081-1073  19.225-10~3 28.785-1073
cc,.;3 -2.164-107% -5.561-107¢ -8.824.10¢
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Table A.8: Design parameters for calculating the compressibility factor in

Parameter Value
€z, 1 0.3265
€z;,2 -1.0700
cz,.3 -0.5339
€z, .4 0.01569
€z, 5 -0.05165
€7, .6 0.5475
cz,.7 -0.7361
€z, 8 0.1844
€Z;.9 0.1056
€Z;,10 0.6134
€z,.11 0.7210

Table A.9: Design parameters for calculating the compressor efficiency in ([38))

Parameter Value

Propane Ethane Methane

Coin 0.061733  0.03448682 0.0251571
Cori2 -0.074 -0.074 -0.074
Cni.3 0.338767 0.18925109  0.138053
Coid 6.5963 6.5963 6.5963
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Table A.10: Design parameters for calculating the polytropic head in

Parameter Value

Propane Ethane Methane

Ceomp.1 1.79 1.79 1.79

Ceompa | 1.9928  1.9928  0.27146
Ceomps | 35.1962  63.00  11.765
Ccompa | 18.3546  32.855  45.040

Table A.11: Design parameters for calculating the polytropic head in

Parameter Value

Propane Ethane Methane

Chyotyoenteand | 2:11 2.11 2.11

Table A.12: Design parameters for calculating the molar flow through the valve in

Parameter Value

Propane FEthane Methane

Cchoke,i 13.0 8.4 34
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