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Abstract: The efficient and safe operation of subsea gas and oil production systems sets strict
requirements to equipment reliability to avoid unplanned breakdowns and costly maintenance
interventions. Because of this, condition monitoring techniques are employed to assess the status
of the system in real-time. However, the condition of the system is usually not considered
explicitly when finding the optimal operation strategy. Instead, operational constraints on flow
rates, pressures etc., based on worst-case scenarios, are imposed. This can lead to unnecessarily
restrained operation and significant economic losses. To avoid sub-optimal operation, we propose
to integrate diagnostics and prognostics with the optimal decision making process for operation
to obtain an operational strategy which is optimal subject to the expected system degradation.
This allows us to proactively steer the system degradation, rather than simply reacting to it. We
use the operation of a subsea gas compressor subject to bearing degradation as a case example.
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1. INTRODUCTION

Subsea processing technology is an enabling technology
for fields that were previously deemed too remote; too
deep or far away from existing infrastructure. However,
several industrial challenges arise when moving topside
equipment to the seabed. One of the potentially most
prohibitive challenges is the inaccessibility of the plant
for large parts of the year, and the need for specialized
intervention ships. Consequently, unplanned shut-downs
can be very costly and must be avoided as far as possible.
In order to achieve this, strict reliability constraints are
imposed on design and operation of the plant. While
these safety margins provide a method to ensure reliable
operation, they might be overly restrictive. One reason for
this is because the information from the health monitoring
system is often not utilized directly in the decision making
process. Instead, a ”worst-case” approach is often used to
determine production set-points.

In this paper we propose to integrate health monitoring,
prognostics and control to obtain a operation strategy that
ensures optimal economic profit, but without jeopardizing
the plant reliability. In particular, we include a health
degradation model in our optimization routine, resulting
in a model-predictive control (MPC)-like framework where
we impose constraints on the allowable degradation of the
equipment. To ensure robustness towards disturbances or
uncertainty in the process model, we consider a stochastic
optimal control problem. We discretize the uncertainty
and solve the resulting multi-stage, scenario-based optimal
control problem with direct collocation.

2. BACKGROUND

A brief repetition of relevant theory relating to optimiza-
tion and optimal control is given in this section.

2.1 Model predictive control

The MPC principle, which has become popular in industry
in recent years due to its ability to deal with constrained,
multivariate, and nonlinear control problems, is based on
the repeated optimization of the system model, subject
to constraints (Morari and Lee, 1999). The first input
of the optimized input trajectory is implemented in the
plant, before new measurements are taken and the model is
re-optimized. For a general differential algebraic equation
(DAE) system, the optimal control problem (OCP) which
is solved at every time step, can be written as (Biegler,
2010):
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where ¢ is the objective function, = denotes the differ-
ential states, x denotes the algebraic states, u denotes
the inputs and 7 denotes the parameters. Two different
classes of methods exist for solving OCPs: direct and
indirect methods. While indirect methods give continuous



input profiles, direct methods only provide approximate
solutions due to time discretization. Still, direct methods
are more commonly encountered due to their ease of imple-
mentation and availability of efficient solution algorithms.
Direct methods exist in three flavors, depending on how
the dynamics are threated. In single shooting, the entire
input profile is integrated at once, starting from some ini-
tial state. The drawback is that no information about the
states is available to the solver, which can potentially lead
to convergence issues if the system is highly non-linear.
In multiple shooting, as the name suggests, the system
integration is split up into multiple short time intervals.
Shooting gaps are added as constraints to make sure that
the state trajectories are continuous. The final way of solv-
ing OCPs is by using direct collocation, in which the state
trajectories are approximated by orthogonal polynomials
(Diehl, 2011).

2.2 Optimization under uncertainty

When the parameters m are described by a probability
distribution ¢ rather than a single value so that 7 € £ C
R™, the optimization problem in (1) becomes a stochastic
optimization problem.
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where E denotes the expectation operator.

With the exception of the case when (2) is an LP, it
is generally quite difficult to solve, since it is infinite-
dimensional due to the constraints (Birge and Louveaux,
2011). Many approaches for solving stochastic program-
ming problems exist in literature, including worst-case op-
timization, chance-constrained optimization and scenario-
based optimization. In this paper we will use a scenario-
based approach to uncertainty. Based on multi-stage
stochastic programming, the main idea is to discretize
the probability distribution of the uncertain parameter
into scenarios. Each scenario represents a path of possi-
ble future parameter realizations. Scenarios are bundled
together in scenario trees, as shown in Figure 1. Each new
branch in the tree represents the possibility of recourse,
e.g. the possibility to adjust the inputs in a control setting.
While constraint satisfaction can usually not be guaran-
teed except in the convex case and when the uncertainty
set is bounded, the scenario-tree approach performs well
for nonlinear systems as well, as long as the nonlinearity
is reasonably small (Lucia et al., 2013a).

Due to the exponential growth of the scenario tree with
the number of possible parameter realizations at each
node, we usually only consider branching up until a
point called the branching horizon (Lucia et al., 2013a).
The parameters are kept constant after the branching
horizon. Since branching represents the availability of new
information in the future, shortening the robust horizon
means disregarding future state information.

Because decisions can not depend on, or anticipate, future
realizations of the parameters, it is necessary to include

so-called nonanticipativity constraints. These constraints
link together the decisions of scenarios which are branching
from a common mother node. For example, the non-
anticipativity constraints for the tree in Fig. 1 can be
written as
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The scenario-based deterministic equivalent of the stochas-
tic OCP reads as
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where S is the number of scenarios, N is the horizon
length, p; is the probability associated with scenario ¢,
¢ is the objective function, ¢; and cg are the inequality
constraints and equality constraints, respectively, and A na
is the non-anticipativity constraint matrix. Note that we
have dropped the subscripts i, k from the variables z, z, u
and 7 to avoid cluttering up the notation.

Scenario-based problems often have a high degree of spar-
sity. Each scenario is one block, with the only thing cou-
pling the blocks together being the nonanticipativity con-
straints. An illustration of this is shown in Fig. 2. Note the
banded structure of the Jacobian of the constraint matrix
in Fig. 2. This structure is typical for OCPs, due to the
repeated constraints for each stage in the prediction hori-
zon. Similar structure can be seen in the Hessian and con-
sequently the KKT matrix. Problems of this type can be
solved rather efficiently in solvers such as IPOPT (Wéchter
and Biegler, 2006), as they can exploit the sparsity struc-
ture of the problem. Furthermore, in the case of stochastic
OCPs, the structure can be exploited by dualizing the dy-
namics and the nonanticipativity constraints. This means
that the system is decoupled, and the solver solves many
small subproblems (the scenarios) instead of the original,
large system. A master problem coordinates the solving
of the subproblems and enforces nonanticipativity. This
approach also allows for parallelization of the subproblems,
which can significantly speed up the calculations.

Creating a scenario tree which captures the true nature
of the uncertainty is a difficult task in and of itself.
On one hand, the scenario tree should as detailed as
possible to be a good approximation of the probability
distribution. On the other hand, the scenario tree should
be as small as possible due to the curse of dimensionality,
which states that the size of the problem, and thereby
the computational demand required to solve it, grows
rapidly when the number of scenarios is increased. Scenario
generation is out of the scope of this paper. We refer the
interested reader to Dupacova et al. (2000). In the current
work, we do as proposed by Lucia et al. (2013b), which is
to generate the scenario tree by using combinations of the
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Fig. 1. Scenario tree with prediction horizon n, robust horizon n,pyust = 2 and 3 possible parameter realizations (7,
70 and 71) at each branching node. Every scenario has an associated probability p;.

maximum, minimum, and possibly the nominal uncertain
parameters, as identified in the parameter estimation step.

2.8 Moving horizon estimation

Moving horizon estimation uses nonlinear programming to
estimate states or parameters in DAE systems. Measure-
ments of the system are corrupted by process disturbances
w and measurement noise v, both of which are assumed to
be unknown. In addition, the system initial state z(0) is
often not known either, making it difficult to say anything
about the validity of the measurements and hence the true
system state. Luckily, we can compare the measurements
to a reference model. By minimizing the least squares error
between the measured state and the predicted state, we
can estimate the states. The NLP which is solved at each
stage in the MHE can be written as (Rawlings and Mayne,
2009, Ch.4)
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Fig. 2. Sparsity structure of the constraint matrix for a
stochastic OCP with prediction horizon N = 20 and
3 scenarios. The coupling constraints are circled in
red.

Here, we use hat (%) notation to indicate the estimates of
the corresponding variables. P is the covariance matrix,
while @ and R and the weighting matrices for the stage
cost. x is the previous estimate of the initial state.

The arrival cost contains information about the confidence
level of the initial state prediction, and thus gives a
measure about the quality of the state estimates. In
this paper, we use the extended Kalman filter (EKF) to
calculate the arrival cost. Though more advanced filters,
such as particle filters and ensemble Kalman filters exist,
these filters will not be used for now. Given the model

dx
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The covariance matrix update equation in EKF can be
written as
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3. PROCESS DESCRIPTION

Our case study is a subsea gas compression station, similar
to installations on the Asgard field and the Ormen Lange
pilot. The purpose of the gas compression station is to
boost the pressure of the stream so that it is sufficiently
high to overcome the pressure drop in the transportation
pipeline and arrive at the receiving facility topside with
the desired outlet pressure. A multiphase boosting pump
could be used for this purpose, but since the maturity level
of the technology is limited, it is chosen to split the well
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Fig. 3. Subsea gas compression station

stream into its gas and liquid components before increasing
the pressure of each sub-stream. An illustration of the
process is shown in Figure 3. The system consists of a
well choke with which the flow of the hydrocarbons from
the reservoir can be controlled. From the reservoir, the
stream enters a gas-liquid separator, whose purpose it is to
separate the gas from the oil and water. Due to imperfect
separation, liquid droplets can be carried over to the gas
outlet of the separator. The pressure of the liquid outlet
is boosted by a pump before being recombined with the
gas. Meanwhile, the pressure of the gas outlet is increased
in a compressor. The compressor is modeled as a wet-gas
compressor which can handle moderate amounts of liquid
carry-over (Aguilera, 2013).

3.1 Diagnostics and prognostics

To make meaningful decisions about future production, it
is not only necessary to know what the health state of the
equipment is at the current time, but one must also be
able to predict how the condition of the equipment will
develop in the future. Diagnostics is about the detection
and monitoring of faults, whereas prognostics is about the
prediction of health evolution and estimation of equipment
RUL. When talking about a complex system such as
a subsea gas compression station, there are potentially
hundreds of components which can fail. Since it is not
feasible to monitor every single possible point of failure,
we chose to monitor only the most vulnerable parts of
the system, which for this process are identified to be the
bearings in the wet gas compressor. If these bearings were
to break down, all operation would have to cease until the
broken bearing is replaced. These bearings are subjected
to high mechanical stress due to their fast rotational speed,
which make them prone to failure.

The health condition of the bearings can be estimated from
vibration measurements. We will not go into detail about
how this can be done, as it falls outside the scope of the
paper. For a full overview, see the (Wang and Kootsookos,
1998). For simplicity, assume that the health state can
be measured directly, but that the measurements are
corrupted by white noise. Once a fault has been initiated,
the bearing will degrade according to Paris’ law of crack
propagation (Paris and Erdogan, 1963).

4. MODEL DESCRIPTION

Below we describe the model used for this work. We
assume that the fluid can be described by its gas part and
its liquid part. The composition of the fluid is assumed to
be constant, and the same in both gas and liquid phase.
The thermodynamics of the fluid are mostly ignored,
except for necessary properties such as the heat capacity
and the compressibility, which are modeled using empirical
relationships. The reservoir, the pump and the pipeline
are not modeled in this work, but will be included in the
future.

4.1 Compressor

Since the objective is to ensure reliable operation of the
compression station until the next planned maintenance
intervention, the timescale of the system is several months.
It is therefore reasonable to assume that the dynamics of
the flows, temperatures and pressures can be assumed to
be instantaneous. Consequently, the only dynamics rele-
vant for this study is the compressor bearing degradation
model, which is given by Paris’ law.

dx

— — X CParis *

dt
Pou?
= T CParis *
Ucomp.

Here, = denotes the bearing crack length, i.e. the compres-
sor degradation indicator. cpg-s iS a lumped parameter,
Tor is the motor torque and Pow is the motor power.
Ucomp. 1S the shaft frequency, which is a control input. We
have assumed that the motor torque can be used as an
indicator for gross strain (Bechhoefer et al., 2008).

(Tm2 Ucomp.) (16)

(17)

The compressor is a typical polytropic compressor, which
can be described by standard equations found in most
textbooks on the topic. For completeness, we repeat the
model here.

The polytropic relation is given by
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where 7 is the compressor efficiency, C), is the heat capacity
and R is the gas constant. The heat capacity of a stream
is calculated as

Cp = (c1+ T+ csT? +esT°) R (21)
The compressor head is
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H=k 22
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Z is the compressibility factor of the gas, g is the grav-
itational constant, and M is the molar mass. The com-
pressibility factor is calculated using Dranchuk and Abou-
Kassems equation of state (Dranchuk et al., 1975)

A As A4 A5
Az Ag 9 A7 Ag 5
(A6+T. T2>~0 T, +T2 - Ag-0° (25)
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T, and P, denote the pseudo-reduced temperature and
pressure, respectively. It can be seen that since Z in Eq. 25
depends on Z through o, which itself depends on Z, the
system of equations describing the model form a semi-
implicit index-1 DAE.

here, o is

(26)

Sfwood 18 Woods correction factor, which accounts for liquid
at the inlet of the wet gas compressor (Hundseid et al.,
2008).

1
fwood = (27)
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The average density of the inlet is
Pavg = GVFML * Pin + (1 - GVFin)pcond. (28)

where GVF is the gas volume fraction of the stream and
Pcond. 18 the density of condensate. The compressor power
can be found from the energy balance

Pow — HinPing

n

Here, we use ¢ to denote the volumetric gas flow. Fur-
thermore, we need to define two variables, Srg and Stw
which indicate surge and Stonewall conditions (compressor
choking), respectively. Values less than zero indicate either
compressor surging or choking, which are both undesired
phenomena.

(29)

Srg=H + 08qfn + c9qin + C10 (30)
Stw=H + c11¢5, + c12Gin + €13 (31)

Finally, we need to express the efficiency 7 in terms of the
gas volumetric flow and the compressor speed as

n= f(qim Ucomp.) (32)
The function f is given by the compressor map, which is
unique to each compressor. We use a polynomial fit of the
compressor map from Aguilera (2013).

4.2 Choke

Opening and closing the choke adjusts the flow into the
separator. The flow through the choke is given by the valve
equation

M = UchokeCchoke Pzn - Pout (33)
where c.pore is the choke constant, and ucpore is the choke
opening. The mass flow relates to the volume flow through

m=qp (34)
and to the gas-volume-fraction as
GVF= — o (35)

Qgas T Gcond.

4.3 Separator

The separator splits gas and condensate into separate
streams. The separator efficiency is modeled as a function
of the gas velocity and the fluid density (Austrheim, 2006).
The separation efficiency « is given by

Pgas?

a=1- — 1505, K° (36)
C14
where K is
q Pgas
= 37
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A is the cross-sectional area of the separator.

4.4 Model summary

The model describing the gas compression system is a
semi-implicit index-1 DAE with one differential state and
36 algebraic states. Two control inputs are available,
namely the choke opening u.pore and the compressor speed

Ucomp. -
5. DEFINING THE OCP

The objective of the controller is to achieve economically

optimal operation, subject to health constraints. The
objective function is
ty
min B / _Mgas(,2,,8) Y (38)
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where the discount factor r = 0.015. The deterministic
equivalent objective function is

my 3 (THEEE)
The variable bounds are
0.75 < Ucomp, < 1.05 (40)
0 < uchoke <1 (41)
0< =z <1 (42)
0< Srg (43)
0< Stw (44)
150 bar < P, (45)
z(0) = xo (46)

The constraints on Srg and Stw are added to limit op-
eration to the allowable operating region, while the con-
straint on P,,; is imposed after the compressor to ensure
flow through the long pipeline to the topside. The initial
condition z of the OCP is the estimated state £(0) from
the MHE step.

Since the problem is a DAE with constraints on the
algebraic states, we chose to solve the OCP with direct
collocation with a Radau scheme. It would be possible
to solve the problem using multiple shooting with an
implicit integrator as well, but we would have to force the
integrator to report the algebraic states in order to impose
constraints on them. We solve the problem in a shrinking-
horizon manner, starting with an initial prediction horizon
of N = 20 with d = 3 Radau points on each finite element.



The parameter cpg,is in the crack propagation model from
Eq.(16), and the gas volume fraction in the reservoir G VF,
are assumed to be uncertain. The possible realizations of
the uncertain variables are given in Tab. 1. The possible

Table 1. Values of the uncertain variables ¢ pgis
and GVF in the scenarios.

Parameter High Low Mean
CParis 1.10 0.90 1.00
GVF 0.92 0.88 0.90

realizations of the variables are combined to form the
scenarios for the scenario tree. The first stage has five
branches, being the extreme realizations and the mean.
Each of those branches splits into nine more branches, this
time being all possible combinations of the realizations.
The scenario tree thus consists of 45 scenarios, and has a
robust horizon of n,opyst = 2.

6. DEFINING THE MHE

The moving horizon estimator is used to estimate the
health state x from the noisy measurements, and the
parameter cpgqs. The estimator uses a reduced order
model of the system. We assume that measurements of
Pow are available, so that Eq. (16) can be used directly
to estimate the variables. The MHE model is therefore a
pure ODE with one differential state.

The weights for Q and R are based on trail and error. It
was found that

R = diag(0.02?)
Q = diag(0.03%,0.03?)

gave satisfactory performance.
7. RESULTS

Both the stochastic MPC and the MHE were implemented
in MATLAB using Casadi 3.0.0 (Andersson, 2013) and
solved using TPOPT 3.12.3 (Biegler, 2010) with MUMPS
as linear solver.

At time t = 0 a crack of length g = 0.01 is initiated. The
estimator is initiated at £ = [0.0 1.5]T, and Py = I. The
MHE was initialized with a vector of measurements around
T, with added white noise. At t = 2.5, the GVF'is changed
from 0.9 to 0.92, to simulate a change in the reservoir
conditions. The closed-loop solution of the health-aware
controller with a maintenance horizon of 5 years is shown
in Fig. 4. The corresponding state and parameter estimates
from the MHE are shown in Fig. 5.

The results seem logical. It can be seen that the gas
production rate is high in the beginning and decreases
over time. This is caused by the NPV term in this cost
function, which favors early gas production over late gas
production. The optimal solution in absence of uncertainty
is to maximize the gas production while keeping the
outlet pressure constraint active, in order to avoid costly
over-compression of the gas, as this will degrade the
compressor faster. One can think of this strategy as using
the compressor to control the outlet pressure and using
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Fig. 4. Closed loop profiles of the controlled variables and
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the choke to control the production profile such that the
health constraint is not violated. It can be seen that
in the presence of uncertainty, the optimal strategy is
to back off from the pressure constraint to account for
possible variations in the GVF. When the change in GVF
occurs at ¢t = 2.5, the outlet pressure constraint becomes
active. Even in the presence of uncertainty, the maximum
allowable degradation constraint is not violated. Towards
the end of the horizon, the controller realizes that the
health constraint will hold, and it tries to squeeze more
gas production out of the system by briefly increasing the
inputs.

The moving horizon estimator tracks the states relatively
closely. The non-linearities from one sample time to the
next are not very large, so the EKF does a reasonable job
at propagating the state covariance matrix and initial state
estimates. It can be seen in Fig. 8 that the state x is tracked
very closely. The parameter estimate ¢épy.s is decent, but
could most likely be improved by adjusting the tuning
parameters in the MHE, or by using more samples at each
stage. Currently, the estimator has a prediction horizon
of 30 samples, which might be too short to capture the
dynamics of the system. Towards the end of the horizon,
the estimates become worse because the noise level is
increasing (the noise is proportional to the state).

8. DISCUSSION

The success of our proposed approach hinges on the quality
of the degradation model and condition monitoring capa-
bilities. Our approach relies on the equipment vendors to
provide models and data for performing the diagnostics
and prognostics. Since the objective of this paper is to

demonstrate our method, we have chosen to use a rela-
tive simple degradation and diagnostics model, that we
adapted to our purposes.

Scenario-based approaches are robust to uncertainties /
disturbances, as long as their set of possible realizations
is captured reasonably well by the scenario tree approxi-
mation. One might be tempted to model all variables in
terms of their probability distributions, but this would
lead to a large number of scenarios, which would become
intractable to solve in reasonable time. Indeed, we ob-
served slow convergence already at 45 scenarios, which is
a small number of scenarios in the context of stochastic
optimization (Birge and Louveaux, 2011). While warm-
starting somewhat helped to speed up convergence, the
interior point method employed by IPOPT does not re-
ally utilize warm-starting as well as an SQP-based solver
would (Diehl, 2011). Even though sparsity of the stochastic
program can be exploited by the solver, decomposition
(via Lagrangian relaxation (Nowak and Romisch, 2000))
and parallelization are necessary to increase the number
of scenarios even further while keeping the computational
time down. While computational time is not a major
issue for the implementation, since the time constant is
measured in years, it is desirable to have fast convergence
when prototyping.

On the other hand, the number of scenarios can be re-
duced by shortening the robust horizon. We observed that
increasing the robust horizon beyond 1 gave diminishing
returns at the cost of a much larger NLP. Due to the
frequent re-optimization of the problem, the added value
of additional branching is negligible.

It should also be mentioned that disturbance rejection,
as shown here for a disturbance in GVF should be han-
dled at the underlying control layer, rather than at the
”scheduling” layer considered here. A multi-layer approach
will be investigated in the future. For now, we included
a disturbance in GVF to show that the scenario-based
approach is robust towards unmeasured disturbances as
well, as long as they are included in the scenario tree.

9. CONCLUSION AND FUTURE WORK

We showed how prognostics and control can be combined
to a subsea gas compression plant subject to compressor
bearing failure. By including measurements of fault indica-
tors and fault prognostic models in the MPC framework,
we can ensure that the operation is both economically
optimal and safe. Disturbances and uncertainty in the
degradation model are handled explicitly by formulating a
scenario-based shrinking horizon MPC.

In future work, we will consider multiple failure mecha-
nisms, not only bearing failures. Furthermore, we will look
at the possibility of including more scenarios by using
decomposition and parallelization to handle the larger
NLP. We would also like to look at methods to solve the
problem to global optimality, since this is an important
aspect when considering reliability.
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