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Abstract
The application of self-optimizing control theory to a two-stage refrigeration cycle was investi-
gated. Defining the cost function as the economical trade-off between the power consumption
and the evaporator outlet temperatures, it was found that the optimal point of operation leaves
two unconstrained degrees of freedom for implementing a self-optimizing control structure. We
consider two cases: (1) where the self-optimizing control structure is designed to optimally reject
only physical process disturbances, and (2) where the control structure in addition handles
changes in the economic parameters of the cost function. The control structure is able to keep
the process close to optimal despite disturbances and changes in the product prices, and thus
making a supervisory real-time optimization (RTO) layer unnecessary.

Keywords: Self-optimizing control; refrigeration cycle; optimal control;

1. INTRODUCTION

Recently there has been an increased focus on improving
energy efficiency in industry. Especially in large processes
such as in the petrochemical industry there are substential
potentials for savings due to the large power consumption.
Multi-stage refrigeration cycles are large consumers of
energy, so their optimal operation is an important topic
of research.
In the presence of disturbances, implementation errors and
changing operating conditions, the optimal operation of a
process plant becomes non-trivial. One method for achiev-
ing optimal operation at all times is "on-line optimization"
Ellis et al. (2014). Unfortunately, this method can be quite
costly since it is often based on the optimization of a con-
trol trajectory over a prediction horizon. Depending on the
complexity of the model, this dynamic optimization can
be very computationally intensive. Model based control
of refrigeration cycles was investigated further by Larsen
(2006) and Leducq et al. (2006). A lot of research has been
done on the field of economic model predictive control for
supermarket refrigeration systems, see for instance Larsen
et al. (2007); Sarabia et al. (2007); Hovgaard et al. (2012)
and the therein included references. The disadvantage of
a model predictive control approach is that it requires a
good model of the process, and that the computation time
might be prohibitive.
A much simpler approach is to use a simple control
structure to keep a carefully selected controlled variable
at a constant setpoint. This concept was introduced by
Skogestad (2000) and coined "self-optimizing control".
More precisely: More precisely: "Self-optimizing control
is when we can achieve an acceptable loss with constant
setpoint values for the controlled variables (without the

need to reoptimize when disturbances occur)." Skogestad
(2000)
The self-optimizing controlled variables are often selected
as either single measurements or linear combinations of
measurements, which are usually controlled by simple PI
or PID controllers.
Optimal operation of simple refrigeration cycles was stud-
ied by Jensen and Skogestad (2007a,b), who propose to
use a feedback controller to keep a linear combination of
two measurements, the high pressure and a temperature,
constant. They determine the optimal combination of the
measurements using the extended null space method (Al-
stad and Skogestad, 2007). Larsen et al. (2003) proposes a
similar strategy based on using a cascade formulation with
the outer loop calculating the setpoint for the condenser
pressure slave controller. Both Jensen and Larsen consider
different variations of a single-stage layout.
In this paper we design a self-optimizing control structure
for a two-stage refrigeration cycle to ensure the optimal
operation. It thereby generalizes the results suggested by
Jensen and Skogestad (2007b) by including all plant mea-
surements rather than just pressure and temperature mea-
surements. We also apply a branch and bound algorithm
(Kariwala and Cao, 2009) to find the optimal subset of
measurements that minimize the loss. Finally, we show
how self-optimizing control can be used to ensure optimal
operation when the cost parameters are not constant over
time.
In the following section, self-optimizing control theory will
be presented. In Section 3, the model of the two-stage
refrigeration cycle will be presented. Two variations of the
same case were studied. The first case resulted in a self-
optimizing control structure with five plant measurements.
The second case resulted in a self-optimizing control struc-



ture with measurements of the economic parameters from
the cost function in addition to the five plant measure-
ments. Results from the optimizations will be presented
in Section 4 and Section 5. Finally, the conclusion is
presented in Section 6.

2. SELF-OPTIMIZING CONTROL

The controlled variable which is a linear combination of
measurements is designed such that it satisfies

c = H · y (1)
H is known as the selection matrix. c is chosen such that
the loss L is minimized

min
u,c

L = J(u, c)− Jopt(d)

s.t. g(u,y) ≤ 0
(2)

The optimization is subject to equality- and inequality
constraints on the decision variables. Active constraints
must be controlled to avoid a large back-off from the
optimal solution (Wright and Nocedal, 1999)
The remaining unconstrained problem from Equation 2 is
approximated by a Taylor expansion truncated after three
terms, yielding

L ≈ 1
2
(
u− uopt)ᵀ · Juu ·

(
u− uopt) (3)

It has been used that the gradient Ju is zero at the
optimum.

Exact local method

A commonly used method to obtain the selection matrix
H is called the exact local method. Assume that the
cost function can be approximated by a local Taylor
expansion around the nominal point. It is then shown by
Kariwala et al. (2008) that the average loss from Equation
3 for all linear combinations of implementation errors and
disturbances is given by

Lavg = 1
2 ‖[Md Mny ]‖2F (4)

where the Frobenius norm is signified by the subscript F .
It can be shown that the normed term from Equation 4
can be written as

[Md Mny ] = Juu
1/2 (HGy)−1 HY (5)

where
Y = [FWd Wny ] (6)

The sensitivity matrix is defined as F = ∆yopt

∆d . It is
assumed that both the disturbances and the measurement
errors follow a Gaussian distribution. Wny and Wd are
diagonal matrices containing the variances of the measure-
ment errors and the disturbances, respectively.
Subsequently, the selection matrix that minimizes Equa-
tion 4 is given by the following expression.

min
H

=
∥∥∥Juu

1/2 (HGy)−1 HY
∥∥∥

F
(7)

An analytical solution of H which satisfies Equation 7 is:
(Alstad et al., 2009)

Hᵀ = (YYᵀ)−1 Gy
(

Gyᵀ (YYᵀ)−1 Gy
)−1

Juu
1/2 (8)

It can be shown that Equation 8 can be simplified to:
(Yelchuru and Skogestad, 2010)

H̃ᵀ = (YYᵀ)−1 Gy (9)

3. PROCESS DESCRIPTION

The model studied in this work is based on the two-
stage refrigeration cycle described by Asmar (1991). A full
description of the model used in this work can be found in
Verheyleweghen (2015). The process is based on a similar
refrigeration cycle that is currently being operated in a
petrochemical plant. A figure of the process can be seen
in Figure 1.
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Figure 1. Process flow diagram of the studied process.
The cycle is a two-stage cycle with two-stage throttling.
The two compressor models are based on compressor
curves, relating the compressor head, the suction volumet-
ric flowrate and the compressor speed. The compressors
are driven by a variable speed steam turbine, which is
linked to the compressors with a common drive shaft. For
simplicity, it is assumed that no mechanical or thermal
heat loss is observed, so that the energy consumption
of the compressors equals to the enthalpy difference of
the refrigerant from inlet to outlet. Interstage injection
of saturated refrigerant increases the energy efficiency by
reducing the load in the low pressure evaporator and by re-
ducing the overheat into the second compressor (Granryd,
2009). The injection of saturated vapour can be adjusted
by manipulating the control valve XV1.
Heat is removed from the system at two different temper-
atures. The majority of the heat is removed in a kettle
reboiler at low pressure (LP) and low temperature. The
pressure in this vessel is approximately 1 bar. At interme-
diate pressure (IP), heat is removed in a flash evaporator at
a higher temperature. The pressure in this vessel is around
4 bar. The LP evaporator is approximately ten times larger
than the IP evaporator. The distribution of gas and liquid
in the two evaporators can be shifted by adjusting the con-
trol valves XV1 and XV2. In both evaporators the process
streams exchange heat with the refrigerant through coiled
pipes. It is assured that the heating coils are always fully
submerged in the liquid by constraining the levels in the
tank. The heat transfer coefficient and the heat transfer
area are therefore assumed to remain constant at all times.
The compressed refrigerant is condensened in a air-cooled
condenser. The condensate is collected in a receiver vessel.



The receiver also acts as a buffer tank against disturbances
and helps to ensure constant operating conditions in the
evaporators and the compressors. Due to the large size of
the receiver, it introduces a large capacity to the cycle.
This is especially noticable for temperature (and conse-
quently also saturation pressure) measurements, which
take a very long time to reach a new steady-state value
if a step change in the operating conditions is applied to
the system.
The thermodynamic states of the refrigerant are calcu-
lated using polynomial approximations of the Helmholtz
equations of state calculated by the AllProps software
(Lemmon et al., 1994).
Due to the recycle loop in the refrigeration cycle, the state
derivatives can not be expressed explicitly, but must be
solved iteratively instead. In other words, the process must
be written as a DAE system, rather than a ODE system.
The model equations from Asmar (1991) result in a DAE
system with six differential equations and ten algebraic
equations, though additional equations were added to
the system in the current work to accomodate for input
dynamics, level controllers and additional algebraic states.
The resulting system of equations is integrated with the
MATLAB-function ode15s.

4. CASE ONE - REGULAR SELF-OPTIMIZING
CONTROL WITHOUT MEASUREMENTS OF

ECONOMIC PARAMETERS

4.1 Definition of the cost function

The objective of the optimization is to find the optimal
economic trade-off between the energy consumption and
the recovery of valuable molecules on the process side.
As a simplification, it is assumed that the recovery solely
depends on the outlet temperature from the evaporator.
The cost function can be written as
J = pWtot

·Wtot + pTP1O · TP1O + pTP1O · TP2O (10)
here, pi is the price associated with term i. A large energy
cost causes the optimizer to prioritize minimization of
Wtot, whereas a high value of the recovered molecules will
cause the optimizer to prioritize the minimization of the
outlet temperatures.
Due to the lack of economic data from this specific plant, it
is not possible to accurately estimate the price parameters.
It is reasonable to assume that since the process stream
entering the LP evaporator has a lower temperature and a
larger mass flow rate than the process stream entering the
IP evaporator, pTP1O must be larger than pTP2O, due to
the larger recovery of valueable molecules on the process
side. In this work, we assume that

pW = 0.1e/kWh
pTP1O = 12e/Kh
pTP2O = 0.1e/Kh

As a first case, we assume the price parameters are time-
invariant. Due to fluctuations in the economic parameters,
this may not be the case in practice. It is possible to use
real-time optimization to include the effect of changes in

pW , pTP1O and pTP2O. Alternatively, one can include mea-
surements of these parameters in the controller setpoint,
which will be discussed as a second case in Section 5.

4.2 Nominal solution

Given the cost function from Equation 10 and the decision
variable constraints defined in Verheyleweghen (2015), a
nonlinear programming problem (NLP) can be defined
to find the optimal steady-state solution. The NLP was
solved using the interior point algorithm in the fmincon-
function in MATLAB. For this particular combination of
cost function parameters and decision variable constraints,
it was found that the optimal solution had two out of
the three dynamic inputs unconstrained. Two inputs were
used to control the levels of the three pressure vessels,
in accordance with the rules for inventory control defined
by Aske and Skogestad (2009). XV2 and XV3 were used
to control the levels in the LP evaporator and in the IP
evaporator, respectively.
Out of the remaining three dynamic degrees of freedom,
it was found that the cooler duty FCP3 is always active
on the upper constraint since no cost is associated with
it. The turbine speed N is approximately halfway between
the lower and upper bound. The same is true for the valve
opening XV1, though it is observed that the constraint
region in which XV1 is unconstrained is relatively narrow.
It was found that the nominal cost was J = 2821e/h.

4.3 Optimal selection of measurements

Using all available measurements in the calculation of the
selection matrix H would give the best possible control.
However, this is not a viable strategy in practice, since each
measurements increases the overall chance of failure of the
controller. If the process has not been built, the increased
investment cost and complexity of the control structure
also advise against the excessive use of measurements.
For these reasons, the amount of measurements used in
the calculation of H should be kept to a minimum. The
best subsection of measurements can be determined using
the branch and bound algorithm (Kariwala and Cao,
2009). For the studied process, it was found that five
measurements gave acceptably low loss. For the first case,
the five best measurements are

TC, P1, TP1O, FG1 and FG3

4.4 Optimality of controlled variables

A self-optimizing controller was implemented with the
remaining two unconstrained degrees of freedom. For the
five best measurements, the selection matrix H was cal-
culated using Equation 9. The variance matrix Wny was
constructed assuming that the variance of each measure-
ment is equal to 1% of the nominal value. For tempera-
ture measurements, ωTi = 0.5 K was used. The expected
disturbances were assumed to include TP1I, TP2I and
TP3I, being the inlet temperatures to the LP evaporator,
the inlet temperature to the IP evaporator and the inlet
temperature of the air in the condenser, respectively. FCP1
and FCP2, being the combined mass flow rate and heat ca-
pacity of the process inlet to the LP and IP evaporators re-
spectively, were also treated as disturbances. The variances



Table 1. Losses for self-optimizing control ver-
sus constant setpoint policy for some distur-
bances. Note that the losses are very small
compared to the nominal cost of J = 2831e/h

Variable Disturbance Loss [e/h]
Self-optimizing Constant inputs

TP1I +3K 0.340 · 10−2 15.114 · 10−2

TP2I +3K 0.076 · 10−2 0.018 · 10−2

TP3I +3K 0.020 · 10−2 3.424 · 10−2

FCP1 +10W K−1 17.146 · 10−2 29.366 · 10−2

FCP2 +3W K−1 0.190 · 10−2 0.208 · 10−2

of the disturbances were set to σTP1I = 3 K, σTP1I = 3 K,
σTP3I = 5 K, σFCP1 = 10 W/K and σFCP2 = 3 W/K.
The performance of the controller was tested for a set of
disturbances as shown in Table 1. The steady-state losses
are compared to the losses from a constant-input policy. It
can be seen that the closed-loop loss is significantly lower
than the open-loop loss on average. However, for some
disturbances the losses are in fact higher for the controlled
system. This is to be expected when using the formulation
from Equation 4. Even though the effect of implementation
error is not shown here, it can be observed that the closed-
loop system outperforms the open-loop system.
It is also observed that the losses are almost neglible com-
pared to the nominal values of the cost function. Indeed,
simulations revealed that the cost function was very flat
around the nominal point. This is desirable according to
Skogestad (2000), since the effect of implementation errors
is minimized. In the same vein, it is desirable that the
optimum value of c is insensitive to disturbances to avoid
losses from keeping c constant. Figure 2 shows the location
of the optimal values of c relative to the nominal setpoint.
As can be seen when comparing Figure 2 to for instance
the magnitude of the open-loop change in c due to a
disturbance as seen in Figure 3, it is safe to say that the
optimal value of c is independent to disturbances. The
resulting losses from disturbances are therefore expected
to be small.
All disturbances except the disturbance in the flow rate
into the LP evaporator, FCP1, are located on the line going
through a valley-shaped minimum of the cost surface. This
is the principle eigenvector of the elliptic hyperboloid.
This explains why the loss associated with disturbing
FCP1 is an order of magnitude larger than for the other
disturbances. It is also observed that the losses due to the
two disturbances associated with the IP evaporator, that
is TP2I and FCP2, are smaller than the corresponding
losses caused by disturbances of the LP evaporator. This
is caused by the fact that pTP1O > pTP2O in Equation 10.

4.5 Dynamic simulation

The derived self-optimizing controller was implemented
into the dynamic system by introducing two PID con-
trollers. It was chosen to pair the compressor speed N with
c1 and the valve opening XV1 with c2. The PID tunings
were derived based on the SIMC rules (Skogestad, 2003).
As can be seen from Figure 3, the resulting PID controller
has a somewhat large time constant. The controller can be
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Figure 2. Optimal values of c for the studied disturbances.
We observe that the optimal values of c for the
disturbances are grouped very closely around the
nominal point. Notice the scale of the axis compared
to i.e. the open-loop changes in c to a disturbance in
Figure 3.
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Figure 3. Case 1: Response of the controlled variables (∆c1
and ∆c2) and the manipulated variables (N and XV1)
to a −3K step in TP1I for open loop and closed loop.
The final plot compares the loss for the open loop and
the closed loop.

tuned more aggressively by choosing a smaller closed-loop
time constant, at the cost of robustness.
The dynamic performance of the self-optimizing controller
was tested by applying a step in the inlet termperature to
the LP evaporator, TP1I. It was found that the responses
of the open-loop and the closed-loop systems were almost
identical, as can be seen in Figure 3. The integrated error
for the closed loop system is smaller than for the open
loop, but the difference is marginal.



It is noted that the open-loop response pushes the states
along the dashed line in Figure 2 corresponding to the
minimum valley of the cost surface in the c-space. Even
though the observed open-loop response pushes the states
north-east, away from the optimal point (marked orange
in Figure 2), the location at the bottom of the valley still
ensures very low losses.
From Figure 3 it can be seen that it takes a relatively long
time for the loss to stabilize after it has been disturbed,
even though the controlled variable reaches its setpoint
almost immediately. This behaviour is due to the slow
dynamicsof the system. The slow dynamics are caused by
the large capacity of the HP receiver, and is an inherent
property of the system that can not be circumvented with
feedback control.
Slow dynamics aside, it seems as if the process is so rigid
in its design and parametrization that the cost function is
characterized by an almost flat surface. This means that
the process will be close to optimal even when in an open-
loop configuration. It does therefore not make a significant
difference if the system is controlled to optimality directly
or if the unconstrained degrees of freedom are used to
control other CVs. By controlling for example the evap-
orator pressures or the outlet temperatures directly, one
can achieve tighter product specifications on the process
side, at only minimal cost impact.

5. CASE TWO - INCLUDING MEASUREMENTS OF
ECONOMIC PARAMETERS

A second case was simulated to study the possibility of
including measurements of the cost parameters pW , pTP1O
and pTP2O in the setpoint of the self-optimizing controller.
The same process model and cost function as previously
discussed in Section 3 is being used, so the optimal steady-
state solution is the same as for the first case.

5.1 Self-optimizing control

Instead of treating the parameters pW , pTP1O and pTP2O
in the cost function as static parameters, it was decided to
include measurements of these parameters in the construc-
tion of the selectivity matrix H. This way, the controller
can react to changes in the power prices and the prices
of the products immediately, without being dependent
on an overlying real-time optimization layer. A similar
controller is discussed by Jäschke and Skogestad (2011).
The controller will give optimal operation of the plant as
long as the market only has random price fluctuations.
Due to the linearization around the nominal point, the
self-optimizing controller is only optimal locally. Whenever
prices start to change permanently, the controller must be
re-parameterized.
It was assumed that the measurements of pW , pTP1O and
pTP2O are noise-less, meaning that there is no measure-
ment error on these measurements. This assumption was
made since the information about the economic parame-
ters is not contained in the states of the system, therefore
it is not possible to decrease any uncertainty related to
these measurements by linear combinations of the outputs.
Since the measurements of pW and pTP1O are not prone
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Figure 4. Case 2: Response of the controlled variables (∆c1
and ∆c2) and the manipulated variables (N and XV1)
to a step in pW for open loop and closed loop. The
final plot compares the loss in the cost function for
the open loop and the closed loop.

to instrumentation error like i.e. pressure or temperature
meters, this assumption seems reasonable.
The best subset of measurements was again found using
the branch and bound algorithm. It was found that the
best subset of eight measurements includes

XV1, P1, P1, TP1O, FL2, FL4, pW and pTP1O

It can be seen that the branch and bound algorithm does
not give a set of measurements including all three economic
parameters. pTP2O is not included because the expected
loss is very small. Consequently the controller will not be
able to react to changes in the price of the process stream
in the IP evaporator.
The selection matrix H and the corresponding set-point c
is calculated from Equation 9.
The closed loop response to a +10% step in the energy
price pW is shown in Figure 4.
The derived controller is able to react to changes in the
economic parameters. Again, it is observed that the slow
dynamics of the system cause the loss of the controller
to very slowly reach a new steady state value. After
approximately 400 seconds the closed-loop self-optimizing
controller starts outperforming the open-loop controller.

6. CONCLUSION

In this paper we have investigated the possibilities of
applying self-optimizing control to a two-stage refrigera-



tion cycle. Since the cost function is formulated to give
a trade-off between energy consumption and evaporator
outlet temperature, it was found that the optimal point of
operation leaves the compressor speed N unconstrained.
In addition, it was found that the valve opening XV1
remained unconstrained. Using the two degrees of freedom,
a self-optimizing controller was implemented.
It was found that the self-optimizing controller does de-
crease the deviation from optimal operating conditions
when disturbed. However, the decrease in observed loss
is relatively small, mainly due to the flatness of the cost
surface. This means that self-optimizing control is not
strictly necessary to decrease the average loss to accetable
levels, as the system is already nearly optimal to begin
with. Most likely, the observed behaviour is a feature of
the studied model and model parameterization only. Other
refrigeration cycles could benefit more from having self-
optimizing control implemented.
It was shown that self-optimizing control is relatively fast
and easy to implement, so that self-optimizing control can
be considered a viable alternative to model-based control
systems. This particular system would probably benefit
from model-based control system due to the slow dynam-
ics. A smaller cycle with lower capacity could probably be
kept sufficiently optimal with self-optimizing control only.
More work needs to be done to compare the advantages
and disadvantages of the different control approaches for
multi-stage refrigeration cycles.
It was also shown that self-optimizing control can include
economic measurements to maintain optimal operation un-
der price fluctuations. This lessens the need for supervisory
real-time optimization.
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