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� How to optimize production
and also find optimal
non-periodic inspection and
maintenance schedule?

� Too many decision variables:
Monte-Carlo simulations of
Markov chain are too slow

� Formulate problem as numerical
optimization problem instead

Motivation

� Four reliability-critical components (i),
each described by four discrete
degradation states (A, B, C and F (failed))

� Optimization objective: maximize gas
production and minimize inspection and
maintenance costs

� Fault tree for system
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Case study: subsea gas compression
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Case study: simulation results

� We have developed an
optimization-based method for
production optimization and
maintenance scheduling

� No need for Monte Carlo
simulations

� Can be solved with off-the-shelf
NLP solvers after some
reformulations

Download paper with
references here:

Conclusions
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� 163 states

� 945 edges

= Huge search space, MC
simulations practically infeasible

� Continuous decision
variables

Markov chain for the case study

1.
Model evolution of system state
probabilities between inspections
as function of inputs

Before inspection: ẋ = f1(t , x , u)

Reset initial condition according to AGAN policy

After inspection: ẋ = f2(t , x , u)

2.
Combine into single master equa-
tion with reset term

ẋ =
dx
dt

= f (t , x , u) + Rr

Rr term is non-smooth, deter-
mines when to reset state

3.
Introduce necessary approxima-
tions to make problem numerically
tractable

Approximate Rr by Box-
car function to get conti-
nous opt. problem

4.
Discretize differntial eq. and solve
resulting NLP using off-the-shelf
NLP solver

min
r ,u

∫ tf

0
φ(x)dt

s.t. ẋ = f (t , x , u) + Rr

min
r ,u

F (z)

s.t. c(z) = 0

g(z) ≤ 0

Transition rates dependent on u

For this case:

optimal inputs are at max


