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Optimal operation of complex production and processing plants is important, but challenging to achieve in practice.
The reason for this is that decisions in different disciplines, such as design, operations and maintenance, are made
independently of each other. This can lead to a large degree of conservativeness. In this paper, we present a
unified approach for maintenance- and production planning, which reduces the conservativeness and leads to more
economical operation. We model the system using differential equations and then formulate the problem of optimal
operation as a numerical optimization problem. The problem is a mathematical program with equilibrium constraints
(MPEC), which we solve using off-the-shelf optimization software. Some model approximations were made to make
the system numerically tractable. We demonstrate the method on a subsea-inspired case example.
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1. Introduction
For certain classes of production systems there
exist a trade-off between producing as much as
possible, and prematurely wearing the system out.
For example, in subsea oil and gas production
systems the revenue is directly related with the
amount of produced hydrocarbons, while a too
high production rate may lead to fast system
degradation, with expensive maintenance opera-
tions and possible production loss due to down-
time.

From an economical point of view, there ex-
ists an optimal trade-off between the maintenance
cost, the inspection cost and the operational profit.
Moreover, when the system has degraded, the
operator needs to make a decision relating to
what degree the system should be restored. Us-
ing commonly employed Monte Carlo methods to
obtain the optimal production profile and the op-
timal maintenance schedule, represents a signifi-
cant challenge due to the sheer amount of possible
scenarios that need to be explored. Numerical
optimization seems like an attractive alternative

to Monte Carlo methods due to the potential for
faster convergence to an optimal solution.

In this paper we propose an integrated approach
to operate the system optimally, that is, we pro-
pose to integrate the decisions on 1) the system
load (how much to produce), 2) when to perform a
maintenance operation, and 3) to what degree the
system should be restored, in a unified framework.

To demonstrate our approach, we model a sub-
sea oil and gas production system using a four-
state Markov chain, where state A represents the
new, healthy system, states B and C represent
progressively degraded systems, and state D rep-
resents the failed, inoperable system. Arrival at
the failed state D can be caused by unexpected
sudden failure, or due to progressive degradation.
The time dependent transition rates are a function
of the input usage, thus yielding a multiphase
Markov decision process. The production system
model is described by a non-linear differential-
algebraic equation system (DAE).

Optimal production and operation planning is
defined as the case when the sum of the expected
value of the revenue minus the inspection cost and
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the maintenance cost, is maximized. As decision
variables in the optimization problem we assume
the inspection times and the input profile. By
inputs, we here mean the operating mode that the
plant is running at. For example, the inputs of a
compressor could be its throughput and frequency.

At each inspection, all systems found in the
failed state D are restored to state A (if we fol-
low the as-good-as-new (AGAN) policy). If the
system is not found in state D, the system does
not reveal whether its true state is A, B or C, and
no maintenance is performed. Consequently, the
model becomes a switched differential algebraic
model, and the optimization problem can be for-
mulated as a non-smooth, non-linear program. We
solve this problem using state of the art methods
for non-smooth optimization.

Authors of previously published work on the
topic of combined maintenance and production
planning typically formulate the problem as a lot-
allocation problem (Iravani and Duenyas, 2002;
Fitouhi and Nourelfath, 2012; Wolter and Helber,
2016). This often results in a mixed-integer (non-)
linear program (MI(N)LP). Our proposed method
is different as we do not consider ”lots” of prod-
ucts, but rather the case where production can be
adjusted in a continuous fashion. We also avoid
the use of integer variables by formulating the
problem with complementary constraints instead.

The remainder of the paper is structured as
follows; in Section 2 we show how a continuous
differential equation can be derived for the case of
a degrading system with discrete inspection- and
maintenance times. In Section 3 it is shown how
the derived model can be used in the context of
optimization, where the aim is to manipulate in-
puts and the maintenance times to minimize some
objective function. In Section 4, the method is
demonstrated on the subsea case example. Finally,
concluding remarks and thoughts on future work
are given in Section 5.

2. Modeling the degrading system
Given a four-state Markov process as shown in
Fig. 1. Let µ(t) = [µA(t) µB(t) µC(t) µD(t)]

ᵀ

denote the probabilities for being in any state at
time t. Assuming time-invariant transition rates
λa and λu between the states, the change in prob-
abilities between two inspections is given by

dµ

dt
= Λ · µ(t) (1)

= (Λa + Λu) · µ(t) (2)

where

Λa =

−λa 0 0 0
λa −λa 0 0
0 λa −λa 0
0 0 λa 0

 (3)

A B C

D

λa λa

λu

λu

λa + λu

AGAN

1− λa − λu 1− λa − λu 1− λa − λu

1

Fig. 1. Markov chain for a system with four discrete degra-
dation states

and

Λu =

−λu 0 0 0
0 −λu 0 0
0 0 −λu 0
λu λu λu 0

 . (4)

In the above expressions, Λ is known as the tran-
sition matrix. Λ is decomposed into Λa, which
is describing the transitions due to aging, and Λu,
which is describing the transitions due to unfore-
seen failures.

Integrating Eq. (1) gives

µ(t) = exp(Λ · (t− t0))µ(t0) (5)

2.1. Probabilities between two inspections
Upon inspection of the system at time t1, we
reveal if the system is broken down (in state D),
or not (either in state A, B or C). This leads to
two different cases, depending on the outcome:

Case I:
Upon inspection, we find the system is in state
D. Thus, we restore the system by performing
maintenance (without time lag). Assuming perfect
repairs according to the AGAN policy, the new
initial conditions t1 are

µ+
Case I(t1) = [1 0 0 0]

ᵀ (6)

and

µCase I(t > t1) = exp (Λ · (t− t1))µ+
Case I(t1)

(7)
Note that we use the notation µ+(t1) to indicate
the right-handed limit of µ(t1), i.e. directly after
the inspection at t1, and µ− to indicate the left-
handed limit of µ, i.e. directly before the inspec-
tion at t1. Because µ is discontinuous at t1, these
two limits will generally not be equal.

Case II:
Upon inspection, we find that the system is not in
state D. However, we do not know if the system
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is in state A, B or C. The new initial conditions
at t1 are:

µ+
Case II(t1) =

[
µ−
A(t1)

1−µ−
D(t1)

µ−
B(t1)

1−µ−
D(t1)

µ−
C(t1)

1−µ−
D(t1)

0
]ᵀ
(8)

and

µCase II(t > t1) = exp (Λ · (t− t1))µ+
Case II(t1)

(9)
Expressing the probabilities from the per-

spective of t0
However, we can not know ahead of time which of
the two cases will be observed in the future (non-
anticipativity). We must therefore forecast the
probabilities into the future by taking the weighted
average of both cases.

µ+(t1) = µ+
Case I(t1) · µ−D(t1) (10)

+ µ+
Case II(t1) ·

(
1− µ−D(t1)

)
(11)

=

µ
−
A(t1) + µ−D(t1)

µ−B(t1)
µ−C(t1)

0

 (12)

Or, in matrix notation:

µ+(t1) =M · exp (Λ0 (t1 − t0)) · µ(t0)(13)
=M · µ−(t1) (14)

where we further decomposeM as

M = (I +RSᵀ) (15)

where I is the identity matrix, R is the repair
matrix, and S is a selection matrix. The selection
matrix chooses the failed state D.

S = [0 0 0 1]
ᵀ (16)

For AGAN repairs, we have

R = [1 0 0 −1]ᵀ . (17)

In Section 2.2, we will come back to why the
decomposition ofM intoR and S is useful.

The evolution of the probabilities for case 1 and
2, and the weighted average of the two cases is
illustrated in Figure 2.

Generalization
Using the general expression for the probabilities
between two maintenance stops from Eq. (5), we
can express the probabilities at any time t as the
piece-wise function

µ(t) =

{
exp (Λ · (t− t0)) · µ+(t0) if t < t1
exp (Λ · (t− t1)) · µ+(t1) if t > t1

(18)
where

µ+(t0) = µ(t0) = µ0 = [1 0 0 0]
ᵀ (19)

is the specified initial condition.
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Fig. 2. Illustration of evolution of the probabilities µ before
and after inspection. Left: system is found to be in the
failed state D upon inspection, and is repaired without time
lag. Middle: system is found to be in working order upon
inspection, and no repairs are performed. Right: weighted
average of the two previous cases.

Taking it one step further, we can have an ar-
bitrary amount of inspections and maintenances,
k, between two times t0 and tf and express the
probabilities as

µ(t) =



exp (Λ · (t− t0)) · µ+(t0)
if t0 < t < t1

exp (Λ · (t− t1)) · µ+(t1)
if t1 < t < t2
· · ·
exp (Λ · (t− tk)) · µ+(tk)

if tk < t < tf

(20)

where

µ+(ti) =M · µ−(ti) (21)
µ−(ti) = exp (Λ · (ti − ti−1)) · µ+(ti−1)(22)

2.2. Differentiating to get the differential
model

Equation (1) described the evolution of the state
µ between two inspection times. However, as we
have shown, we can express the state at any given
time by the piece-wise model from equation (20).
If we differentiate (20), we get

dµ

dt
= Λ · µ(t) +RSᵀµ(t) ·

(
k∑
i=1

δ(t− ti)
)

(23)
where δ is the Dirac delta function.

Let us now introduce the variable

r(t) = Sᵀµ(t) ·
(

k∑
i=1

δ(t− ti)
)

(24)

to obtain the form

dµ

dt
= Λ · µ(t) +R · r(t). (25)
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We choose to work with this form of the reliabil-
ity model as it allows us to distinguish between
the degradation of the system due to aging and
unforeseen failures (first term of Eq. (25)), and
the maintenance of the system (second term of Eq.
(25)). Our aim is to do numerical optimization of
the maintenance times, which can be achieved by
optimizing the breakpoints ti of the function r(t).
More on this in Section 3.

Furthermore, we can easily change the mainte-
nance strategy from as-good-as-new (AGAN) to
as-bad-as-old (ABAO) by changingR

RAGAN = [1 0 0 −1]ᵀ (26)
RABAO = [0 0 1 −1]ᵀ (27)

An illustration of how µ(t) changes as a func-
tion of r(t) is shown in Fig. 3. Note that r(t) is
a sum of Dirac functions. In addition, we show
the integral

∫ tf
0
r(t), which is proportional to the

maintenance cost.
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Fig. 3. Illustration of how r(t) influences µ(t). The cu-
mulative maintenance cost is proportional to the integral of
r, shown in the bottom plot, while the inspection cost is
proportional to number of spikes (three, in this case)

2.3. Modeling the effect of inputs
The second contribution of this paper is the in-
clusion of the effect of inputs u(t), which influ-
ence the degradation rate of the system. Thus by

changing u(t), we can actively steer the rate of
degradation of the system. This is very useful,
as it allows us to optimize the performance of
the system by co-optimizing u(t) and r(t). We
model this behavior by letting Λa be a function of
the inputs and time, instead of a constant matrix
like before. Λu remains constant, as we assume
that unexpected failures cannot be influenced by
changing the inputs. The differential model now
is

dµ

dt
= (Λa(u, t) + Λu) · µ(t) +R · r(t). (28)

Note that if Λa(u, t) is a piece-wise constant
function, meaning we can write it as

Λa(u, t) =


Λa,1 if t0 < t < t1
Λa,2 if t1 < t < t2
· · ·
Λa,k if tk < t < tf

, (29)

the system becomes a Multiphase Markov pro-
cess. However, we do not require this assumption,
and are free to choose whatever form of Λa(u, t)
we need.

3. Formulating the optimization
problem

In order to find the optimal combined production
and maintenance strategy, we first formulate an
optimization problem in terms of an objective
function and constraints. a

min
u,r

tf∫
t0

(
− f(t,µ,u)

)
dt

+fi(t,µ, r) + fm(t,µ, r) (30a)

s.t.
dµ

dt
= Λ(t,u) · µ(t) +R · r(t)(30b)

r(t) = Sᵀµ(t) ·
(

k∑
i=1

δ(t− ti)
)
(30c)

0 ≤ µ ≤ 1 (30d)∑
i∈{A,B,C,D}

µi = 1 (30e)

0 ≤ r ≤ ∞ (30f)
umin ≤ u ≤ umax (30g)

In the above optimization problem, f denotes
some economical objective which is to be maxi-
mized (typically profit or production), fi denotes

aNote that the constraint in Eq. (30e) is implied by Eq. (30b),
but we include it for completeness.
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the inspection cost, which is typically proportional
to the number of inspections k,

fi(t,µ,u) ∝ k, (31)

and fm denotes the maintenance cost, which is
assumed to be proportional to the integral of r(t)

fm(t,µ,u) ∝
tf∫
t0

r(t)dt. (32)

3.1. Problem re-formulation for
numerical optimization

The optimization problem from Eqs. (30a)-(30g)
can be solved in a multitude of ways. A common
approach is to approximate the dynamic problem
by a static non-linear programming (NLP) prob-
lem through the use of so-called direct methods,
where direct multiple shooting and direct colloca-
tion are common approaches (Biegler, 2010). In
this work, we use the direct collocation approach.

One issue with (30) is in r(t). Since it is the
summation of Dirac functions, it is unbounded
as shown in Eq. (30f). An alternative to using
the formulation adopted in this paper is to for-
mulate the problem as a mixed integer problem,
as was done in Ashayeri et al. (1996). Due to
the nonlinear nature of the problem, we have
to solve a mixed-integer non-linear programming
(MINLP) problem, as done in e.g. And and
Grossmann (1998); Georgiadis and Papageorgiou
(2000). These MINLP problems are however
known to be very difficult to solve in the general
case, despite recent progress in algorithmic devel-
opment.

Instead, we approximate r(t) using Boxcar
functions as

r(t) ≈ r̃(t) (33)

r̃(t) =

k∑
i=1

Boxcar(t) (34)

=

k∑
i=1

hi

(
H(t− ti)− H(t− ti − εi)

)
(35)

where H is the Heaviside function, hi is the height
and εi is the width of each ”box”.

An illustration of this approximation is shown
in the middle plot in Fig. 4. Note that the approx-
imation for µ is good if ε is sufficiently small, and
that the approximation gives the same cumulative
maintenance cost

∫
r̃(t)dt. Furthermore, we ob-

serve that µ is now continuous (although nons-
mooth), which makes the optimization problem
easier to solve.

Another numerical issue is posed by the in-
spection cost from Eq. (31). In the original
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Fig. 4. Illustration of how r(t) (dashed line, circles) can be
approximated by r̃(t) (solid line) to obtain a continuous µ.

formulation with Dirac functions, one might be
tempted to find k as

k =

tf∫
t0

( k∑
i=1

δ(t− ti)
)
dt (36)

=

tf∫
t0

((
Sᵀµ(t)

)−1 · r(t))dt, (37)

but for this to work, we must assert that

µD(ti) = µ−D(ti) (38)

to avoid division by zero. Such a condition might
be difficult to impose numerically.

Instead, we propose to solve the problem by
introducing the additional variable y, which we
use to formulate additional constraints:

0 ≤ (1− y)⊥r̃ ≥ 0 (39)
0 ≤ y ≤ 1 (40)

Here, the⊥ operator indicates complementary, i.e.
we require that at all times either r̃ or (1 − y)
or both are zero. The inspection cost can then be
written as

fi(t,µ,u) ∝
y

ε
(41)
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In order to minimize the cumulative inspection
cost, y(t) will be a function that is either at its
lower bound (zero) when no inspection is per-
formed, or at its upper bound (one) when inspec-
tion is performed. By integrating we get

k =

tf∫
t0

( k∑
i=1

δ(t− ti)
)
dt ≈

tf∫
t0

y

ε
dt (42)

4. Case study
As a case example, we consider a system inspired
by subsea oil and gas production. Subsea tech-
nology is key to satisfying the energy demands
of tomorrow, due to the intermittent nature of
renewables and the continued need for petroleum
products also in a green society. Reliability is
a major issue for subsea installations, as mainte-
nance interventions are very costly. Consequently,
it is important to optimize both production from
the subsea installation, as well as the maintenance
interventions.

Assume that production from the subsea instal-
lation actively degrades critical components such
as pumps, valves and heat exchangers. The transi-
tion rates can therefore be assumed to be propor-
tional to the inputs u that we apply to the system.
In our case, u(t) represents the production rate
of oil and gas. A higher production rate will
give more immediate profit, but also increased
degradation.

Poor instrumentation and a lot of measurement
uncertainty mean that a system may not be prop-
erly diagnosed to have failed without inspection.
An example of this could be the failure of a single
well going to a manifold with several other wells.
The failure of the single well may be masked by
the large variability in production of the other
wells. Well tests (which can be thought of as
inspections) are thus required to reveal the state
of the single well.

4.1. Objective function
The objective is to maximize the average produc-
tion from the well over the lifetime of the field,
while simultaneously minimizing the inspection
and maintenance costs. This economical objective
can be written as

min
u(t),r̃(t)

tf∫
0

(−f + fm + fi
(1 + d)t

)
dt (43a)

where

f(t) = cᵀp · µ(t) · u(t) (43b)

fm(t) = cᵀm · r̃(t) (43c)
fi(t) = cᵀi · y(t). (43d)

Here, cp is the productivity in each state, cm is
the maintenance cost, ci is the inspection cost.
The entire economic objective is discounted by
a factor d to reflect the decreasing value of fu-
ture income streams compared to present income
streams. Note that the objective is non-linear due
to the bi-linear term in f(t).

4.2. Constraints
The objective function is optimized subject to the
following constraints

s.t.
dµ

dl
= Λ(t,u)µ(t) +Rr̃(t) (43e)

Λ(t,u) = Λa · u(t) + Λu (43f)
µ(0) = µ0 (43g)
0.1 ≤ u ≤ 1.0 (43h)

0 ≤ r̃ ≤ 1

εmin
(43i)

εmin ≤ ε ≤ εmax (43j)
0 ≤ µ ≤ 1 (43k)
0 ≤ (1− y)⊥r̃ ≥ 0 (43l)
0 ≤ y ≤ 1 (43m)

Note that the transition matrix Λ(t,u) is linear
in u. Since we require u(t) to be a piece-wise
constant function, Λ(t,u) is also a piece-wise
function. Consequently we are dealing with a
Multiphase Markov process, as discussed in Sec-
tion 2.3.

The parameters for the problem are summarized
in Table 1.

Table 1. Parameters used for the optimization

Parame-
ter

Description Value

λu
Sudden failure
transition rate

10−4

λa
Base aging

transition rate
10−2

d Discount rate .001

cp
Productivities in

each state
[
28 21 14 2.8

]ᵀ
cm Maintenance cost 300
ci Inspection cost 30
tf Final time 200 weeks

4.3. NLP formulation
Multiple approaches exist to solve dynamic prob-
lems like (43), but we choose to use orthogonal
collocation on finite elements. The original dy-
namic problem is reformulated as an NLP, which
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can be solved using standard non-linear optimiza-
tion algorithms. We will not go into details about
how to discretize the problem, see e.g. Biegler
(2010) for a summary.

The resulting NLP is implemented in MATLAB
using Casadi 3.4.1 (Andersson et al., 2018). The
interior-point solver IPOPT 3.12.3 (Wächter and
Biegler, 2006) is used to solve the optimization
problem.

4.4. Solution strategy
Our problem is non-convex and local solvers such
as IPOPT will consequently only find local so-
lutions. In other words, we cannot guarantee
global optimality of the solution. In order to
ensure global optimality, global solvers such as
BARON (Sahinidis, 2017) have to be used. Global
solvers come with some drawbacks, such as being
computationally intractable for large problems.

To remedy this, we use a multi-start approach
where the problem is repeatedly re-optimized with
different initial guesses. After a certain number of
optimizations (1000 in this case), the best local
minimum is returned. Fewer than 1000 optimiza-
tion runs could suffice, but as they are computa-
tionally cheap, we choose to run 1000 to ensure
that a good solution is obtained.

4.5. Solution
The optimized production and maintenance strat-
egy is shown in Fig. 5. As can be seen, the optimal
strategy is to operate at maximum u all the time
(a typical property of almost-linear optimization
problems), while inspections / maintenance is per-
formed at t = 88, 127 and 160 weeks. The
objective function value is 3924 M$. Note that the
first inspection is quite late. The reason for this
is that the probabilities of being in the degraded
states are initially low. As a result, performing
inspections and maintenance at an early stage in
the race is sub-optimal.

In an actual implementation, one would re-
optimize the problem upon obtaining new infor-
mation about the system state (such as after an
inspection). This is known as model-predictive
control (MPC) or rolling horizon optimization
(Biegler, 2010). However, the optimization prob-
lem itself remains the same with only the initial
conditions (43g) changing. We therefore chose to
skip the closed-loop results in the interest of time
and space.

5. Conclusions and future work
In this paper, we have introduced a method for
simultaneous production- and maintenance op-
timization. The problem was motivated by a
Markov-chain representation of a degrading pro-
duction system, which would have been difficult
to optimize using the traditional Monte Carlo
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Fig. 5. Optimal solution of the case example

based approach. We reformulated the problem as
a algebraic-differential equation system, which we
solved using a non-linear optimization approach.
While not all problems can be solved like this, we
showed how for the specific problem at hand, the
problem could be cast into a form which could be
solved using off-the-shelf solvers. The concept
of input-dependent transition rates can easily be
included in the framework. Some approximations
were introduced to make the problem numerically
tractable. The method was demonstrated on a case
example inspired by subsea oil and gas produc-
tion.

Possible future research directions include:

• Detailed comparison to Monte Carlo-
based methods for optimization.

• Inclusion of more maintenance strategies
by modification ofR and optimization of
the trade-off between the different main-
tenance strategies.

• A distributionally robust problem formu-
lation to safeguard the solution against
uncertainties in the transition rates.

• A multi-step approach to include the
value of future information in the open-
loop optimization problem.

• Looking at the case where maintenance
is not instantaneous, i.e. when there is
lag-time.

• Analysis of the losed-loop performance.
• A more complex case study with multi-

ple simultaneously degrading units



March 25, 2019 11:16 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book esrel2019-paper

8 Verheyleweghen, Srivastav, Barros, Jäschke
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