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Abstract: Data-driven solutions for multiphase flowrate estimation in oil and gas production
systems are among the alternatives to first principles virtual flow metering systems and hardware
flow metering installations. Some of the most popular data-driven methods in this area are based
on artificial neural networks which have been proven to be good virtual flow metering tools.
However, neural networks are known to be sensitive to the scaling of input data, difficult to
tune and provide a black-box solution with occasionally unexplainable behavior under certain
conditions. As an alternative, in this paper, we explore capabilities of the Gradient Boosting
algorithm in predicting oil flowrates using available field measurements. To do this, we use an
efficient implementation of the algorithm named XGBoost. In contrast to neural networks, this
algorithm is insensible to data scaling, can be more intuitive in tuning as well as it provides
an opportunity to analyze feature influence which is embedded in algorithm learning. We show
that the algorithm provides accurate flowrate predictions under various conditions and can be
used as a back-up as well as a standalone multiphase flow metering solution.

Keywords: Virtual flow metering, machine learning, production monitoring, gradient boosting,
soft sensing.

1. INTRODUCTION

Accurate measurements of oil, gas and water flowrates
are a critical part in production optimization, reservoir
management and flow assurance of petroleum production
systems (Falcone et al. (2001)). A traditional method for
measuring these flowrates is well testing which can be
conducted by re-routing a well stream into a test separator,
or by changing wellhead choke opening and tracking the
change of the rates at an inlet separator. Another alter-
native are multiphase flow meters (MPFMs) which allow
to avoid separating the multiphase flow streams while
measuring the flowrates from single wells or a cluster of
wells in real time. Despite this advantage, MPFMs are
expensive and can be a subject to degradation and costly
repair (Patel et al. (2014)).

Another possible way to estimate the multiphase flowrates
is to combine field measurements such as pressure and tem-
perature with first principles mathematical models which
accurately represent specific system parts or the system
as a whole. Some measurements are used as inputs to
the model (as model boundary conditions) together with
tuning variables such as flowrate or choke discharge coef-
ficient. The remaining measurement values are estimated
by the models. The differences between the estimated and
actual measurement values are minimized by an optimiza-
tion solver. This approach is called Virtual Flow Metering
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(VFM) and can be used as a back-up to MPFMs as well
as a standalone metering solution.

As an alternative to the first principles models, one can use
a data-driven approach in order to estimate the flowrates.
In this case, the specifics of the production system such as
geometry of the well tubing or choke are not considered
and only field measurements are used to identify the sys-
tem model. The advantage of using these models is a low
computational cost and relative simplicity in comparison
to the first principles VFM methods that typically solve
complex PDE conservation equation systems. These facts
are especially of advantage if one does not have full access
to the first principles model equations, for instance, in
a commercial multiphase flow solver. In this case, com-
puting gradients for optimization is computationally very
expensive, while the data-driven models can provide the
gradients at a much lower cost. This allows a well-trained
data-driven model to predict the flowrates in real time
with a sampling time of seconds, while VFM based on first
principles models may have a significant time delay due to
solving the embedded non-linear optimization problem.

The most popular data-driven approach in VFM is based
on feed-forward neural networks (NNs) with various mod-
ifications of structures and weights optimization, see Ber-
neti and Shahbazian (2011) and AL-Qutami et al. (2018)
with therein references. Despite the reasonable accuracy
of NNs, there are some disadvantages associated with
them. First, it is difficult to establish good rules for NN
architecture construction, such that creating a successful
structure of the NN requires strong user experience and
can be time consuming. Also, the accuracy of NNs is



dependent on the scale of the input features and target
variables, such that NNs require data normalization (Sola
and Sevilla, 1997). This is especially the case in VFM
since the scale of the features varies widely. Also, the
resulting NN is used as a black-box model and sometimes
it is difficult to understand the reason behind its behavior.
Hyperparameters tuning to avoid model overfitting is also
often a challenge in NNs training.

Gradient Boosting (GB) is another efficient method for
solving non-linear classification and regression problems.
Here we construct an ensemble of weak learners (simple
algorithms) into a strong learner which is used to solve
a particular problem (Friedman (2001)). One of the most
popular modifications of GB is applying regression trees
as weak learners which is called Tree Gradient Boosting.
Among various implementations of Tree Gradient Boost-
ing, eXtreme Gradient Boosting (XGBoost) by Chen and
Guestrin (2016) is a popular algorithm for solving machine
learning problems. In this work, we apply this algorithm
implementation. In contrast to NNs, GB does not require
scaling of the features which makes it more convenient
for VFM applications. In addition, despite many hyper-
parameters, the tuning process of GB can be considered
more intuitive and flexible compared to NN’s tuning. For
instance, increasing the number of trees by one allows a
careful model adjustment while increasing the number of
nodes in NNs by one may lead to a large change of the
model performance and possible overfitting, especially in
small datasets. Another advantage of GB is the feature
importance analysis which can be performed directly in al-
gorithm training without additional manipulations which
gives an opportunity to better understand the algorithm
behavior and get additional insights of the system param-
eters.

In this paper, we analyze capabilities of XGBoost in
predicting oil flowrates from a subsea well under realistic
conditions. We show how the algorithm can be used in
different field development strategies as a back-up system
for a multiphase flow meter or a standalone solution using
the information from well tests. In addition, we analyze the
performance of K-Fold and early stopping cross-validation
schemes together with a tuning procedure for selecting
an accurate set of XGBoost hyperparameters for VFM
applications. The implementation of the algorithm for this
paper can be found on https://github.com/NRT23.

2. XGBOOST ALGORITHM

In this section, we give an overview of basic principles of
Gradient Boosting and its implementation in XGBoost
algorithm based on the paper by Chen and Guestrin
(2016).

Consider a dataset D = {(xi, yi)} (i = 1...n, xi ∈
Rm, yi ∈ R), meaning that we have m features for
each of n observation examples which correspond to the
target variable y. A tree ensemble prediction for a given
observation i is produced as a sum of predictions from K
additive functions

ŷi = φ(xi) =

K∑
k=1

fk(xi) (1)
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Fig. 1. Example of a regression tree in XGBoost for VFM

where fk is a regression tree predicting the value fk(xi)
for the i-th example. By training an ensemble of regression
trees, we want to minimize the objective function with loss
terms (l) and regularization terms (Ω)

L(φ) =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk) (2)

with

Ω(f) = γZ +
1

2
λ ‖w‖2 , (3)

where γ and λ are hyperparameters to penalize the model
complexity defined by the number of leaves Z and leaf
weight values w. The loss term (l) can be expressed in
a form of the user’s interest, for instance, as the mean
squared error for regression problems.

The objective in (2) is minimized in an iterative manner
by adding a regression tree at each iteration. This leads us
to the following objective function at t-th iteration

Lt =

n∑
i=1

l(yi, ŷi
t−1 + ft(xi)) + Ω(ft) (4)

Applying a second order Taylor expansion and removing
the terms independent of ft, it can be shown that the
following approximation of (4) can be obtained (Chen and
Guestrin, 2016)

L̃t =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (5)

where gi and hi are the first and second order derivatives

of l(yi, ŷi
(t−1)) w.r.t. ŷi

(t−1). Defining Ij as a group of
observations in the j-th leaf in a particular tree structure
and taking into account that the tree produces the same
weights score for the observations in one leaf, we can com-
pute the optimal leaf weights w∗j and the corresponding

optimal value of the objective approximation L̃t (Chen
and Guestrin, 2016)

w∗j =

∑
i∈Ij gi∑

i∈Ij hi + λ
(6)

L̃t(q) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γZ (7)

where q denotes a particular tree structure. Equation
(7) is used as an evaluation criteria to find an optimal
split of the tree. The tree is grown greedily to avoid
enumerating all possible structures q meaning that the
algorithm starts splitting from a single leaf and adds
branches according to (7). Fig. 1 shows a simple example of
an XGBoost regression tree with the algorithm notations
and measurement data of pressure and choke opening used
in VFM. To get a better understanding of the splitting
procedure, consider IL and IR to be the left and right
groups of observations after the tree node split. Having



this information, we can calculate a loss reduction caused
by the split

Lsplit =
1

2

[( ∑
i∈IL

gi

)2
∑
i∈IL

hi + λ
+

( ∑
i∈IR

gi

)2
∑
i∈IR

hi + λ
−

( ∑
i∈I

gi

)2
∑
i∈I

hi + λ

]
−γ (8)

The loss reduction (8) is used to evaluate each possible
split by linear scanning of sorted values for each feature
in each node. The best split is the one which gives the
maximum value of the loss reduction. When the splitting
is finished, the leaf values are assigned according to (6).

For a more detailed explanation of XGBoost algorithm
derivation and its additional features such as shrinking
tree outputs the interested reader is referred to the original
paper by Chen and Guestrin (2016).

3. PRODUCTION SYSTEM MODELING

We consider a simple subsea production system which con-
sists of an oil well, a flowline, a riser and an inlet separator
with a constant pressure, see Fig. 2. The parameters of
the system are shown in Table 1. The well is equipped
with a multiphase flow meter (MPFM), choke, pressure
(P) and temperature (T) sensors which are installed at
the bottomhole, upstream and downstream of the choke.
In addition, information about the choke opening (Cop) is
available. The system performance is simulated in OLGA
which is one of the leading simulation tools for multiphase
flow transport in oil and gas production systems (Bendik-
sen et al. (1991)). To manipulate the choke opening and
inflow sources as well as collect simulation results, we
use MATLAB together with an OPC (Open Platform
Communication) server.

MPFM

Separator

P,T

Sea level

P,T

P,T

Seabed

Reservoir

IPR

Additional gas source

Cop

Fig. 2. Schematic representation of the production system

To model the reservoir inflow, we use the Inflow Perfor-
mance Relationship (IPR) formulated by Vogel’s equation
(Vogel et al. (1968)). To mimic the reservoir depletion
effect, we introduce a linear reservoir pressure decline with
respect to the production time. The IPR does not consider
transient effects in the near-wellbore region. Therefore, to
simulate dynamic effects related to the change of the bot-
tomhole pressure caused by the choke position change, oc-
casional gas breakthroughs from injection wells and other
possible disturbances such as production wells interaction,
we include an additional gas source which has a periodic
form represented by the following relationship

ṁSource = ṁmax · Cop ·
[
1 + a · sin

(
π · s
Tsource

)]
(9)

Table 1. System and simulation parameters

Parameter Value Parameter Value

True vertical depth 2010 m ṁmax 0.35 kg/s
Measured depth 3110 m TMPFM 72
Flowline length 1000 m TSource 144

Riser length 100 m a 0.5

where ṁmax denotes the maximum mass gas source value,
Cop - the choke opening, s - the time step, a and Tsource
- the amplitude and the period of the sin function re-
spectively. In this relationship, we assume that the distur-
bance gas flow is proportional to the choke opening, such
that when the choke is closed the effect vanishes. At the
same time, by introducing a periodic function, we mimic
dynamic reservoir responses and possible disturbances on
the well without introducing random behavior. This trick
together with the reservoir pressure decline is done in order
to mimic a realistic system behavior, and to challenge
the VFM to predict the varying flowrates. Otherwise, a
steady state behavior of the IPR would produce a specific
flowrate value to a specific choke position which makes
the case unrealistic as well as simplifies the training and
predicting process for the machine learning algorithm. A
more advanced approach could be to couple OLGA with
a reservoir simulator which would describe the reservoir
response in a more precise way. This will be considered in
future work.

To calculate the multiphase flowrate meter predictions, we
assume that 100% flowrate measurements by the MPFM
are within ±5% accuracy with respect to the true value
and model the predictions by the following relationship

QMPFM = QTrue

[
1 + 0.05 · sin

(
π · s

TMPFM

)]
(10)

where TMPFM denotes the period of the sin function.
The periodic function with a large period value allows to
model the measurement error with a certain accuracy and
at the same time avoid unrealistic random fluctuations
under stable flow conditions which we would obtain by
introducing simply a random measurement error.

4. CASE STUDIES

We perform several case studies which represent differ-
ent situations of oil production monitoring and for each
case consider two different cross-validation schemes: K-
Fold and early stopping. As the flowrate prediction from
an oil reservoir is time dependent, it can be considered
as a time series problem. In this case, the K-fold cross-
validation should be applied in a nested manner (Fig. 3,
left) which is different from the traditional K-fold cross-
validation approach. First, the available data is divided
into training and test datasets. The training set is again
divided in K-folds. No shuffling is involved in the splitting
process. Then the model is trained on (1, 2, .., K-1) folds
combined (starting from fold 1 only) and validated on (2,
3, .., K)th fold. The obtained errors on K-1 test folds are
averaged to make conclusions about the model accuracy
and generalization. In this manner, the algorithm is not
trained on the future data and tested on the past data
as would happen in non-nested cross-validation. Finally,
the algorithm is re-trained on the entire training data and
tested on the test dataset to evaluate the model gener-
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Fig. 3. Schematic representation of validation schemes

alization. In early stopping (Fig. 3, right), the available
data set is divided into 3 subsets: training, validation and
test. The algorithm is trained on the training set while
the error is also monitored on the validation set. The
training is stopped when the error on the validation set
stops decreasing after adding a specified number of new
trees. The performance of the obtained model is checked
using the test dataset.

In this work, the test datasets are selected to be 15% of the
available training data for both K-Fold and early stopping.
In early stopping, another 15% of the data is dedicated for
the validation dataset. For K-fold validation the number
of folds is 5.

The data are generated using the production system
architecture shown in Fig. 2. The performance of the
system is simulated for a period of 2 years. The obtained
production profile without the well tests performance is
shown in Fig. 4 (top). The period is divided into 4 quarters
180 days each. At the beginning of each quarter, a well
test is conducted to obtain reliable information about the
well performance. We collect the measurements every 8
hours during the normal production time and every 30
mins during the well tests. The following measurements
are collected for the algorithm training and predicting the
flowrates in the future time period:

• Pressure and temperature at the bottomhole, up-
stream and downstream of the choke
• Choke opening and oil flowrates from the MPFM or

well tests

We analyze 3 case studies which have several sub-cases
each. For 2 case studies we also compare the performance
of K-Fold and early stopping cross-validation approaches.
Each case considers a separate field development strategy,
so we analyze the performance of GB VFM for various sit-
uations of production operation. The detailed description
of each case study is discussed below.

4.1 Case 1 - MPFM data

In this case, we assume that we do not have information
from the well tests and use the flowrate measurements
from the MPFM only. This case is possible when well
testing is expensive and rarely performed. For this case,
we perform 3 cases studies by extending the training
datasets as the production time evolves. For instance, in
the first study (Case 1.1) we assume that the data from
the first half a year is available for training (Q1 in Fig. 4)
and we would like to predict the flowrates for Q2. As
the time evolves and we obtain more training data, in
Case 1.2 we use the data from Q1 and Q2 for training
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Fig. 4. Production profile with data splitting schemes

and testing the model and perform predictions on Q3.
This procedure is done for K-Fold and early stopping
approaches. Fig. 4 (bottom) visualizes the dataset splitting
for training, validation, testing and predicting for each case
and each cross-validation method.

4.2 Case 2 - MPFM and well test data

In this case, we combine the well tests and MPFM data
for training. Well tests can be conducted even if MPFMs
are installed in order to calibrate these devices as well as
update information about reservoir properties and the well
performance. Similarly to Case 1, we extend the training
datasets as the time evolves. The well testing procedure
is explained in more details in Case 3 description. As
in Case 1, we conduct the studies for K-Fold and early
stopping cross-validation. Fig. 4 shows the dataset splits
for training, validation, testing and predicting for the sub-
cases of Case 2.

4.3 Case 3 - Well test data

In this case, we assume that the MPFM is not installed at
the wellhead and training data is available only from the
well tests. This situation can happen when MPFMs are not
economically or operationally feasible to install because of
high cost or flow assurance challenges and instead well
tests are performed to track the production rates. To
generate data for GB VFM, we propose well testing with
step-wise changes of the choke opening over the possible
operating range. In this case, we assume the choke opening
to be within the range of 0.05 and 0.7 and we perform the
well test with a choke opening increment of 0.05. Also, we
perform a few additional tests around the expected well
operating point. In this case, we expect the operating point
to be within the range of 0.10 and 0.4 and perform several
additional step changes over this range. More information
on the well testing procedure including visualization can
be found under https://github.com/NRT23.

The problem in this situation is the fact that the amount
of data is limited, so that obtaining a validation and test
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datasets for model evaluation and overfitting control is
difficult. Even K-Fold cross-validation may not help in this
case, since there are only a few measurements for each
point of the gradually changing choke opening. In this
work, we assume that there is no available data for model
testing and train the model until the training dataset is
well fitted. Table 2 shows the matrix of the datasets usage
in Case 3.

Table 2. Matrix of datasets for Case 3

Case Train Validation Test Prediction

Case 3.1 WT1 - - Q1

Case 3.2 WT1,WT2 - - Q2

Case 3.3 WT1,WT2,WT3 - - Q3

Case 3.4
WT1,WT2

WT3,WT4
- - Q4

4.4 XGBoost application and tuning

In this work, we use Python implementation of XGBoost.
To select hyperparameters, we use random search ap-
proach. To explore a large subspace of the hyperparame-
ters, we perform 10 random searches 10 iterations each for
both K-Fold and early stopping in each sub-case study.

5. RESULTS AND DISCUSSION

In this section, we analyze the simulation results for each
simulation case separately and afterwards make general re-
marks about the performance of XGBoost for Virtual Flow
Metering. To evaluate the performance on the predicting
datasets, we use Mean Absolute Percentage Error (MAPE)
which shows the average absolute percentage deviation of
the predictions from the true value

MAPE =
1

m

m∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣·100 (11)

To compare the XGBoost performance for Case 1 and
Case 2, we also calculate MAPE between the multiphase
flow meter measurements and the true rate.

Table 3 summarizes the simulations results from all the
cases. For the sub-cases of Case 1, we see that with the
increase of the dataset size, the performance of both vali-
dation methods improves, however, for the early stopping
cases this improvement is negligible. Another observation
is that early stopping outperforms K-folds in Case 1.1 and
Case 1.2 while in Case 1.3 K-Fold method outperforms

Table 3. MAPE of GB VFM and MPFM

Method
MAPE

Case 1.1 Case 1.2 Case 1.3

GB VFM1 KF2 ES3 KF ES KF ES
6.49% 5.21% 6.50% 5.17% 4.88% 5.11%

Case 2.1 Case 2.2 Case 2.3

GB VFM
KF ES KF ES KF ES

2.08% 2.09% 3.39% 3.68% 2.02% 2.13%

Case 1.1/2.1 Case 1.2/2.2 Case 1.3/2.3
MPFM4 3.15% 3.09% 3.14%

Case 3.1 Case 3.2 Case 3.3 Case 3.4
GB VFM 5.85% 3.29% 3.26% 3.88%

1 - Gradient Boosting Virtual Flow Meter
2 - K-Fold cross-validation
3 - Early stopping cross-validation
4 - Multiphase Flow Meter

early stopping. The reason for this can be the fact that K-
fold validation is performed in a nested manner, so that in
the first two cases the model is constructed in a relatively
small datasets, especially when the number of training
folds is small. However, in Case 1.3 the data becomes large
enough even in 1 fold to construct a model which well
represents the data. However, one should notice that this
situation might not always be the case. For instance, if the
validation dataset was very different from the prediction
one, early stopping would potentially show less accurate
performance than K-Fold method in all the cases.

Another important observation from Table 3 is the fact
in all the sub-cases of Case 2 the error is lower both for
K-Fold and early stopping than in the corresponding sub-
cases of Case 1. This shows that adding the information
from the well tests helps to improve flowrate predictions
with GB VFM. Another observation for Case 2 is that
K-Fold outperforms early stopping in each sub-case. This
shows that for the data with higher variability added by
the well tests, K-Fold cross-validation can be a more robust
way of the algorithm training. Potentially, the performance
of early stopping in cases with well testing data can
be improved by a better selection of the data splitting
strategy. For instance, a part of the well test dataset can
be included into the validation set while in our work we
used well test data in the training dataset only.

Overall, we observe that the MAPE from GB VFM is
comparable with the error from the MPFM, especially
in Case 1.3 and Case 2. An example of the flowrate
predictions by GB VFM is shown in Fig. 5. The figure
shows that during some production time the constant
piecewise approximations by the regression trees is good
enough and have values closer to the true rate than the
simulated MPFM rate predictions while in some parts
constant piecewise predictions can be relatively inaccurate.
Potentially, the performance of GB VFM can be further
improved by applying linear function approximations in-
stead of constant piecewise ones which may have a better
ability to interpolate the flowrate predictions.

Another interesting observation from Table 3 is that a very
small error is achieved in Case 2.1 even though this case
does not have the largest training dataset. The reason
for this is the fact that the choke opening values in Q2

(prediction dataset for Case 2.1) coincidentally matched
the values considered during the well tests multiple times.
Since the flowrate estimates from the well tests does not



include the MPFM uncertainty, the resulted error is even
lower than the error from the MPFM. This result is
promising meaning that by performing a well-planned well
testing around the expected operating point can lead to
very accurate flowrate predictions by GB VFM.

As for the sub-cases of Case 3, we see the tendency of the
error decline as the training set increases. An additional
sub-case (Case 3.1) in Case 3 was included to see if we can
use well tests from the beginning of the field operation
for VFM purposes without a need of MPFM installation.
As we can see from Table 3 the error in Case 3.1 is
relatively large in comparison with the MPFM while with
the new data obtained the error becomes comparable.
Thus, potentially the combination of the well testing
performed in a step-wise choke opening manner with GB
VFM can be used as a standalone solution. However, at
the initial production phase the accuracy can be low. One
solution for this problem can be performing longer and
more rigorous well tests for the initial stage with reducing
well test complexity as the time evolves.

Even though we observed that the errors in Case 3 are
comparable with MPFM, one should notice that the train-
ing was done without validation and test datasets, so that
even well a fitted algorithm produced good results. In a
real case, the well tests measurements may not have such
a good accuracy as in the considered case and may have
more noise both in variables (pressure and temperature
measurements) and flowrate measurements, so that an
overfitted model will most likely give worse predictions
than the presented ones. In this case, obtaining more data
from well testing and using it as a validation/test datasets
can be a solution to control model overfitting.

In addition to the performance analysis, it is worth to
emphasize limitations and possible challenges of GB VFM
implementations in real systems. First of all, in this
work we assumed that the measurements are free of
noise. In reality, the measurements will always contain
random and possibly drift errors which would make the
implementation of the algorithm more challenging. In
addition, the used constant piecewise regression trees have
limited capabilities in extrapolating the target variable
which can be important in real systems when new data
goes outside the range of training data. This problem can
be addressed by implementing linear regression trees as
weak learners in GB.

6. CONCLUSIONS AND FUTURE WORK

In this work, the XGBoost implementation of Gradient
Boosting algorithm was used to predict oil flowrates from
a simple subsea production system under various field de-
velopment strategies. The algorithm showed a performance
comparable with a hardware multiphase flow meter and
has a potential to be used as a back-up as well as a stan-
dalone solution for Virtual Flow Metering even provided
with a small training dataset. Depending on the available
dataset size and variability, K-Fold or early stopping cross-
validation strategies can be used to obtain a good algo-
rithm performance. Random search strategy of the algo-
rithm selection combined with a careful parameter tuning
produces good results of the flowrate predictions. The
simulation results showed that by combining GB algorithm

with the flowrate measurements from well testing over a
wide operating range of the well, it is possible to make
accurate flowrate predictions starting from an early pro-
duction stage. The future work can address improvements
of GB application for VFM by using linear regression tree
models as weak learners. as well as challenges associated
with the uncertainty of the flowrate measurements and
limited data availability from the well tests.

Apart from improving the algorithm using more advanced
learners, the future work may also address utilizing GB
together with artificial neural networks within ensem-
ble learning to make even better predictions. However,
one should be careful when implementing this approach
because it inevitably leads to a less explainable model.
In addition, adding pressure and temperature data from
other parts of production systems may also boost the
performance. Potentially, installing more sensors for gath-
ering algorithm training data and conducting rigorous well
tests as proposed in this work can be less costly than
investing into experiments for tuning first principle models
or installing expensive hardware devices such as multi-
phase flow meters. This question should be addressed by
companies when developing flowrate monitoring systems
in existing and especially new fields.
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