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Abstract: Multistage model predictive control (MPC) is based on the enumeration of scenarios
that represent the uncertainty in the system. Scenario selection is important in multistage MPC
since the choice of scenarios determines the degree of conservativeness of the optimal solution. We
propose a data-driven approach based on principal component analysis (PCA) to dynamically
select the scenarios, leading to reduced conservativeness. When time-varying uncertainty is
considered, PCA can be performed online to select new scenarios whenever the uncertainty
data is updated. The results of the approach are demonstrated for a two-plant system with a
thermal storage tank. The solution obtained is less conservative than with standard multistage
MPC. This is because the online PCA-based approach accounts for the most recent, and thus
more representative, uncertainty realizations.
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1. INTRODUCTION

A lot of energy in chemical process plants is lost in the form
of industrial waste heat. In industrial clusters of multiple
process plants, energy resources such as steam, cooling
water, raw materials, etc. are often shared. Optimal energy
efficiency in such a system demands flexible operation
of the plants, so that surplus energy from one plant is
transferred to another plant in need of it. The plants
in such clusters can act both as sources of heat (those
having surplus heat) and sinks of heat (those having energy
demands). Examples of industrial clusters in Scandinavia
include Mo Industripark in Norway and Kalundborg Sym-
biosis in Denmark. The surplus heat streams from different
sources are available at varying temperatures. Moreover,
supply of surplus heat and energy demand is often asyn-
chronous, while also operating at differing time scales. To
mitigate some of these issues, employing a thermal energy
storage system is an attractive option. Such a system
creates a buffer between the energy suppliers and users.
For example, domestic thermal energy storage in buildings
was considered by de Oliveira et al. (2016).

Process plants often exhibit highly nonlinear dynamics.
In addition, they also have to contend with disturbances
in process parameters like temperatures and flow rates
during operation. In the context of energy exchange, this
consequently results in an uncertain yield/consumption of
surplus heat on the supply/demand side. The existence
of such uncertainties presents a significant challenge for
operating these plants at an optimal point.
? M.T and J.J gratefully acknowledge the financial support from
FME HighEFF. D.K and J.J gratefully acknowledge the financial
support from SFI SUBPRO. Corresponding author: J.J.

Model predictive control (MPC) is a powerful tool for op-
erational optimization that is widely used in the process in-
dustry. However, nominal MPC does not explicitly model
the uncertainties in the system. To rigorously account for
uncertainty, methods classified under “Robust MPC” have
been receiving some attention in control literature. Based
on the theory of robust optimization, the so called min-
max MPC approach (first proposed by Campo and Morari
(1987)) minimizes the cost of the worst-case realization of
the uncertainty. The notion of feedback in min-max MPC
was first introduced by Scokaert and Mayne (1998). In
this approach, the closed-loop optimization is sought over
different sequences of control inputs for different realiza-
tions of the uncertainty. This idea was further extended
by Lucia et al. (2013) for multistage nonlinear MPC,
based on the concepts of stochastic programming. Here,
the evolution of uncertainty is assumed to be modeled
by a scenario tree, which is generated from the discrete
realizations of the uncertainty. By optimizing over each
branch of this scenario tree, the idea that new information
will be available in future stages is explicitly accounted
for.

The convention in multistage MPC is to assume that the
uncertainty information is known a-priori, that it is known
perfectly and that it is discrete. However, the selection of
scenarios that build the scenario tree is very important in
the practical implementation, and has not been sufficiently
addressed in the context of multistage MPC. Traditionally,
scenario-based stochastic programming methods involve
a two step process: estimating a probability distribution
function (PDF) from a finite data-set, and subsequently
discretizing the PDF to generate scenarios (Birge and
Louveaux, 2011). Another approach is to skip the PDF



estimation step and go directly from data to scenarios,
i.e. the discrete scenarios can directly be chosen from the
available data samples. After all, the different data samples
represent the discrete measurements of uncertainty in the
system. Ideally, then, any set of selected scenarios should
be a subset of this data set for the best representation of
uncertainty.

Having decided on selecting scenarios directly from avail-
able data, the next question to consider is which data sam-
ples to select as scenarios. The size of the multistage MPC
problem increases exponentially with increasing number of
scenarios. Hence it is important to capture maximum un-
certainty information with minimum number of scenarios,
in order to be computationally efficient.

Uncertain parameters in a system often exhibit correla-
tions. Sampling methods like the Monte Carlo or the Latin
hypercube sampling emphasize randomness of sampling to
maximize information, but ignore correlations. Therefore,
these scenario selection methods may not be the best if
we want to exploit the correlation to reduce the number
of scenarios. To overcome this, multivariate data-analysis
methods like the principal component analysis (PCA)
can be used to detect any hidden correlations within
the available data samples. The scenarios chosen using
these multivariate methods explicitly take into account the
interdependence between the parameters. Dimensionality
reduction methods such as PCA explain the parametric
variation in a data set in fewer dimensions - referred to
as principal components. This means that lesser number
of scenarios are able to effectively describe the parametric
variation in the system, leading to a compact scenario tree
formulation.

In this paper, we propose an online PCA-based approach
for systems with time-varying uncertainty, that can be
performed dynamically in the multistage MPC implemen-
tation. The idea is to select new scenarios online whenever
new uncertainty data becomes available, and to systemati-
cally reformulate the optimization problem in anticipation
of a predicted change in uncertainty. This can provide
an additional hedge against uncertainty, since the “lat-
est” data is constantly being used to select the scenarios.
Moreover, we propose that if the parametric variation can
be explained by a small number of “dominant” principal
components (shown by PCA), it suffices to select the sce-
narios only along these components to sufficiently explain
the uncertainty. The proposed approach is applied to a
simple thermal energy storage model.

The paper is structured as follows. Section 2 describes
the formulation of the multistage MPC problem and the
dynamic scenario selection strategy using PCA. Section
5 illustrates the modeling for energy storage used as a
case study for the demonstration of the multistage MPC.
Simulation results are presented in Section 6 and the
conclusions and recommendations are stated in Section 7.

2. PRELIMINARIES - MULTISTAGE MPC

Consider sets S = {1, . . . , S} and J = {0, . . . , N−1}, where
S is the total number of scenarios and N is the length
of the prediction horizon. The scenario-based multistage
MPC problem can be formulated as follows:
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Fig. 1. Illustration of the scenario tree at time t0 with
M = 2 realizations of uncertainty. The prediction
horizon N = 4 and the robust horizon Nr = 2.

min
xi,j ,ui,j

∑
i∈S

ωi

∑
j∈J

φ(xi,j ,ui,j) (1a)

s.t.

xi,0 = xinit, ∀i ∈ S (1b)

xi,j+1 = f(xi,j ,ui,j ,πππi), ∀j ∈ J,∀i ∈ S (1c)

g(xi,j ,ui,j) ≤ 0, ∀j ∈ J,∀i ∈ S (1d)∑
i∈S

Eiui = 0, ∀j ∈ J,∀i ∈ S (1e)

The states and inputs for the ith scenario and jth time step
are denoted by xi,j ∈ Rnx and ui,j ∈ Rnu respectively. The
uncertain parameters for the ith scenario are denoted by
πi ∈ Rnπ . Equation (1a) represents the cost to minimize,
where ωi is the weight assigned to the ith scenario and
φ : Rnx × Rnu → R is the objective function. Equation
(1b) represents the initial condition constraints, with xinit

being the vector of starting points for the states. Equation
(1c) represents the model of the nonlinear dynamic system
described by the vector of state equations f : Rnx ×Rnu ×
Rnπ → Rnx , and Equation (1d) represents the constraints
in the system, denoted by g : Rnx × Rnu → R.

Equation (1e) represents the non-anticipativity constraints,
which enforce that all control inputs applicable to branches
of the same node, are equal. This is because, in real
applications, the uncertainty is realized after the control
input is applied. In other words, one cannot anticipate
how the scenario tree is going to branch out at a node
before a decision is taken at that node. The reader is
referred to Krishnamoorthy et al. (2018a) for details on
the construction of the non-anticipativity matrix Ei.

To curb the rapid growth of the scenario tree, the uncer-
tainty is assumed to be constant after a certain point in
the prediction horizon so as to reduce the computational
cost, as justified by Lucia and Engell (2013). This point
represents the so-called robust horizon of the problem,
with a length Nr. The scenario tree evolution showing the
prediction horizon and the robust horizon is illustrated in
Fig. 1. Therefore if we have M discrete realizations of the
uncertainty, then this results in S = MNr scenarios.



3. DYNAMICALLY ADJUSTING THE
SCENARIO-TREE

Many systems have to contend with uncertainty that
is time-varying. In this paper, we propose to update
the scenario-tree dynamically to acknowledge this time-
varying uncertainty. Our approach takes into account that
the considered scenarios may change during the operation
of the system. That is, the uncertainty may have very
different characteristics during different points in time.

For example, consider the intra-day variation of energy
demand in a district heating network, with high peaks
in the morning and the afternoon. Clearly, the scenarios
depicting the demand during the peak hours will be dif-
ferent from the scenarios during low and medium demand
periods.

To reflect these changes, the scenario-tree can be updated
during operation as new uncertainty data becomes avail-
able. We propose two update strategies for the scenario-
tree:

(1) Adjust the scenarios, i.e the parameter values, at
every time step as new information becomes available.

(2) Extend the length of the robust horizon at the current
time step if a change in uncertainty information at a
future time step can be anticipated.

The first strategy recognizes that multistage MPC is
performed on a moving horizon, where the optimization
problem is repeatedly solved at every time step with an
updated initial condition. We propose, in addition, to also
update the scenarios themselves at every time step in
recognition of newly available uncertainty information.

For instance, assume that at time t0, the scenario-tree is
as given in Fig. 1. This tree is used in the multistage-
MPC controller until updated information is available. If
at time t2 new information about the uncertain parameters
becomes available, the scenario-tree for the optimization
problem will be updated using the new data. This updated
scenario-tree will be used in the multistage MPC imple-
mentation from time t2 until newer information about the
scenarios becomes available.

With respect to the second strategy, if it is known a-priori
that uncertainty data will be updated at a future time
step in the horizon, the robust horizon can be accordingly
modified to take this into account. Farther way from the
point of update, a shorter robust horizon can be used to
reduce computational burden. As the predicted point of
update comes closer, the robust horizon can be extended
to include the new scenarios reflecting the update.

Consider again the scenario tree shown in Fig. 1. Here
Nr = 2 at time t0. However, if it known at time t0 that new
uncertainty information is available at at time t2, then the
robust horizon can be increased from Nr = 2 to Nr = 3 at
time t0, in order to accommodate this extra branching at
time t2. This would thus lead to consideration of additional
scenarios (in this case, 23 = 8 scenarios).

These updates of scenarios and the robust horizon can be
done dynamically within multistage MPC. The procedures
can be performed via online computations at any time step
which presents new information about the uncertainty.
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Fig. 2. Selected scenarios, marked by ‘X’, correspond to
the maximum and minimum scores along the two
principal components.

4. DATA-DRIVEN SCENARIO SELECTION

Given a data set representing the uncertain parameters,
the naive approach of selecting scenarios would be to take
the combinations of the minimum and maximum values
of each parameter to maximize uncertainty information.
Similar to random sampling methods, this approach ig-
nores parameter correlation. PCA can be leveraged to judi-
ciously choose those samples from the set that incorporate
information about correlations between the parameters.
This is especially true for large data sets with many param-
eters where detecting correlations between parameters, if
they exist, is impractical via simple tools such as univariate
analysis.

PCA employs a mathematical procedure that transforms a
data set with multiple, possibly correlated, variables into a
lesser number of uncorrelated variables, known as principal
components. Essentially, it is an orthogonal linear trans-
formation of the data set into a new coordinate system
with each new axis representing a principal component.
The first principal component points in the direction of
maximum variance within the data set. Subsequent prin-
cipal components account for as much of the remaining
variance as possible, in decreasing order. This dimension-
ality reduction helps explain the parametric variation in
the data using smaller number of components.

Consider a data matrix X ∈ Rno × Rnπ , where rows of
the matrix represent observations and columns represent
the (possibly correlated) parameters. To remove arbitrary
biases from the measurements, the data is mean-centered
and scaled, resulting in the data matrix Xsc ∈ Rno ×Rnπ .
Performing PCA on Xsc results in the output Y ∈ Rno ×
Rnπ′ , with π′ ≤ π, according to:

Y = XscP (2)

where, P ∈ Rnπ × Rnπ′ is the projection matrix with
each column representing a principal component. In other
words, each column of P contains the coefficients that
project the original data point to the new coordinate
system (Y) of π′ principal components. These are also
referred to as loadings. The matrix Y is called the scores
matrix. The score of a data point along a principal com-
ponent represents the distance of that data point from



the mean along the direction of that principal component.
For an overview of PCA and its algorithms, the reader is
referred to Jolliffe and Cadima (2016).

Scenarios can be chosen by leveraging information from
this transformed data set. Since the principal components
are orthogonal to each other, scenarios can be chosen
along the direction of these principal components to ob-
tain maximum uncertainty information, as demonstrated
in our previous paper (Krishnamoorthy et al., 2018b).
For example, the chosen scenarios could correspond to
the maximum and minimum scores along the dominant
principal components that explain the variations in the
data sufficiently, as shown in Fig. 2.

The PCA may result in principal components such that
some components dominate over the others, in terms
of how much data variability they explain. We propose
to select scenarios only along these dominant principal
components, since the chosen scenarios can then account
for maximum variation in the uncertainty.

For instance, Fig. 2 shows scenarios (marked by red and
blue “X”s) selected along both the principal components.
Instead, since it can be seen clearly that the first principal
component is dominant 1 , scenarios can be chosen only
in that direction (marked by red “X”s). Thus, instead
of choosing 4 scenarios, only 2 scenarios can encompass
most of the parametric variation in the data shown in
Fig. 2, without any significant loss in explained variability.
Reducing the number of scenarios in this manner can
thus make the size of resulting multistage MPC problem
significantly smaller, reducing the computational effort.

5. CASE STUDY: SIMPLE ENERGY STORAGE
SYSTEM

We consider a simple two-plant thermal storage system,
with one plant being the supplier of heat (plant A) and
the other being the consumer (plant B). A thermal storage
tank acts as a buffer between the two plants to facilitate
the energy exchange. The tank interacts with the two
plants via heat exchangers, as shown in Fig. 3.

Further, the tank can directly be heated up via a local
heating source. For example, in the context of industrial
clusters, surplus heat from the flue gases that result from
various chemical processes can be used to heat up the tank.
Thus, the local heating source is considered inexpensive.
If the energy in the tank is insufficient to meet the
energy requirements on the demand side, the plant has to
purchase the excess energy from the market. Energy from
the market is usually much more expensive than the local
heating source. The objective is to operate the system such
that the total cost of energy purchase is minimized.

5.1 Process model

The heat exchangers are modeled as devices with two
chambers representing the hot side and the cold side.
Both chambers of the heat exchanger, as well as the
tank itself, are considered to have the same temperature
throughout their volumes. Thus the temperatures exiting
1 For the data shown in Fig. 2, the first principal component explains
96.4% of the variance.
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Fig. 3. Illustration of a simple energy storage system.
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Fig. 4. Schematic of the model. The states, inputs and
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tively.

Table 1. Model parameters

Symbol Value Symbol Value

Vtn 100 m3 V 0.5 m3

Atn 100 m2 A 300 m3

Utn 0.5 kW/m2K U 0.5 kW/m2K

(qah)max 1 m3/s (qah)min 0 m3/s
(qac)max 1 m3/s (qac)min 0 m3/s
(qbh)max 1 m3/s (qbh)min 0 m3/s
(qbc)max 1 m3/s (qbc)min 0 m3/s
(Ttn)max 100 ◦C (Ttn)min 30 ◦C
(Qtn)max 5000 kW (Qtn)min 0 kW

Tamb 20 ◦C Qdemand 5000 or 10000 kW
Ptn 5 units/kW Pmk 1000 units/kW
ρ 1000 kg/m3 Cp 4.18 kJ/kgK

these volumes are considered to be same as those inside the
volumes. The driving force for the heat exchange between
the two chambers is the difference in the temperatures of
the two chambers. Further, we consider hot water as the
fluid for heat exchange.

Both heat exchangers have an area A, volume V and
heat transfer coefficient U . The tank has a volume Vtn,
a surface area of Atn, and experiences heat loss with a
heat transfer coefficient Utn. The density and specific heat
capacity of water are denoted by ρ and Cp respectively.
Temperatures on the hot and cold sides of heat exchangers
on both sides (plant A and plant B) are Ta,h, Ta,c, Tb,h and
Tb,c respectively. The tank temperature is Ttn, whereas
the ambient temperature is Tamb. Inlet temperatures from
plant A and plant B are Ta,in and Tb,in respectively The
flow rates on either side of the heat exchangers are qa,h,
qa,c, qb,h and qb,c respectively. Local heat supply is denoted
by Qtn and the energy purchased from the market is
denoted by Qmk. The model parameters are shown in
Table 1.



Fig. 4 shows the schematic with the different states, inputs
and disturbances in the model. The exit temperatures from
the chambers of heat exchangers and the tank are the
states x. Flow rates on either sides of the heat exchanger,
along with the local and market heat supply, are the inputs
u. The inlet temperatures from the two plants are the
disturbances. The energy balances on the hot and cold
chambers of the heat exchangers, and on the tank, become:

dTa,h
dt

=
1

V

{
qa,h(Ta,in − Ta,h)− UA(Ta,h − Ta,c)

ρCp

}
(3a)

dTa,c
dt

=
1

V

{
qa,c(Ttn − Ta,c) +

UA(Ta,h − Ta,c)
ρCp

}
(3b)

dTb,h
dt

=
1

V

{
qb,h(Ttn − Tb,h)− UA(Tb,h − Tb,c)

ρCp

}
(3c)

dTb,c
dt

=
1

V

{
qb,c(Tb,in − Tb,c) +

UA(Tb,h − Tb,c)
ρCp

}
(3d)

dTtn
dt

=
1

Vtn

{
qa,c(Ta,c − Ttn)− qb,h(Ttn − Tb,h)

+
Qtn

ρCp
− UtnAtn(Ttn − Tamb)

ρCp

}
(3e)

5.2 Uncertainty description

We consider uncertainties in the form of disturbances in
the system, Ta,in and Tb,in, the inlet temperatures from the
two plants. The temperature data from various streams
in a process is usually logged. A period of 24 hours is
considered for this uncertainty data. Further, we consider
that the inlet temperature distributions are different for
three distinct phases of the day (12 AM to 8 AM, 8 AM
to 4 PM and 4 PM to 12 AM). We assume that historic
data is available for the temperature distributions for these
phases.

The plants operate at higher temperatures during the
day phase and lower temperatures during the evening and
night phases. Further, it is reasonable to expect that these
plant temperatures are correlated to each other. This is
because the periods of high and low activity in plants in
an industrial cluster are similar. The scatter plot of the
two inlet temperatures is shown in Fig. 5, for a series of
historic data.

5.3 Formulating the multistage MPC problem

For a given energy demand profile for plant B, the eco-
nomic objective is to minimize the cost of energy. In
context of the multistage MPC formulation (1), the cost
function for ith scenario and jth time step can then be
stated as:

Ptn(Qtn)i,j + Pmk(Qmk)i,j
where Ptn and Pmk are the prices of the local energy supply
and the market supply respectively.

The starting values of all temperatures are imposed as
the constraints (1b). The model equations (1c) of the
multistage MPC formulation are obtained by discretizing
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Fig. 5. Uncertainty data - inlet temperatures from the
plants for different phases of the day. It can be
seen that the temperatures are correlated differently
throughout each phase of the day.

the energy storage model equations (3) using collocation
on finite elements. These form the equality constraints of
the problem. Bounds on the temperatures, flow rates, and
energy supplies are imposed for each scenario and time
step, and these form the inequality constraints (1d). In
addition, the non-anticipativity constraints (1e) are also
imposed.

Recall that plant B purchases energy from the market to
satisfy the demands in excess of what can be satisfied solely
through the storage system. For the ith scenario and jth
time step, this can be formulated as the constraint:

(Qmk)i,j + ρCpqb,c((Tb,c)i,j − (Tb,in)i,j) ≥ Qdemand

where Qdemand is the total energy demand of plant B. This
imposes the condition that the energy purchased from the
market in addition to the energy from the storage system
must at least be equal to energy demand from the plant.

6. RESULTS

The multistage MPC problem is formulated with N = 24
hours (finite elements) and Nr = 1 hour, with control
action changing every hour. JuMP (version 0.18.2) (Dun-
ning et al., 2017), a modeling tool within the framework
of Julia (version 0.6.2) (Bezanson et al., 2017) program-
ming language, is used to implement the multistage MPC
problem. The resulting nonlinear optimization problem
is solved using Ipopt (Wächter and Biegler, 2006). The
results are divided into the following two parts:

(1) Comparison of a scenario selection using a data-
driven PCA and a conventional “BOX” approach,
with a constant Nr = 1.

(2) Studying the effect of dynamically adjusting Nr closer
to an anticipated change in the uncertainty data,
while using PCA for scenario selection.

6.1 Data-driven vs conventional scenario selection

For comparison, the dynamic scenario selection is done
with two methods. In the first method, a conservative
approach is used, selecting scenarios as the four corner
points from the box that encompasses all the uncertainty
data over each 8-hour phase during the day. Essentially,
these scenarios represent the combinations of the minimum
and maximum of the data set along each dimension. A
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Fig. 6. The energy supplies and the tank temperature
across the 24-hour period, for the two methods.

fifth scenario is chosen to represent the mean value along
each dimension. This approach is referred to as the “BOX”
method. The BOX method does not account for any
correlations between the uncertain inlet temperatures.

In the second, “PCA” method, the scenarios are chosen
by performing PCA dynamically over the data sets that
are relevant for the corresponding phases of the day
(shown by different colors in Fig. ??).The PCA results
in two principal components for each data set, with the
first principal component explaining 96.51% of the total
variability for the 12 AM to 8 AM data, 89.72% for the
8 AM to 4 PM data, and 91.84% for the 4 PM to 12
AM data. Since the first principal components explain a
large fraction of the variance in the data, two scenarios
are selected corresponding to the minimum and maximum
scores along this principal component. A third scenario is
chosen to represent the mean value along each dimension.

We consider the uncertainty to be time-varying over the
MPC horizon, where the “true” realization of the un-
certainty in the simulator is chosen randomly for each
hour from the corresponding data set. The simulation is
considered for the 24 hour horizon from 12 AM to 12 AM.
The demand is constant at 5000 kW throughout the day,
except for 7 AM to 9AM and 3 PM to 5 PM, when there
is a peak demand of 10,000 kW.

The results of the optimization are shown in Fig. 6. It can
be clearly seen that for the BOX method, the solution
is more conservative. The tank is heated to a higher
temperature for satisfying the same demand profile across
the day. Similarly, the heat supplied to the tank is also
more compared to the PCA method. Also, the data-driven
approach leads to lower purchases of the expensive energy
from the market during peak demands.

Moreover, the simulations were repeated 30 times for the
time-varying uncertainty case. The “true”” set of uncer-
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Fig. 7. The averaged integrated cost for 30 different
simulation runs.

tain parameters in each simulation was a randomly chosen
subset of the available data set. The performance for each
simulation run was evaluated based on the integrated ob-
jective function, which sums up the values of the objective
cost for all stages and scenarios. The results are presented
in Fig. 7, where it can be seen that the PCA method
outperforms the BOX method with a lower cost. Note that
the integrated objective costs are divided by the respective
number of scenarios chosen for each method for a fairer
comparison.

6.2 Dynamically adjusting the robust horizon

Here, the simulations were run such that the multistage
MPC was implemented using two Nr cases. In the first
case, the robust horizon was kept constant throughout the
simulation at Nr = 1. This is referred to as the “NR1”
case.

In the second case, the robust horizon was dynamically
adjusted (switched) from Nr = 1 to Nr = 2, one hour
before the night-to-morning and morning-to-evening phase
changes. This change was implemented only for the cor-
responding next one time step, and subsequently reduced
back to Nr = 1 for later time steps. Thus, Nr = 2 was
used for the MPC time steps at 7 AM and 3 PM. This is
because it is known that, at these times, the uncertainty
data will be updated in one hour due to change in phase;
and the robust horizon length of 2 hours reflects this. This
is denoted as the “NR2” case.

The scenario selection was done via PCA for both cases.
Moreover, the energy demand was considered to be con-
stant at 5000 kW throughout the 24-hour period (i.e. no
peak heating). The results are shown in Fig. 8

It can be seen that by dynamically extending the robust
horizon (NR2 case), the optimization anticipates the up-
coming rise in inlet temperatures by pre-empting the local
tank heating at 7 AM (shown by a higher Qtn in the NR2
case than in the NR1 case). This can also be seen from
the tank temperature profile, where the temperature of
the tank rises higher in the NR2 case at 7 AM than in the
NR1 case. Consequently, the market purchase at 8 AM is
smaller in the NR2 case, leading to lower cost. During the 4
PM phase change, the temperatures are dropping anyway
so market purchase is unnecessary. This leads to the same
temperature and heating profiles in the evening phase for
both NR1 and NR2 cases. This is because, at this time,
the tank has enough energy to satisfy the energy demand
of Plant B.
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Fig. 8. The energy supplies and the tank temperature
across the 24-hour period, for Nr = 1 and Nr = 2.

7. CONCLUSION AND FURTHER WORK

The case study of the thermal storage tank demonstrates
that the same energy demand profile can be satisfied by
heating the tank less if the scenario selection is data-driven
and dynamic. Not only does the tank operate at a lower
temperature, but the cost of operation is also significantly
lower.

In addition, extending the robust horizon dynamically
leads to the consideration of future changes in inlet tem-
peratures by the MPC algorithm. This prompts preemp-
tive control action so that the tank is heated up in an-
ticipation even before the uncertainty data changes. The
result is that the market purchase is reduced when the
energy is demanded at a higher inlet temperature.

To conclude, we have demonstrated that an online PCA-
based, dynamic scenario-tree adaptation approach leads
to solutions that are less conservative while still hedging
against the uncertainty. Moreover, the approach involves
solving an optimization problem of a smaller size since
less scenarios, chosen only along the dominant principal
component are needed to describe the uncertainty.

With respect to further work in this domain, multistage
MPC could be combined with tube-based MPC in a sim-
ilar fashion as described in Subramanian et al. (2018) to
seek robustness against the uncertainty in the direction
of the “insignificant” principal components, which were
discarded in scenario selection procedure in this work. In
terms of modeling, a thermal storage system with multiple
suppliers and consumers of energy is more realistic. Fur-
ther, the effect of uncertain time-varying peak loads on the
optimal operation (i.e. using scenarios to describe varying
magnitudes of peak loads) can be studied.
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