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The model of the gas lifted oil well network is based on Krishnamoorthy et al. 1 . It describes

the dynamic behavior of a network containing two wells. Note that, since both Output

Modifier Adaptation (MAy) and the methodology for selecting the model structure online

are steady-state methods, only the steady-state solution of the nonlinear dynamic model is

considered. No dynamics are included in the case study. Nevertheless, the original semi-

implicit index-1 differential algebraic equations system is shown and the dynamic description

is explicitly discarded:

0 =��̇x = f(x, z,u,p) (1a)

0 =h(x, z,u,p) (1b)

ym =H[x z]T (1c)

in which, x ∈ Rnx are the differential states, z ∈ Rnz the algebraic states, u ∈ Rnu the
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system inputs, p ∈ Rnp the model parameters, and ym ∈ Rny the process measurements.

The set of nonlinear differential equations is f : Rnx × Rnz × Rnu × Rnp 7→ Rnx and h :

Rnx × Rnz × Rnu × Rnp 7→ Rnz the set of algebraic equations. The output mapping H is

linear in relation to the states.

Given nominal values to the parameters p, the steady-state solution of the system de-

scribed in Equation (1) can be represented by a steady-state input-output mapping y :

Rnu 7→ Rny , which is adapted by the output modifier adaptation method (y 7→ yad) like in

Equation (1) of the main paper.

ym = y(u) (2)

The system flowsheet is shown again in this section. The measurements (system pres-

sures) are indicated now.

Figure 1: Network containing two gas lifted wells. Pressures, which are the measured states,
are indicated. Adapted from: Krishnamoorthy et al. 1 .
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Nonlinear system model

The system mass balances, which are originally a differential equation set f, are:

0 =���ṁga,i = wgli − wivi i = 1, 2 (3a)

0 =���ṁgt,i = wivi − wpgi + wrgi i = 1, 2 (3b)

0 =���ṁot,i = wroi − wpoi i = 1, 2 (3c)

0 =�
��ṁgr =

∑
i

wpgi − wtg (3d)

0 =���ṁor =
∑
i

wroi − wto (3e)

where, mgr and mor are the total mass of gas and oil in the riser/manifold. mga,i is the gas

mass in the annulus of the well i. mgt,i and mot,i are the total mass of gas and oil of the well i.

For the ith well, wgli is the gas lift injection rate; wivi is the gas flow from the annulus into the

tubing; wrgi is the gas flowrate from the reservoir; wroi is the oil flowrate from the reservoir;

and wpgi and wpoi are the produced gas and oil flowrates from well i, respectively. Regarding

the network, the total produced gas and oil flowrates are represented by wtg and wto. The

mass flows are calculated using nonlinear relations explained in the following sections. Note

that, i = 2 in the case study.
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Well i model

The mass flowrates are computed by (note that, for convenience, the subscript i for indicating

the ith well has been removed from the equations):

wiv =Civ
√
ρa max(0, pa − pwi) (4a)

wpc =Cpc
√
ρw max(0, pwh − pm) (4b)

wpg =
mgt

mgt +mot

wpc (4c)

wpo =
mot

mgt +mot

wpc (4d)

wro =PI × (pr − pbh) (4e)

wrg =GOR× wro (4f)

where, Civ and Cpc are the valve flow coefficients for the downhole injection valve and the

production choke, respectively. ρa is density of gas in the annulus and ρw is fluid mixture

density in the tubing. pa is the annulus pressure, pwi is the pressure at the gas lift injection

point, pwh is the wellhead pressure, pm is the manifold pressure, pr is the reservoir pressure

and pbh is the bottom hole pressure (all the pressures are indicated in Figure 1). GOR is

the gas/oil ratio of the reservoir and PI is the reservoir productivity index. As discussed in

the paper, the productivity index value is used for emulating different well models in order

to test the model structure adaptation methodology.

The gas density is given by:

ρa =
Mwpa
TaR

(5)

And the fluid mixture density by:

ρw =
mgt +mot − ρoLrAr

LwAw
(6)

where, Mw is the molecular weight of the gas, R is the gas constant, Ta is the temperature
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in the annulus, and ρo is the density of oil in the reservoir. Lbh and Abh are the length and

cross-sectional area of the well below the injection point. Lw and Aw are the length and

cross-sectional area of the well above the injection point.

The pressures are computed by:

pa =

(
TaR

VaMw

+
gLa
LaAa

)
mga (7a)

pwh =
TwR

Mw

(
mgt

LwAw + LbhAbh − mot

ρo

)
(7b)

pwi =pwh +
g

AwLw
(mot +mgt − ρoLbhAbh)Hw +M2 (7c)

pbh =pwi + ρwgHbh (7d)

where La and Aa are the length and cross sectional area of the annulus, Hbh and Hw are the

vertical height of the well tubing below and above the injection point. Tw is the temperature

in the well tubing and g is the acceleration of gravity constant. M2 is used for representing

the “block” related to frictional pressure drop in the model. Two different sub-models can

be chosen for the model structure adaptation methodology:

M2 :=

{
(m2,1 : 0) ∨

(
m2,2 :

128µoilLwwpc
3.14D4

w(mgt +mot)pwhMwρo
(motpwhMw + ρoRTwmgt)

)}
(8)

where, µoil is the oil viscosity and Dw is the tubing diameter. m2,2 equation is based on the

the Darcy-Weisbach2 equation for laminar flow regime.
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Riser/manifold model

For the riser/manifold system, the flows are calculated by:

wpr =Cpr
√
ρr max(0, prh − ps) (9a)

wtg =
mgr

mgr +mor

wpr (9b)

wto =
mor

mgr +mor

wpr (9c)

where, Cpr is the valve flow coefficient for the riser choke. ρr is fluid mixture density in the

riser. prh is the riser head pressure and ps is the separator pressure (upstream process). The

density is calculated by:

ρr =
(mgr +mor)prhMwρro
morprhMw + ρroRTrmgr

(10)

where, Tr is the riser temperature. ρro is the density of oil in the riser/manifold.

The riser pressure prh and the manifold pressure pm are given by:

prh =

(
RTr
Mw

mgr

LrAr
− mgr +mor

LrAr

gHr

2

)
(11a)

pm =prh +
g

ArLr
(mor +mgtHr +M1) (11b)

where Lr and Ar are the length and cross sectional area of the riser, Hr is the riser vertical

height. As in the previous section, M1 is used for representing the “block” related to frictional

pressure drop in the model. Two different sub-models can be chosen for the model structure

adaptation methodology:

M1 :=

{
(m1,1 : 0) ∨

(
m1,2 :

128µoilLrwpr
3.14D4

r(mgr +mor)prhMwρro
(morprhMw + ρroRTrmgr)

)}
(12)

where, Dr is the riser diameter. m1,2 equation is based on the the Darcy-Weisbach2 equation

for laminar flow regime.
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Complete system model

Given the relations above for the wells and riser/manifold, the complete system model states

x, measurements y and decision variables u for the 2-well network are:

x =[mga1 ,mga2 ,mgt1 ,mgt2 ,mot1 ,mot2 ,mgr,mor]
T (13a)

y =[pa1 , pa2 , pwi1 , pwi2 , pwh1 , pwh2 , pbh1 , pbh2 , pm, prh]
T (13b)

u =[wgl1 , wgl2 ]
T (13c)

Table 1 contains the values of the parameters used in the simulation.

Finally, there is a third “block”, which is used to represent the reservoir model. The

differences between the reservoir models lie in the PI value:

M3 :=

{(
m3,1 : PI = [5, 5]T

)
∨
(
m3,2 : PI = [7, 7]T

)}
(14)

Plant model

Two different plant behaviors are formulated to test the ability of the methodology to track

changes in the plant. Two regions are defined, each one presenting a different behavior.

The regions are delimited by the values of the inputs u as shown in Figure 2. In Region A,

pressure loss due to friction is taken into account in both wells and in the riser. In turn,

Region B does not consider frictional pressure drop (i.e. the pressure difference between

the top and bottom is related only with the static pressure exerted by the liquid column).

Therefore, two different plant models are developed, one for Region A and one for Region

B.

In order to obtain a smooth transition, a 2-D sigmoidal function is used for connecting
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Table 1: Parameter values. Arrays indicate that each well has a different parameter value.
In turn, if a scalar value is shown, it indicates that both wells have the same parameter
value.

Variable (symbol) [unit] value
GOR gas-oil ratio in the reservoir [0.1,0.12]T

pres reservoir pressure [bar] [150,155]T

ps separator pressure [bar] 20
Ta annulus temperature [oC] 28
Tr riser temperature [oC] 30
Tw well temperature [oC] 32
La annulus length [m] 1500
Ha annulus height [m] 1000
Da annulus diameter [m] 0.189
Lbh well lenght below injection point [m] 500
Hbh well height below injection point[m] 500
Dbh well diameter below injection point [m] 0.121
Lr riser length [m] 500
Hr riser height [m] 500
Dr riser diameter [m] 0.121
Lw well length [m] 1500
Hw well height [m] 1000
Dw well diameter [m] 0.121
Civ injection valve [m2] 0.0001
Cpc production valve [m2] 0.0002
Cpr riser valve [m2] 0.001
ρo oil density in the wells [kg/m3] 800
ρro oil density in the riser[kg/m3] 800
µoil oil viscosity [Pa · s] 0.001
Mw average molecular weight [kg/mol] 0.02

the two regions. To illustrate its effect, Equation (11) is used:

pm = prh +
g

ArLr
(mor +mgtHr + Ω) (15)

Note that, Ω is used for representing the plant while M1 represents the model, which is

used in the economic optimization and model structure adaptation methodology. In addition,

the value of Ω changes according to the model input values as shown below. In turn, M1

represents a set of equations related to either sub-model m1,1 or m1,2. After choosing a
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Figure 2: Plant surface

sub-model to compose the complete process model, the set of equations in M1 is specified

and do not change according to u.

In order to compute Ω, ω is determined based on the model inputs wgl,1 and wgl,2. Note

that ω changes within the interval 0− 1,

ω(wgl,1, wgl,2) =

(
1

1 + e−10wgl,1+17.5

)(
1

1 + e−10wgl,2+17.5

)
(16)

Then, the effects of the different models that represent Regions A and B are weighted

based on Equation (17). Next, the value of Ω is added to Equation (15).

Ω =

ω × (0) |Region A + (1− ω)×
(

128µoilLrwpr

3.14D4
r(mgr +mor)prhMwρro

(morprhMw + ρroRTrmgr)

) ∣∣∣∣
Region B

(17)
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Gradient Estimation ∗

The method from Gao et al. 4 is applied to estimate plant gradients, which are necessary for

calculating the modifiers. They are estimated via quadratic approximations of the input-

output mapping of Equation (2). The step-by-step description of the method can be seen in

Figure 3.

For estimating the parameters of quadratic functions, it is necessary to obtain at least

nr = (nu + 1)(nu + 2)/2 − 1 measurements (with nu equals to the number of inputs of

the problem, which are the number of manipulated variables in our case). This measure-

ments are required due to the number of coefficients that are adjusted in the multidimen-

sional quadratic functions. In order to estimate the gradient while we do not have enough

measurements to compute the quadratic approximations, Gao et al. 4 apply finite-difference

approximation (FDA) nu times and uses iterative gradient-modification optimization and

gradient estimation (IGMO) to generate the remaining nr−nu measurements. FDA applies

small perturbation (∆h) to the inputs in order to obtain the measurements around the cur-

rent point. On the other hand, IGMO optimizes the plant using MA and estimates plant

gradients with a variant of FDA,5 which uses setpoints of the past iterations to evaluate the

gradients instead of further probing the plant.

∂yp
∂u

= [Sk]
−1 · [(ym,k − ym,k−1) . . . (ym,k − ym,k−nu)] (18)

where, ym are the process measurements at time instants k, k− 1, . . . , k−nu. Note that, the

input matrix [Sk]
−1 = [(uk − uk−1), . . . (uk − uk−1)]

−1 also contains only past information.

However, [Sk]
−1 needs to be well-conditioned in order to obtain good approximations for

the gradients. If it is not, IGMO perturbs the process in order to improve the input matrix

conditioning. Clearly, IGMO is not as expensive as FDA, because it only perturbs the system

when necessary.

∗This section is based on Matias et al. 3
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START 1. Choose Initial u(0)
2. probe plant u(0) + Δh

3. obtain FDA for derivative 
at u(0)

4.run IGMO until 
(nu +1)(nu +2)/2 setpoints 

are available

Run screening 
algorithm to find 
Unb(k) and Udist(k)

Estimate 
parameters of the 

quadratic 
approximation

1. Extract the gradients 
from the quadratic 

functions
2. Determine search 

space B(k)

Run optimization 
based on the 

quadratic 
approximation

u(k)

1. Find if there exists at 
least one point that 
||u(j) - u(k)|| ≥ 2Δu

2. set u*(k) = (u(j) + u(k))/2 
(improve quadratic 

approximation by shrinking 
the regression region)

||u*(k) - u(k)|| ≤ Δu

u*(k)

Probe plant and 
measure φp(u*(k)) 

   φp(u*(k)) ≥  φp(u(k))

YN

1. Define 
u(k + 1) = u*(k)

Run the screening 
algorithm with u*(k) in 
the data set, which will 

improve quadratic 
approximation around 

u(k)

N Y

k = k +1 

Figure 3: Flowsheet of MA with gradient estimation via quadratic approximation. Adapted
from: Gao et al. 4 and Matias et al. 3

After obtaining nr plant measurements, the gradients are calculated by the quadratic

approximations. As the gradient is computed by differentiating the quadratic models, its

quality depends on their precision. Thus, it is critical that the algorithm chooses well-
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distributed past operating points over the feasible space for estimating the parameters of

the quadratic approximation. In order to do so, the set of past operating points, which is

represented by U , is divides set in three subsets:

1. Unb: Neighborhood of the current point, which is defined by a tuning parameter ∆u,

Unb := {u : ‖u− ucurrent‖ ≤ ∆u;u ∈ U};

2. Udist: Set of points that are sufficiently distant from the current point, but sufficiently

scattered and well-distributed to capture the plant curvatures;

3. Uouter: the points that do not belong to the other sets, i.e. Uouter = U \ Unb, Udist.

By determining ∆u, Unb is easily defined. Gao et al. 4 proposed an optimization problem

to compute Udist, which determines at least nr points using a criterion that minimizes the

distance from the current point, while penalizes using points along the same direction. After

determining the three subsets, Unb and Udist are used to estimate the parameters of the

quadratic approximation.

In addition to the screening process, some extra steps are used to improve the quality of

the quadratic approximation. First, a covariance-based constraint is imposed to the economic

optimization problem in order to adjust the search space based on the previous iterations

(e.g.: given that the past operating points are along a specific direction, the gradient is more

reliably estimated in that direction). The parameter γ determines the size of ellipsoid center

at the current input, u(k), B(k) : (u − u(k))T (cov(U))−1(u − u(k)) ≤ γ2, which constraints

the search space of the economic optimization problem. Note that lower values of γ are used

to avoid unnecessary deterioration of the plant performance, preventing optimization moves

in directions in which less data has been collected.

Second, an intermediary step is applied to improve the choice of the regression set (the

block with colored background in Figure 3). This step determines if the calculated optimum,

u?, lies in the neighborhood of the current input. If so, the plant is probed in a different

point, outside the neighborhood of the current point, in order to improve the quadratic
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approximation. In the case that the new probing point does not improve the plant cost func-

tion, the iteration is considered unsuccessful, the probing point is included in the regression

set and the screening algorithm is re-initiated. This step is based on the following logic: if

the algorithm has calculated an optimal point that is in the neighborhood of the current

operating point, it might be the case that the plant optimum is also in neighborhood of the

current operating point. Therefore, additional plant probing points are taken in order to

improve the information around the current point (by shrinking the regression region6), in

order to avoid overshooting the plant optimal in the next moves.

Tuning parameters

The perturbation step size, ∆h, is used in the finite-difference approximation (FDA). As de-

scribed in Figure 3, FDA is executed only at the first step because in the case study nu = 2.

FDA applies small perturbation (∆h) to the inputs in order to obtain the measurements

around the current point. Then, the measurements are used to estimate the plant gradi-

ents. Despite being simple, FDA becomes inefficient if the process measurements are noisy.

Moreover, FDA might lead to constraint violations if operating close to a constraint.

After the initial step, Iterative gradient-modification optimization and gradient estima-

tion (IGMO) is used for calculating the remaining nr − nu measurements (nr − nu = 3 in

our case). Thus, if the condition number is lower than δIGMO, the plant is probed around

the current operating point in order to increase the conditioning of Sk. The third and fourth

parameters are used in the screening process explained in the previous section. ∆u defines

the size of the Unb and γ is the scaling parameter of the covariance-based constraint.

Table 2: Parameters and variables for the gradient estimation method. Adapted from:
Matias et al. 3

Description Symbol Value
Perturbation step size ∆h 0.1
Conditioning number of input matrix δIGMO 0.1
Search space parameter γ 1.9
Screening parameter ∆u 0.3
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