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Abstract

This paper describes a method for selecting and adapting the model structure online

while running together with a real-time optimization algorithm using Output Modifier

Adaptation. The method chooses, among several knowledge-based models, the model

structure that is most consistent with the current process data. By allowing the model

to change over time, its structure and complexity are able to adapt to the plant data.

Competing models are compared based on the modifiers, which are also used by the

Output Modifier Adaptation to drive the system to the optimal operating point. The

approach is demonstrated on two case studies, a continuous stirred tank reactor and

a gas lifted oil well network. In both cases, the best model structure is chosen among

several candidates and the plant optimum is reached without constraint violations.

The case studies indicate that, even with a significant amount of noise, the modifiers

are good indicators for choosing among competing model structures.
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Introduction

There are considerable challenges to be addressed when dealing with complex models with

possible unknown interactions of its components. For example, in knowledge-driven models,

physical-chemical relationships (like conservation of mass and reaction kinetics) are used for

describing the inner workings of the process.1 However, a variety of process models can be

used for describing the same phenomenon and there is often not enough information to make

proper choices during the model design phase.2 Moreover, these choices should be made with

a specific goal in mind, as each application requires models with specific characteristics.2

If the model is meant to be used in Real-time optimization (RTO) problems, for example,

it should be able to predict the optimality conditions for the plant, namely the Karush-Kuhn-

Tucker (KKT) conditions for a static optimization problem.3 Output Modifier Adaptation

(MAy)3 is an RTO variant created to guarantee that the optimum computed by the RTO

matches the actual plant optimum.

Taking advantage of the MAy scheme structure, this paper proposes a method that

simultaneously adapts the model structure online and optimizes the process via Output

Modifier Adaptation. Our method is developed to address the issue of dealing with unknown

process features during the modeling phase but is also intended as a tool to automatically

maintain the models during the process lifetime. Moreover, since the method is linked with

MAy, it is especially suited for real-time optimization purposes.

The basic idea of the MAy scheme is to apply correction terms (modifiers) to the model

in order to allow a KKT point for the model-based optimization problem to match the

plant optimum upon convergence. At a given operating point u, the modifiers correct (and

indicate) the differences between model predictions and plant measurements as well as the

differences between the shape of the model and the shape of the plant, which is represented

by the gradients.

Although the MAy is traditionally used for optimization, the modifiers contain valuable

information about the relationship between a model and the plant. Therefore, their use
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can be extended to aid the modeling process. They can be used for discriminating between

different modeling or model updating decisions, which can be very helpful in cases that

there are unknown features of the process that need to be modeled. For example, Hille and

Budman 4 indirectly use the modifiers for simultaneous model identification and optimization

in cases where the model does not match the plant. Their method defines a model-update

criterion online, which aims at estimating model parameters for satisfying the conditions of

optimality while providing accurate predictions of the process outputs.

Motivated by the possibility of linking optimization with modeling using the modifiers, we

propose to use the modifiers for discriminating between different knowledge-driven models.

The basic concept of the proposed method is illustrated in Figure 1, and consists of four

main steps: (1) First, the process model is divided into several blocks. Each block represents

a given phenomenon or part of the process that needs to be described by a model. For

example, a model block may be selected to be the pressure drop of flowing liquids in a pipe.

(2) Then, several sub-model candidates are created for this block. They may be based on

different assumptions that may be made when modeling the phenomenon. For example,

different sub-model candidates for the pressure drop in a pipe may include (or exclude)

effects of friction, hydrostatic pressure, turbulence, etc.. (3) As steady-state process data is

obtained during the operation, the modifiers for all available sub-model combinations can be

calculated. Using the modifiers, the effects of different sub-models in the complete process

model can be compared. (4) By solving an optimization problem, the sub-models that best

fit the process data are combined to generate the working model, which is used for optimizing

the process. At each MAy iteration, steps (3) to (4) are repeated.

The proposed method is a step toward “fully automating” the modeling and model main-

tenance tasks. Instead of leaving the final choice of the model structure to the modeler, the

method allows him/her to propose several models with different structures a priori. Then,

the model structure is adjusted automatically based on the available operational data, which

come in the form of the modifiers. Note that, since different sub-models can be used to rep-
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1. We partition the system model
into blocks. Each block represents a
part of the process to be modeled.

They are indicated by M :

2. There are nM options to describe
the features of M . Each one of

the nM sub-models (m1, . . . ,mnM
)

contains a different set of equations.

3. We choose a combination of
the sub-models to complete the

system model. The chosen model
has an effect on the model

predictions and shape.

4. This effect can be estimated
by calculating the modifiers

and evaluating their magnitude.

5. Then, repeat step 3 with a
different sub-model combination

and check how it affects the
model accuracy (modifiers).

6. Find the model structure
that best fits the plant mea-

surements and gradients.
Perform RTO via MAy using

this model.

Figure 1: The basic concept of the structure updating algorithm. The differences between
the plant and the original model are measured using the modifiers of the Output Modifier
Adaptation (MAy) method.

resent the process, the complete model is able to describe a wider range of phenomena,

mitigating the inherent uncertainties associated with the modeling step. Also, if none of the

models is found to represent the process well, one may add new sub-models online during

the operation.

The paper is organized as follows. First, we show how the modifiers can be used for

choosing between different model structures and describe the proposed method. Then, the

Model Structure Adaptation Method is introduced and assessed formally. The next two

sections present the case studies, a continuous stirred-tank reactor and a gas lift oil well

network. These sections also discuss the advantages and challenges of the proposed method.

Finally, implementation issues are discussed and the paper is concluded.
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Model structure adaptation

Main idea

MA methods incorporate plant information to the optimization problem through the modi-

fiers. The classical MA method applies zeroth and first order modifiers (input-affine) for cost

and constraint functions of the optimization problem in order to match the measurements

and gradients of the plant.5 These modifiers are updated iteratively as new plant measure-

ments become available. The modifiers enforce the optimum computed by the model-based

optimization to match the plant optimum upon convergence.3 Marchetti et al. 3 presented

a second variant of the modifier adaptation method that consists of making modifications

in the process model rather than in the optimization problem, referred as Output Modifier

Adaptation. The adapted model is then used in the optimization problem. This second

variant also enforces that the plant optimum is matched upon convergence. The modified

model is defined as:

yad,k(u) := y(u) + εk + (λk)
T (u− uk) (1)

where, y ∈ Rny represents the original model and yad(u) ∈ Rny the modified (or adapted)

model; u ∈ Rnu are the model inputs; and k is the subscript representing the kth MAy

iteration. Thus, uk are the model inputs implemented in the kth MAy iteration. The zeroth-

order modifiers, εk ∈ Rny , correspond to bias terms between the predicted values of the

model and the plant measurements, and the first order modifiers, λk ∈ Rnu×ny , represent

the difference between the plant gradients and the gradients predicted by the model at each

iteration k. The modifiers are calculated by:

εk = yp(uk)− y(uk), λk =

(
∂yp
∂u

(uk)−
∂y

∂u
(uk)

)T
(2)

where, yp are the plant measurements and
∂yp

∂u
(uk) the plant gradients, which need to be

estimated.
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Traditionally, the model modifiers are only used for modifying the real-time optimization

problem, such that the model-based optimization problem converges to the plant optimum

despite plant-model mismatch. However, in this work we propose to use them systematically

as model quality indicators. We introduce the total model modifier as:

ψ := ‖εk‖F + ‖λk‖F (3)

in which, ‖·‖F indicates the Frobenius norm, which is a non-square matrix norm defined

as the square root of the sum of the absolute squares of the matrix elements.6 The total

model modifier quantifies how much a model was adapted. For example: if the zeroth order

modifiers are close to zero but the first order modifiers are not, it is possible to infer that the

model predicts the local values accurately but the model shape does not correspond to the

plant in this specific region. Hence, when moving away from the current operating point, the

model prediction will differ from the plant. Thus, any perturbation that drives the process

away from the current operation point affects the model prediction capacity.

Based on the idea of the total model modifier, this paper proposes a new method for

adapting the model structure online. The method finds the best model, among a pool of

available models, that most accurately fits plant measurements and gradients while optimiz-

ing the system. In particular, among all possible model combinations, our approach is to

select the model that requires least modification in order to match the plant optimum. That

is, we select the best model that minimizes the modifiers. The new method basic steps are

summarized in Algorithm 1.

Algorithm 1 Model Structure Adaptation method

1: Estimate plant gradients;
2: Select a combination of models such that the total model modifier ψ is minimized;
3: Use new model and its modifiers to compute optimal operating point via RTO using

Output Modifier Adaptation, and implement the new operating;
4: Repeat from 1.

Rather than determining a fixed model structure, the method allows the model to evolve
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with the data obtained. By quantitatively defining which model structure represent the

operation plant data poorly, the method provides valuable insights about the inner workings

of the process. Such knowledge can be important for further model developments and model

maintenance. For example, if the set of reactions chosen for the model is unable to represent

the formation of one sub-product, new mechanisms can be suggested and included as new

sub-models.

Relationship to other work

Our proposed method is similar in spirit with the simultaneous identification and optimiza-

tion method proposed by Martinez Villegas et al. 7 and Hille and Budman 4 . In their work,

the authors also study on the synergy between identification and optimization via Modifier

Adaptation. Despite the fact that the model adaptation step is not explicitly related to

the first order modifiers, their parameter estimation objective function minimizes the error

between the gradients of the model-based optimization problem and the plant, for both the

cost and constraint. Note that, the objective of the method proposed in our paper and the

one proposed by Martinez Villegas et al. 7 and Hille and Budman 4 are related, as they both

determine the best model based on minimizing the value of the modifiers. However, in the

latter, only the parameter values change, not the model structure.

In some sense, our proposed method may also be related to robust optimization schemes,

like scenario-based optimization.8–10 Scenario-based approaches account for model uncer-

tainty by proposing different scenarios, which can be thought of being represented by dif-

ferent models (multi-model RTO). The RTO problem is solved to satisfy all the scenarios

(model combinations). Despite being robust, the computed solution can be conservative.

While the optimum found by the scenario-based RTO will be feasible for all models, our ap-

proach selects the scenario, in this case model structure, that best fits the data, and uses it

for optimizing the process. This provides information that is useful to model and understand

the process, and to maintain the model over the plant lifetime.
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Detailed description of the method

The initial step of our method consists of partitioning the complete system model in blocks,

as previously shown in Figure 1, where each block encompasses a given phenomena happen-

ing in the process. Then, several sub-models are proposed for each one of these blocks. Note

that the method also works if the entire model of interest is unknown. In this case, several

sub-models can be proposed for all the phenomena happening in the process and their inter-

connections are determined by the method. Next, the total model modifier (Equation (3)) is

used to indicate which combination of sub-models best represents the plant behavior. Hence,

the available process knowledge is used for selecting and building the sub-models while the

missing information, which is the interconnections of the sub-models, is determined by pro-

cess data.

However, as the size of the model increases, the number of blocks, their sub-models

and the possible combination among them increase exponentially. Thus, an exhaustive

exploration of the sub-models arrangements as proposed in Algorithm 1 can easily become

intractable. In this paper, we propose to formulate the model selection problem as an

optimization problem using a generalized disjunctive programming approach11 with Boolean

variables to indicate the sub-model combinations. Our formulation is based on the systematic

framework of superstructure optimization proposed by Yeomans and Grossmann 12 .

Let nb different blocks M compose the complete model, which is represented by Y :=

M1 ∪M2 ∪ ... ∪Mnb
. Each one of the blocks can be described by several sub-models, for

example the bth block is characterized by Mb := {mb,1 ∨ mb,2 ∨ . . . ∨ mb,nMb
}. This “set”

represents the nMb
different sub-models (mb) that can be assigned to block Mb. Clearly, only

one of the available sub-models can be selected for a given block at the kth MAy iteration.
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The model selection algorithm is then written as the following optimization problem:

z?k+1 = arg min
z

ψ := ‖εk‖F + ‖λk‖F

s.t. εk = yp(uk)− y(uk,M1, . . . ,Mnb
),

(λk)
T =

(
∂yp
∂u

(uk)−
∂y

∂u
(uk,M1, . . . ,Mnb

)

)




∨
j=1,...,nM1




if z1,j = 1

M1 := m1,j(uk)





 ∧ . . . ∧




∨
j=1,...,nMnb




if znb,j = 1

Mnb
:= mnb,j(uk)







nMb∑

j=1

zb,j = 1 where b = 1, . . . , nb and zb,j ∈ {0, 1}

(4)

All the variables in Equation (4) have been already defined except for zbj and z. The

variables zbj are Boolean variables, which indicate that the jth sub-model of the set Mb is

assigned (or not) to the model, and z is the vector of all zbj. Once the optimization is

formulated as above, it can be solved with any mixed-integer nonlinear programming solver.

Remark. In Equation (4), the modifiers are updated using only local information at uk.

Such strategy may be sensitive to noise, affecting the model selection algorithm convergence.

In order to include past information in the updating strategy, one may compute the modifiers

using a first-order filter:5

εk = (I −Kε)εk−1 +Kε(yp(uk)− y(uk,M1, . . . ,Mnb
))

λk = (I −Kλ)λk−1 +Kλ

(
∂yp
∂u

(uk)−
∂y

∂u
(uk,M1, . . . ,Mnb

)

)T (5)

in which, Kε and Kλ are the filter gain matrices, which are square matrices with values

between [0, 1) on the main diagonal and zeros elsewhere, and I is the identity matrix of

appropriate dimensions.
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Output modifier adaptation

Before introducing the flowsheet of the complete algorithm for simultaneous model structure

adaptation and economic optimization, the Output Modifier Adaptation method is briefly

presented. Like in standard RTO applications, MAy aims at minimizing an economic-like

cost function φ while respecting the operation constraints G. As mentioned earlier, the

main difference between them lies in the fact that, in MAy, the model is corrected using

modifiers instead of re-estimating the model parameters at each optimization iteration. The

main consequence is that the modified model meets the optimality conditions at the plant

optimum. The RTO problem to find the optimal plant inputs via MAy is:

u?k+1 = arg min
u

φ(u,yad,k(u))

s.t. G := {gi(u,yad,k(u)) ≤ 0, i = 1, · · · , ng}
(6)

where, φ : Rnu × Rny 7→ R is the cost function that normally represents some economic

criterion; gi : Rnu ×Rny 7→ R, i = 1, · · · , ng are the problem constraints. G is the set of

all constraints, which includes lower and upper bounds for measurements as well as operation

and safety constraints. The adapted model yad,k(u) is computed according to Equation (1)

and the modifiers are calculated using either local information (Equation (2)) or a first order

filter (Equation (5)).

Regardless of the chosen strategy, the plant measurements yp are obtained directly, and

the plant gradients
∂yp

∂u
(uk) are estimated. However, obtaining reliable gradient estimates

with noisy measurements of yp can be a challenging task. This is a topic of ongoing research,

and several methods for estimating plant gradients are available in the literature, but there

is no consensus on the best method for MA applications.5 For a more detailed review of

gradient methods for MA, please refer to Marchetti et al. 5 .

After obtaining the appropriate adapted model, the modified economic problem is solved

and u?k+1 computed. Next, an input filter, uk+1 = uk + Ku(u
?
k+1 − uk), is also used to
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mitigate the effect of noise and errors in the gradient predictions. Small values of the filter

gain represent a more conservative updating strategy. Finally, uk+1 is implemented in the

plant and the MAy iteration is finished.

Summary of the model adaptation method using MAy

Given Equations (4) and (6), the complete algorithm for simultaneous model structure adap-

tation and economic optimization can be outlined. It is presented in Figure 2.

Process

Process at
steady-
state?

Obtain plant data and
estimate plant gradient at uk(

yp(uk),
∂yp

∂u
(uk)

)

Identify model structure at the kth MAy iteration:

z?k+1 = arg min
z

ψ := ‖εk‖F + ‖λk‖F
s.t. εk = yp(uk)− y(uk,M1, . . . ,Mnb

),

(λk)T =

(
∂yp

∂u
(uk)− ∂y

∂u
(uk,M1, . . . ,Mnb

)

)

nMb∑

j=1

zb,j = 1 where b = 1, . . . , nb

The sub-models are represented by the Boolean variables
zbj , which indicate that the jth sub-model of the set Mb

is assigned (or not) to the model. z is the vector of all zbj

Optimal model structure
z?k+1 that minimizes ψ

Optimize the model using Out-
put Modifier Adaptation:

u?
k+1 = arg min

u
φ(u,yad,k(u))

s.t.

gi(u,yad,k(u)) ≤ 0, i = 1, · · · , ng
where

yad,k(u) = y(u, z?k+1) + · · ·
εk(z?k+1) + (λk(z?k+1))T (u− uk),

Apply filter to u?
k+1:

uk+1 = Kuu
?
k+1 + (1 −Ku)u

?
k

yes

uk+1

Figure 2: Flowsheet of complete algorithm for simultaneous model structure adaptation and
economic optimization. The model structure adaptation is nested in the optimization cycle.

Starting with a given set of measurements yp and the gradients
∂yp

∂u
(uk), the model struc-

ture that minimizes the total modifier is found. The optimal model and the corresponding
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modifier values are passed to the MAy-RTO, which computes the input value for the next

iteration. The input is filtered before being passed to the process, where it results in an

updated steady state with corresponding plant measurements and plant gradients that can

be used in the next iteration.

In the following sections, the proposed method is implemented in two case studies in

order to illustrate its steps, the use of modifiers as model performance indicators, and the

effects of the method on the economic optimization.

Case study 1: Continuous stirred-tank reactor

Overall process description

This section introduces a simple example to illustrate how the proposed method works. For

this purpose, a continuous stirred-tank reactor with perfect control is chosen. To simplify

the model, it is assumed that the reactor is isothermal and that heat can be instantaneously

removed without cost. The system is based on the reactor presented in François and Bon-

vin 13 .

There are four components in the system A, B, C and D and the process goal is to

maximize the concentration of C in the reactor outlet. Thus, in Equation (6), the economic

optimization objective can be formulated as φ := CC and the set of operational constraints

G is empty. Regarding the process, the reactor is fed with two streams, F1 and F2, whose

composition is partially unknown. Only the concentration of A is known in F1 and the

concentration of B in F2, the concentration of other components is not measured at the

inlets. On the other hand, the concentration of all components except A is measured at the

reactor outlet. The set of reactions taking place in the system is also initially unknown.

Given the process information above, three possible process scenarios are proposed (and

there is no prior evidence of which one is correct):

1. There are two reactions taking place, A + B → C and 2B → D. In addition, the
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process is fed with two streams, one containing pure A and the other pure B;

2. For the second scenario, the reaction set is different, only one reaction is taking place,

A + 3B → C + D. The process is still fed with two streams containing only pure

components;

3. In the third scenario, there is also only one reaction taking place in the system, A+B →

C. However, instead of feeding the process with pure A and B, both streams are

contaminated with a certain amount of D.

A process flowsheet presenting the unknown process features/scenarios as blocks is shown

in Figure 3.

M1 A+B → C

A+ 3B → C +D

A+B → C & 2B → D

M2

D as impurity

Pure A and B

1

Figure 3: Flowsheet of the continuous stirred-tank reactor. The process scenarios that might
occur are listed showing the possible model options for each block

Note that, the three scenarios have a significant impact on the unit optimization strategy.

Due to the simplifying model assumptions, the reaction rates can be controlled only by

manipulating the reactor residence time. This is achieved by changing the system input F1,

which is the stream containing either pure A or mostly A with D as impurity, because F2 is

given and fixed at a nominal value during the simulations. Thus, the reaction sets of scenarios

(1) and (2) provide different situation for optimization. In scenario (1), larger residence times
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increase the production of D instead of C, which is the product of interest, for the same

concentration of A. Such condition happens due to the order of the reactions. On the other

hand, in scenario (2), there are no reactions competing for the reactants. Moreover, due to

the reaction rate equation, increasing the residence time affects the production of both C

and D equally. In the third scenario, D is not produced by the reaction set but comes as

impurity in the feed streams. Therefore, changing the feed flow, impacts the concentration

of D leaving the system but do not impact the trade-off between forming C and D.

Model description

The complete system can be described by the following steady-state model:




0

0

0

0




=




F1CA,in

V

F2CB,in

V

0

M2



− (F1 + F2)

V




CA

CB

CC

CD




+M1 (7)

where, Ci is the concentration of the component i leaving the reactor. CA,in and CB,in are

the inlet compositions of A and B. V is the reactor volume. F1 and F2 are the process inlet

streams. F1 is the manipulated variable of the reactor system and F2 is kept constant during

the simulations. The complete model contains four states, x = [CA, CB, CC , CD]T , but only

three are measured, y = [CB, CC , CD]T . Given the scenarios, two different blocks, M1 and

M2, can be identified in the complete system model as shown in Equation (7) and Figure 3.

A block M1 that encompasses the reaction set and a block M2 that represents the purity of

the feed stream. According to the nomenclature used in Equation (4), they are represented
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by:

M1 :=






m11 :




−1 0

−1 −2

1 0

0 1





k1CACB

k2C
2
B







∨



m12 :




−1

−3

1

1




[
k3CAC

3
B

]




∨



m13 :




−1

−1

1

0




[
k1CACB

]








(8)

where, k1, k2 and k3 are the rate constants of the chemical reactions. Note that, the sto-

ichiometry matrix changes for each reaction set. Also, the notation m : [. . .] means that

sub-model m can be defined by the equations [. . .]. For the second block, the following set

is defined:

M2 :=

{(
m21 : 0

)∨(
m22 :

(F1 + F2)CD

V

)}
(9)

Depending on the model structure, F1 contains pure A or mostly A and D as impurity.

In turn, F2 contains pure B or mostly B and D as impurity. Note that, with 3 options for

M1 and 2 for M2, there are 6 different model structures available. However, there exists a

correlation between sets M1 and M2. If the third option m13 is chosen for M1, it means that

D is not a reaction product but a impurity in the feed streams. For this reason, choosing

m13 directly implies that m22 must be chosen to explain the presence of D in the system.

On the other hand, if m11 or m12 are chosen, according to the initial model assumptions

showed in the beginning of this Section, D is exclusively formed as a reaction product. In

this case, only m21 can be chosen. Hence, there are only 3 model structures available, which

are shown in Table 1.

Table 1: Model structure adaptation: Available model structures for case study 1. CM1 is
the model that represents the plant correctly.

Complete
model

Block 1 (M1) - Reaction set Block 2 (M2) - Feed stream
Model

structure

CM1 A+B → C & 2B → D Pure A and B (m11 ∧m21)
CM2 A+ 3B → C +D Pure A and B (m12 ∧m21)
CM3 A+B → C D as impurity (m13 ∧m22)
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Simulation set-up

The proposed method is simulated in the MATLAB R2018a programming environment

(Mathworks Inc., Natick, MA, USA) using the CasADi v3.4.5 extension14 for algorithmic

differentiation. The NLP problem is solved using IPOPT version 3.12.2.15 The MINLP

problem is solved using the genetic algorithm solver embedded in MATLAB.16

In order to represent the plant, the model CM1 of the previous section is used. Thus,

the actual reaction set is A + B → C and 2B → D and the plant is fed with pure A and

pure B. No noise is added to the model outputs in the simulations. Hence, the solution of

the model that represents the plant is directly used to estimate plant gradients and calculate

the modifiers. The initial condition and the parameters used in the simulations are shown

in Table 2 and the MAy tuning parameters in Table 3.

Table 2: Initial condition and parameters for the CSTR simulation

Description Symbol Value Unit

Initial concentration of A CA,0 0.7385 [mol/L]
Initial concentration of B CB,0 0.0231 [mol/L]
Initial concentration of C CC,0 0.4922 [mol/L]
Initial concentration of D CD,0 0.0308 [mol/L]
Feed concentration of A CA,in 2 [mol/L]
Feed concentration of B CB,in 1.5 [mol/L]
F1 initial flow rate F1,0 8 [L/min]
F2 flow rate F2 5 [L/min]
Rate constants of reaction 1 k1 0.75 [L/(mol min)]
Rate constants of reaction 2 k2 1.5 [L/(mol min)]
Rate constants of reaction 3 k3 5 [L3/(mol3 min)]
Reactor volume V 500 [L]

The modifier implementation strategy should be carefully determined because it can

compromise the MAy method convergence.5 Instead of implementing the full modifiers as

in Equation (2), first-order exponential filters lie in Equation (5) are used in the simulations

for avoiding overaggressive corrections to the modifiers that might destabilize the system.17

The modifier filter values as well as the input filter value, which was introduced earlier, were
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found by trial-and-error. Additionally, the algorithm to estimate the plant gradients (
∂yp

∂u
)

need to be determined. In this case study, a finite-difference approximation (FDA), which is

the simplest SS method to estimate steady-state gradients,13 is used. The basic idea of this

method is to apply small perturbation (∆h) around the current operating point to estimate

the plant gradients. However, there is a trade-off regarding the perturbation size. If ∆h

decreases, the errors relative to noise measurements increase. In turn, if it increases, the

derivative approximation error increases18. The value of ∆h is chosen in a trial-and-error

process and it is also shown in Table 3.

Table 3: Parameters of economic optimization via MAy and gradient estimation method for
the CSTR simulation.

Description Symbol Value

Input filter Ku 0.4
Zeroth order modifier Kε 0.9
First order modifier Kλ 0.9
Perturbation step size ∆h 0.01

Results

The CSTR presented in the previous section is optimized using Output Modifier Adaptation

while the model structure is adapted online. Since both use the information provided by the

modifiers, the behavior of ε and λ is analyzed in addition to the set-points uk computed by

the MAy method (using Equation (6) and the input filter). Clearly, the new method should

not affect the MAy performance (i.e. the plant optimum should be reached while the model

structure changes). Therefore, the results of the optimization run are analyzed first.

The RTO inputs computed by MAy and the perturbation points for estimating the plant

gradient are plotted in Figure 4 together with the production of C as a function of the process

input, F1. Different markers are used for identifying which model structure is chosen along

the optimization run. (m11 ∧ m21) is represented by a diamond, (m12 ∧ m21) by a square

and (m13 ∧m22) by a triangle. The asterisks represent the perturbation points of the FDA
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method for estimating plant gradients.

Clearly, the optimization scheme reaches the plant optimum. The model structure al-

gorithm is initialized with the assumption that there is only one reaction taking place

(A + 3B → C + D) and both feed streams are pure. Since each one of the three pro-

posed scenarios has a significant impact on operation of the unit and there is no noise in the

simulations, the proposed method quickly identifies the correct model structure.
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Figure 4: Optimization run. The black line represents the production of C as a function
of the process input. The blue markers represent the RTO inputs calculated by the MAy
method (using Equation (6)). Each marker type represents a different model structure. The
asterisks are the perturbation points for estimating the plant gradient via FDA. The plant
optimum is indicated by a red circle. An inset showing the region near the optimum is also
plotted.

Next, the behavior of the modifiers is analyzed in Figure 5. Since CM1 represents the

plant perfectly and there is no noise, the modifiers are approximately zero in every MAy

iteration. Note that, due to small errors in the gradient estimation, there is a minor devi-

ation in λ around the ninth iteration. On the other hand, for model structures CM2 and

CM3, the modifiers deviate from zero to a greater extent, taken into account that the mea-
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surement order of magnitude is around 0.1. Given the modifier profiles, the incorrect set of

equations can be easily identified. For example, CM3 does not propose any mechanism for

the generating D and the consumption of B is underestimated. Thus, the modifiers related

to the measurement of CB and CD present a larger deviation from 0. However, it uses the

a correct reaction mechanisms for predicting CC . Therefore, the modifiers regarding CC are

closer to zero in comparison to CM2, which uses an incorrect mechanism for predicting the

production of C.
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Figure 5: Evolution of the modifiers during the optimization executions. For each measure-
ment y = [CB, CC , CD]T , a modifier ε and λ can be computed. The modifiers are calculated
for all model structures. The y-axis is labeled to identify each structure: CM1 is (m11∧m21),
CM2 is (m12 ∧m21) and CM3 is (m13 ∧m22).
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In conclusion, this first case study shows the behavior of the modifiers in a situation

close to ideal, in which the process measurements do not contain noise. This simplifying

hypothesis is taken in order to show that the modifiers possess significant information in

relation to the model structure, illustrating their capability to be used as indicators that the

model does not match the plant. Therefore, it is assumed that they are good candidates

to be used as a model performance indicator. The second case studies applies the proposed

method for selecting the model structure online in a more complex process, a gas lifted oil

well network, with the presence of measurement noise.

Case study 2: Gas lifted oil well network

Overall process description

In offshore production of oil and gas, the economic performance is affected by the reservoir

pressure. In cases that the pressure is not high enough to economically lift the fluids from

the reservoir to the surface, artificial methods are required. One of the most commonly

applied methods is gas lifting,19 in which gas is injected at the well bottom reducing fluid

mixture density and decreasing the pressure at the bottom of the well. As a result, the inflow

from the reservoir increases. On the other hand, larger gas lift flowrates also result on an

increase of frictional pressure drop, which reduces the reservoir outflow. Depending on the

operational point, the frictional drop effects overcome the hydrostatic pressure reduction,

which may decrease the well production.

Therefore, there is a trade-off between gas lift flowrate and well production, which is

intensified in cases of well networks. In the latter case, allocation of limited resources among

wells, like gas availability, and production capacity constraints of the downstream facilities

affect the optimal well network production. This scenario shows potential for RTO appli-

cations in gas lifted oil well networks, which has been explored by an increasing number of

papers.8,19 A simplified flowsheet of the two-well network used in this case study is shown
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in Figure 6.

Figure 6: Network containing two gas lifted wells.8 The system consists of wells with an
annulus, a void between the actual product pipeline and the external tubing where gas is
injected to increase the flow from reservoir, as well as a riser, a pipeline system in which
the gas/oil mixture is transported from the wells to the surface. The system also includes a
manifold that connects the wells to the main pipeline.

The optimal operation of the system is achieved by maximizing oil production while

minimizing the cost related to compression of the gas for artificial lifting. The optimiza-

tion problem (Equation 6) considers processing capacity constraints and constraints on the

maximum gas lift flowrates. For a 2 well network, it becomes:

max
u=[wgl,1,wgl,2]T

φ := w2
oTot − 0.5

2∑

i=1

w2
gl,i

s. t. G :=





g1 : wgTot − wgM ≤ 0

g2 : wgl,1 − wglM ≤ 0

g3 : wgl,2 − wglM ≤ 0





(10)
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in which, woTot and wgTot are the total oil and gas production of the well network, respectively;

wgl,i is the gas lift flow rate of well i; wgM is the maximum gas processing capacity of the

downstream processes; and wglM is the maximum gas lift flowrate. The steady-state problem

has two decision variables, u = [wgl,1, wgl,2]
T : the mass flow rate of gas lift in each well. The

total oil and gas production of the well are calculated using the input-output mapping,

[woTot, wgTot]
T = y(wgl,1, wgl,2), which represents the steady-state solution of the gas lifted

well network nonlinear model. This mapping is adapted by the Output Modifier Adaptation

method (i.e. y 7→ yad) like in Equation (1).

Model description

The two well nonlinear process model is based on Krishnamoorthy et al. 8 . A detailed

description can be found in the original paper and also in the Supporting Information Section

of this paper. The network is modeled as a nonlinear system of equations, which includes

mass balances for oil and gas and relations for calculating density of the fluid mixture,

flow through valves and pressure drop along the well and riser section. The main modeling

assumptions are: constant temperatures, ideal gas behavior, and simple linear relations to

calculate the reservoir outlet flows. The pressures along the wells and riser are the measured

variable of the process and the inputs are the mass flow rate of gas lift in each well. Since

both Output Modifier Adaptation and the method for selecting the model structure online

are steady-state methods, only the steady-state behavior is considered. No dynamics are

included in the case study.

To implement the proposed method, three blocks are considered in the process model.

In Figure 7, the blocks are highlighted in the process flowsheet. The first block is related to

the pressure loss due to friction along the riser/manifold:

M1 :=






m1,1 :


pressure drop

is negligible




∨


m1,2 :


pressure drop calculated by

Darcy-Weisbach equation









23



M1

m1,1: without pressure drop

m1,2: with pressure drop

M2

m2,1: without pressure drop

m2,2: with pressure drop

M3

m3,1 : PI = [5; 5]

m3,2 : PI = [7; 7]

1

Figure 7: Flowsheet of the network containing two gas lifted wells, showing the model features
or blocks that are used in the model structure adaptation algorithm

The second block is related to the pressure loss due to friction along the along the wells:

M2 :=






m2,1 :


pressure drop

is negligible




∨


m2,2 :


pressure drop calculated by

Darcy-Weisbach equation









The third block is related to the reservoir model. M3 contains two different sub-models

for calculating the oil flowrate leaving the reservoir, which is associated with the productivity

index (PI). The reservoir is represented by wro,i = PI(i)(pr−pbh,i) where i = 1, 2 (one model

for each well). This linear equation relates the reservoir oil outlet, wro, with the difference

between well bottom hole, pbh, and reservoir, pr, pressures. For each sub-model, different

values of PI are used:

M3 :=






m3,1 : PI =


5

5




∨


m3,2 : PI =


7

7









Note that with only 3 blocks with two sub-models each, 23 different block combina-
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tions are possible. Thus, the number of available sub-model combinations can increase to a

great extent with the number of blocks and sub-models, which highlights the importance of

elaborating the model structure decision as an optimization problem (Equation (4)).

Simulation set-up

In order to test the ability of the method to track changes in the process, the plant behavior

is modeled differently depending on the current operating point. As shown in Figure 8, the

feasible input region is divided in Regions A and B. In Region A, pressure loss due to friction

is taken into account in both wells and in the riser. In turn, Region B does not consider

frictional pressure drop (i.e. the pressure difference between the top and bottom is related

only with the hydrostatic pressure exerted by the liquid column). Therefore, two different

plant models are developed, one for Region A and one for Region B. For assuring continuity,

the transition between the different pressure drop models is calculated by a 2-D sigmoidal

function of the form:

ω(u) =

(
1

1 + e−10wgl,1+17.5

)(
1

1 + e−10wgl,2+17.5

)
(11)

where, wgl,1 and wgl,2 are the mass flow rate of gas lift in the well 1 and 2, respectively. For

more details, please refer to the Supporting Information Section. The surface and contour

plot of the plant profit are shown in Figure 8. Note that, the system optimum point is in

Region B.

Given this set-up, a single model is not able to predict the plant behavior in both regions.

There is an inherent plant-model mismatch problem in this system. Clearly, by applying

MAy, the plant optimum is reached even with an incorrect model. However, as discussed

previously, there exists an opportunity to extract more information of the modifiers and use

them to identify the characteristics of the operating region and update the model structure

in order to match the plant conditions.

25



3100
6

3200

3300

5

3400

P
ro

fit
 [$

]

4

3500

4

Plant profit surface

Gas lift flow 2 [kg/s]

3600

3

Gas lift flow 1 [kg/s]

3700

Region A

2

Region B

2

 Optimum

1
0 0

(a) Plant surface. Regions A and B as well as
plant optimum are highlighted.

Profit contour lines - PLANT [$]

3332.0516

33
74

.3
71

1

3374.3711

34
16

.6
90

6

3416.6906

34
59

.0
10

1

3459.0101
3459.0101

35
01

.3
29

6

3501.3296

3501.3296

35
43

.6
49

1

3543.6491
3543.6491

3585.9686

3585.9686
3585.9686

35
85

.9
68

6

Optimum

Feasible region 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Gas lift flow 1 [kg/s]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

G
as

 li
ft 

flo
w

 2
 [k

g/
s]

(b) Profit contour lines for the plant, the feasible
region is indicated with an arrow. Dashed blue
line is the maximum gas production constraint
and dashed black lines are the maximum gas lift
flow rate for each well. The plant optimum is
also indicated.

Figure 8: Plant profit surface

The case study simulations are carried out using the same solvers and software as in the

previous case study. However, in order to estimate plant gradient for calculating the first

order modifiers, the method proposed by Gao et al. 20 is applied. It uses current and past

operating points to compute local quadratic approximations of input to output mapping

functions. The quadratic approximation captures information from the plant curvature and

it has the potential to decrease the influence of noise.20 After computing the quadratic

functions, the gradients are easily obtained by derivation. Matias et al. 21 have previously

applied this method for estimating the gradients of gas lifted oil well networks. The results

indicated that it was able to provide good approximations for the plant and estimate plant

gradients within an adequate precision. The tuning parameters for the gradient estimation

method as well as the values of the model parameter are not shown here for the sake of

brevity. They can be found in the Supporting Information Section and in Matias et al. 21 .

Finally, the following assumptions are made for simulating the case study:

1. Output Modifier Adaptation is used for optimizing the gas lifted oil well network;
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2. All sub-models proposed in the previous section are used. Thus, the algorithm has 8

different model options to choose based on the modifiers;

3. The measurements of all the pressures in the system are available, however they are

affected by noise. The noisy measurements have 1% noise and are calculated as ynoise =

ymodel(1 + 0.01r), in which r is drawn from a standard normal distribution. The noise

is neither correlated in time nor between measurements.

Results

Optimization

The results of the optimization run are shown in Figure 9, they are plotted together with

the plant contour lines. In addition to the optimization, the model structure adaptation

algorithm is also implemented. Along the optimization path, markers are used for indicating

which model is chosen. The correspondence of markers and models is shown in Table 4.

Table 4: Model structure adaptation - marker and model correspondence. Complete model
8 (CM8) is the correct model for plant region A and complete model 2 (CM2) for region B

Complete
model

Symbol
Block 1 - Well

frictional pressure drop
Block 2 - Riser

frictional pressure drop
Block 3 - Reservoir

parameters (PI)

CM1 C without without [7; 7]
CM2 © without without [5; 5]
CM3 F without with [7; 7]
CM4 5 without with [5; 5]
CM5 4 with without [7; 7]
CM6 � with without [5; 5]
CM7 B with with [7; 7]
CM8 ♦ with with [5; 5]

Figure 9a shows that the plant optimum is reached without any constraint violations

despite the presence of noise. Note that, besides the optimization operating points, there are

several plant probing points, which are used by the gradient estimation method (26 probing

operating points vs. 12 MAy optimization operating points). The model structure selection

algorithm also takes advantage of the plant probing points and calculates the model structure
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(a) Profit contour lines for the plant. The dashed
blue line is the maximum gas production con-
straint and dashed black lines are the maximum
gas lift flow rate for each well. The plant opti-
mum is also indicated.
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(b) Model structure selected along the opti-
mization run. Both MAy operating points and
plant probing points for gradient estimation are
shown. However, only the optimization operat-
ing points are numerated (in correspondence with
Figure 9a). Full markers indicate that the correct
model was chosen.

Figure 9: Models structure adaptation during optimization. Marker and model structure
correspondence is shown in Table 4

in these points. Figure 9b shows which models are chosen during the economic optimization

run. Even with measurement noise, the method is able to choose the right model for the

region.

Between the 3th and 4th MAy iterations, there are several plant probing points for the

gradient estimation in the plant transition region (between Regions A and B, which is still

labeled as Region A for simplicity). Despite the fact that there is no correct model for this

region, the method chooses the model with the smallest modifiers (i.e. minimum ψ). Thus,

it chooses the model that best represents the plant according to the selected criterion. This

result indicates that the method is able to cope with the situation where there is no “correct”

model available, which is the case in practical applications.

Finally, after the 20th iteration, the operation does not leave Region B. However, the

algorithm chooses the “wrong” model in 4 iterations. It chooses the model CM6, which

have the correct reservoir model but the incorrect pressure drop model for the wells. As the
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effects of the pressure drop are less significant, noise has a larger effect on the discrimination

of models. Moreover, as the pressures along the well network are coupled, the effects of the

pressure drop models are more dispersed among the measurements and are more prone to

be affected by noise. Nevertheless, the method is able to choose the correct models in most

iterations.

Modifiers as a model performance criterion

In Figures 10 and 11, the behavior of the total modifier for different models along the

optimization run is presented. The idea is to justify the use of the modifiers as model

structure indicators. Instead of analyzing the profiles for all models proposed in Table 4,

only four are chosen: CM2 and CM8, which are the correct models for plant regions B and

A, respectively; CM6, which is the most frequent incorrect model chosen by the method.

Note that, the only difference between models CM6 and CM8 is the computation of the

frictional pressure drop at the riser. In turn, the difference between CM6 and CM2 lies in

the computation of frictional pressure drop at the wells; Finally, CM7 is included in the

analysis because it has the incorrect reservoir model.

Figure 10 analyzes the contribution of the modifiers for the objective function of the

model structure adaptation method, Equation (3). Since the objective function is posed as

ψ := ‖εk‖F + ‖λk‖F , the contribution of ε is calculated by ψε = ‖εk‖F and the contribution

of λ by ψλ = ‖λk‖F . However, instead of plotting the absolute value of ψε and ψλ, the

difference between ψ for a given model and for the true model in the specific region of the

iteration is shown. The values are presented for each one of the four models. Furthermore,

they are related only to the 12 MAy iterations (i.e. optimization operational points but not

the plant probing points). The plant regions are also indicated.

Even without knowledge of the plant-model mismatch source, the incorrect hypothesis

of the reservoir model can be easily identified using the modifiers. For example, since CM7

has the wrong reservoir model, the model predictions present significant deviations from the

29



Modifier comparisonRegion A Region B

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

 -
 

tr
ue

1 2 3 4 5 6 7 8 9 10 11 12
-300

-200

-100

0

100

 -
 

tr
ue

CM
2

CM
6

CM
7

CM
8

1 2 3 4 5 6 7 8 9 10 11 12
n

iter

0

500

1000

Figure 10: Behavior of the modifiers. Only four models are used for the comparison. CM2

is the correct model for plant region B, CM8 for region A. CM7 has the wrong reservoir
model and CM6 is the most frequent incorrect model chosen by the method.

plant measurements, which is reflected in ψε. In turn, the differences in ψλ are not so explicit.

Note that, as a consequence of noise, ψλ,CM1 < ψtrueλ in some iterations. Process noise has

a great influence on the gradient estimate accuracy such that it directly affects the quality

of information of the first order modifier. However, since both modifiers have a contribution

to the problem objective function ψ, the method still avoids to choose models with wrong

reservoir model. They are never chosen by the proposed method.

On the other hand, the effects of the pressure loss on the different models are not so

distinct (CM2, CM6 and CM8 models have the correct reservoir model but different pressure

loss models). In order to illustrate how the method chooses among these models, the same

information shown in Figure 10 is plotted in Figure 11. However, CM7 is excluded from the

analysis.

Similarly to Figure 10, the effects of the incorrect pressure loss model are more explicit in

the zeroth order modifier in Region B. On the other hand, in Region A, the contribution of
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Figure 11: Behavior of the modifiers in the MAy iteration points. In contrast to Figure 10,
only models with the correct reservoir model (CM2, CM6 and CM8) are shown.

the first order modifier to the objective function is more significant. The objective function

of the model structure adaptation method is formulated in order to capture this balance

between the influence of the zeroth and the first order modifiers. However, any norm-like

function of the modifiers or any model selection criterion (like, R-square, Akaike information

criterion (AIC), Bayes information criterion (BIC), etc.) could be used as objective function

(Equation (3)).

Comparison of the total model modifier with commonly used model selection

criterion

Among the model selection criterion, R-square is one of the most commonly used criterion

to differ between competing models.22 It measures the goodness of fitness for the model, i.e.

the ability of the model to represent the variability of data by comparing the variance of the

model predictions with the total variance of the data.22 However, the R-square measures can
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have poor performance for nonlinear models.23 Other popular model selection criteria are the

Akaike information criterion (AIC) and the Bayes information criterion (BIC). Both criteria

have different theoretical backgrounds, however they are very similar in practice. They

measure the trade-off between model fit, which is represented by the likelihood function,

and complexity of the model.24 The main difference between AIC and BIC is the penalty for

model complexity.22

In order to compare the performance of the total model modifier with commonly used

model selection criterion (AIC and R-square in this case), the following experiment is per-

formed: All the operating points (probing and optimization) shown in Figure 9 that are in

Region B are analyzed. The residual (the difference between the model prediction and the

“plant” measured values) for every operating point is calculated for each one of the 8 models

in Table 4. Next, R-square and AIC are computed for every model.

Calculating R-square is straightforward. For calculating AIC, it is assumed that the

residuals are independent, normally distributed random vectors and that the number of

parameters for every model is 1. The first assumption is based on the fact that the noise

added to the plant is drawn from a normal distribution. The second, on the fact that the

model parameters are not estimated but a nominal set of parameters is used. Hence, there

is no extra penalty regarding the model complexity. The values of AIC and R-square are

shown in Table 5.
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Table 5: Model comparison using common model selection criterion. Since data of Region
B is used, CM2, which is the correct model, has the largest R-square value and the lowest
AIC.

Complete
model

R2 AIC (×103)

CM1 −1.9629 1.1398
CM2 0.8545 1.0046
CM3 −2.1764 1.1420
CM4 0.8290 1.0282
CM5 −2.0642 1.1405
CM6 0.8426 1.0068
CM7 −2.2792 1.1426
CM8 0.8134 1.0305

After calculating the model comparison criteria for all models, the ψ value for all 8 models

is plotted in Figure 12. The value of the objective function is shown for every iteration in

Region B, which were already shown in Figure 9. However, instead of plotting the absolute

value, the models were organized qualitatively from the smallest ψ to the largest. The

information is organized in this manner in order to facilitate the comparison with the data

in Table 5.

By comparing the results of Table 5 and Figure 12, it is possible to conclude that the

models with the wrong reservoir model (CM1, CM3, CM5 and CM7) have poor prediction

capacity. The R-square criterion, for example, is less than zero, which indicates that the mean

predicts the data better than the model in consideration. (The R-square results confirm the

previous conclusion drawn from Figure 10 regarding the behavior of ψε). Regarding CM2 and

CM6, the AIC and R-square values are similar indicating that the models have comparable

prediction capacity in relation to the sample, which was already observed in Figure 9b, where

the wrong model, CM6, is chosen instead of the correct model, CM2, in Region B.

Since CM2 and CM6 have a comparable performance, the noise has a major influence on

differentiating both models. Depending on the noise level, both models can be considered

the same regarding the comparison criteria applied in the case study (ψ, AIC and R-square).
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Figure 12: Behavior of the ψ in Region A for all 8 models. The models are qualitatively
arranged from the smallest value of φ to the largest.

Hence, based on available data, it is not possible to discriminate between these models. This

reflects the fact that there is no “true” model to a real process plant, and that all models

are just descriptions for what is happening in the plant.

In order to justify the choice of ψ as a model selection criterion, the form of ψ in Equa-

tion (3) is used. It is easier to assess the effectiveness of the selected model structure for

optimization purposes because ψ indicates how the model structure affects the constraint

prediction and model shape (zeroth and first order modifiers). A second advantage of ψ is

that there is no extra assumption about the residuals distribution as for calculating AIC.

The results of this case study already support the paper fundamental hypothesis that the

modifiers are good candidates to be used as a model performance indicators and that they

can be used to compose the objective function of the model structure adaptation method.

Moreover, the findings of this case study confirm that the proposed method is able to deter-

mine the best model structure (i.e. more consistent with plant data) online while optimizing

the process to the actual plant optimum using MAy.
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Discussion

The two case studies demonstrate the most important aspects from the proposed method

and show how it can be applied. In this section, we discuss further issues pertaining our

method. In particular, these are: (1) convergence of the RTO scheme to the plant optimum;

(2) convergence to the “correct” model; (3) model chattering between RTO iterations; (4)

effect of scaling of the outputs; and (5) model parameter estimation.

Convergence of the RTO scheme to the plant optimum

Regarding the convergence to the plant economic optimum, the proposed method takes

advantage of the MAy convergence properties in the case of structural plant-model mismatch.

If the available models are adequate in a MAy sense,3 namely the reduced Hessian of the

objective function is positive definite in the vicinity of the plant optimum, the economic

optimization problem converges to the plant optimum even if the “correct” model is not

available.

Note that, it does not matter if different models are selected between RTO-MAy iterates,

because all models are modified to have the same predictions and gradients. Hence, the step

computed by the RTO-MAy (Equation (6)) is the same, regardless of which model is active.

However, to safeguard the procedure, one may include steps to check the model adequacy

before implementing the MAy-RTO solution in the plant.

By checking the convexity of the Hessian, one can also limit the possible model choices

at each iteration, i.e. including the adequacy check as a constraint to the model structure

adaptation problem. Moreover, the second order information can be included directly in the

problem objective function as in Marchetti et al. 25 . In this case, the second order modifiers

(upper bounds for the plant Hessian) enforce that the modified model is a strictly convex

upper bound for the plant, guaranteeing convergence of the MAy scheme. The drawback of

the latter feature is the difficulty in obtaining second order information of the plant.
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Instead of relying on Hessian analysis or obtaining second order information, one may

fall back by simply including a quadratic model, which is always adequate in a MAy sense,

in the available model set. A similar approach is followed by Gao et al. 20 , where the authors

propose to switch between the modified nonlinear model and a quadratic model approxima-

tion obtained from data for computing the RTO iteration. The method by Gao et al. 20 is

also described in details in the Supporting Information. Despite ensuring global convergence

to the plant optimum, including a quadratic model in the available model set may decrease

the RTO-MAy convergence speed due to the fact that the accuracy of the second order in-

formation of the model-based optimization problem results in faster convergence rates than

model-free schemes Gao et al. 26 .

Convergence to the “correct” model

Convergence to the “optimal model structure” is not straightforward. This is a much more

complicated question because in reality there is no “true” model. We provide a brief inves-

tigation of this issue on a simple toy example. Figures 13 and 14 illustrate the case where

the “true” model is not included in the model set. Here, two models ym,1 and ym,2 are used

for describing the plant. They are visually compared in Figure 13. Since both models are

wrong, the choice of the correct model is not obvious. Instinctively, by analyzing the plot,

one may argue that is better to choose model 2, if the current operating point is on the

right-hand side region of the plot, and model 1 otherwise. Such choice is also reflected by

the total modifier criterion applied to the toy problem (Figure 14).

In addition to the toy example, we have already seen in the gas-lift case-study how the

algorithm behaves if there is no correct model available. In Figure 9, between the 3th and 4th

MAy iterations, the model selection algorithm chooses a model based on the total modifier

even though the operation points lie on the transition region between Regions A and B (i.e.

there is no correct model for this region in the available model set). In this case, it is difficult

to give a physical interpretation for what our algorithm is doing. It simply selects the model
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(Equation 3). The dashed lines are used for indicating the zero line, where there is no
difference between plant and model according to the total modifier criterion, and the plant
optimum (at u?p = 2). Even in the case that there is no “correct model”, the total modifier
criterion is able to indicate a “good enough” model for the region.
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that results in the smallest total modifier value (our criterion for a “good” model).

In order to further explore how the absence of a correct model affects the convergence

of the model selection method in the gas-lift case-study, we change the simulation set-up

presented in the Case Study 2 description. All conditions are kept the same except that

Model 2 in Table 4 is excluded from the available model set. That is, there is no correct

model for Region B, which contains the process optimum. In this new set-up, the method

still drives the plant optimum. However, the model structure adaptation method chooses

Model 6 (symbol: �) in most of the iterations located in Region B as shown in Figure 15.

Model Choice Comparison

1 2

3

4

5 6 7 8 9 10

Region A

Region B

1 6 11 16 21 26 31 36

Number of executions

Figure 15: Model structure selected along the optimization run in the case that the correct
model for Region B is excluded from the available model set. The figure is plotted exactly as
Figure 9b and the model structure follows the same marker/model correspondence introduced
in Table 4. Model 6 (symbol: �) is the most frequent model chosen by the method. In the
previous section, it was shown that this model has a comparable prediction capacity to the
“true” plant model.

As argued previously in Table 5 and Figure 12, Model 6 has a similar prediction capacity

to Model 2, which is the “true” plant model, according to the applied model comparison

indicators (ψ, R2 and AIC). Therefore, given that no correct plant model is available, the
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method chooses a model that is “good enough” for the region.

What exactly is meant by “good enough” is highly connected to the application, and

the issue of “modeling for a goal”2 plays an important role. For the same process, different

models may be used for control, simulation, optimization, etc. Since our method deals with

process optimization on the background, we wish to chose a good enough model that predicts

the optimality conditions for the optimization problem, i.e. the Karush−KuhnTucker (KKT)

conditions for the static optimization problem. Therefore, we believe that using the smallest

total modifier value as an indicator of a “good” model is a good choice despite the fact that

it has no physical interpretation.

Model chattering between RTO iterations

Although the modifiers are good indicators for differentiating between optimization models,

they contain only local information (at uk). Since, they are only locally valid, the model

selection algorithm may chatter between RTO iterations depending on the noise level in the

measurements. For example, if two models have comparable prediction capacity, like Models

2 and 6 of the gas-lift case study, nothing guarantees that the conclusions drawn from the

total modifier indicator at iteration k is the same as at the next iteration.

Including past data to the model structure adaptation problem can prevent model chat-

tering between RTO iterations. Since data from previous operating points is used, the effect

of local noisy information on the problem is reduced. However, since the plant is expected

to be affected by time-varying disturbances, it is interesting to consider only recent data for

choosing the model structure. For example, the modifiers can be updated using a first-order

exponential filter (Equation (5)) in order to mitigate the effect of noise and avoid excessive

correction of the modifiers, like in Marchetti et al. 3 . Such strategy is adopted in the case

studies of this paper.

If desired, an extra step may be included in Algorithm 1 for avoiding chattering: Using the

current plant information (at iteration k), the total modifier ψ is computed for the optimal
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model structure selected at the current iteration (z?k) and for the model structure selected

at the previous iteration z?k−1. If the norm of the difference is lower than a given threshold

τ , the model structure is not updated (i.e. zk ← z?k−1) chosen at the previous iteration is

used. Clearly, this ad-hoc strategy may lead to a suboptimal performance in terms of model

selection, but avoids chattering between the models if the level of noise (and/or error in the

gradient estimation) increases. On the other hand, the RTO convergence is not affected.

Algorithm 2 Model Structure Adaptation method - extended

1: Estimate plant gradients;
2: Select a combination of models such that the total model modifier ψ is minimized;
3: Use new model and its modifiers to compute optimal operating point via RTO using

Output Modifier Adaptation, and implement the new operating;
4: If ||ψ(z?k)− ψ(z?k−1)|| ≤ τ , then zk ← z?k−1;
5: Repeat from 1.

Effect of scaling the outputs

The objective function of the model structure adaptation problem, Equation (2) is scaling

dependent. Therefore, if one of the outputs dominates others in magnitude, the algorithm

will force the minimization of the modifiers related to this output instead of the others, which

may affect the convergence to the correct model.

In order to have the same basis of comparison, the measurements need to be scaled before

calculating the modifiers if they have different order of magnitudes. Several strategies can be

applied, like standardization, mean normalization, min-max normalization, etc.. However,

since the models used in RTO-MAy are usually nonlinear, formulating a general strategy for

scaling is difficult. This decision is normally based on engineering aspects, relying on process

knowledge. Clearly, if the modifiers are scaled, the adapted model (Equation (1)) needs to

be adjusted properly to consider the scaling strategy.

In addition, weighting factors may be introduced to change the emphasis on finding a

model structure that fits the bias (zeroth-order modifier) or gradient (first-order modifier).

40



This, however, must be done on additional engineering insight and depends on the case at

hand and the reliability of the available measurements and gradient estimates.

Model parameter estimation

Finally, the fifth issue is related to estimating model parameters. The model structure

adaptation problem can be extended by adapting the parameters while selecting the model

structure, similarly to Hille and Budman 4 . The model parameters for all available sub-

model combinations can be adapted to correct for errors in the predicted cost-function and

gradients and then the model structure adaptation is carried out to select the best adapted

structure. A second, more interesting alternative, is to merge the parameter adaptation

step and the model selection into a single optimization problem. Although unnecessary for

guaranteeing MAy convergence to the plant optimum, this extension can reduce the number

of times that the model structure needs to be changed during the algorithm execution.

Optimizing for optimal parameter values leads to MINLP with many more decision vari-

ables and further issues regarding the parameter estimation problem (i.e. identifiability issues

related to non-unique parameters in addition to possibly non-unique models). In order to

clearly present the main idea of our approach, we decided to not include the parameter

estimation problem with its associated complications in this paper. Instead, this will be

investigated in future work.

Conclusion

This paper proposes a new method that combines Output Modifier Adaptation (MAy), an

RTO variant, with an online model structure adaptation method. Without deriving a fixed

model for the system, the novel approach is able to determine the best model structure (i.e.

more consistent with plant data) online by combining different sub-models while optimizing

the process to the actual plant optimum.
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The method is based on the following idea: The system model is divided in blocks.

Each of these blocks encompasses a certain phenomenon described by the model. Next,

several sub-models containing first principle equations are proposed to describe the given

phenomenon. With the operation, information comes from the plant and the competing

sub-models are compared using the modifiers of MAy as criterion. Therefore, the novel

method uses a population of models to describe the inner workings of the process and, by

using the modifiers, is able to determine the overall model structure that best fits the plant

data.

This approach is appealing in cases that some aspects of the process are not well known

or there is not enough information to make a priori assumptions for the model structure (i.e.

model uncertainties are mitigated by proposing several knowledge-based models for the same

phenomenon). Due to the general validity of these knowledge-based relations, the model is

capable of predicting the behavior of the system to a large range of process conditions. In

addition, while all available knowledge of the process is used for building the sub-models, the

missing information (representing interconnections of the sub-models) is determined fitting

the model to process data. The combination of process knowledge with online data can

be attractive and rewarding. Additionally, after determining a first “generation” of process

block candidates, the proposed method allows the addition of more blocks, increasing the

number of possible combinations.

The novel method is demonstrated in a continuous stirred tank reactor and in a gas lifted

oil well network. This first case study is designed to illustrate the behavior of the modifiers

in a situation without noise in order to avoid errors in the gradient estimation. The idea is

to show that the modifiers contain significant information in relation to the model structure

and prediction capacity. Hence, they are good candidates for indicating model performance.

The second case study is used for showing the benefits of the method in a more complex

process, a gas lifted oil well network. In this case, the plant presents two different behaviors

(depending on the operation region) and 8 possible models are proposed. Among this popu-
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lation of models, there are models valid for one of the plant behaviors, models that describe

the plant behavior partially and models that completely fail to predict it. The simulation

results show that, in few iterations, the algorithm is able to determine among the available

models, the one that best describes the plant.

This novel approach is the basis of a development towards online model structure im-

provement, unifying process knowledge (represented by the model blocks) and data (by the

modifiers). Due to the proposed framework, the model is allowed to evolve over time, new

blocks can be added (or deleted) during the operation. The most important contribution of

this work is that, by allowing that the model evolve over time while optimizing the system,

the method can be a starting point for changing the paradigm that the model structure is

an immutable entity.

Acknowledgement

The authors would like to thank M.Sc. Dinesh Krishnamoorthy for providing the process

models used in this work. The authors acknowledge Financial Support from the Norwegian

research council /Intpart, SUBPRO

Supporting Information Available

The Supporting Information contains the model equations and the description of the method

proposed by Gao et al. 20 to estimate plant gradients. This information is available free of

charge via the Internet at http://pubs.acs.org/.

References

(1) Bequette, B. W. Process control: modeling, design, and simulation; Prentice Hall Pro-

fessional, 2003.

43



(2) Bonvin, D.; Georgakis, C.; Pantelides, C.; Barolo, M.; Grover, M.; Rodrigues, D.;

Schneider, R.; Dochain, D. Linking models and experiments. Industrial & Engineering

Chemistry Research 2016, 55, 6891–6903.

(3) Marchetti, A.; Chachuat, B.; Bonvin, D. Modifier-adaptation methodology for real-time

optimization. Industrial & engineering chemistry research 2009, 48, 6022–6033.

(4) Hille, R.; Budman, H. M. Simultaneous identification and optimization of biochemical

processes under model-plant mismatch using output uncertainty bounds. Computers &

Chemical Engineering 2018, 113, 125–138.

(5) Marchetti, A. G.; François, G.; Faulwasser, T.; Bonvin, D. Modifier Adaptation for

Real-Time OptimizationMethods and Applications. Processes 2016, 4, 55.

(6) Golub, G. H.; Van Loan, C. F. Matrix computations ; JHU Press, 2012; Vol. 3.

(7) Martinez Villegas, R.; Budman, H.; Elkamel, A. Identification of dynamic metabolic

flux balance models based on parametric sensitivity analysis. Industrial & Engineering

Chemistry Research 2017, 56, 1911–1919.

(8) Krishnamoorthy, D.; Foss, B.; Skogestad, S. Real-time optimization under uncertainty

applied to a gas lifted well network. Processes 2016, 4, 52.

(9) Hülse, E. O.; Camponogara, E. Robust formulations for production optimization of

satellite oil wells. Engineering Optimization 2017, 49, 846–863.

(10) Krishnamoorthy, D.; Suwartadi, E.; Foss, B.; Skogestad, S.; Jäschke, J. Improving
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Graphical TOC Entry

The methodology is illustrated with a simple example
2. There are nM sub-models
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containing different equations
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the model predictions and shape

4. This effect is evaluated

calculating the modifiers

5. Repeat step 3 with a different

sub-model combination and check

how it affects the model accuracy.

6. By comparing all nM options,

the algorithm finds the model

structure that best fits plant

information (modifiers).
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perform RTO via output
modifier adaptation.
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