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Abstract In this paper we study procedures for pathfollowing parametric mathematical pro-
grams with complementarity constraints. We present two procedures, one based on the penalty
approach to solving standalone MPCCs, and one based on tracing active set bifurcations aris-
ing from doubly-active complementarity constraints. We demonstrate the performance of these
approaches on a variety of examples with different types of stationary points and also a simple
engineering problem with phase changes.
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1 Introduction

We are interested in tracing the approximate path of solutions to a mathematical program
with complementarity constraints (MPCC) subject to a parameter, as the parameter changes.
Specifically, we study the problem,

minx∈Rn+2nc f(x, t)
s.t. g(x, t) ≥ 0,

h(x, t) = 0,
min{xj , xj+nc

} = 0, for all j ∈ {n+ 1, ..., n+ nc}

(1)

where the more general case of nonlinear complementarity constraints can be covered by this
case with the use of slack variables. We consider the situation wherein one has a reasonably
accurate estimate of the solution at t = 0 and intends to find the solution at t = 1 using
parametric sensitivity, i.e., the directional derivative of solutions to (1), or some related problem,
with respect to t.
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A primary motivation for this arises in real-time nonlinear model predictive control. There
are a number of problems arising in process control engineering wherein the dynamic process has
a complementarity structure (e.g., see [1,19]). Using the advanced step NMPC framework [25] or
the real-time iteration [4], one can pathfollow along the solution using sensitivity updates from
the predicted and measured state. For example in advanced step NMPC, at a given iteration of a
model predictive control procedure, using the predicted state from the previous time step, there
is an approximate solution of (1) at t = 0 which is used in an applied control, and meanwhile
the solution of the MPCC at the next time step is solved offline. Then the state is measured at
the real next time step and the sensitivity update is applied to traverse the solution from the
imperfect predicted state by the offline solution (considered as t = 0) to the real, measured state
(considered as t = 1). See [11,23] for illustrations of this approach.

Considered as standalone problems, MPCCs are typically solved by procedures that approx-
imate them by NLPs. Thus the parametric MPCC can be approximated by an appropriate
parametric NLP or set of NLPs. This notion, of course, will be made precise later, and is one of
the main points of this paper.

The main contribution of this paper is the first study of pathfollowing for parametric MPCCs.
Currently, there is no literature presenting any algorithm to trace the solution of a parametric
MPCC from an approximate solution at one value of a parameter to another. In this paper
we study two appropriate methods based on NLP approximations of the underlying MPCC for
each parameter. In particular we study the penalty method for solving MPCCs, and also, noting
the importance of doubly-active complementarity constraints in indicating potential branching
points of the parametric MPCCs, a procedure that traces these along their underlying NLPs.

We found that the guarantees and experimental performance of pathfollowing resembles solv-
ing standalone MPCCs in an analogous manner. In particular, the penalty method is able to
trace, just as the penalty method is able to solve, stationary points satisfying weaker condi-
tions in regards to the presence of descent directions. It is simple to implement, however, and
for problems without spurious stationary points or many bi-active constraints, it performs just
as well and reliably as pathfollowing on a standalone NLP. However, for problems in which B-
stationarity, the most precise form of stationarity is sought, which is also difficult to solve for as
a standalone problem, a more complicated and combinatorial approach is necessary. Given the
required tracking of different branches, the gain in reliability of quality solutions is at the cost
of a more difficult to implement and slower pathfollowing algorithm.

1.1 Previous Literature

There is no literature on pathfollowing of MPCC. Parametric optimization for standard NLPs
has enjoyed two periods of intensive activity, around the publication of the seminal book [8]
and more recently with the development of higher quality nonlinear models for process control
motivating the rise of nonlinear model predictive control, e.g., [4–6, 24]. In [15] the problem
with weaker constraint qualifications was studied. The procedures are based on sensitivity, in
particular, directional derivatives of the solution to an NLP subject to a differential parameter
change, whose properties depend on the constraint qualifications holding at the solution.

In the case of MPCCs, typically no standard constraint qualifications are satisfied (aside from
Guignard’s). Thus only the second algorithm in [14] for generic branching could potentially be
applicable for pathfollowing MPCCs. The algorithm requires an approximation to the complete
characterization of the optimal Lagrange multiplier set, and in general is not tailored for MPCCs
specifically.
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There are a number of algorithms for solving standalone MPCCs. The most standard ones
are based on regularization or penalization [20], and have been proven to find the C-stationary
points of the problem. C-stationary points have non-trivial directions of descent, however, so a
filter sequential linear complementarity based approach was presented in [18] to obtain solutions
satisfying B-stationarity, the most inclusive stationarity measure for which no descent direction
exists.

Sensitivity of MPCCs is studied in [2,13,21]. In combination with algorithmic pathfollowing
ideas for NLP and algorithms for solving standalone MPCCs, these form the inspiration for the
procedures and analysis presented in this paper.

2 Background

In this section we first review the optimality conditions of the standalone MPCC, and then
proceed to describe the general properties of the solution paths of parametric MPCCs as the
value of the parameter changes, and finally review pathfollowing procedures for parametric NLPs.

2.1 Optimality Conditions and Constraint Qualifications

Following [21] we present three related NLPs to (1) based around a feasible point x∗. The first,
the tightened NLP, will be defined as,

minx∈Rn+2nc f(x, t)
s.t. g(x, t) ≥ 0,

h(x, t) = 0,
xi = 0 for x∗i = 0, i ∈ {n+ 1, ..., n+ 2nc}
xi ≥ 0 for x∗i > 0, i ∈ {n+ 1, ..., n+ 2nc}.

(2)

Next, the relaxed NLP is defined as,

minx∈Rn+2nc f(x, t)
s.t. g(x, t) ≥ 0,

h(x, t) = 0,
xi = 0, xi+nc

≥ 0 for i such that x∗i = 0 and x∗i+nc
> 0, i ∈ {n+ 1, ..., n+ nc}

xi = 0, xi−nc
≥ 0 for i such that x∗i = 0 and x∗i−nc

> 0, i ∈ {n+ nc + 1, ..., n+ 2nc}
xi, xi+nc

≥ 0 for i such that x∗i = 0 and x∗i+nc
= 0, i ∈ {n+ 1, ..., n+ nc}.

(3)
It holds that if x∗ is a local minimizer of the relaxed NLP then it is a local minimizer of the

MPCC, and if it is a local minimizer of the MPCC then it is a local minimizer of the tightened
NLP. The three are equivalent if strict complementarity holds, in which case x∗i > 0 or x∗i+nc

> 0
for all i ∈ {n+ 1, ..., n+ nc}.

Let us denote some index sets of active complementary components associated with a feasible
point x∗,

A1(x∗) , {i|i ∈ {n+ 1, ..., n+ nc}, x∗i = 0, x∗i+nc
> 0},

A2(x∗) , {i|i ∈ {n+ nc + 1, ..., n+ 2nc}, x∗i = 0, x∗i−nc
> 0},

A0
1(x∗) , {i|i ∈ {n+ 1, ..., n+ nc}, x∗i = 0, x∗i+nc

= 0},
A0

2(x∗) , {i|i ∈ {n+ nc + 1, ..., n+ 2nc}, x∗i = 0, x∗i−nc
= 0}

Denote the set

I(x∗) = {I ⊆ {i|i ∈ A1(x∗)∪A0
1(x∗)∪A2(x∗)∪A0

2(x∗)} : ∀i ∈ {n+1, ..., n+nc}, {i, i+nc}∩I 6= ∅}
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i.e., the set of all active complementarity variables such that at least one from every complemen-
tarity pair is included, and the Index I ∈ I(x∗) NLP as,

minx f(x, t),
s.t. g(x, t) ≥ 0,

h(x, t) = 0,
xi = 0, i ∈ I,
xi ≥ 0, i ∈ {n+ 1, ..., n+ 2nc} \ I

(4)

We will denote the MPCC Lagrangian with multipliers {λ, µ, σ} as,

L(x, λ, µ, σ, t) = f(x, t)− λT g(x, t)− µTh(x, t)− σTx,

where it is assumed that σi = 0 for i ≤ n.
We say that stationarity at x∗ of the parametric MPCC at t holds if there exist multipliers

{λ∗, µ∗, σ∗} such that,

∇f(x∗, t)− (λ∗)T∇g(x∗, t)− (µ∗)T∇h(x∗, t)− σ∗ = 0,
λ∗ · g(x∗, t) = 0, λ∗ ≥ 0, g(x∗, t) ≥ 0, h(x∗, t) = 0
min{x∗i , x∗i+nc

} = 0, for all i ∈ {n+ 1, ..., n+ nc}
σ∗i = 0 for i < n+ 1
σ∗i x

∗
i = 0, for i ∈ {n+ 1, ..., n+ 2nc}

(5)

The MPCC is C-stationary if also σi1σi2 ≥ 0 for all i1 ∈ {n+ 1, ..., n+ nc} and i2 = i1 + nc.
It is M-stationary if σi1 > 0, σi2 > 0, or σi1σi2 = 0 for all i1 ∈ {n + 1, ..., n + nc} and

i2 = i1 + nc.
The MPCC is S-stationary if σi ≥ 0 for all i ∈ {n + 1, ..., n + 2nc}. S-stationarity is also

called strong stationarity, and is the strongest notion of stationarity. It is equivalent to the KKT
property of the relaxed NLP (3).

The tightest notion of stationarity, i.e., the one for which no feasible descent directions exist,
is B-stationarity, which holds if d = 0 is the solution to the LPEC,

mind∈Rn+2nc ∇f(x∗, t)T d
s.t. g(x∗, t) +∇g(x∗, t)T d ≥ 0,

h(x∗, t) +∇h(x∗, t)T d = 0,
0 ≤ x∗i + di ⊥ x∗i+nc

+ di+nc
≥ 0, i ∈ {n+ 1, ..., n+ nc}.

(6)

This is equivalent to x∗ being feasible and stationary for all Index I NLP for I ∈ I(x∗).
If A0

1(x∗) = A0
2(x∗) = ∅ then B-stationarity is equivalent to S-stationarity. Otherwise, S-

stationarity, as the strongest stationarity measure, implies B-stationarity (however, a local min-
imizer may exist that satisfies B, but not S-stationarity).

We say that x∗ satisfies MPCC-LICQ, MPCC-MFCQ, or MPCC-SMFCQ if the tightened
NLP at x∗ satisfies the LICQ, MFCQ or SMFCQ, respectively.

There are a number of second order conditions, we first report the strongest, appearing in [21],

Theorem 1 [21, Theorem 7]

– If x∗ is a local minimizer of (1) at t and the MPCC-SMFCQ condition holds at x∗, then it
is a strongly stationary point with unique optimal multipliers (λ∗, µ∗, σ∗) and

dT
∂2

∂x2
L(x∗, λ∗, µ∗, σ∗, t)d ≥ 0

for any d such that d is feasible for (6) and ∇f(x∗, t)T d = 0.



Pathfollowing for Parametric Mathematical Programs with Complementarity Constraints 5

– If x∗ is a strongly stationary point of (1) at t, and for every direction d feasible for (6) and
dT∇f(x∗, t) = 0, there exist (λ∗, µ∗, σ∗) satisfying strong-stationarity such that

dT
∂2

∂x2
L(x∗, λ∗, µ∗, σ∗, t)d > 0

There are a number of other second order optimality conditions corresponding to each of the
types of critical points given. These are described in [9]. It is beyond the scope of the paper to
describe each of the conditions, only to say that they correspond to standard notions of second
order sufficiency with critical directions corresponding to cones natural to the specific multiplier
types for M and C-stationarity.

2.2 Properties of the Parametric Solution Path

Given the combinatorial structure of MPCCs, it is natural to consider that at a solution x∗

of an MPCC, for each possible I ∈ I(x∗), the corresponding index I NLP has its associated
parametric sensitivity properties. This is formalized in [21, Theorem 9] in the case of strong
second order sufficiency and the LICQ holding at x∗ for every I, corresponding to unique NLP
minimizers for perturbations of t. Of course, weaker constraint qualifications can give rise to
more complicated parametric sensitivity structure for each NLP (e.g., [10]). This is a natural
extension of parametric NLP in general, as an outgrowth of the combinatorial indexed NLPs
corresponding elements of I(x∗).

If the multipliers satisfy upper level strict complementarity however, then the disappearance
of the weakly double-active multipliers results in a unique path.

Definition 1 Upper level strict complementarity holds at {x∗, λ∗, µ∗, σ∗} if σ∗i > 0 for i ∈
A0

1(x∗) ∪ A0
2(x∗).

Theorem 10 [21] states that given this condition and an LICQ condition on the gradient
matrices corresponding to all combinations of I ∈ I(x∗) and inequality constraints such that
λ∗j > 0 in union with all the subsets such that λ∗j = 0 and j is active, there exists a unique path
of solutions for local perturbations of t in (1). These solutions maintain B-stationarity or C-
stationarity, as the case may be, and if B-stationarity and the second order sufficiency condition
hold, then they are local minimizers.

In [2] the standard critical sets of parametric optimization [8] are studied in the context
of MPCCs. In this paper we restrict ourselves to parametric MPCC problems for which the
MPCC-second order sufficiency conditions and MPCC-LICQ hold, leaving only the ”type two”
degenerate critical point. This is the case where either one λ∗i or σ∗i is zero for an active constraint.
The first case is similar to the corresponding one in in standard nonlinear programming–there is
a nonsmooth parametric path for which the branch on one side has some particular constraint
feasible but inactive, and the other side the constraint stays feasible but the multiplier becomes
strongly active, generically speaking (i.e., for a dense subset of the set of potential real-valued
parametric optimization problems). In the case of i ∈

(
A1

0(x∗) ∪ A2
0(x∗)

)
∩ {i : σ∗i = 0} at t̄,

i.e., a double active complementarity constraint that has a null multiplier, generically speaking,
one branch will have a variable in A1

0(x∗) ∪ A2
0(x∗) become inactive (i.e., positive), and σ∗i will

change sign at t̄. It can change sign in either direction, however, thus potentially a C-stationary
point could become just M-stationary, or S-stationary to just weakly stationary.

Let us define partial strict complementarity.

Definition 2 Partial strict complementarity holds at {x∗, λ∗, µ∗, σ∗} if for all i ∈ A0
1(x∗), either

σ∗i > 0 or σ∗i+nc
> 0.
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In [13] the strong stability of C-stationary points is investigated. It is shown [13, Theorem
1] that under MPEC-LICQ, MPEC-SOSC and partial strict complementarity as well as the
second order sufficiency for every Index I ∈ I(x∗) NLP, it holds that C-stationary points are
strongly stable, i.e., there is a unique path of C-stationary points with respect to perturbations.
Subsequently, they show that same result under MPEC-LICQ, MPEC-SOSC and upper level
strict complementarity. The results hold analogously for strongly stationary points, but not M-
stationary points.

2.3 Pathfollowing for Nonlinear Programming

We recall here some basic notions about pathfollowing for standard (non-complementarity) para-
metric nonlinear programming. Thus consider (x∗, λ∗, µ∗) satisfying stationarity (so with nc = 0).
Let Λ(x∗, t) correspond to the set of all (λ∗, µ∗) satisfying the conditions for x∗.

Define, A(x∗, t) to be the set of inequality constraint indices such that for i ∈ A(x∗, t),
gi(x

∗, t) = 0, A0(x∗, λ∗, t) ⊆ A(x∗, t) to be the set such that i ∈ A0(x∗, λ∗, t) implies that [λ∗]i =
0 and A+(x∗, y∗, t) ⊆ A(x∗, t) to be the set such that i ∈ A+(x∗, λ∗, t) implies that [λ∗]i > 0.
We define A+(x∗, t) = ∪λ∗∈Λ(x∗,t)A+(x∗, λ∗, t) and A0(x∗, t) = ∩λ∗∈Λ(x∗,t)A0(x∗, λ∗, t).

The Lagrangian function associated with the NLP is L(x, λ, µ, t) = f(x, t) − g(x, t)Tλ −
h(x, t)Tµ. The Hessian of the Lagrangian with respect to x is denoted by

H(x, λ, µ, t) := ∇2
xxf(x, t)−

mi∑
i=1

λi∇2
xxgi(x, t)−

me∑
i=1

µi∇2
xxhi(x, t).

The strong form of the second-order sufficiency condition is defined as follows.

Definition 3 (Strong second-order sufficient conditions (SSOSC)) A primal-dual pair
(x∗, y∗) satisfies the strong second-order sufficient optimality conditions at t if it satisfies the
first-order KKT conditions and

dTH(x∗, λ∗, µ∗, t)d > 0 for all d ∈ C̃(x∗, λ∗, µ∗, t) \ {0}, (7)

where d ∈ C̃(x∗, λ∗, µ∗, t) if ∇xgi(x∗, t)T d = 0 for i ∈ A+(x∗, λ∗, t) and ∇xh(x∗, t)T d = 0.

The weaker second-order sufficiency condition is given as follows.

Definition 4 (Second-order sufficient conditions (SOSC)) A primal-dual pair (x∗, y∗)
satisfies the second-order sufficient optimality conditions at t if it satisfies the first-order KKT
conditions and

dTH(x∗, λ∗, µ∗, t)d > 0 for all d ∈ Ĉ(x∗, λ∗, µ∗, t) \ {0}, (8)

where d ∈ Ĉ(x∗, λ∗, µ∗, t) if ∇xgi(x∗, t)T d = 0 for i ∈ A+(x∗, λ∗, t), ∇xgi(x∗, t)T d ≥ 0 for
i ∈ A0(x∗, λ∗, t) and ∇xh(x∗, t)T d = 0.

The generalized SSOSC is defined as,

Definition 5 (Generalized SSOSC (GSSOSC)) A primal vector x∗ satisfies the generalized
strong second-order sufficient optimality conditions at t if (x∗, λ∗, µ∗) satisfies the SSOSC for all
(λ∗, µ∗) ∈ Λ(x∗, t).
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Using [12], we know that a QP approximating,

min∆x
1
2∆x

TH(x∗, λ∗, µ∗, t)∆x+∆tT ∂
2L(x∗,λ∗,µ∗,t)

∂t∂x ∆x

subject to ∇th(x∗, t)T∆t+∇xh(x∗, t)T∆x = 0,
∇tgi(x∗, t)T∆t+∇xgi(x∗, t)T∆x = 0, for i ∈ A+(x∗, λ∗, t),
∇tgi(x∗, t)T∆t+∇xci(x∗, t)T∆x ≥ 0, for i ∈ A0(x∗, λ∗, t).

(9)

corresponds to the directional derivative along the homotopy path of solutions, if the LICQ and
SSOSC hold at x∗ at t.

Here, and in the sequel of the paper, assume that ∇xtf(x, t), ∇tg(x, t) and ∇th(x, t) are all
constant. By lifting the nonlinear dependence (i.e., introducing a variable z in place of t in the
problem functions and adding the constraint z = t) any parametric NLP can be written this way.

In [14, Section 2-3] a predictor-corrector QP is introduced, which incorporates both the di-
rectional derivative of the solution along with a step towards the solution at the next value of
the homotopy parameter, given an approximate solution at the initial value of the parameter
(x̄, λ̄, µ̄). It can be seen that under affine dependence the QP is equivalent to,

min∆x ∇f(x̄, t+∆t)T∆x+ 1
2∆x

TH(x̄, λ̄, µ̄, t)∆x+∆tT ∂
2L(x̄,λ̄,µ̄,t)
∂t∂x ∆x

subject to h(x̄, t) +∇th(x̄, t)T∆t+∇xh(x̄, t)T∆x = 0,
gi(x̄, t) +∇tgi(x̄, t)T∆t+∇xgi(x̄, t)T∆x = 0, for i ∈ A+(x̄, λ̄, t),
gi(x̄, t) +∇tgi(x̄, t)T∆t+∇xci(x̄, t)T∆x ≥ 0, for i ∈ A0(x̄, λ̄, t).

(10)

This corresponds to the standard sensitivity-based predictor-corrector approach for pathfollowing
approximate solutions of NLPs, which we will use in the Algorithms discussed in this paper.

The active sets A+(x̄, λ̄, t) and A0(x̄, λ̄, t) are estimated based on [7], also developed and
studied procedurally in [14]. In particular, for a standard NLP (i.e., nc = 0), we define the
optimality residual as

η(x, λ, µ) =

∥∥∥∥∥∥
∇xf(x, t)−∇h(x, t)µ−∇g(x, t)λ

min(g(x, t), λ)
h(x, t)

∥∥∥∥∥∥ ,
and estimate the active sets as follows,

A(x, λ, µ) = {i : gi(x, t) ≤ η(x, λ, µ)γ}
A+(x, λ, µ) = {i ∈ A(x, λ, µ) : λi > η(x, λ, µ)γ}
A0(x, λ, µ) = A(x, λ, µ) \ A+(x, λ, µ)

(11)

where 0 < γ < 1.

3 Algorithms

In this section we describe two Algorithms for pathfollowing solutions to parametric MPCCs,
based on approximating the parametric MPCC by an NLP or set of NLPs and using the predictor-
corrector QP (10).
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3.1 Penalty Methods

In order to obtain a solution of the MPCC, penalty methods instead solve the NLP,

minx∈Rn+2nc f(x, t) + ρxTn+1:n+nc
xn+nc+1:n+2nc

s.t. g(x, t) ≥ 0,
h(x, t) = 0,
xj ≥ 0, for all j ∈ {n+ 1, ..., n+ 2nc}

(12)

for some penalty parameter ρ > 0.

There are several important results relating the stationarity properties of the original problem
and the penalty relaxation.

Theorem 2 [20, Theorem 5.1-5.2, Proposition 5.3]

– If x∗ is strongly stationary for (1) at t then for ρ sufficiently large, x∗ is stationary for (12).
Furthermore, if MPEC-LICQ, MPEC-MFCQ, or MPEC-SOSC hold for (1) at t at x∗ then
LICQ, MFCQ and SOSC hold at (12) at t at x∗, respectively.

– If x∗ is stationary for (12) and x∗ is feasible for (1), then it is strongly stationary for (1). And
furthermore if LICQ and SOSC hold at x∗ for (12) at t, then MPEC-LICQ and MPEC-SOSC
holds at x∗ for (1) at t.

– If x∗ is strongly stationary for (1) at t, MPEC-LICQ holds at x∗, and σ∗i + σ∗i+nc
> 0 for

all i ∈ A0
1(x∗), then for ρ sufficiently large, there is a neighborhood of x∗ such that every

stationary point of (12) is a strongly stationary point for (1).

From the proofs in [20], the minimum ρ that is required for the first two results is equal to,

ρ̄1 = 1 + max

(
0, max
i∈A1(x∗)

σ∗i
x∗i+nc

, max
i∈A2(x∗)

σ∗i
x∗i−nc

)
, (13)

and for the third result, it must satisfy,

ρξ + max
i
σ∗i − ξ > 0,

where ξ is equal to,

ξ =
1

2
min

(
min

i∈(A1(x∗)+nc)∪(A2(x∗)−nc)
x∗i , min

i:σ∗
i>0

σ∗i

)

Note, however, that this does not imply the strong second order sufficiency conditions for the
penalty NLP.

One can obtain the multipliers σ∗ from the solution of the penalty function minimization by
taking [3],

σ∗i = zi − ρxi+nc , i ∈ {n+ 1, ..., n+ nc},
σ∗i = zi − ρxi+nc , i ∈ {n+ nc + 1, ..., n+ 2nc}

(14)

where z∗ are the multipliers for the bound constraints x∗ ≥ 0 in the penalty problem.
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3.1.1 Description of the Algorithm

We write the penalty objective as,

fp(x, t; ρ) = f(x, t) + ρxTn+1:n+nc
xn+nc+1:n+2nc

and correspondingly the Lagrangian of the penalty problem as,

Lp(x, λ, µ, z, t; ρ) = fp(x, t; ρ)− λT g(x, t)− µTh(x, t)− zTx.

with Hessian matrix,
Hp(x, λ, µ, t; ρ) = ∇2

xxLp(x, λ, µ, z, t; ρ)

(where we drop the dependence on z since x appears linearly in Lp).
We present the Penalty pathfollowing algorithm as Algorithm 1.

Algorithm 1 Penalty Pathfollowing Method for MPCC
Input: t = 0, x, λ, µ, z close to (x∗, λ∗, µ∗, z∗) satisfying the optimality conditions of (12) and feasible for (1) at
t = 0.

1: Compute the distance to solution residual η(x, λ, µ, z, t)
2: Estimate the active set A and the strongly active set A+ by (11).
3: while t < 1 do
4: Solve

min∆x ∇xfp(x, t; ρ) + 1
2
∆xTHp(x, λ, µ, t; ρ)∆x+∆pT

∂2Lp(x,λ,µ,t;ρ)

∂t∂x
∆x

subject to h(x, t) +∇th(x, t)T∆t+∇xh(x, t)T∆x = 0,
gi(x, t) +∇tgi(x, t)T∆t+∇xgi(x, t)T∆x = 0, for i ∈ A+(x, λ, t),
gi(x, t) +∇tgi(x, t)T∆t+∇xci(x, t)T∆x ≥ 0, for i ∈ A0(x, λ, t),
xi = 0, i ∈ A+(x, z),
xi ≥ 0, i ∈ {n+ 1, ..., n+ 2nc} \A+(x, z)

(15)

to obtain (∆x, λ̂, µ̂).
5: If x+∆x is infeasible for (1), then increase ρ, repeat loop.

6: if η(x+∆t, λ̂, µ̂, z, t+∆t) is sufficiently small then

7: Set t = t+∆t, x = x+∆x,λ = λ̂,µ = µ̂, increase ∆t.
8: Estimate the active set A and the strongly active set A+.
9: else

10: Decrease ∆t
11: end if
12: end while

3.1.2 Convergence

The convergence tracking result associated with the penalty algorithm is given below in Theo-
rem 3. In general, for well-behaved problems the procedure successfully traces the solutions, but
has several limitations. First, only strongly stationary points are guaranteed to be traced. This
does not necessarily imply that weaker notions of stationarity that are inherently spurious, like
M or C-stationarity, will not be traced, and it also implies that not all B-stationary points will be
traced. Furthermore, an “a posteriori” assumption must hold, that the SSOSC conditions hold
for the penalty problem associated with the MPCC, in particular, The SOSC for the original
MPCC is not enough to ensure the predictor-corrector QP is able to generate the solution path
for the MPCC.

Theorem 3 If there is an isolated primal solution path of strongly stationary points x∗(t) for
some t ∈ [ta, tb], then for all t, x∗(t) is a solution path for (12) for t ∈ [ta, tb]. Furthermore, if
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1. MPEC-LICQ holds for all x∗(t),
2. there is an initial estimate x(ta) sufficiently close to x∗(ta),
3. The SSOSC holds for (12) for all x∗(t) satisfying SOSC,
4. The right-hand side of (13) is bounded by ρ̄ for all primal-dual complementarity solutions

x∗(t), σ∗(t), t ∈ [ta, tb].
5. σ∗i (t) + σ∗i+nc

(t) > 0 for all complementarity multipliers associated with x∗(t),

then applying Algorithm 1 with ρ ≥ ρ̄, starting from x(ta), successfully traces an approximate
solution path x(t), i.e., for any D, there exists a D0 such that if ‖x(ta) − x∗(ta)‖ ≤ D0 then
‖x(t)− x∗(t)‖ ≤ D for all t.

Proof Consider x∗(ta) the closest point to x(ta) satisfying strong-stationarity. From Theorem 2
we can conclude that x∗(ta) is solution to (12) at ta for ρ ≥ ρ̄. Furthermore, the LICQ, SOSC,
and, by assumption SSOSC hold at x∗(ta) as a solution to (12). We can extend this to say that
these conditions hold for all x∗(t) as solutions to (12), and the final statement of Theorem 2
implies there is a one-to-one correspondence between x∗(t) as a solution to (12) and for the
MPCC, with a region around x∗(t) for which no solutions satisfying these properties exist for
either problem.

Now we can bring x(ta) as close as necessary to x∗(ta) such that the conditions of [14, Theorem
4.2] (alternatively, as these conditions imply strong regularity for the KKT system defined as
a variational inequality, [6]), are satisfied as applied to (12), the predictor-corrector QP (15)
associated with the appropriate active and strongly active set estimates, is able to successfully
trace a primal-dual solution with ‖x(t)− x∗(t)‖ ≤ D.

Note that we could implement a version for which MPEC-MFCQ, rather than the MPEC-
LICQ, is necessary for convergence and tracking, given in [15], however, for ease of presentation
we use the variant requiring unique multipliers.

3.2 Active Set Index Method

The next pathfollowing algorithm is intended to trace B-stationary points, which as indicated
describe the tightest notion of optimality. Their importance and the combinatorial approach of
the Active Set algorithm described here is inspired by the SLPEC-EQP Algorithm presented
in [18] (see also [16, Chapter 7]).

In that paper, it was observed that M, C and weak stationary points still have feasible descent
directions, and B-stationarity is the precise stationarity concept associated with the lack of such
descent directions. S-stationarity is the strongest notion of stationarity, but seeking S-stationarity
can neglect points that are B but not S stationary.

The primary driver towards global convergence in [18] is the LPEC,

mind ∇f(x, t)T d,
s.t. g(x, t) +∇g(x, t)T d ≥ 0,

h(x, t) +∇h(x, t)T d = 0,
0 ≤ xi + di ⊥ xi+nc

+ di+nc
≥ 0, i ∈ {n+ 1, ..., n+ nc},

‖d‖ ≤ ρ,

(16)

where ρ > 0 is a trust-region parameter. It is clear that d = 0 being the solution to this LPEC
corresponds to B-tationarity. The SLPEC-EQP algorithm [18] iterates by solving this LPEC,
using the solution to estimate the active set, and performing an equality constrained QP step to
accelerate towards convergence. The authors prove the global convergence of this procedure to
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a B-stationary point. Recall that a local minimizer to an LPEC being a zero step implies that
the full set of index-I NLPs is optimal we focus on estimating the set I, noting that the double
active set indicates possible branching in the directional derivative of the solution.

Thus, given a point x that is close to a B-stationary point x∗ at t, we seek to estimate the
active set A0(x, t) = {i ∈ {n+ 1, ..., n+ 2nc} : x∗i = 0} of complementary variables.

However, there is no certifiably accurate method to identify the set of index I NLPs of an
MPCC. Thus we must make the following assumption,

Assumption 1 We have a reliable means of estimating A0(x, t) from x, if x is sufficiently close
to x∗, a B-stationary point.

Heuristically, we consider i as active, and thus a potential member of the index I NLP when
xi ≤ ε0 for some tolerance ε0. Practically, we form the set of branches based on an estimate of
the doubly-active set, i.e., {i : xi ≤ ε0, xi+nc ≤ ε0}. In our practical experiments, we found that
a threshold of ε0 = 10−3 worked reasonably well.

We then use this to form an estimate of the set I and perform a parametric pathfollowing on
each NLP. Denote this estimate to be I0(x, t), i.e.,

I0(x, t) = {i ∈ A0(x, t) : ∀i ∈ {n+ 1, ..., n+ nc}, either i ∈ I0(x, t) or i+ nc ∈ I0(x, t)} (17)

We can make one simple adjustment to save unnecessary duplicate branches: note that if
a multiplier corresponding to an inequality constraint is zero at the solution to an NLP, its
corresponding linearized constraint in the sensitivity QP is associated with an inequality. This
makes the QP redundant to another QP for which the corresponding index is not in the index
of the I-NLP if one exists. This can hold if there are more that one doubly-active constraint. as
two inequalities.)

3.2.1 Description of the Algorithm

We present the Active Set MPEC pathfollowing algorithm as Algorithm 2.
First, given an approximate B-stationary solution x to the MPCC at t, we estimate and prune

the set of index I NLPs. For each I ∈ I0(x, t) defined in (17), we form the NLP and solve it
by an appropriate solver for standalone NLPs in order to obtain the multiplier estimates. If no
appropriate dual variable approximate solutions (i.e., with the right signs) exist, then this I is
not in I0(x, t) and we discard it. Otherwise, the predictor-corrector QP is then used to obtain
the next solution. The QP we solve is the following.

min∆x ∇xf(x, t; ρ) + 1
2∆x

TH(x, λ, µ, t; ρ)∆x+∆pT ∂
2L(x,λ,µ,t;ρ)

∂t∂x ∆x

subject to h(x, t) +∇th(x, t)T∆t+∇xh(x, t)T∆x = 0,
gi(x, t) +∇tgi(x, t)T∆t+∇xgi(x, t)T∆x = 0, for i ∈ A+(x, λ, t),
gi(x, t) +∇tgi(x, t)T∆t+∇xci(x, t)T∆x ≥ 0, for i ∈ A0(x, λ, t),
xi = 0, i ∈ A0(x, t),
xi ≥ 0, i ∈ {n+ 1, ..., n+ 2nc} \ A0(x, t)

(18)

We then check, after the step, if the solution still satisfies the original basic complementarity
conditions. Then, we recalculate I0(x+∆x, t+∆t) if necessary and investigate if the new primal
solution estimate remains stationary for every single index I NLP in I0(x + ∆x, t + ∆t) by
obtaining the appropriate dual solution minimizing the stationarity norm,

min
σI+
≥0,λ≥0

‖∇f(x+∆x, t+∆t)− λT∇g(x+∆x, t+∆t)− µT∇h(x+∆x, t+∆t)− σ‖2 (19)
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where I+ ⊆ {n+ 1, ..., n+ 2nc} such that xi ≥ 0 for i ∈ I+. In particular, if the objective value
is less than 10−3 then we consider it approximately stationary, in our Algorithm. However, this
value needs to be found by considerable experimental tuning.

If the point is not feasible, or not approximately optimal for every I ∈ I0(x + ∆x, t + ∆t),
or if the pathfollowing fails, then we cut this branch and proceed to starting the next branch.
Finally, if it tracks the solution until the final iterate at t = 1, for the sake of completeness we
pathfollow the other branches as well.

Algorithm 2 Active Set Pathfollowing Method for MPCC
Input: t = 0, x close to x∗, a B-stationary point.

1: Estimate the set of index I active sets I0(x, 0).
2: while t < 1 do
3: for Each I ∈ I0(x, t) do
4: For the index I NLP, find the best estimate for the multipliers (λ, µ, σ) ,
5: Estimate the active and strongly active sets A(x, λ, µ, σ),A+(x, λ, µ, σ) by (11)
6: Solve (18) to obtain a predictor-corrector step dI .
7: If the point x+ dI is not approximately feasible for the complementarity, set dI = ∅
8: Check the objective value of (19) for every other I ∈ I0(x+ dI , t+∆t).
9: If the point x+ dI is KKT-stationary for every other I ∈ I0(x+ dI , t+∆t), then set dJ = ∅

10: end for
11: If there exists a dI for some I, set x = x+ dI .
12: If there is more than one such dI , in parallel set many such new primal solution estimates.
13: Re-estimate the double complementary active set I0(x + dI , t + ∆t) and conduct the next pathfollowing

step..
14: end while

3.2.2 Convergence

Theorem 4 Consider a (finite) set of branches of B-stationary points {x∗k(t)}k=1,...,K for x∗k(t)

defined in t ∈ [tak , tbk ]. Given an initial point x(t0) sufficiently close to x∗(tk̂) for some k̂, and
desired threshold D, Algorithm 2 will generate a set of paths {xk(t)} such that, ‖xk(t)−x∗k(t)‖ ≤ D
for all t ∈ [tak , tbk ].

Proof Under Assumption 1, since B-stationarity is equivalent to a set of NLPs being optimal,
x(t0) is an approximate stationary point to each Index I NLP found in I0(x, 0). If there exists
a branch x∗(t0 + ∆t) for any ∆t > 0, then by [14, Theorem 4.2] the active set estimation and
predictor-corrector QP will trace it to desired accuracy. By the fact that the distance to the
solution of any NLP is O(·) of the optimality residual η(·), a true B-stationary point will satisfy
a low objective value of (19) for every index-I NLP.

If during the pathfollowing another constraint becomes doubly-active at t̄, it is added to
I0(x(t̄), t̄), and subsequently traced from t̄ on.

4 Examples

4.1 Example 1

Consider the problem,

minx∈R2 (x1 − t)2 + (x2 + t)2

s.t. 0 ≤ x1 ⊥ x2 ≥ 0.
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Fig. 1 Illustration of the traced solutions to Example 1 found using the penalty algorithm. The circles are the
points visited by the method. As expected, since the solutions are all strongly stationary, the complementarity
multipliers are zero when the corresponding variable is inactive and become positive as they become active, and
vice versa.

For t < 0, (0,−t) is a local minimizer and the origin is weakly stationary. For t = 0, the origin
is a local minimizer. For t > 0, (t, 0) is a local minimizer and the origin is weakly stationary.

Penalty Method
The penalty method is able to successfully trace the solution (0,−t) for t ∈ [−1, 0] through

(t, 0) for t ∈ [0, 1].
The primal solutions as well as the complementarity multiplier estimates given by (14) are

shown in Figure 1.

Active Set Method
The active set method is able to successfully trace the solution (0,−t) for t ∈ [−1, 0] through

(t, 0) for t ∈ [0, 1]. It recognizes the double-active set at t = 0 and discards the branch of the
Index-I NLP associated with the path of solutions for t ∈ [−1, 0], switching to the other branch
thereafter.

4.2 Example 2

This problem is inspired by [18].

minx∈R2 (x1 − t)2 + x3
2 + x2

2

s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

For t < 0, the origin is the local minimizer and only stationary point. For t > 0, the point (t, 0)
is a local minimizer and the origin is M-stationary.

Penalty Method
In this case, the penalty method always traces the origin for t ∈ [−1, 0], and the local mini-

mizer (t, 0) for t ∈ [0, 1]. Thus it does not appear to be captured by the M-stationary point. The
set of points traced along the homotopy is shown in Figure 2.

Active Set Method
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Fig. 2 Illustration of the penalty algorithm solutions for Example 2.
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Fig. 3 Illustration of the active set algorithm solutions for Example 2.

The active set method traces two solutions along the bi-active set along t ∈ [−1, 0]. Sub-
sequently, the one holding x1 = 0 stops pathfollowing at t = 0 and the one holding x2 = 0
pathfollows successfully along (t, 0) for t ∈ [0, 1].

The solutions are shown in Figure 3.

4.3 Example 3

This problem arises from [21]. Consider,

minx∈R2 (x1 − t)2 + (x2 − t)2

s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

For t ≤ 0, the origin is the unique minimizer, and is a B-stationary and C-stationary point. For
t > 0, the origin is C-stationary, and (t, 0) and (0, t) are both local minimizers.

For any t, the Lagrangian Hessian is ∇2
xxL =

(
2 0
0 2

)
, as this matrix is positive definite, it is

also positive definite on any cone of directions.
We illustrate the problem in Figure 4.

Penalty Method

Note that for t = 0, the Lagrangian Hessian for (12) is ∇2
xxLp =

(
2 ρ
ρ 2

)
. At the origin, every

multiplier is null, i.e., σ∗1,2 = z∗1,2 − ρx∗ = 0, thus no constraint is strongly active and both
variables are weakly active at the origin. Thus, although ∇2

xxLp is positive definite along the

cone of feasible directions, which are
(
1 0
)T

and
(
0 1
)T

, it is not in the subspace corresponding
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t=-1

t=1

x∗(t), −1 ≤ t ≤ 0

x∗(t), t = 1

f(x, t)

f(x, t)

Fig. 4 Illustration of Example 2. The circular level sets of the objective function at t = −1 and t = 1 are drawn
as circles. As t traces from −1 to 1, the level sets move continuously from the bottom left to the top right. The
local minimizers are marked as red dots. Up until t = 0, i.e., for t ∈ [−1, 0], the unique local minimizer is the
origin. For t ∈ (0, 1] there are two local minimizers, (t, 0) and (0, t). In addition, there is a C-stationary point
at the origin, for which clearly both axes are a descent direction, indicating the weakness of this stationarity
condition .

to the strong second order sufficiency conditions, which includes
(
1 −1

)T
. Thus, predictably the

penalty algorithm is not able to pathfollow past t = 0, in particular as the Hessian in the null-
space of the pathfollowing QP (9) is indefinite, the corresponding QP is nonconvex. Thus, the
results on NLP pathfollowing do not imply in theory, and in practice, that a standard QP solver
would be able to solve the corresponding predictor-corrector QP.

The optimality conditions for the QP (10) are,

−2t+ 2∆x1 + ρ∆x2 = 0,
−2t+ 2∆x2 + ρ∆x1 = 0,
d1 ≥ 0, d2 ≥ 0.

From these equations, it must hold that ∆x1 = ∆x2 > 0. Note that this is not a feasible direction
for the original problem, and thus the QP for the pathfollowing of (12) does not correspond to
pathfollowing for the original MPCC.

The penalty method is able to trace the origin solution for t < 0, and for t > 0 it appears
to pick either local minimizer with equal probability, while never converging to the C-stationary
point, and finds it impossible to pathfollow too close to t = 0.

Active Set Method The active set method, started at t = −1, recognizes the presence of
the doubly-active set and proceeds with two separate pathfollowings, one with fixed x1 = 0 and
the other with fixed x2 = 0. The algorithm is able to follow the origin for t ∈ [−1, 0] and each
path follows the separate local minimizers ((t, 0) and (0, t) for t ∈ [0, 1]). The two branches of
solutions are shown in Figure 5.
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Fig. 5 Illustration of the active set algorithm solutions for Example 2.

4.4 Example 4

This problem is original to this paper.

minx∈R2 x2
1 + (x2 + t)2

s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

For t < 0 the origin is C-stationary and (0,−t) is a local minimizer. For t ≥ 0, the origin is a
local minimizer and only stationary point.

Penalty Method For t ∈ [−1, 0], the local minimizer, (0,−t) is traced by the penalty
pathfollowing method, and for t ∈ [0, 1], it traces the origin. If, however, instead of finding the
initial solution with the standalone penalty method, the penalty pathfollowing is initialized for
t < 0 at the origin then it continues to pathfollow the parametric C-stationary point. Thus,
because the standalone penalty method seeks descent, it is likely to pick a local minimizer over a
weaker stationary point, if both exist, although it still recognizes the latter as a stationary point
for the penalty problem.

Active Set Method For t ∈ [−1, 0], the local minimizer, (0,−t) is traced by the active set
pathfollowing method, and for t ∈ [0, 1], it traces the origin.

4.5 Example 5

This problem is original to this paper.

minx∈R2 (x1 − 1)2 + (x2 + t)2

s.t. x2 − x1 ≥ 0,
0 ≤ x1 ⊥ x2 ≥ 0.

For all t ∈ [0, 1] the origin is the unique local minimizer. The stationarity conditions for the
problem are,

σ1 − λ = −2,
σ2 + λ = 2t,
λ ≥ 0.

Thus both (λ∗, σ∗1 , σ
∗
2) = (2, 0, 2t − 2) and (λ∗, σ∗1 , σ

∗
2) = (0,−2, 2t) are M-stationary, and fur-

thermore for the index {1} NLP, the second set of multipliers is optimal, and for the index-{2}
NLP the first set is optimal, and thus the origin is also B-stationary for all t ∈ [0, 1].

Penalty Method
The penalty method is unable to find a satisfactory initial point. Initializing from one of the

stationary points does not result in any successful pathfollowing step.
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Fig. 6 Illustration of the active set algorithm solutions for Example 5.

Active Set Method
The active set method is able to trace both index I-NLPs for this set of problems, tracing

the origin for t = [0, 1] along the multipliers (2, 0, 2t − 2) for the index-{1}-NLP and (0,−2, 2t)
for the index-{2}-NLP. The primal and dual solutions traced are shown in Figure 6.

4.6 Example 6

This problem arises in the MacMPEC collection of MPEC problems [17].

minx∈R2 x1 + x2 − (1− t)x3

s.t. 4x1 − x3 ≥ 0,
4x2 − x3 ≥ 0,
0 ≤ x1 ⊥ x2 ≥ 0.

The point x∗ = (0, 0, 0) is B-stationary but not M-stationary for t ∈ [0, 3
4 ] and strongly stationary

for t ∈ [ 3
4 , 1]. The problem does not satisfy MPEC-LICQ, and two options of multipliers are

λ∗ = (0, 1− t) and σ∗ = (1,−3 + 4t) as well as λ∗ = (1− t, 0) and σ∗ = (−3 + 4t, 1), indicating
that x∗ is optimal for both the index-1 and index-2 NLP, but is otherwise only weakly stationary.

Penalty Method
For t ∈ [0, 3

4 ], the penalty method is unable to find a satisfactory initial point. Initializing
from one of the stationary points does not result in any successful pathfollowing step, with the
error that every predictor-corrector QP problem is non-convex. For t ∈ [ 3

4 , 1] the algorithm is
able to pathfollow the solution x∗ = (0, 0, 0).

Active Set Method
The active set method pathfollows along the origin, doing so twice, once for each index in

the double active set, for t ∈ [0, 1].

4.7 Example Flash Calculation

This section describes a classic chemical engineering problem appearing in, e.g., [22, Chapter
7]. It models vapor/liquid equilibrium, wherein the Gibbs energy is minimized at some given
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temperature and pressure. In this case we consider pressure to be fixed and vary Temperature.
We consider a feed stream F that is separated into vapor V and liquid L product, of three
different compounds {yi} and {xi}, respectively, with

∑
i xi = 1 and

∑
i yi = 1, and xi+yi = zi.

Using Raoult’s law, we have that,

yi/xi = Ki = psati (T )/p

where psati is a nonlinear function of temperature,

psati = 10
Ai−

Bi
T+Ci

The fraction a ∈ [0, 1] = V/F of gas is determined by the Rachford-Rice equation,

∑
i

zi(Ki − 1)

1 + at(Ki − 1)
= 0.

However, the bubble point temperature is Tb = 382.64 and the dew point Td = 393.30, and
thus for T < Tb, the solution for at will be negative, but clearly every substance must be liquid,
and for T > Tb, the solution for at will be greater than one, but clearly every substance must be
gas.

Thus the true ratio of gas a will be determined by the complementarity system,

a− sv + sl − at = 0,
0 ≤ sl ⊥ L ≥ 0,
0 ≤ sv ⊥ V ≥ 0,
0 ≤ a ≤ 1

The resulting problem is a nonlinear complementarity system. In addition, the nonlinear
equations relating temperature to the component distributions are ill-conditioned. Thus, to define
the MPEC, we,

– lift Raoult’s law and the Rachford-Rice equation, making Ki,
1

(Ki−1) (which we write as ki),

log psati variables, alongside V , L, xi, yi, a, at, T , sV and sL.
– We consider T as both a parameter and a variable, and define an equality constrained T =
Ttarget, and we trace the solution for Tt = 380 to 400.

– When taking into account active constraints at the solutions of the NCP, the entire system
does not satisfy MPEC-LICQ, thus we do not make the vapor fraction a hard constraint, but
define our objective to be,

f(x, t) =
1

2
(aF − V )2

The constants we use in the experiments are given in Table 1.

Table 1 Constants Used in the Flash Calculation.

A1 A2 A3 B1 B2 B3

3.97786 4.00139 3.93002 1064.840 1170.875 1182.774
C1 C2 C3 z1 z2 z3

−41.136 −48.833 −52.532 0.5 0.3 0.2
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Fig. 7 Primal solutions for the Liquid-Phase flow problem .

4.7.1 Penalty Method

The penalty method accurately tracks the solution, achieving the liquid-gas balance as expected.
Every solution is a strongly stationary point, and the objective function is strictly convex,

and so all the necessary conditions for the convergence of the penalty method for solving the
MPEC and tracing a parametric curve are satisfied.

The solutions for all of the variables are given in Figure 7. As expected, the variables X and sx,
as well as Y and sy are complementary, with the slacks being positive when their corresponding
complementary variables are zero, and zero when they are inactive. The proportion of gas a
corresponds to V . The variables ki appear to vary the most nonlinearly, resembling an exponential
function with respect to the parameter, which is equivalent to the temperature.

Note that the required step-size for pathfollowing is generally fairly small, and gets smaller
during active set changes.

4.7.2 Active Set Method

The active set method also traces the set of solutions. At each active set change, a double-active
set was recognized. The previous branch was eventually cut, and the other branch initiated.
Although the method converged for this problem, it took considerable tuning with regards to
tolerances for the double-active constraints, on the one hand, and the required tolerance for
checking the other index I NLPs, while tracing a branch, on the other. In particular, numerically,
a double-active constraint will stay active for a few homotopy steps before being seen as no longer
bi-active, and meanwhile the steps must still be accepted as valid for the other index Is NLP.

4.8 Discussion

The two phase flow example illustrates the general efficacy of the procedures outlined above on
real problems. The simpler problems indicate some subtle distinctions of the two methods. In
particular, the penalty method is easier to tune and implement, traces S-stationary points, but
not B-stationary, and also it can trace C-stationary points, which may not be desired by the
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practitioner. By contrast, the active set method is able to trace B-stationary points and does not
trace and spurious stationary points. However, since it must trace every combination of selections
of doubly-active constraints, it is generally slower and more difficult to tune.

5 Conclusion

In this paper we studied the parametric mathematical program with complementarity constraints,
presenting the first investigation of algorithmically pathfollowing these programs. We formulated
two algorithms, one based on the penalty method for standalone MPCCs, and one based on follow-
ing the possible branches of NLPs suggested by double-active constraints and the B-stationarity
condition. We studied their performance on a set of examples constructed to distinguish the
types of parametric properties there could be, illustrating the performance on this illustrative
set of problems, as well as a “real-world” problem associated with chemical process engineering.

Pathfollowing parametric optimization problems can be important in a number of applica-
tions, including nonlinear model predictive control, as well as assessing the practical sensitivity
of a solution with respect to a parameter. We intend that this work presents a solid first step
in the development of literature and algorithms for the pathfollowing of parametric MPCCs. In
general, the tradeoffs associated with seeking tighter versus looser notions of stationarity inherent
to standalone methods for solving MPCCs carried over to pathfollowing parametric ones, and in
each case we expect this to enrich further understanding of MPCCs in general and algorithms
for pathfollowing parametric MPCCs in particular.

Acknowledgements

We would like to thank Sven Leyffer for sharing his insight regarding the different stationary
point concepts addressed in this paper and suggesting one of the examples.

References

1. Baumrucker, B., Renfro, J., Biegler, L.T.: Mpec problem formulations and solution strategies with chemical
engineering applications. Computers & Chemical Engineering 32(12), 2903–2913 (2008)

2. Bouza, G., Guddat, J., Still, G.: Critical sets in one-parametric mathematical programs with complementarity
constraints. Optimization 57(2), 319–336 (2008)

3. Coulibaly, Z., Orban, D.: An \ell 1 elastic interior-point method for mathematical programs with comple-
mentarity constraints. SIAM Journal on Optimization 22(1), 187–211 (2012)
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