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Abstract— This work deals with a nonlinear multistage
model predictive control (MPC) formulation, where the future
propagation of the uncertainty in the prediction horizon is
represented via a discrete scenario tree. The scenario tree
is often generated using finite realizations of the uncertainty
sampled from an uncertainty set or a probability distribution
function. Once the scenarios are chosen, the scenario tree is
often kept fixed for all the iterations. In this paper, we propose
to update the different discrete realizations of the uncertainty
in the scenario tree using a recursive Bayesian weighting
approach. We show that by gradually shrinking the uncertainty
set, we can further reduce the conservativeness of the closed-
loop solution. The effectiveness of the proposed method is
demonstrated using an oil and gas production optimization case
study.

I. INTRODUCTION

Model predictive control is a popular optimal control
method in the process industry due to its ability to handle
multivariable constrained systems. However the performance
of MPC is strongly affected by the quality of the prediction
model used by the MPC. Models are almost always subject
to uncertainties due to imperfect knowledge of the system
or model simplification. In the presence of constraints, addi-
tional robustification must be introduced in order to ensure
robust constraint satisfaction despite the uncertainty.

To this end, there has been several developments in min-
max approaches [1], where the optimal input trajectory is
computed by minimizing the cost of the worst case real-
ization of the uncertainty. Although this ensures robust con-
straint satisfaction, this often leads to overly conservative and
hence suboptimal solutions. This is because the optimization
is performed for the worst-case scenario in an open-loop
fashion without any notion of feedback.

In a recent review paper [2], the author argues that
effective handling of uncertainty requires feedback mod-
els and hence the control trajectory computed by solving
an open loop optimization problem is not optimal. Multi-
stage scenario-based MPC, also known as feedback min-
max MPC, is one such closed-loop optimization approach
introduced in [3] and later extended to nonlinear systems
in [4]. Here, the future evolution of the uncertainty in the
prediction horizion is represented by a discrete scenario
tree. Different control trajectories are then computed for
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the different scenarios. In other words, the multistage MPC
formulation explicitly takes into account the fact that new
information will become available in the future and new opti-
mal control input will be re-computed. This can be envisaged
as a player’s decision making process in an evolutionary
strategic game. Instead of preparing a single sequence of
optimal moves, we compute several backup moves depending
on the future evolution of the uncertainty throughout the
game. This concept is commonly known as recourse in
the stochastic programming literature and is an important
property in optimal decision making under uncertainty.

The multistage scenario-based MPC formulation has been
shown to be less conservative than traditional min-max
approaches for various applications, see for e.g. [4],[5], [6],
[7] to name a few. Nevertheless, the solution provided by
the multistage MPC will be conservative in order to ensure
robust constraint satisfaction for all the scenarios considered
in the scenario tree. A common approach to choosing the dis-
crete realizations of the uncertainty in the scenario tree is to
use a combination of the maximum, minimum and nominal
values of the uncertain parameters. If the assumed range of
the uncertain parameter is large, the resulting span of the
scenario tree is also large, and consequently the solution
provided will be conservative, albeit less conservative than
traditional min-max MPC.

For problems with constant but unknown parameters,
i.e. time-invariant uncertain parameters, it may be desir-
able to approach the problem from an adaptive framework
rather than a robust framework[8]. Typical adaptive control
frameworks involve the use of parameter estimators that
adapts the uncertain parameters online such that it converges
asymptotically to the true system. However, developments in
adaptive MPC have been rather limited. Parameter estimation
algorithms also often requires the uncertain parameters to be
observable from the measurements, which may not always
be the case.

In this paper, we propose to adapt the uncertainty char-
acteristics (i.e. the span of the uncertain parameters) instead
of adapting the parameters directly. The idea of updating
the uncertainty characteristics instead of using a parameter
estimator itself is not entirely new. Similar ideas of adaptive
robust approaches were also explored in [8], [9], [10],
where the uncertainty set containing all possible values of
the uncertain parameters are estimated instead of adapting
the parameters directly. The different works used different
approches to update the uncertinty sets, such as ensemble
Kalman filter (EnKF) or set-based guranteed parameter esti-
mation etc. In this paper, we propose an alternative appraoch



to updating the uncertainty set that does not requre the use
of a parameter estimation algorithm. Instead, we propose to
use the recursive Baysian probability to update the scenario
tree.

Using the process measurements and the model predictions
from the different scenarios, we compute and assign a
Bayesian weight for the different scenarios. The Bayesian
weights are then used to shrink the span of the scenario
tree by updating the scenarios with a very low weight. In
other words, by computing Bayesian weights for the differ-
ent discrete uncertainty realizations, we gradually eliminate
values from the uncertainty set that do not explain the ob-
served measurements with sufficient likelihood. This results
in shrinking the span of the scenario tree over time and
hence further reduce the conservativeness from the standard
multistage scenario-based MPC.

Recursive Bayseian weighting approach such as the one
used in this work were also used in multiple model predictive
control (MMPC) formulations in works such as [11] and [12]
to interpolate between different models from a model bank.
We apply a similar Bayesian weighting scheme and instead
of interpolating between the different scenarios, we update
the scenarios with very low weights. This is an intuitive
approach to updating the scenario tree online based on the
available measurements and model predictions.

The reminder of the paper is organized as follows. The
multistage scenario-based robust MPC framework is intro-
duced in Section 2. The proposed online scenario tree adap-
tation based on recursive Bayesian weighting approach is
described in Section 3. The proposed method is demonstrated
using an oil and gas production optimization problem in
section 4 before concluding the paper in Section 5.

II. BACKGROUND

Consider a discrete-time nonlinear system parameterized
by a vector of time-invariant uncertain parameters p ∈ Rnp ,

xk+1 = f(xk,uk,p) (1)
yk = h(xk,uk) (2)

where xk ∈ Rnx and uk ∈ Rnu denotes the state and input
vectors, respectively. The system model is represented by
f : Rnx × Rnu × Rnp → Rnx . The vector of available mea-
surements is denoted by y ∈ Rny given by the measurement
model h : Rnx × Rnu → Rny .

The objective is to minimize a cost function J : Rnx ×
Rnu → R subject to the nonlinear inequality constraints g :
Rnx × Rnu → Rnc over a prediction horizon of length N .
The optimal control problem can then be written as,

min
xk,uk

N−1∑
k=0

J(xk,uk) (3a)

s.t.
xk+1 = f(xk,uk,p) (3b)
g(xk,uk) ≤ 0 (3c)
x0 = x̂ (3d)
p ∈ U , ∀k ∈ {0, . . . , N − 1}

u2;1; d2;1 uN;1; dN;1
· · ·

u2;2; d2;2 uN;2; dN;2
· · ·

u2;3; d2;3 uN;3; dN;3
· · ·

u2;4; d2;1 uN;4; dN;1
· · ·

u2;5; d2;2 uN;5; dN;2
· · ·

u2;6; d2;3 uN;6; dN;3
· · ·

u2;7; d2;1 uN;7; dN;1
· · ·

u2;8; d2;2 uN;8; dN;2
· · ·

u2;9; d2;3 uN;9; dN;3
· · ·
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Fig. 1: Schematic representation of the scenario tree with
M = 3 discrete realizations of the uncertainty and a robust
horizon of Nr = 2, leading to S = 9 scenarios.

where U ⊂ Rnp denotes the bounded uncertainty charac-
teristics, either in the form of uncertainty set or probability
distribution function. Initial conditions are enforced in (3d),
where x̂ denotes the current state estimates.

If the model was perfect and p was known accurately, then
for an optimal input trajectory up

[t,t+N ], the predicted state
trajectory is given by xp

[t,t+N ]. However, in the presence of
uncertainty, an optimal input trajectory up

[t,t+N ] would give
rise to a cone of state trajectories {xp

[t,t+N ]}U depending
on the value of the uncertain parameter p ∈ U . Optimizing
over a single control trajectory up

[t,t+N ] ignores the fact that
new information will be made available at the next time step
and a new optimal input trajectory will be re-computed. In
other words, the optimization is performed in an open-loop
fashion (although the implementation may be in closed-loop,
if the optimal control problem is re-solved at each sampling
time with only the first control input move implemented on
the process). Closed-loop optimization, on the other hand,
involves computing a cone of possible control trajectories
{up

[t,t+N ]}U instead of a single control trajectory up
[t,t+N ],

thereby introducing recourse action.
A simple approach to closed-loop optimization is by

discretizing the uncertainty characteristics and solving the
sampled average approximate problem as explained in [3]
and [4]. Therefore the first step to designing a multistage
scenario-based MPC is to select the discrete realizations
of the uncertainty from the uncertainty set. In order to
ensure robust constraint satisfaction for any realization of
the uncertainty from the uncertainty set, a combination of
maximum, minimum and nominal values of the different
uncertain parameters are often chosen as the scenarios.

To this end, M discrete realizations of the uncertain pa-
rameters are sampled from the uncertainty set U to generate
a scenario tree as shown in Fig.1. In order to prevent the
exponential growth of the problem, the scenario branching
is often terminated after a certain number of samples Nr in



the prediction known as robust horizon, as justified in [4].
This results in S = MNr number of scenarios. The resulting
scenario optimization problem can be written as,

min
xk,j ,uk,j

S∑
j=1

ωj

N∑
k=1

J(xk,j ,uk,j) (4a)

s.t.
xk+1,j = f(xk,j ,uk,j ,pj) (4b)
g(xk,j ,uk,j) ≤ 0 (4c)
x0 = x̂ (4d)
S∑

j=1

Ējuj = 0 (4e)

∀j ∈ {1, · · · , S} ∀k ∈ {0, . . . , N − 1}

where ωj represents the weight for the different scenarios.
The constraints in (4e) represents the non-anticipativity or
causality constraints which enforce the fact that the control
inputs cannot anticipate the future realization of the uncer-
tainty. In other words, the states that branch from the same
parent node must have the same control inputs. Here uj

represents the sequence of optimal control input for the jth

scenario, i.e. uj =
[
uT
0,j · · ·uT

N−1,j
]T ∈ RnuN . The reader

is referred to [13] and [14] for detailed description of the
non-anticipativity constraints and the structure of Ēj used in
(4e).

III. MULTISTAGE MPC WITH ONLINE SCENARIO
UPDATE

As mentioned earlier, often a combination of maximum,
minimum and nominal values of the different parameters
are chosen as the different uncertainty realizations in the
scenario tree. If the uncertainty parameter range is rather
large, then the scenario tree has a large span resulting in
a conservative solution. A common assumption in most
works considering multistage scenario MPC is that, once the
scenarios are selected, the scenario tree remains fixed. In
the case of time-invariant uncertain parameters, an adaptive
framework may be preferable that enables the controller
to improve its performance over time by employing some
adaptive mechanism to eliminate/update scenarios that do not
explain the observations with sufficient likelihood.

The proposed multistage model predictive control method
with online scenario tree update is based on adapting the
scenario tree online using the available measurements ym ∈
Rny . A recursive Bayesian weighting scheme is used to
assign weights to the different scenarios. The scenarios that
do not explain the observations with sufficient likelihood
(represented by very low weights) are then updated online
to reduce the span of the scenario tree.

A. The recursive Bayesian weighting scheme

In this paper, we use a probabilistic weighting scheme
which assigns weights to each scenario, which is a value
ranging from 0 to 1. This is based on the conditional
probability of the jth scenario being the true realization of

the uncertainty given the past history of residuals and proba-
bilities of all the scenarios. The recursive Bayes theorem for
the jth scenario at time step k is then given by,

Pk,j =
e−0.5ε

T
k,jKεk,jPk−1,j∑S

m=1 e
−0.5εTk,mKεk,mPk−1,m

(5)

where the residual εk,j ∈ Rny for the jth scenario at the
current time step k is computed using the observations ym

and the model predictions (2) for the jth scenario,

εk,j = ym
k − h(xk,j ,uk,j) (6)

Here, K is a weighting matrix, which is typically chosen to
be diagonal and can be seen as the inverse of the residual
covariance. Hence, large values of K often leads to faster
convergence towards a scenario and smaller values of K lead
to a more averaging approach to the scenarios. Using the
recursive probabilities (5), the weight for the jth scenario at
time step k are then computed as shown below,

Wk,j =
Pk,j∑S

m=1 Pk,m

(7)

B. Online scenario tree update

Using the Bayesian weights, we can update the sce-
nario tree online. We find the scenario corresponding to
the smallest weight represented by j and find the scenario
corresponding to the largest Bayesian weight represented by
j. If the Bayesian weight for the jth scenario becomes lower
than a user defined threshold δ, then the least likely jth

scenario is updated by moving it towards the most likely
j

th
scenario. For example, if the jth scenario has a very

low weight Wk,j < δ relative to the j
th

scenario, then the
jth scenario is updated in the direction of the most likely
scenario using a user defined step length α < 1 as shown
below,

pj ← pj + α(pj − pj) (8)

The step length α must be sufficiently small (typically in the
range of 0.1) to retain the originally envisioned robustness
properties. Hence, at the next time step k + 1, the jth

scenario in the scenario tree is updated according to (8)
and the scenario MPC problem (4) is solved using the
updated scenario tree. Note that, the threshold δ must be
chosen such that the likelihood of the jth scenario explaining
the observations must be sufficiently low. This is to avoid
updating a scenario which only has a marginally lower
Bayesian weight relative to the other scenarios. Since we
have used a recursive weighting scheme, it is also crucial
that the weights are reset after each time the scenarios are
updated. This is because the new weight of the updated
scenario must not be based on the probability of the old
scenario realization. A sketch of the proposed multistage
MPC with online scenario tree update scheme is described in
Algorithm 1. The algorithm presented here to compute the
recursive Baysiean weights is computationally inexpensive
and is known to reject poor models exponentially fast [11].



Algorithm 1 Multistage MPC framework with online sce-
nario tree update

Define tolerance δ > 0, α < 1, initial probability for each
scenario P0,j = 1

S , ∀j ∈ {1, . . . , S}.

Input: At each time step, observations ym
k and model pre-

dictions ŷk,j

for j = 1, 2, . . . , S do
εk,j ← ym

k − ŷk,j

Pk,j ← e
−0.5εTk,jKεk,jPk−1,j∑S

m=1 e
−0.5εT

k,m
Kεk,mPk−1,m

Wk,j ← Pk,j∑S
m=1 Pk,m

end for
Find scenario corresponding to smallest weight j =
arg minj Wk,j

Find scenario corresponding to largest weight j =
arg maxj Wk,j

if Wk,j < δ then
Update jth scenario pj ← pj + α(pj − pj)

Reset probability Pk,j ← 1
S , ∀j ∈ {1, . . . , S}

end if
[x∗k,j ,u

∗
k,j ]← Solution of Scenario MPC problem (4)

Output: u∗k,j

The computed Bayesian weights, in addition to scenario
pruning, can also be used to weight the different scenarios
in the cost function by setting ωj = Wk,j in (4). By doing
so, we give more weight on the scenarios that explains the
observations with a higher likelihood.

IV. CASE STUDY

In this section, we demonstrate the proposed scenario tree
update mechanism using a gas lift optimization case study.

A. Process description

We consider an oil and gas production network consisting
nw = 2 gas lifted wells as shown in Fig.2. The objective is
to maximize the total oil production from the network while
maintaining the total gas production within the processing
capacity constraints. This is expressed as,

min
wgl,i

− co
nw∑
i=1

wpo,i + cgl

nw∑
i=1

wgl,i (9a)

s.t.
nw∑
i=1

wpg,i ≤ wmax
pg (9b)

xk+1 = f(xk,uk,p) (9c)
p ∈ U (9d)
∀i ∈ {1, . . . , nw}

where wgl,i is the gas lift injection rate for each well and
is the manipulated variable (nu = 2), wpo,i and wpg,i are

wgl;1 wgl;2

W
e
ll
1

W
e
ll
2

GOR1 2 U1 GOR2 2 U2

Fig. 2: Schematic representation of two gas lifted wells.

U = U1 × U2

GOR1

G
O
R

2

Fig. 3: Uncertainty subspace showing the 5 discrete scenarios
used to generate the scenario tree.

the oil and gas production rates from each well respectively,
wmax

pg is the total gas processing capacity. co and cgl are
economic terms that represents the value of oil and cost of
gas compression respectively. (9c) represents the nonlinear
dynamic model of the gas lifted wells. The reader is referred
to [5] for more detailed description of the gas lifted well
models.

The gas-oil-ratio GOR is a reservoir property that denotes
the ratio of oil and gas entering each well from the reservoir,
which is an uncertain parameter (i.e. p = GOR). U denotes
the uncertainty characteristics to which the uncertain param-
eter is known to belong. Since we have two wells, we have
two uncertain parameters (np = 2), namely, the gas-oil ratio
for each well. In this simulation example, we consider the
uncertainty in GORi ∈ Ui to be equally distributed with
GOR1 ∈ [0.05, 0.15]kg/kg and GOR2 ∈ [0.11, 0.13]kg/kg.
Hence the uncertainty set U = U1 × U2 is given as a box
uncertainty set. For the multistage scenario MPC, M = 5
discrete realizations of the uncertainty are considered that
corresponds to the combination of minimum, maximum and
nominal values of the gas-oil-ratio of the two wells. This
is schematically represented in Fig.3, where the discrete
scenarios are marked by an ’×’. Multistage scenario MPC
was then applied with a robust horizon of Nr = 1 leading
to S = 5 discrete scenarios, as described in [15].

The multistage scenario MPC is setup with a sampling
time of 5min and with a prediction horizon of 2hours
using CasADi v3.1.0 [16] with MATLAB programming
environment. The resulting nonlinear programming (NLP)



Fig. 4: Simulation results comparing the proposed method
with online update of scenario tree with fixed scenario tree
multistage MPC

problem is solved using IPOPT v.3.12.2 running with a
MUMPS linear solver. The simulations were performed on a
2.6GHz workstation with 16GB memory. The plant model
was implemented using the IDAS integrator. It is worth
noting that, given the timescale of the optimization problem,
the changes in the reservoir properties are very slow and
can be considered constant for the optimization problem.
Hence, the uncertain parameter GOR, which is a reservoir
property, can be assumed to be a time invariant parameter
for the production optimization problem, with a given initial
uncertainty characteristics U .

B. Simulation results

In this section, we apply the proposed multistage MPC
formulation on the gas lift optimization case study, where
the scenarios are updated online using the recursive Bayesian
weighting scheme, with a suitable step length α = 0.2.
The results from the standard multistage MPC with a fixed
scenario tree was used to benchmark the performance of
the proposed scheme. To update the scenario tree, pressure
measurements and flow measurements through the wellhead
choke are used to compute the Bayesian weight for the
different scenarios.

In the first simulation, we assume the true realization of
the gas-oil-ratio in the plant is GOR = [0.0975, 0.1201]T

and the maximum gas capacity limit is considered to be
wmax

pg = 8kg/s. Fig.4 shows the closed-loop simulation
results for the multistage MPC with updated scenario tree
(solid lines) compared to the standard multistage MPC with
fixed scenario tree (dashed lines). The first subplot shows the
total gas production rate and the second plot shows the total
oil production rate.

In the proposed multistage MPC scheme, the scenarios
with very low weights are updated as described in Algo-
rithm 1. By doing so, the span of the uncertainty subspace
covered by the scenarios gradually reduces. Consequently,

(a)

(b)

Fig. 5: Uncertainty space spanned by the different scenarios
updated online, initiated with a box comprised of a combina-
tion of minimum and maximum GOR values. (a) 3-D view
of the uncertainty subspace over time. (b) corresponding 2-D
view. The true realization is marked by ’×’

the conservativeness also reduces gradually. This can be
clearly seen in the plot in Fig.4, where the total gas produced
is utilizing more of the available capacity to increase the total
oil production compared to the standard multistage MPC
with a fixed scenario tree. Fig.5 shows the evolution of the
discrete scenarios in the scenario subspace. It can be seen
that the span of the uncertainty subspace is gradually reduced
compared to the initial box uncertainty.

We then test the proposed approach for 30 different
realizations of the uncertainty randomly selected from U to
be the true realization in the plant, as shown in Fig.7 (bottom
subplot). To evaluate the performance, we plot the integrated
objective, which is the oil production rate integrated over a
period of 10 hours for each simulation run and compare it
with the multistage MPC with fixed scenario tree, see Fig.7
(top subplot).

It can be clearly seen that by updating the scenario tree
and gradually shrinking the uncertainty space covered by the



(a) (b) (c)

Fig. 6: 2-D view of the uncertainty subspace for three different uncertainty realizations for (a) run number 8, (b) run number
18, (c) run number 12. The true realization of GOR is shown as a solid black ’×’

Fig. 7: Monte Carlo Simulations results with different real-
izations of the uncertain parameters.

scenario tree, the conservativeness can be further reduced,
leading to less conservative operation. The uncertainty space
covered by the updated scenario tree for run numbers 8, 12
and 18 are shown in Fig.6, to portray how the initial box
uncertainty set is updated for different true realizations of
the uncertain parameter.

V. CONCLUSION

When the time-invariant uncertain parameters cannot be
estimated directly, methods that update the uncertainty char-
acteristics may be useful in reducing the conservativeness. In
this paper, we presented one such adaptive robust multistage
MPC framework, where the scenario tree was updated online
by computing recursive Bayesian weights for the different
scenarios as summarised in Algorithm 1. It is important to
note that this paper considers only the classs of systems with
time-invariant parameters, where the idea is to narrow down
the uncertainty using available measurements.

This is a simple, yet practical approach to updating the sce-
nario trees based on the observed closed-loop performance.
Using the gas lift optimization case study, we showed that by

updating the scenario tree online, the conservativeness can
be further reduced, leading to increased profits.
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