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Abstract: Unplanned maintenance interventions of subsea oil and gas production systems are
very expensive, which leads to strict requirements to equipment reliability. Without a systematic
way to ensure reliable operation however, a very conservative operational strategy is often
chosen, which can lead to sub-optimal operation and the loss of large potential profits. We
propose to integrate condition monitoring and prognostics into the production planning problem
to reduce conservativeness by actively steering plant degradation and preventing violation of
health-critical constraints. We achieve this by combining equipment degradation models with
regular process models and solving a shrinking horizon real-time optimization problem until the
next planned maintenance horizon. A network of oil and gas producing wells with artificial gas
lift, subject to particle induced choke erosion is used as a case example.
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1. INTRODUCTION

In this paper we consider an oil and gas production net-
work consisting of multiple wells. The wells are connected
to a common manifold, from which the combined flow goes
through a riser to a topside receiving facility. As the field
matures, the reservoir pressure decreases. Eventually, the
pressure might drop to such low levels that fluids can no
longer overcome the resistance in the riser, and production
comes to a stop. Artifical gas lift can be used to reduce the
pressure drop and increase the flow, prolonging the lifetime
of the field.

However, increased volume flows (and consequently veloc-
ities), in addition to the decreased density, may lead to ac-
celerated degradation of vulnerable parts of the system. In
particular, erosion of chokes and bends may be a problem,
especially if the sand production from the reservoir is high.
Particle erosion can severely limit the remaining useful life
of exposed equipment. In rare cases, sand erosion has been
known to erode away critical components such as chokes
in as little as a few hours (Haugen et al., 1995). Choke
replacement frequencies of 3-4 months, though having sig-
nificant costs associated with them, are not unheard of in
the subsea industry.

Sand production generally tends to increase as the field
matures and reservoir pressure decreases, though it can
also pose problems in some green fields. It is consequently
vital to consider potential sand erosion when deciding on
a production strategy, in order to prevent breakdowns
which require costly unplanned maintenance intervention.
Common industrial practice is to define an acceptable sand
rate (ASR) above which operation is not permitted. The
ASR is often conservatively defined in order to account
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for worst-case erosion scenarios. The operational degrees
of freedom for production optimization are consequently
severely constrained, leading to sub-optimal operation.

The conservativeness can be reduced by monitoring the
rate of erosion on critical components real time and adjust-
ing operation to reflect equipment integrity. Monitoring
usually involves periodic inspection of weight loss coupons.
Real-time erosion monitoring systems, such as ABBs IN-
SIGHT (ABB, 2010), exist, but are not yet widespread in
industry. These systems are usually not integrated with the
control system. Set-points of the control system must still
be manually adjusted by the operator. This dependency
on the operator can lead to delays, manual overrides and
overall reduced efficiency of the production system.

In this paper, we use a health-aware real-time optimiza-
tion (RTO) approach, in which health monitoring and
prognostics is included in the decision making process to
find the optimal operational strategy without jeopardizing
equipment health (Verheyleweghen and Jäschke, 2017a).
Specifically, we formulate the problem of optimal operation
as a dynamic optimization problem where the objective is
to maximize the overall profit of the plant, without violat-
ing constraints on the maximum allowable choke erosion.
We also show how uncertainties in the model parameters
can be taken into account by formulating the problem of
optimal operation as a worst-case / min-max optimization
problem or a multi-stage stochastic optimization problem.
We implement both methods and solve the problem re-
peatedly in a shrinking-horizon, RTO-like fashion.

The remainder of the paper is structured as follows: In
Section 2 we give a process description for the gas lifted
well network. In Section 3 we formulate the optimization
problem and explain how uncertainty is treated. Simu-
lation results are presented and discussed in Section 4.
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Fig. 1. Illustration of the oil and gas network with artificial
gas lift.

Finally, concluding remarks are given and future work is
described in Section 5.

2. PROCESS DESCRIPTION

The model for the oil and gas production system used in
this work is based on the model by Krishnamoorthy et al.
(2016). An illustration of the process is given in Fig. 1.
A full description of the model is given there, but for the
sake of completeness, we provide a summary below. The
model was modified slightly in the following ways:

(1) The model uses a larger time horizon since our aim
is to do health-aware RTO, which requires the time
horizon to capture the degradation dynamics. We
therefore assume that changes in mass flow rates
are instantaneous, resulting in constant mass hold
ups. The dynamics in our work are instead dictated
by gradual choke degradation and slow decline of
reservoir pressure.

(2) The model considers a three-phase system consisting
of oil, gas and water.

(3) The model is extended to include three wells and a
riser

Gas injection at the bottom of the well lowers the average
fluid density, thereby reducing the hydrostatic pressure
drop in the well. As a result, the bottom hole pressure
and consequently the flow from the reservoir increases,
until a certain point. Too large gas injection rates result
in increased frictional pressure drop due to increased
velocities. We define the short term optimal gas injection
rate (with respect to oil and gas production), as the
point at which the marginal frictional pressure drop is
balanced by the marginal hydrostatic pressure drop. As we
shall see later, the increased velocities lead to more rapid
degradation, which might force us to operate at lower-
than-short-term-optimal gas injection rates.

2.1 Process model

The steady-state mass balances in each well are

ṁpg = ṁrg + ṁlg (1)

ṁpl = ṁrw + ṁro (2)

ṁp = ṁpg + ṁpl, (3)

where ṁlg is the flow rate of lift gas through the annulus,
ṁrg is the flow rate of gas from the reservoir, and ṁpg

and ṁpl are the flow rates of produced gas and liquid
respectively. The liquid flow ṁrl is the sum of the flow
of water ṁrw and the flow of oil ṁro from the reservoir.
Finally, the total flow rate through the production choke is
ṁp. Adjusting the gas lift rate and the total flow through
the production choke is achieved by opening and closing
the valves. The flow rates can then be expressed in terms
of the valve equation:

ṁp =Cpc

√
ρw (pwh − pm) (4)

ṁlg =Clg

√
ρa (pa − pwi). (5)

Here, Cpc and Clg are the valve coefficients of the pro-
duction choke and the lift gas valve respectively, and ρw
and ρa are the fluid densities in the well tubing and in the
annulus. Pressures p driving the flow are denoted by wh
for wellhead, m for manifold, a for annulus and wi for well
injection point.

Assuming that the ideal gas law can be applied here, we
express the density of the gas in the annulus as

ρa =
Mpa
TaR

(6)

=
ma

(A2
a −A2

w)La
, (7)

where M is the molar mass of the lift gas, Ta is the
temperature in the annulus and R is the universal gas
constant. The average density in the well tubing is

ρw =
mgt +mlt − ρlLrAr

LwAw
(8)

ρl = WCρw + (1−WC )ρo. (9)

In the above expressions ma, mgt and mlt are the holdups
of gas in the annulus, and holdups of gas and liquid in the
tubing, Lr and Ar are the length and cross-sectional area
of the tubing above the gas injection point, and Lw and
Aw are the length and cross-sectional area of the tubing
below the gas injection point.

The flow from the reservoir is given by

ṁrl = PI · (pr − pbh) (10)

WC =
ṁrw

ṁrl
(11)

ṁrg = GOR · ṁro, (12)

where

pr =
mrgRT

Vr
. (13)

Above, PI is the productivity index, WC is the water cut,
GOR is the gas-oil-ratio, and pr is the reservoir pressure.
These are well-specific parameters.

Finally, the well pressures are decreasing as the reservoir
is slowly depleting. We model the reservoir as a storage
tank, yielding

dmrg

dt
= −ṁrg (14)



2.2 Choke degradation model

Choke erosion rates depend on a number of different
factors, such as physical properties of the fluid and the
impacting particle. In addition, erosion rates are heavily
dependent on the choke geometry, as this will influence the
flow patterns. It is therefore a challenging task to predict
the erosion rates for a given choke, without expensive
computational fluid dynamics (CFD) simulations. DNV-
GL (2015) give an overview over some erosion prediction
models for simple choke geometries, based on which they
recommend ASRs. We use the erosion model presented
in DNV-GL (2015), which is a variation of the model
presented in Haugen et al. (1995). The erosion rate is given
as
dE

dt
=
K · F (α) · Un

p

ρt ·At
·G · C1 ·GF · ṁsand · Cunit (15)

where dE
dt is the erosion rate in mm/yr., K, n, C1, GF and

Cunit are various constants. ṁsand is the sand production
rate and G is defined as

G =
dp · β · (1.88 · log (A)− 6.04)

Dpipe
(16)

where dp is the particle diameter, and Dp is the pipe
diameter. β and A are dimensionless parameters

A= Re · tan (α)

β
(17)

β =
ρp
ρf

(18)

where Re is the Reynolds number of the flow, ρp is the
paricle density and ρf is the fluid density.

The sand production rate ṁsand is assumed to be propor-
tional to the overall mass flow rate from the reservoir:

ṁsand = SR · ṁr, (19)

where SR is the sand rate parameter. Furthermore, in
Equation 15, F is the ductility of the choke gallery ma-
terial, which is

F = 0.6 ·
[
sin(α) + 7.2

(
sin(α)− sin2(α)

)]0.6
· [1− exp(−20α)]

(20)

for ductile materials. Here, α is the particle impact angle,
which is given as

α = arctan

(
1√
2R

)
, (21)

with R being the radius of the choke gallery. Up is the
particle impact velocity, which is determined by

Up =
3 ·Q
4 ·Ag

=
3 ·Q

8 ·H ·D
, (22)

where Q is the actual volumetric flow rate, Ag is the
effective gallery area,H is the effective height of the gallery
and D is the gap between the choke cage and choke body.

3. OPTIMIZING ECONOMIC PERFORMANCE
SUBJECT TO HEALTH CONSTRAINTS

By combining the process model and the health degra-
dation model described in Section 2, the combined DAE
model can be used to formulate an optimization problem in
which the economic performance is maximized subject to

constraints on the maximum allowable health degradation.
In previous work (Verheyleweghen and Jäschke, 2017b),
we have shown that failing to include the constraints on
health degradation will lead to unreliable operation, since
this constraint always will be active in the optimal solution
for the operation strategy.

The health state of the plant is assumed to be known at
any given time, meaning that real-time erosion monitoring
systems are installed and working.

The optimization problem which is solved at each RTO
iteration can be written as:

min
u

tf∫
t0

φ (x, z,u,p) dt (23a)

s.t. f(x, z,u,p) ≤ 0 (23b)

g(x, z,u,p) = 0 (23c)

where φ is the objective function which is to be minimized,
and f and g are the inequality constraints and equality
constraints. The variables x, z and u denote the differential
states, algebraic states and inputs, respectively. p is used
to denote the uncertain parameters.

The dynamic problem (23) is discretized and solved with
orthogonal collocation with three collocation points for
each finite element (Biegler, 1984). The discretized prob-
lem can be written as

min
u

N∑
k=1

φ (xk, zk,uk,pk) (24a)

s.t. f(xk, zk,uk,pk) ≤ 0 ∀k = 1...N (24b)

g(xk, zk,uk,pk) = 0 ∀k = 1...N (24c)

where N denotes the horizon length.

3.1 Uncertainty handling

To account for plant-model mismatch / parametric uncer-
tainty, or intrinsic stochasticity of the system, we consider
some of the variables (denoted p in (23)) to be stochastic.
In particular, it is assumed that the sand production rate
SR and the productivity index PI in each of the three
wells are stochastic. For simplicity, we assume that the
nine uncertain variables are independent and normally
distributed, pk ∼ N (µk, σk).

Various approaches for optimization under uncertainty are
found in literature. Two of the most popular approaches
are worst-case optimization and scenario-based optimiza-
tion.

Worst-case optimization; stochasticity is acknowledged
by substituting in the worst-case realizations in the uncer-
tain parameters. If constraints are satisfied for the worst-
case realization, they should also hold for other parame-
ter realizations, for most cases. Though it can be shown
that the worst-case solution may be infeasible for other
parameter realizations, this approach has been successfully
demonstrated for a number of practical applications.

Scenario-based optimization; in which the probability
distribution of the uncertain parameters is discretized into



a finite number of scenarios and incorporated into the
optimization problem in the form of a scenario tree. An
illustration of a scenario with four scenarios is shown in
Fig. 2.

By optimizing for all scenarios simultaneously, it is ensured
that the obtained solution is not only feasible for the
worst-case realization or expected realization, but for all
possible realizations in the scenario tree. Furthermore, the
degree of sub-optimality of the solution can be reduced
by weighing the individual scenarios with their respective
probabilities. This leads to a solution that is, on average,
less conservative than the worst-case approach. Possibility
of future recourse is included in the optimization by design
of the scenario tree, which makes this method well suited
to RTO problems under uncertainty.

The drawback of the this method compared to the two
others is the increased problem size and consequent com-
putation time, due to the need for additional variables for
each scenario.

Worst-case and scenario-based RTO maybe classified un-
der the umbrella-term of robust optimization, in which pa-
rameter realizations are assumed to occur within bounded
uncertainty sets. These approaches are perhaps the easiest
to grasp conceptually, but other ways to handle uncer-
tainty (such as chance constrained optimization, dynamic
programming, and fuzzy programming) exist in literature.
We will however only consider worst-case and scenario
optimization in this work.

3.2 Worst-case optimization

The worst-case optimization problem can be written as

min
u

N∑
k=1

φ (xk, zk,uk,p
∗
k) (25a)

s.t. p∗
k = arg max

pk

‖f(xk, zk,uk,pk)‖

∀k = 1...N (25b)

g(xk, zk,uk,pk) = 0 ∀k = 1...N (25c)

where p∗
k is the worst-case parameter realization, i.e. the

scenario which leads to the largest constraint violation.
Due to the two nested optimization problems, this ap-
proach is also known as min-max optimization. These
problems are generally difficult to solve or even intractable
(Ben-Tal et al., 2009). In general, we must require pk to
be bounded for the inner problem to have a solution. In
some cases, such as the one considered in this work, the
worst case parameter realization p∗

k can be known a priori.
This significantly simplifies the problem since the second
optimization problem disappears.

3.3 Scenario-based optimization

In scenario-based optimization, we discretize the continu-
ous distribution function into a finite number of discrete
scenarios, and optimize the following objective

min
u

S∑
i=1

pi

N∑
k=1

φ (xi,k, zi,k,ui,k,pi,k) (26a)

subject to the following constraints
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Fig. 2. Scenario tree with N = 20 and S = 4.

s.t. f(xi,k, zi,k,ui,k,pi,k) ≤ 0

∀i = 1...S , k = 1...N (26b)

g(xi,k, zi,k,ui,k,pi,k) = 0

∀i = 1...S , k = 1...N (26c)
S∑

i=1

Ai,kui,k = 0 ∀k = 1...N (26d)

where S is used to denote the number of scenarios, and pi
denotes the probability of realizing scenario i.

(26d) are the so-called non-anticipativity constraints,
which are needed to enforce non-anticipativity, i.e. making
sure that the optimal solution does not depend on yet
unrevealed information. The scenario tree shown in Fig. 2
has N = 20 and S = 4, for example.

For the kind of scenario trees encountered in RTO prob-
lems, each branching represents the different parameter
realizations due to uncertainty. One might expect that
the branches from each node should be identical to the
branches from its parent node. Alternatively, if the un-
known parameters are estimated between each RTO itera-
tion, this information can be included in the scenario tree
by propagating the probability distribution into the future
from each node and adjusting the parameter realizations
of the child nodes according to the propagated probability
distribution. In any case, this would lead to exponential
growth of the scenario tree, with each scenario tree having
nNr scenarios, where nr is the number of discrete realiza-
tions of the probability distribution.

To avoid this explosive growth of scenarios, a robust-
horizon Nrobust < N , i.e. the stage until which branching
occurs, is commonly defined (Lucia et al., 2013a). By
choosing a robust horizon shorter than the RTO horizon,
we disregard the possibility of future recourse, and are con-
sequently expected to get a sub-optimal solution. However,
the loss is expected to be small, since the later stages of the
RTO typically do not effect the objective much. A robust
horizon longer than Nrobust = 1 or Nrobust = 2 is rarely
used, since the marginal improvement of the solution in
practice rarely justifies the increased dimensionality of the



Table 1. Possible realizations considered for
the uncertain parameters in the scenario-based

approach.

Variable PI , SR
wells 1...3 wells 1...3

Lower 6.3 · 10−6 [-] 0.80 · 10−2 [-]
Mean 6.5 · 10−6 [-] 0.85 · 10−2 [-]
Upper 6.7 · 10−6 [-] 0.90 · 10−2 [-]

Table 2. Bound constraints

Variable Lower Upper Unit
bound bound

Choke opening, wells 1...3 0 1 [−]
Gas lift rate, wells 1...3 0 2.5 [kg/s]
Total gas lift rate 0 4.9 [kg/s]
Choke erosion, wells 1...3 0 0.5 [mm]

NLP. In this work, we only branch once, so Nrobust = 1,
which yields a two-stage stochastic program.

We further reduce the number of scenarios by limiting
nr, the number of discrete realizations used to approx-
imate the continuous probability function. We generate
the scenario tree similarly to what is proposed by Lucia
et al. (2013b), i.e. by using all possible combinations of the
maximum and minimum uncertain parameter realizations,
in addition to a scenario for the expected and nominal un-
certain parameter realizations, for a total of nr = S = 65
scenarios. The possible scenario realizations are given in
Table 1.

3.4 Summary of scenario-based problem formulation

The objective is to maximize the profit, i.e. maximizing
the oil and gas production and minimizing the cost of
produced water and the cost of gas .

min
xi,k,zi,k,ui,k

S=65∑
i=1

pi

N∑
k=1

NPV (φ (xi,k, zi,k,ui,k)) (27a)

where

φ =

3∑
well=1

cgṁrg + coṁro + clgṁlg. (27b)

Here, NPV is the net present value with a discount factor
r = 0.1 and cg, co and clg are the gas price, oil price
and gas injection cost, respectively. We assume cg = 3
USD/MMBtu, co = 44 USD/bbl, clg = 1.3 USD/MMBtu.
Bound constraints for the variables are given in Table 2.
In addition come the non-anticipativity constraints and
the model constraints explained in (26) for the scenario-
based approach. For the worst-case method, we have that
(25) and (26) are identical when S = 1 and the worst-
case scenario p∗

k is bounded and known a priori. For this
particular problem, we have that the worst case scenario
occurs when both PI and SR are high in all three wells.

4. RESULTS

We implemented the model in MATLAB using Casadi
3.0.0 (Andersson, 2013) and solved the NLP from the
discretized problem with IPOPT (Wächter and Biegler,
2006). Both uncertainty handling strategies, i.e. worst-case
RTO and scenario-based RTO, were implemented.

Fig. 3. Three snapshots of the open-loop solutions of the
scenario-based RTO at t = 0, t = 2 and t = 4 years.
The red, blue and yellow scenarios are for the first,
second and third wells, respectively. The dashed lines
show the past states, while the solid lines show the
predicted states for each of the 65 scenarios.

4.1 Problem

(27) is solved repeatedly in a shrinking horizon fashion,
starting with N = 18. After finding the optimal solution,
only the first input is implemented on the actual plant,
before the model is re-optimized. This process is illus-
trated in Figure 3, which shows the open-loop solution of
the scenario-based optimization problem at three selected
times t = 0, t = 2 and t = 4 years. The predicted
states for the 65 scenarios are shown in solid lines, while
past states are shown as dashed lines. It can be seen
that the first inputs are identical for all scenarios due to
the non-anticipativity constraints. Red, blue and yellow
color distinguish the first well, second well and third well,
respectively.

Figure 4 shows the closed-loop solution of the scenario-
based method (solid line with circular markers) compared
with the worst-case method (dotted line with cross mark-
ers). The total profit of the two operational strategies, in
terms of (27a), is 6.91 bn. USD for the scenario approach
and 6.75 bn. USD for the worst-case approach. Although
the actual numbers should be taken with a pinch of salt,
the relative difference of approx. 2.5% is significant.



Fig. 4. Closed-loop solutions for the compared approaches.
The solid line with circular markers shows the
scenario-based RTO, while the dotted line with cross
markers shows the worst-case RTO. The red, blue and
yellow scenarios are for the first, second and third
wells, respectively.

4.2 Discussion

In this work, we have assumed full state feedback, meaning
that the initial values for the states are perfectly known. To
simulate plant model-mismatch, the uncertain parameters
are perturbed with random noise between each RTO
iteration.

Since NPV of production is maximized, we see that early
production is higher than late production. Due to deplet-
ing reservoir pressure, we also see the need for more lift gas
as the field matures. However, due to the decreased density
and consequent higher erosion rates, overall production
must be throttled down to prevent choke failure, as only
so much production can be permitted over the lifetime of
the field.

5. CONCLUSION AND FUTURE WORK

Our health-aware RTO framework combined diagnostics,
prognostics and production optimization of a subsea gas-
lifted oil and gas production network subject to sand
particle induced choke erosion. We show that by combining
a prognostic model for the choke erosion in the production
optimization, we can make sure that critical erosion levels

are not exceeded during operation, which means that
the risk of costly unforeseen maintenance interventions
is minimized. We also show that parametric uncertainty
in the model should be handled with a scenario-based
stochastic optimization approach, as this leads to better
economic performance than the conservative min-max
formulation that is commonly used.

The objective of the paper is to showcase the efficacy
of our framework, rather than providing results which
correspond 1:1 with real field data. We have therefore used
a simple choke degradation model and reservoir model.
It is understood that accurate models must be developed
for the specific equipment in question before real-world
implementation. These degradation models will have to
be developed by CFD simulations and/or in collaboration
with equipment manufacturers. Furthermore, future work
will address the issue of overall plant reliability vs. single
component reliability, as correlation between failure modes
may significantly impact the overall plant reliability.
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