

A MULTISTAGE ECONOMIC MODEL PREDICTIVE CONTROL FOR TIME-VARYING PARAMETER VALUE Eka Suwartadi^{*}, Lorenz T. Biegler[†], Johannes Jäschke^{*}

Objective

In this work we propose:

- one-layer economic model predictive control (EMPC), eliminating the need of real-time optimization (RTO),
- fast update scheme to multistage nonlinear EMPC for dealing with parametric uncertainties, based on nonlinear programming (NLP) sensitivity concept.

We design an EMPC controller for controlling a system that evolves according to the following equation

$$\mathbf{x}_{k+1} = f\left(k, \mathbf{x}_k, \mathbf{u}_k, \boldsymbol{\theta}_k\right), \qquad (1)$$

where $k \in \mathbb{N}_0$ represents a time instant, $\mathbf{x} \in \mathbb{R}^{n_x}$ denotes the state, $\mathbf{u} \in \mathbb{R}^{n_u}$, and where $\boldsymbol{\theta} \in \mathbb{R}^{n_{\boldsymbol{\theta}}}$ denotes a time-varying parameter vector. Predictions of the parameter $\boldsymbol{\theta}$ are known.

Multistage EMPC formulation

We consider a dynamic optimization problem

$$\mathcal{P}_{N}(\mathbf{x}_{k}): \min_{\mathbf{x}_{s,j}, \mathbf{u}_{s,j}, \mathbf{z}_{l,j}, \mathbf{v}_{l,j}} \sum_{j=1}^{n_{S}} \omega_{j} \left(\sum_{l=0}^{N-1} \psi\left(\mathbf{z}_{l}, \mathbf{v}_{l}, \boldsymbol{\theta}_{l}\right) \right)$$

$$s.t. \quad f\left(N, \mathbf{x}_{s,j}, \mathbf{u}_{s,j}, \boldsymbol{\theta}_{N,j}\right) = 0, \quad (2)$$

$$\mathbf{z}_{l+1,j} = f\left(l, \mathbf{z}_{l,j}, \mathbf{v}_{l,j}, \boldsymbol{\theta}_{l,j}\right),$$

$$\mathbf{z}_{0,j} = \mathbf{x}_{k},$$

$$\sum_{j=1}^{n_{S}} \mathbf{E}_{j} \mathbf{v}_{j} = 0,$$

$$(\mathbf{z}_{l,j}, \mathbf{v}_{l,j}) \in \mathcal{Z},$$

$$l = 0, \dots, N-1,$$

$$j = 1, \dots, n_{S}.$$

Variable	Description
$\mathbf{X}_{s,j}$	artificial steady-state state for scenario j
$\mathbf{u}_{s,j}$	artificial control for scenario j
l	time instance
$\mathbf{z}_{l,j}$	predicted state for scenario j
$\mathbf{v}_{l,j}$	predicted control for scenario j
$oldsymbol{ heta}_{l,j}$	time-varying parameter for scenario j
ω_j	probability for each scenario
n_S	number of scenario and prediction horizon
N	prediction horizon
$f\left(l, \mathbf{z}_{l,j}, \mathbf{v}_{l,j}, \boldsymbol{\theta}_{l,j} ight)$	prediction model
$\mathbf{z}_{0,j}$	initial condition for predicted state
\mathbf{x}_k	measurement at time k
\mathbf{E}	matrix of non-anticipativity contraint
\mathcal{Z}	path constraints for state and control

Path-following Multistage NMPC (pf-msNMPC)

Fig. 1: Left: the parametric uncertainties are realized as a scenario tree, where the blue colors represent the NACs. Right: when a measurement available at k+1. The pf-msNMPC controller chooses a scenario that is nearest to the measurement, and update the scenario by solving a sequence of predictor-corrector quadratic programs.

A Case Example

We implement the EMPC controller for a CSTR with first order reaction $A \to B$

$$\frac{dc_A}{dt} = \frac{Q}{V} (c_{Af} - c_A) - \frac{dc_B}{dc_B} = \frac{Q}{V} (-c_B) - kc_A$$

where c_A and c_B are the concentration of components A and B, respectively.

- The rate constant is $k = 1.2 \frac{L}{mol \, minute}$, the reactor volume is V = 10 L, and the feed concentration is $c_{Af} = 1 \frac{mol}{L}$.
- The control input is denoted by Q with unit $\frac{L}{minute}$ and the state variables are the concentration c_A and c_B .
- The economic objective function is $L(c_A, c_B, Q) = -Q(p_C c_B p_Q)$, where p_C and p_Q are product price and material cost
- Bound constraints on the control input $10 \le Q \le 20$
- Modified stage cost $\psi_m := -Q \left(p_C c_B p_Q \right) + 2 \left(Q u_s \right)^2$, where u_s is the artificial control input
- The varying parameters here are the product price (p_C) and material cost (p_Q)
- The parameters change their values at first, 25th, and 80th EMPC iterations
- Prediction horizon for EMPC is N = 50
- Multistage EMPC with robust horizon, $N_r = 1$, and 4 different scenarios that allow $\pm 25\%$, $\pm 50\%$, $\pm 100\%$, and $\pm 125\%$ variations in the prices.

