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Abstract: We present a sensitivity-based nonlinear model predictive control (NMPC) in which
dual-degeneracy may arise in dynamic optimization problem. We consider an optimization algo-
rithm under a weak constraint qualification, i.e., Mangasarian-Fromovitz constraint qualification
(MFCQ). We solve an economic model predictive control problem by applying a path-following
method within the advance-step NMPC (asNMPC) framework. The path-following method
comprises of corrector and predictor steps, which are manifested as a system of linear equations
as well as a quadratic programming problem, and a multiplier jump step in the form of a linear
programming problem. In order to assess our proposed method, we implement an economic
NMPC controller for an isothermal reactor process.

Keywords: Optimal control, economic model predictive control, parametric optimization.

1. INTRODUCTION

Optimizing economic performance is a natural choice of
objective in process control industries. A common practice
is to split the control system into two layers, i.e., real-time
optimization (RTO) and a lower level model predictive
control (MPC) layer. Steady-state optimization using an
economic objective function in the RTO layer yields opti-
mal setpoint values, which are passed to the lower MPC
layer. A dynamics optimization is then performed in the
lower MPC layer in which a tracking cost function, that
is the difference the state values and their setpoints, is
minimized. Because the steady-state optimization is per-
formed on a slow time scale, the two-layer control system
may not be able to optimally handle fast changes that
happen in the range of minutes or seconds. To mitigate
this, it was proposed to combine economics and control
into a single layer. This gives rise to the economic MPC,
which is reviewed in Faulwasser et al. (2018).

In this work we present a computational method for ob-
taining a fast solution to the economic model predictive
control (EMPC) problem. As the process models become
more complex, the online optimization problem cannot
be solved sufficiently fast, which may result in instabil-
ity of the closed loop system. To reduce the delay be-
tween obtaining a new measurement and implementing
the input to the plant, real-time iteration (RTT) scheme
(Diehl et al. (2002)) and the advanced-step NMPC' (Zavala
and Biegler (2009)) were proposed. These methods are
based on the concept of parametric nonlinear program-
ming (NLP) (Guddat et al. (1990)) (also known as NLP-
sensitivity), where the initial state values are considered
as a parameter in the optimization problem.

Most current methods for sensitivity based NMPC assume
strong regularity conditions typically linear independent
constraint qualification (LICQ), which result in unique
multipliers. An exception is the paper by Jéschke et al.
(2014), who developed a path-following NMPC procedure
that can handle non unique multipliers, a case that oc-
curs when Mangasarian-Fromovitz constraint qualification
(MFCQ) holds. The contribution of this work is to present
an improvement version of the path-following NMPC pre-
sented in Jaschke et al. (2014). In particular, we employ
a dual-degenerate parametric NLP algorithm proposed in
Kungurtsev and Jéschke (2017) to obtain approximate
solutions to the dynamic optimization problem within the
framework of advanced-step NMPC (asNMPC). For each
step along the path, the method performs the following
steps. Firstly, a system of linear equations is solved as a
Newton corrector step. This step refines the current primal
and dual variables. Secondly, a quadratic programming
(QP) problem is solved to find a directional derivative,
that is used as a predictor step. Finally, a linear program
(LP) is solved to allow for jumps in the dual variables.

This paper is organized as follows. We begin by for-
mulating NMPC problem in Section 2 and present the
ideal solution strategy. Then the predictor-corrector path-
following method for dual-degenerate case is explained in
Section 3 as well as the use of the method in path-following
NMPC (pf-NMPC) approach. We demonstrate our pro-
posed method in a case example in Section 4. Finally, we
conclude with discussion and remarks in Section 5.

For ease of exposition, we define the following notation.
The ith component of a vector v is denoted by [v], and if
K is is an index set then [v], represents the vector with
|K| components composed of the entries of v.



2. ECONOMIC NMPC
2.1 Dynamic Optimization

An MPC controller computes the optimal control input by
solving the following optimization problem

N-1
P (x¢) : min ¥ (z) + lz ¥ (z1,v1) (1)
st.  zi41=f(z,vy), 1=0,....,N—-1
Zy = Xk,
(z1,v)) € Z, [=0,...,N—1
zy € Xy,

where z; € R" and v; € R™ are internal variables
known as predicted state and control at sample time
l, respectively. The objective function consists of the
terminal cost ¥(zy) € C' : R"™ — R and the stage
costs 1 (z;,v;) € C! : R"* x R™ — R. The constraints
include a discrete time dynamical system f € C' : R™= x
R™ — R"=, the equality constraint for initial condition z,
which are obtained from the measurement of the actual
state x; € R" at the time instance k, and the final
state variable zy is contained within the set of terminal
constraint Xy. The set Z denotes the path constraint
limiting the predicted state and control. Since the set
Z contains both feasible state and control, for ease of
exposition, we split the set onto X C R and & C R™
denoting the feasible state and control sets, respectively.

Having obtain solution of the optimization problem Py,
the first move of the optimized predicted control input
v} = K (xy) is applied the plant which then evolves such
that

Xp1 = f (Xns 5 (xk)) (2)
where x;, is the actual state variable given from measure-
ment of the plant. When the measurement is corrupted by
noise, the closed loop dynamics become

X1 = f Xk, 5 (Xp)) + Wy, (3)
here wj, € R™ represents the measurement noise.

As the time instant k evolves, the optimization problem
P is solved in receding horizon fashion as follows

(1) Obtain measurement data x,

(2) Solve the optimization problem Py,

(3) Inject the optimized predicted control input v;,
(4) Set k+ k+1.

We refer to the procedure above as an ideal NMPC
(iNMPC') controller.

2.2 The Advanced-step NMPC

The optimization problem (1) remains almost the same
from one MPC iteration to another, the only difference
is the actual state variable values, which are obtained
from measurement data xj. Hence, the initial state vari-
able values are considered as a parameter. In order to
reduce the computational time for solving the optimization
problem Py (1), instead of solving a full NLP problem,
the asNMPC (Zavala and Biegler (2009)) computes the

sensitivity of NLP solution with respect to the initial state
variable values zg.

The change in the measurement data is considered as
a perturbation to the optimal NLP solution. If LICQ
and strict complementarity hold together with a suitable
second order condition, the sensitivity can be calculated
by solving a system of linear equations that can be
formulated using the Karush-Kuhn-Tucker (KKT) system
of the NLP and the solution is updated using the NLP
sensitivity. While waiting for new measurement data,
the asNMPC scheme performs an offline step where the
full NLP problem is solved. In summary, the asNMPC
procedure includes the following three steps (Zavala and
Biegler (2009)).

(1) Solve the NLP problem Py (zj+1) offline at time k
while setting the initial state value to the predicted
state at k + 1.

(2) When the measurement x;41 becomes available at
time k41, solve a system of linear equations to update
the optimal solution obtained from the offline step
(sensitivity update).

(3) Implement the optimal control input and update k
k 4+ 1 and repeat from Step 1.

The asNMPC faces a challenge when an active-set change
occurs. Some heuristics (Biegler et al. (2015)), such as
7clipping in the first interval”, have been suggested to
overcome the challenge.

2.8 Enforcing convergence for economic NMPC

Since the stage cost in the optimization problem Py (1)
can be any arbitrary economic measure, it may be difficult
to ensure that the closed loop system is stable. This
can be done by solving regularizing the NMPC problem
such that the process approaches its steady-state optimal
point, which can be found by the following steady-state
optimization problem

min

Ghin Y (xw) (4)
st.x — f(x,u) =0.

We modify the stage cost by incorporating a regularization
term to the economic stage cost so that it becomes

Um (2,V) = 9 (2, V) +state (|| 2 = Xs [[)Finpur ([ v —us ).

Here x; and ug are the steady-state optimal values ob-
tained from (4). The value of the weights astate and aipnpur
may be chosen by Gershgorin bound criteria, see Jaschke
et al. (2014), aiming to make the stage cost convex. It
should be noted that convexity implies dissipativity which
guarantees the resulted closed-loop system is asymptoti-
cally stable (Diehl et al. (2011)).

3. PREDICTOR-CORRECTOR PATH-FOLLOWING
ECONOMIC NMPC

We explain a predictor-corrector path-following method
in this section along with its use in an economic NMPC
controller. We begin by giving required definitions for
building up the path-following algorithm.



8.1 Preliminaries

We consider the optimization problem (1) as a general
parametric nonlinear optimization problem of the form
(6)

min  F (x,p)
X

subject to ¢; (x,p) = 0,1 € &,

C’L(X7p) §077'617
where F' : R"™x x R™ — R is the objective function,
X € R™ is the primal variable and p € R™ is the
parameter. The equality and inequality constraint sets

are denoted by € = {1,...,m} and Z = {m+1,...,n},
respectively.

The Lagrangian is defined as

L(x,y.p) == F(x,p) +y c(x,p), (7)
where y is the dual variable. The Karush-Kuhn-Tucker
(KKT) conditions for the problem are

VXL(X7Y7P) :07
Ci (X7p) = 07 1€ 87 (8)
ci(x,p)<0,i €T,
y'e(x.p) =0,
y;>0,1€Z.

We denote active inequality constraints as a set A (x,p) =
{ci(x,p) =0,i € Z}. For a given multiplier y that sat-
isfies (8) the active inequality set A(x,p) has two
subsets, which are a weakly active set Ao (x,y,p) =
{i € A(x,p) | y: = 0} and a strongly active set A} (x,y,p) =
{ie Alx,p) | yi >0}

The Hessian of the Lagrangian with respect to the primal
variables is

H(x,y,p) = Vi F (x,;P) + > (Vaxci (x.P)) vi- (9)
i=1

Definition 1. Strong second-order sufficient conditions (ssosc

) holds at (x,y,p) if a pair of primal-dual variable (x,y)
satisfies the first-order necessary conditions (8) at p and

d"H (x,y,p)d >0 foralld € C(x,y,p) \ {0},
where the set C (x,y,p) is defined as

C(xy,p) i={d : Vxe; (x,p)"d =0 forie Ay (x,y,p) UE}.
Definition 2. General Strong Second-order Sufficient Op-
timality Conditions (GSSOSC) is satisfied if the SSOSC
is satisfied for all y that fulfill the first-order necessary
conditions (8).

We require constraint qualification for the problem (6)
to ensure that the KKT conditions (8) are a necessary
condition for optimality.

Definition 3. Given a point (x,p), the linear indepen-
dence constraint qualification (LICQ) holds at (x, p) if the
set of vectors {Vyc; (x,p), i € EUA(x,p)} are linearly
independent.

Definition 4. The Mangasarian-Fromovitz Constraint Qual-
ification (MFCQ) holds at (x,y,p) for a feasible point x
if

(1) {Vxci(x,p), i € &} is linearly independent,
(2) There exists a step s such that Vy¢; (X, p)T s =0 for
all i € £ and Vye¢; (x,p)" s <0 for all i € A(x, p).

The LICQ implies the uniqueness of dual variables and the
MFCQ implies that dual variables are bounded.

Definition 5. The Constant Rank Constraint Qualifica-
tion (CRCQ) holds at (x,y,p) for a feasible point x if
there exists a neighborhood A/ of x such that for all subsets
U C EUA(x,p), the rank of {Vy¢; (X, P), @ € U} is equal
to the rank of {Vy¢; (X, p), i € U} for all x € N.

Finally, we define the optimality residual as

Vil (x,P) + Vxc(x,P)y
< c(X,P)g ) (10)

[min (¢ (x,p),¥)lz

n(x,y,p) =

oo

3.2 Predictor-Corrector Path-Following

The path-following method described in Kungurtsev and
Jaschke (2017) consists of three steps: Corrector Step,
Predictor Step, and Multiplier Jump Step. These three
steps are run repeatedly to follow the path of optimal
solutions, starting from initial parameter value pgy until
final parameter p¢. The parameter p is updated according
to p (tx) = (1 — tx) po+txpy, where to = 0 until it reaches
t, = 1, that is tg = 0 < t; < tg... < t = 1. We
denote the primal and dual variables during the course of
path-following iteration as x; and yj respectively, where
k represents the index of the iteration.

Now, we are ready to explain each of the steps.

1.Corrector Step.  This step takes an approximate solu-
tion of the primal variables and the strongly active dual
variables and refines them for a given value of p. We solve
the system of a linear equations

Acx
A( A )=-B 1
<A+Y> ’ (11)
where A = ( H (x> yi:t) T VxCAL & (let)>’
Vxea, ke (Xg:t) 0

and B = Vol (Xs 1) + Ve (Xis 1) Y )
VXC-AJr,k (Xk> t)

Since LICQ may not hold, where the Jacobian Vyca, x (X, 1)
is not always full rank, the initial dual variables yj are
chosen from vertex of a polytope region. This can be done
by solving a linear program. Otherwise, the matrix A may
become singular.

The approximate dual variables for the strongly active
constraint are obtained from the solution, i.e., [Acy] 4, ; =
Ay and the remaining constraints are set to zero, namely,
[Acy]{l,“.,n}\fbr,k =0.

2. Predictor Step.  We solve the following predictor QP

(12)

=0,:€ .A_g_’k
<0,7€ Ak\A+,k

1
min ~Apx"H (X, yi, t + A) Apx
Apx 2

B+ aTApX
B+ aTApX

subject to



where
B = Vic; (xi, 1) At,
o= (Ve (Xp t + At) + V;Xci (Xps T+ A) Acx) -

Note that since the parameter p enters linearly to the
problem, the derivatives with respect to the parameter p
are zero. We obtain the primal and dual solution in this
step (Apx, Apy). Combining solution from the corrector
step, we get (Ax, Ay) = (Acx + Apx, Acy + Apy) . Here,
we update the primal and dual variables solutions, i.e.,
Xit1 = Xk + AX; Yi+1 = Yr + Ay, and consequently the
strongly active set A pt1.

3. Multiplier Jump Step.  Under the assumptions MFCQ
and CRCQ, there may be a discontinuity in the dual
variable y. In order to allow this discontinuity, we compute
the dual variable solutions by solving the following LP,

miny” Vie (x), + Ax, t + At) At (13)
y
subject to -9l <9 <|Q
yz =0
Yig A1 = 0.

where

Q= VyL(xp +Ax,yr + Ay, t + At),

0 = VaF(xp+AX tHA)+ > Ve (X, + Ax,t+ At)y

1€AR41
The solution (yrp) redefines the dual variable solutions
Yik+1 = Yyrp and the strongly active set Ay zy1 =
{i : [yr41]; > 0} U €. Finally, we increase the iteration
index k = k + 1 and repeat from the beginning until the
final value of t = 1 is reached. We describe the three steps
in Algorithm 1 below.

3.8 Path-following NMPC (pf-NMPC)

We now include the predictor-corrector path-following
method in the online step of the asNMPC controller. We
describe the pf-NMPC controller in Algorithm 2 and the
predictor-corrector path-following method is invoked in
the function MFCQ_PC_PF.

4. NUMERICAL CASE EXAMPLE

In this section we test our proposed method, i.e., the
pf-NMPC controller and compare its results against the
iNMPC controller. All simulations are done in MATLAB
using CasADi algorithmic differentation tool (Andersson
(2013)) version 3.2.0, which includes IPOPT as NLP solver.
We use MINOS QP (Murtagh and Saunders (1982)) solver
from TOMLAB and CPLEX as LP solver.

4.1 Process Description

We implement the pf-NMPC controller for a CSTR, taken
from Diehl et al. (2011), with first order reaction A — B
and modified objective function as well as different bound
constraint values. The dynamic model, derived from mass
balance, is

Algorithm 1 Predictor-corrector path-following method

g

Input: ¢, x, y close to solution (x* (t),y* (t)) such that
{Vxci (X: )} i1y >0pue 18 linearly independent, and
At

Output: x and y at py

1: function MFCQ_PC_PF(X, Yy, Po,Pf, At)

2: Define parameter v satisfying 0 < v < 1.

3 Define Ay.

4: Set parameter 7,4, < 1.

5: Set k «+ 0.

6 Set t;, = 0.

7 while ¢, < 1 do

8 Compute ny := 7 (Xp, Yk t)-

9: if Mk > Nimae then.

10: Decrease At.

11: k< Ek+1.

12: else

13: Solve (CorrectStep) for (Acx, Aty).
14: Solve (QPPredict) for (A,x, Apy).
15: Set (Ax, Ay) = (ApX, Apy) + (Acx; Acy).
16: Compute niya =1 (x, + AX, yr + Ay, ty + At).
17: if Nk+A < Mmae then

18: | Xie1 ¢ Xp + AX

19: Yi+1 < Yi + Ay
20: tey1 <t + At
21: P (tr) = (1 —tx) Po + tkPy
22 | | | | if msa <7m "7 then > very good step
23: | Increase At.
24: end if
25: Update A,
26: Solve (JumpLP) to redefine y.1.
27: Let A+ = {Z : [yk-i-l]i > 0} Ué.
28: else
29: | Decrease At.
30: end if
31: k+—k+1.
32: end if
33: end while
34: Return x

35: end function

Algorithm 2 Economic pf-NMPC algorithm

Input: initial state xo and stepsize At.
Output: The actual state x1, X2, X3, ...

1: for k=0,1,2,... do

2: [x*,y*] < solution of the NLP Py (zj41) for k+1.
3: if a measurement of xjy1 is available then

4: Set Po = Zg+1

5: Set pf = Xp41

6: | x* < MFCQ_PC_PF(x*,y*,po, Py, At)

7 Inject the first input move of x* to the plant
8: Update initial state xg = Xp41

9: Set k+ 1+« k
10: end if
11: end for
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where ¢4 and cp are the concentration of compo-
nents A and B, respectively. The rate constant is k =

1.2 m, the reactor volume is V = 10L, and the
feed concentration is cay = 1mTOl. The control input is
denoted by @ with unit miﬁute and the state variables

are the concentration c4 and cpg. The economic objective

function is
J=-0Q, (15)

which then is incorporated with the regularization term as
in the equation (5)

i = T+ ea = 0.5 +107° [les — 0.4999]* +1Q — 12
16

The weights are computed using Gershgorin bound crite-
ria, giving 107% for the product B concentration. Bound
constraints on the control and state are

10<@ <20,
0.49§CB S 1.

We run NMPC controllers with prediction horizon N =
50 for 100 minutes simulation time with sampling time 1
minute. We set initial At = 0.5 for the pf-NMPC controller
and 7mqe, = 0.001. We use direct collocation method to
transcribe the open-loop optimal control problem yielding
452 optimization variables and 402 nonlinear equality
constraints from the discretized state equations (14) as
well as bound constraints for the control input and state
variables. The real plant model is simulated by ’'odel5’

solver in MATLAB. We add noise to the measurement data
where the noise is taken to have a normal distribution with
zero mean and a variance of one percent of the steady state
values.

The number of active bound constraints during the course
of MPC iteration is shown in Figure 1. We check the
linear independence of the Jacobian of the active bound
constraints and equality constraints (as in the Definition 3
(LICQ)) and we find that the Jacobian is rank deficient,
which implies LICQ is not satisfied. Another way to
check, if LICQ does not hold, is that the the number of
active constraints (equality constraints plus active bound
constraints) exceeds the number of optimization variables.

We continue to check whether MFCQ holds. As in the
Definition 4 (MFCQ), there exists a step s that satisfies
the active inequality constraints as well as satisfying the
the inactive inequality constraints, in addition to the linear
independence of the equality constraints. The existence
of the step s can be verified by solving an LP problem
(Forsgren et al., 2002, Section 2.2). The path-following
predictor-corrector method succeeds in using such step
because it can give a feasible control input ) such that
the concentration cpg stays in the feasible region. Moreover,
we compute the Jacobian of the equality constraints and
it always has full-row rank.

4.2 Comparison of Open-loop Optimization Results

Here, we compare open loop optimization solutions (pre-
dictive state and control) at iteration number two. The
open loop solutions are the optimized solution given by
the internal model used in the NMPC algorithm. The
results are depicted in Figure 2 in which the solutions of
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both controllers are overlapped. The resulted trajectories
of state and control inputs of pf-NMPC follow precisely
the iNMPC solutions, where the differences between the
solutions are shown in Figure 3. The differences in the
state variables and control input are in the order of 10~7
and 1075, respectively.

4.8 Closed-loop Results

We compare the closed-loop responses of pf-NMPC con-
troller, which are obtained from the plant measurement
data after injecting the first move of the optimized control

online optimization runtime (in sec.)

min max average

iNmpc 0.0680 0.1191  0.0884

pf-Nmpc  0.0416 0.1022 0.0479
Table 1.

input. As can be seen in Figure 4, again, the pf-NMPC
solutions track accurately those of iNMPC. Furthermore,
we compare runtime between iNMPC and pf-NMPC ap-
proaches in Table 1, where on average pf-NMPC approach
gives almost two times speedup factor.

5. CONCLUSION

We have proposed the use of predictor-corrector path-
following method, consisting of the three steps (corrector,
predictor, and multiplier jump), for solving open-loop op-
timal control problem in NMPC controller setting, referred
the method to as the pf-NMPC controller. We have shown
that the pf-NMPC works as expected in the case example,
which accurately track the solutions of INMPC controller.

REFERENCES

Andersson, J. (2013). A general-purpose software frame-
work for dynamic optimization. Ph.D. thesis, Arenberg
Doctoral School, KU Leuven.

Biegler, L., Yang, X., and Fischer, G. (2015). Advances
in sensitivity-based nonlinear model predictive control
and dynamic real-time optimization. Journal of Process
Control, 30, 104-116.

Diehl, M., Amrit, R., and Rawlings, J.B. (2011). A lya-
punov function for economic optimizing model predic-
tive control. IEEE Transactions on Automatic Control,
56(3), 703-707.

Diehl, M., Bock, H.G., Schléder, J.P., Findeisen, R., Nagy,
Z., and Allgower, F. (2002). Real-time optimization and
nonlinear model predictive control of processes governed
by differential-algebraic equations. Journal of Process
Control, 12(4), 577-585.

Faulwasser, T., Griine, L., Miiller, M.A., et al. (2018). Eco-
nomic nonlinear model predictive control. Foundations
and Trends® in Systems and Control, 5(1), 1-98.

Forsgren, A., Gill, P.E., and Wright, M.H. (2002). Interior
methods for nonlinear optimization. SIAM review,
44(4), 525-597.

Guddat, J., Vazquez, F.G., and Jongen, H.T. (1990). Para-
metric optimization: singularities, pathfollowing and
Jumps. Springer.

Jaschke, J., Yang, X., and Biegler, L.T. (2014). Fast
economic model predictive control based on nlp-
sensitivities. Journal of Process Control, 24(8), 1260—
1272.

Kungurtsev, V. and Jaschke, J. (2017). A predictor-
corrector path-following algorithm for dual-degenerate
parametric optimization problems. SIAM Journal on
Optimization, 27(1), 538-564.

Murtagh, B.A. and Saunders, M.A. (1982). A projected
lagrangian algorithm and its implementation for sparse
nonlinear constraints. Algorithms for Constrained Min-
imization of Smooth Nonlinear Functions, 84-117.

Zavala, V.M. and Biegler, L.T. (2009). The advanced-step
nmpc controller: Optimality, stability and robustness.
Automatica, 45(1), 86-93.



