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Abstract 
Accurate flowrate measurements in petroleum production systems are important for optimization, fiscal 

metering, and production allocation. Sometimes, Virtual Flow Meters (VFMs) are used for this purpose 

instead of physical meters to reduce cost. These systems estimate the flowrates using a computational 

model that represents accurately the production system of interest. Since VFM systems mostly rely on 

pressure and temperature measurements, it is important to understand how accuracy and degradation of 

sensors influence the VFM flowrate estimates. 

In this work, a VFM system for a subsea oil well was created using a transient multiphase model built 

in a commercial software and controlled from an external computational routine. A statistical analysis of 

VFM simulation results was performed to quantify the effect of sensor degradation on the VFM flowrate 

estimates. In addition, the effect of temperature matching and a segmented approach to represent the well 

heat transfer were evaluated. 

The analysis showed that the sensor degradation effect should be considered in VFM systems carefully, 

especially if a high estimation accuracy is required. Measurement drift was found to be the most critical 

factor of the sensor degradation but high measurement noise can also cause considerable errors of the 

flowrate estimates. In addition, it was found that a complex representation of the wellbore heat transfer is 

not required to obtain accurate flowrate predictions and simplified models can be used instead. 
 

Introduction 
In oil and gas production, continuous information about oil, gas and water flowrates from each well is 

important for production optimization, rate allocation and reservoir management (Falcone et al. 2001). In 

offshore field developments, it is often the case that the field has shared licenses so that accurate estimates 

of the produced volume of hydrocarbons are essential to determine partner share. This case also holds for 

smaller subsea fields which are tied-in with the existing infrastructures. 

In addition to the conventional approach of flowrate estimation using well test separators, physical 

multiphase flow meters (MPFM) are used for this purpose (Falcone et al. 2009). The advantage of the 

multiphase flow meters is the fact that they can measure flowrates without separating the oil, gas and 

water streams first as it is typically performed in test separators. By mounting them inline on the well 

template, there is no need to re-route well production to perform the testing, thus, measurements can be 
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often obtained in real-time. On the other hand, these devices are expensive and exposed to failures and 

degradation which requires costly interventions for repair or replacement of the meters (Patel et al. 2014). 

Another alternative is Virtual Flow Metering. This technology uses measurements from sensors 

(typically pressure and temperature) together with a numerical model of the system to estimate flowrates. 

Depending on the extension and type of the model, it usually requires some information about physical 

parameters of the system (e.g. pipe size, fluid properties, thermodynamic behavior and choke opening) as 

presented by Holmås and Løvli (2011) and Melbø et al. (2003). By combining all this information, it is 

possible to estimate the flowrates of oil, gas and water by modeling specific parts of the production system 

such as wellbore, choke, near-well region or using a combination of these models (Haldipur and Metcalf 

2008). The discrepancies between the estimated and reference parameters can be minimized using an 

optimization algorithm (Holmås and Løvli 2011). 

Since Virtual Flow Meters rely on sensor readings for real-time flowrate estimation, it is important to 

understand the influence of the sensors accuracy on the flowrate predictions. In general, sensors in oil and 

gas wells are exposed to harsh conditions such as high pressure and temperature, sand erosion and scaling. 

This is particularly true for downhole sensors. Such conditions cause mechanical degradation which 

increases the measurement noise and drift. (Kikani et al. 1997). As such, one of the questions addressed 

in this paper is how the sensor degradation impacts the VFM flowrate estimates. A somewhat similar 

question was addressed by Tangen et al. (2017) and Lansangan (2012). In both cases, the authors 

introduced an error to the measurements and estimated the VFM accuracy. However, in the analysis only 

extreme values were considerd, i.e. only the maximum deviations of the flowrates were calculated for 

specific values of the measurement errors.  

In this paper, in addition to the extreme values, we estimate the entire probabilistic distribution of the 

flowrates and compare the distribution parameters under various measurement errors to estimate the trend. 

To do this, we performed multiple simulations under random measurement errors and evaluated the results 

using statistical methods. The results of this analysis can contribute to a deeper understanding by VFM 

customers about the effect of the measurement error on the flowrate estimates, such that they can evaluate 

when this effect is important and should be considered during the field operation. 

Another aspect which can influence the precision of the flowrate estimates is the fidelity of the applied 

models. For example, in a VFM system we can assume that the heat transfer coefficient is constant along 

the wellbore and then use it as a tuning parameter to fit a specific temperature at the wellhead. However, 

in reality the heat transfer coefficient varies along the wellbore due to the mechanical structure of the well. 

In this paper, we consider both constant and varying heat transfer coefficients for the heat transfer VFM 

part to study the difference between the approaches. The results from this study can contribute to 

optimization of VFM tuning strategies in terms of accuracy and computational time. 

 

Well architecture and fluid properties 

In this study, we consider a subsea oil well. The well consists of a conductor, surface, intermediate and 

production casings, liner and tubing. Fig. 1 shows the well profile and the mechanical structure, fluid 

properties and formation parameters. For the heat transfer modeling study, the well is divided into 5 

sections based on the number of layers in a particular section. The walls of the tubing pipes with thickness 

ωj are shown in black color, cement is represented in grey and mud in yellow. All radial distances from 

the well center line are shown as Rj. 

The model employed in the VFM scheme considers only the flow in the tubing, so that we do not 

include choke simulations. As such, we utilize the following measurements: 

- Bottomhole pressure (Pwf) 

- Bottomhole temperature (Twf) 

- Wellhead pressure (Pwh) 

- Wellhead temperature (Twh) 
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PVTsim was used to generate fluid properties based on a given composition using Equations-of-State 

(EOS) approach. The bottomhole temperature is assumed to be equal to the reservoir temperature. The 

geothermal gradient is linearly interpolated from the reservoir to the seabed conditions.  

 

 

 
Parameter Value 

GOR, Sm3/Sm3 153.7 

WC, % 30 

Total well length, m 3110 

Tubing inner diameter, m 0.0622 

Bottomhole pressure, bar 160 

Wellhead pressure, bar 40 

Bottomhole temperature, ⁰C 70 

Wellhead temperature, ⁰C 57 

Reservoir temperature, ⁰C 70 

Seabed temperature, ⁰C 8 

Formation heat conductivity, W/m.K 1.5912 

Wall heat conductivity, W/m.K 45.2573 

Cement heat conductivity, W/m.K 0.98 

Mud heat conductivity, W/m.K 0.6054 

Formation heat diffusivity, m2/h 0.003716 

Fig. 1 – Well architecture, fluid properties and system parameters 

 

VFM system 
The VFM system employed consists of two parts: a model of the physical system and an optimization 

algorithm. The model is built in such a way that some of the parameters that are measured are an output, 

and the flowrate is an input, thus the optimization solver is employed to obtain the flowrate that minimizes 

the difference between measured and predicted values. The constructed VFM system is based on 

commercial packages: OLGA and MATLAB. OLGA is a well-known multiphase flow simulator and has 

been extensively used in the industry for computing transient multiphase flow. MATLAB is a 

multifunctional computing environment with its own programming language and various computational 

toolboxes. To link OLGA and MATLAB, we use Matrikon OPC server. The main goal of this tool is to 

read signals from one software and transfer it to another one. A schematic representation of the constructed 

VFM tool is shown in Fig. 2 on the left. 

In OLGA, for given pressures and temperatures we run transient multiphase flow simulations until they 

reach a steady state. In MATLAB, we use the interior-point numerical optimization algorithm to find a 

flowrate that minimizes an objective function of the following form: 
2

meas i OLGA i

i i

X X



 
 
 

                                                                                                                                                                   (1) 

where meas iX  denotes measured value, OLGA iX – the predicted value, i – the measurement uncertainty, 

i  – the measurement index. 
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The computational procedure is shown in Fig. 2 on the right. To initiate the procedure, we introduce 

an initial guess in the mass source node. Then, the optimization solver iteratively computes finite 

difference gradients and adjusts the flowrate until the cost converges to a minimum. 

 

  
Fig. 2 – Schematic representation of the VFM system (left) and computational procedure (right). 

(To start the computational procedure, we introduce an initial guess of the flowrate to OLGA which computes the associated wellhead 
temperature and bottomhole pressure. Then, these values go to the optimization solver which computes the finite difference gradients and 
iteratively changes the flowrate value until the minimum of the cost function is reached.) 

 

Methodology and case studies 
Sensor degradation study 
Problem description and simulation procedure 

Sensor degradation can result in an error growth and possible sensor failure. Two typical measurement 

error types are noise and drift. In this work, we evaluate quantitatively the effects these errors have on the 

estimation of flowrates when using a VFM scheme. This was performed explicitly by randomly varying 

the measurement values within a pre-defined error band. In addition, we study the effect of the sensors 

failure. As such, we consider the following case studies: 

- Case 1: Effect of noise increase in pressure and temperature sensors 

- Case 2: Effect of sensor drift in pressure and temperature sensors 

- Case 3: Effect of the temperature sensors failure 

The problem in all the cases is the fact that we never know the exact value of the measured quantity. 

Due to noise, the measurement can have any value within the sensor accuracy. Thus, to evaluate the 

potential spread of VFM flowrate estimates due to the measurement error, we evaluate the random 

combinations of pressure and temperature measurement values within specified accuracy. Since each 

simulation takes a considerable computational time due to the optimization routine, we cannot run a very 

large number of simulations. Therefore, it is decided to run 200 simulations for each sub-case (which are 

discussed in details in the next section) and evaluate the flowrates’ probability distributions using a 

statistical analysis.  

Fig.3 shows the simulation procedure for the sensor degradation study. To generate a good initial guess 

of the flowrate estimate, first, we compute the maximum and minimum possible values of pressures and 

temperatures. These values are computed from the sensor accuracy range. For instance, if the actual 

pressure value is 100 bar and the noise error is 1%, the minimum pressure value is 99 bar and the maximum 

value is 101 bar. These values are used to estimate the maximum and minimum possible flowrates which 

are averaged for the initial guess to the optimization algorithm. Starting from the initial guess, the system 

iteratively finds the mass flowrate which makes the difference between the VFM predictions and the 

wellhead temperature and bottomhole pressure to reach a minimum. The mass flowrate is used for tuning 

instead of the volumetric flowrates due to the limitations in the commercial multiphase flow simulator 

employed. 
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Fig. 3 – Simulation procedure for the sensor degradation study 

(In the initialization phase, we compute the maximum and minimum measurement values from the accuracy range which are used to estimate 
maximum and minimum possible flowrates. These flowrates are averaged to generate a good initial guess of the flowrate for the estimation 
phase. In the estimation phase, the flowrate is iteratively adjusted by the optimizer until the cost function reaches the minimum.) 

 

Case 1 (Effect of measurement noise) 

To study the effect of noise on the VFM estimates, we consider three cases: 

- Case 1.1:  0.5% noise error – base case 

- Case 1.2:  1% noise error 

- Case 1.3:  1.5% noise error 

The main goal is to quantify the effect of the magnitude of the signal variation band on the flowrate 

estimates. As such, we do not consider noise filtering because even the filtered signal will have the 

deviation error which can increase due to the degradation. 

The value of the error (0.5%, 1% or 1.5%) represents the maximum possible error in the measurements. 

For instance, if the actual pressure value is 100 bar and the noise error is 1%, the possible measurement 

readings are within the interval of 99-101 bar.    

Case 1.1 is considered as the base case meaning that the sensors are newly installed and not affected 

by the degradation. It is worth to mention that this case will be used in other case studies as a base line for 

comparison. The degradation effect is modeled in Cases 1.2 and 1.3. Fig. 4 shows an example of the signal 

under the modeled noise error. The error is randomly introduced to pressure and temperature 

measurements at the wellhead and bottomhole at the same time. 

 

   
Fig. 4 – Example of the signal under the measurement error for Cases 1.x 
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Case 2 (Effect of measurement drift) 

To model the effect of sensor drift, we consider the following cases: 

- Case 2.1:  0.5% drift with 0.5% noise error 

- Case 2.2:  1% drift with 0.5% noise error 

- Case 2.3:  1.5% drift with 0.5% noise error 

All the cases are compared with the Case 1.1 which considers the newly installed equipment. Fig. 5 

shows an example of the signal under the modeled drift error. The value of the drift (0.5%, 1% or 1.5%) 

represents the relative difference of the sensor value to the actual measurement value. For instance, if the 

actual pressure value is 100 bar and the drift error is 1%, the drifted measurement is 101 bar. Due to the 

noise, the final value of measurement will be within the range of 100.5-101.5 bar. The error is randomly 

introduced to pressure and temperature measurements at the wellhead and bottomhole at the same time. 

Please note that we considered only the drift which increased the measurement values and did not 

considered decreased values. 

 

   
Fig. 5 – Example of the signal under the measurement error for Cases 2.x 

 

Case 3 (Effect of temperature sensors failure) 

In this case, we study the effect of the temperature sensors failure, both at the bottomhole and the wellhead. 

We assume that at some point of the production time the temperature sensors are degraded down to the 

state when the information from the sensors are unreliable or no longer available. This is a difficult case 

from the operational point of view because it can be challenging to identify that the sensor shows 

unreliable information. We do not consider the identification methods and leave it for experienced 

operators. What we would like to consider is the effect of the broken sensor on the VFM estimates.  

When compositional model is used in the VFM system, we need to use temperature to compute the 

multiphase flow. In case of the sensor failure, one solution can be using the last reliable value of the 

temperature for the VFM system. In this case, two situations are possible: 

- Case 3.1:  The temperature sensors fail and the actual temperature does not change 

- Case 3.2:  The temperature sensors fail and the actual temperature changes 

Since we concluded that we do not have the information from the temperature sensors or the 

information is unreliable, we exclude it from the cost function and use the last reliable value of the 

temperature in the inflow mass source. As such, the cost function includes only the values of the measured 

bottomhole pressure. In Case 3.2, we assume that the actual temperature drops by 5 ⁰C, however, the VFM 

does not capture this because the correct temperature measurement is not available. To quantify the effect 

of the sensors failure, we compare these cases with Case 1.1 (no degradation). 

 

Heat transfer modeling study 
Theory and case study description 

In VFM systems, in addition to the flowrate, matching the temperature measurements in the well can be 

achieved by adjusting the heat transfer coefficient. The overall heat transfer coefficient U is a constant 

between the thermal flux and the temperature difference of two mediums which can be expressed as: 
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 f amb

Q
U

A T T



                                                                                                                                      (2) 

where Q denotes the heat flux, A – the heat transfer area, Tf – fluid temperature, Tamb – ambient 

(formation) temperature. 

Considering the well structure in Fig.1, the heat transfer between the formation and the multiphase flow 

for each well section can be written as: 

 
   

sec

sec sec

sec

1

2 2
2

ln

n
inner j outer j inner j form cem amb

j inner inner f w
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R L K T T L K T T
Q R L h T T

R T

R

 




 
                                      (3) 

where Rinner denotes the inner tubing radius, Rinner j – the inner radius of the j-th layer, Router j – the outer 

radius of the j-th layer, hinner – the convective heat transfer coefficient, Tw – the wall temperature,  

Kj – the thermal conductivity of the j-th layer, Lsec – the section length, Tcem – the cement temperature, 

Kform – the formation thermal conductivity, TDsec – the dimensionless temperature of the section.  

The terms in Eq.3 respectively represent the following heat transfer mechanisms:  

- Convective heat transfer between the fluid and the tubing wall 

- Heat conduction between the walls and mud/cement 

- Heat conduction between the outer casing wall and the formation 

By substituting the left hand side of Eq.3 by Eq.2 taking into account the well mechanical structure of 

each section from Fig.1 and solving it with respect to U, the following equations for can be obtained: 
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where 
cemK denotes the thermal conductivity of the cement, 

mudK  –  the thermal conductivity of the mud. 

In VFM systems, the heat transfer coefficients are often used as one of the parameters to match a 

specific temperature, e.g. at the wellhead. A reasonable strategy can be computing initial estimates for the 

heat transfer coefficients using the equations above and then tune it until a satisfactory agreement between 

the measured and predicted temperature values is reached. This is the first method used in this study. 

On the other hand, it is interesting to see if it is possible to achieve the same accuracy as in the previous 

case without a rigorous representation of the heat transfer. For instance, it might be assumed that the heat 

transfer coefficient is constant along the wellbore. In this way, only one coefficient value is tuned in VFM 

to reach the specific temperature. This is the second method used in this study. 

As such, we consider two cases: 

- Case 4.1:  Tuning with multiple heat transfer coefficients 

- Case 4.2:  Tuning with one heat transfer coefficient 

 

Simulation procedure 

As in the sensor degradation case, we randomly choose the pressure and temperature measurement 

values within a specified sensor accuracy (0.5% noise error) and perform 200 simulations to compute 

flowrates probability distributions. 
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To compute the initial estimates of the heat transfer coefficients for each section in Case 4.1, we use 

Eqs.4-8. First, we compute the heat conduction between the outer layer and formation for each section 

using the last terms in Eqs.4-8. For calculating the dimensionless temperature 𝑇𝐷, the correlation by Hasan 

and Kabir (2012) is used: 
0.2

ln (1.5 0.3719 )D Dt t

D DT e e t
     

 
                                                                                             (9) 

2D

outer i

a t
t

R


                                                                                                                                             (10) 

where 
Dt  denotes the dimensional producing time, a – the formation heat diffusivity, t – producing 

time. 

For the producing time t, we chose 100 days assuming that this is sufficient for the heat transfer between 

the fluid and the formation to reach a steady state. 

Secondly, we calculate the heat conduction between the casing walls and cement/mud. In each section, 

the number of layers of the well structure varies which makes these values different from one section to 

another. 

An order of magnitude analysis showed that the inner convection heat transfer between the multiphase 

flow and the tubing has a little contribution to the heat transfer between the flow and formation. Therefore, 

we do not include it into the final simulation procedure. 

One important thing to mention is the fact that we keep the ratio between the heat transfer coefficients 

constant when tuning the VFM and use it as constraints in the optimization procedure. This is because we 

would like to achieve the original pattern of the heat transfer distribution along the wellbore. Otherwise, 

there might be the case that the algorithm changes one coefficient more than the others, so that the actual 

heat flux distribution will be changed to something less realistic. 

The summary of the simulation procedure is shown in Fig. 6. In the initialization phase, the computed 

values of the heat transfer coefficients from Eqs.4-8 used as an initial guess and tuned until a specific 

wellhead temperature is matched. Then, the tuned coefficient values are used as an initial guess for the 

simulation phase and further adjusted together with the mass source to fit specific pressure and 

temperature values. The same procedure is used for the single heat transfer coefficient case except the fact 

that the initial coefficient value is guessed rather than preliminary computed. The computational procedure 

for the single heat transfer coefficient case is shown in Fig.7. 

 

 
Fig.6 – Schematic simulation procedure for Case 4.1 (multiple heat transfer coefficient tuning) 

(In the initialization phase, we compute the initial values of the heat transfer coefficients using Eqs.4-8 and then iteratively adjust 
these values until a good match of the wellhead temperature is reached. The obtained values are used as a good initial guess 
for the estimation phase where the heat transfer coefficients are tuned together with the mass flowrate to reach pressure and 
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temperature values at the wellhead and bottomhole. The ratios between the heat transfer coefficients are kept constant and 
specified as constraints in the optimization problem.) 

 

 
Fig.7 – Schematic simulation procedure for Case 4.2 (single heat transfer coefficient tuning) 

(In the initialization phase, we make an assumption of the heat transfer coefficient and then iteratively adjust this value using the 
optimizer until a good match of the wellhead temperature is reached. The obtained value is used as a good initial guess for the 
estimation phase where the heat transfer coefficient is tuned together with the mass flowrate to reach pressure and temperature 
values at the wellhead and bottomhole.) 

 

 

Statistical analysis 
To analyze the simulations results, we perform a statistical analysis of the resulting flowrate distributions 

taken from 200 simulations of each case. We use the following procedure: 

1. Test data normality. 

2. Compute appropriate parameters for statistical and practical significance evaluation 

(mean/median, standard deviation (variance)/interquartile range). 

3. Perform hypothesis testing to test the statistical significance of the results. 

4. Evaluate the practical significance of the results. 

In step 1, we test the data normality to select the appropriate strategy to compare the data samples. For 

this purpose, we perform a visual analysis using Q-Q plots and use D’Agostino test to check the normality 

formally. The Q-Q plot is a graphical method for checking the data normality by plotting quantiles of two 

distributions in which one distribution is normal. D’Agostino test is a formal statistical test of the data 

normality which was developed for sample sizes larger than 50 (D'Agostino 1971). In this study, we 

consider the significance level to be 0.05 which is a common assumption in staistical analysis. 

In step 2, when the normality test is completed, we compute the parameters for statistical and practical 

significance evaluation of the samples. If the data is normally distributed, we select mean and variance for 

statistical significance evaluation and mean and standard deviation for practical significance evaluation. 

This is because the standard deviation has the units of the variable evaluated, so that it is easier to interpret 

the results for practical purposes. If the data is non-normal, we compute median and interquartile range 

be these parameters can be more representative than mean and standard deviation for this type of data. 

In step 3, we perform hypothesis tests to check the statistical difference between the simulated cases. 

These tests provide an opportunity to check if the differences between the statistical properties of the data 

samples can be generalized over the populations from which these samples are taken. If the data is 

normally distributed, we choose 1-sample t-test on paired data differences. The reason for selecting  

1-sample test instead of 2-samples test is because the samples are dependent. Indeed, initially we consider 

a system without the degradation effect and then we consider the same system under the degradation. To 

compare the variances, Bartlett’s test is used (Snedecor and Cochran 1989). If the data is non-normal, we 
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compare the medians using 1-sample sign test on paired differences and variances using Levene’s test 

(Levene 1960). 

Finally, in step 4, if we find that the difference between the parameters is statistically significant, we 

evaluate the practical significance of the obtained results. The evaluation of the practical significance will 

depend on the case under consideration. In general, we will compare differences of the means or standard 

deviations (or medians and interquartile ranges) as fractions of the mean estimate as well as the absolute 

differences values. Fig. 8 summarizes the used statistical analysis. 

 

 
Fig.8 –Schematic representation of the statistical analysis 

Results 
Sensor degradation 
Case 1 

First, we analyze the case with the increased noise effect due to sensor degradation. Fig. 9 shows the 

obtained oil and gas flowrate distributions.   

 

 
Fig.9 – Histograms of VFM flowrate predictions for Cases 1.x 

 



  11 

From the figure we see that the respective oil and gas flowrates are represented by the same distribution. 

This is expected because the volumetric flowrates are computed from the same mass flowrate source by 

means of a linear transformation. From the figure we can also notice that data is not precisely normal even 

though the input signals have white noise. The reason for this is the fact that the system is non-linear 

which can make the output signals to have a different distribution. However, the data might still be 

considered as normal and must be checked for normality to make valid conclusions. Also, the initial visual 

analysis shows that the increase of the noise make the distribution more spread, i.e. increases the data 

variability. This result was expected. However, the main goal is to quantify this data variability growth 

and generalize the conclusions for the populations from which the samples are taken. 

To perform further analysis, we check the data normality. Fig. 10 shows the visual and formal analysis 

represented by the Q-Q plots with corresponding p-values from the D’Agostino tests. 

From the Q-Q plots we see that the majority of the data points follow the normal distribution pattern 

(red line) except a few points. This confirms the visual observations from Fig. 9 that the data is close to 

normal. By checking the normality formally by D’Agostino test, we cannot reject the null hypothesis that 

the data is normal at the significance level of 0.05 which is in agreement with the visual analysis. 

 

 
D’Agostino p-value = 0.086 D’Agostino p-value = 0.485 D’Agostino p-value = 0.193 

 
D’Agostino p-value = 0.083 D’Agostino p-value = 0.48 D’Agostino p-value = 0.194 

Fig. 10 – Normality testing of datasets from Cases 1.x 

 

Since we conclude that the data can be considered as normal, we choose means and standard deviations 

as measures for the central distribution value and data variability respectively. We also consider the total 

variation of the flowrate estimates to compare the resulting distributions. Table 1 shows the values of 

these data. 

From the table we see that the estimates of the means are similar while the variation of the standard 

deviations is much larger. Now we need to test if these differences are statistically significant. Table 2 

shows the differences of means, standard deviations and total ranges between the cases as well as the 

results from the hypothesis tests on the means and variances equalities. 
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                                                        Oil rates 

 Case 1.1 Case 1.2 Case 1.3 

Mean, bbl/day 15380.02 15364.14 15374.91 

Standard deviation, bbl/day 66.94 130.54 211.32 

Total range, bbl/day 384.33 729.40 1141.18 

                                                         Gas rates 

 Case 1.1 Case 1.2 Case 1.3 

Mean, Sm3/day 376940.80 376517.49 376814.36 

Standard deviation, Sm3/day 1640.14 3201.04 5182.83 

Total range, bbl/day 9418.93 17903.42 27990.72 

Table 1 – Main statistical parameters of the simulation results of Cases 1.x 
 

 
Parameter/Hypothesis Case1.1 and Case 1.2 Case 1.1 and Case 1.3 

                                                                                 Oil rates 

Sample means difference, bbl/day 15.87 5.1 

t-test p-value (H0: mean1=mean2) 0.16 0.75 

Standard deviation difference, bbl/day 75.53 144.39 

Total range difference, bbl/day 365.5 756.84 

Bartlett’s test p-value (H0: var1 = var2) 2.15·10-24 1.36·10-49 

                                                                                  Gas rates 

Sample means difference, Sm3/day 389.64 126.44 

t-test p-value (H0: mean1=mean2) 0.16 0.75 

Standard deviation difference, Sm3/day 1853.55 3542.7 

Total range difference, Sm3/day 8991.06 18571.78 

Bartlett’s test p-value (H0: var1 = var2) 1.93·10-24 1.17·10-49 

Table 2 – Hypothesis testing and comparison of statistical parameters of Cases 1.x 
 

From the table we can make several conclusions. First, we see that based on this study we cannot reject 

the null hypothesis about the means equalities at the significance level of 0.05. Thus, we conclude that 

there is no statistically significant difference between the population means which, in turn, tells that the 

population means can be considered as equal. This seems to be in agreement with the practical significance 

of the results. The difference in the means varies from 5.1 to 15.87 bbl/day which in practice can be 

neglected. Therefore, for practical purposes, we can say that if the sensor degradation affects the noise 

level only, the means of the flowrates estimates are not affected significantly. We see an opposite situation 

for the data variability. Comparing the statistical significance of the variance differences (Bartlett’s test), 

we see that the null hypothesis is strongly rejected, which means that the populations variances are 

certainly different.  

To estimate the practical significance of variance differences, we compare the absolute and relative 

values of the standard deviations and total ranges. The relative values are scaled with respect to the means. 

Fig.11 and Table 2 show that the increase of the measurement error by 0.5% causes the increase of the 

standard deviation and the total range by approximately 76 bbl/day and 366 bbl/day respectively. These 

values can be considered as significant. However, as Fig. 11 shows, these values correspond 

approximately to 0.5% and 2.5% of the mean flowrate value respectively. In certain VFM applications 

this error might be neglected, however, if the desired accuracy of the flowrate estimation is high, the 

increase of the measurement noise can cause problems in meeting the aimed accuracy specification. 

Moreover, the considered measurement error is relatively small, so that for larger measurement variations 

the associated error can be noticeable. As such, we conclude that the found standard deviation difference 

is practically significant if the desired accuracy of VFM is high or the noise error is relatively large but 

can be neglected in other situations. This is because the obtained absolute values are small when scaled 

with respect to the mean value estimate. The same conclusions can be drawn for the gas rates because we 

observed that its distribution pattern is the same as for the oil rates.  
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Fig. 11 – Comparison of standard deviations and total ranges for Cases 1.x 
(The left part of the figure visualizes the increase of the data variability depending on the increase of the noise level. The figures on the right 
quantify this data variability increase. We can see that even though the increase of the standard deviation and total range is relatively big from 
Case 1.1 to Case 1.2 and Case 1.3, these values may be neglected in many practical applications since they are small fractions of the mean 
flowrate estimate unless the noise level becomes relatively large.) 

 

Case 2 

As the next step, we analyze the effect of measurement drift on the flowrate estimates from the VFM. Fig. 

12 shows the oil and gas flowrate distributions. As in the previous case, the respective oil and gas flow 

rates are represented by the same distribution. As expected, we see a similar data variability between the 

cases but the migration of the mean value. This is because the noise level is kept the same for all the cases 

while the mean measurement value is different. Now the task is to evaluate the mean differences from 

statistical and practical points of view. 

First, we check the datasets normality. Fig. 13 shows the visual and formal analysis represented by the 

Q-Q plots with corresponding p-values from the D’Agostino tests. As in the previous case, we see that the 

majority of the data points follow the normal distribution pattern (red line) except a few points. This 

suggests that the data is close to normal. By checking the normality formally with D’Agostino test, we 

cannot reject the null hypothesis that the data is normal at the significance level of 0.05 and assume that 

the data can be treated as normal. 

The next step is to compute the means, standard deviations and total ranges of the estimates. Table 3 

shows the values of these parameters. From the table we see that the computed standard deviations are 

similar while the means vary considerably. This is in agreement with what we observed in Fig.12.  

Table 4 shows the differences of means, standard deviations and total ranges between the cases as well as 

the results from the hypothesis tests on the means and variances equalities. 
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Fig.12 – Histograms of VFM flowrate predictions for Cases 2.x and Case 1.1 

 

From the table we see that the hypothesis of the equal mean values is strongly rejected, thus we 

conclude that the population means are certainly different. As for the variances, the hypothesis of its 

equalities cannot be rejected which means that the variances of the populations are not statistically 

different at the significance level of 0.05. As such, from the analysis we see that only the means are 

affected by the measurement drift and the next objective is to estimate the practical importance of the 

means differences. Fig.14 shows the comparison of the means differences relative to the mean of  

Case 1.1. 

 

 
D’Agostino p-value = 0.39 D’Agostino p-value = 0.49 D’Agostino p-value = 0.41 

 
D’Agostino p-value = 0.4 D’Agostino p-value = 0.49 D’Agostino p-value = 0.41 

Fig. 13 – Normality testing of datasets from Cases 2.x 
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                                                       Oil rates 

 Case 2.1 Case 2.2 Case 2.3 

Mean, bbl/day 15444.1 15517.55 15598.33 

Standard deviation, bbl/day 75.31 74.54 74.58 

Total range, bbl/day 390.39 380.52 399.66 

                                                        Gas rates 

 Case 2.1 Case 2.2 Case 2.3 

Mean, Sm3/day 378520.31 380331.15 382320.24 

Standard deviation, Sm3/day 1846.54 1827.3 1837.02 

Total range, bbl/day 9569.27 9331.26 9791.52 

Table 3 – Main statistical parameters of the simulation results of Cases 2.x 

 
Parameter/Hypothesis Case1.1 and Case 2.1 Case 1.1 and Case 2.2 Case 1.1 and Case 2.3 

                                                                       Oil rates 

Sample means difference, bbl/day 64.06 137.54 218.34 

95% confidence interval of the means 
difference, bbl/day 

[52.4 – 75.74] [126.68 – 148.4] [203.89 – 232.74] 

t-test p-value (H0: mean1=mean2) 8.81·10-22 3.10·10-63 2.15·10-75 

Standard deviation difference, bbl/day 8.37 7.61 7.65 

Total range difference, bbl/day 6.05 3.82 15.33 

Bartlett’s test p-value (H0: var1 = var2) 0.097 0.13 0.13 

                                                                       Gas rates 

Sample means difference, Sm3/day 1579.51 3390.35 5379.44 

95% confidence interval of the means 
difference, bbl/day 

[1293.63 – 1865.39] [3124.13 – 3656.56] [5025.57 – 5733.27] 

t-test p-value (H0: mean1=mean2) 5.58·10-22 1.30·10-63 9.69·10-76 

Standard deviation difference, Sm3/day 206.41 187.16 189.19 

Total range difference, Sm3/day 150.33 87.68 372.58 

Bartlett’s test p-value (H0: var1 = var2) 0.095 0.128 0.124 

Table 4 – Hypothesis testing and comparison of statistical parameters in Cases 2.x 

 

 

 

Fig. 14 – Comparison of the means from Cases 2.x with the mean from Case 1.1 
(The left figure visualizes the drift of the mean estimates depending on the drift measurement error. The right figure quantifies the differences in 
mean estimates depending on the drift error.) 

 

From the figure we see almost a linear relationship between the relative error of the means and the 

measurement error which is similar to what we previously observed for the standard deviations 

comparison. More specifically, the increase of the measurement error by 0.5% causes approximately 0.5% 

increase of the bias of the mean relative to the mean value. However, the error of the means is more critical 

than the error in standard deviations. This is because the probability of having a significant error of the 

flowrate estimates increases considerably. It can be seen in Fig.15 where the green shaded area shows the 

range of the flowrates from Case 1.1 (no degradation) which can be covered by the VFM under the 

degradation effect. In the left figure, we see that the entire range of the flowrates of Case 1.1 is almost 

within the standard deviations of Case 1.3. On the other hand, only 50% of the Case 1.1 flowrates is within 

50% predictions from Case 2.3. Thus, we conclude that the sensor drift causes more serious flowrate 

estimation errors and should be carefully considered in VFM systems.  
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Fig.15 – Comparison of the noise and drift degradation effects 
(The left figure shows that 1.5% noise error introduces the high spread of the flowrate estimations, however, the entire flowrate range of the 
case with no degradation is almost within the standard deviation of the case with high noise error. The right figure shows that the drift error 
causes significant estimation error because only 50% of the no drift case can be covered by 50% of the outcomes from the case with 1.5% drift 
error.) 

 

Case 3 

In this section, we compare the cases with a detected temperature sensor failure with Case 1.1 (no 

degradation effect). Fig.16 shows the comparison of the flowrate distributions of these cases. From the 

figure we see that the absence of the temperature measurements almost does not change the flowrate 

distribution. However, if the actual flow temperature value changes and the VFM does not take it into 

account, the mean of the flowrate distribution changes considerably.  

To quantify this change, again, first, we test the data normality. Fig. 17 shows the visual and formal 

analysis represented by the Q-Q plots with corresponding p-values from the D’Agostino tests. Similarly 

to the previous cases, the analysis shows that the data can be considered as normal. 

     

 
Fig. 16 – Comparison of flowrate distributions for Cases 3.x and Case 1.1 
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D’Agostino 

p-value = 0.16 

D’Agostino 

p-value = 0.24 

D’Agostino 

p-value = 0.16 

D’Agostino 

p-value = 0.24 
Fig. 17 – Normality testing of datasets from Cases 3.x 

 

The next step is to compute the means, standard deviations and total ranges of the estimates. Table 5 

shows the values of these parameters.  

 
                                                                              Oil rates 

 Case 3.1 Case 3.2 

Mean, bbl/day 15386.91 15129.72 

Standard deviation, bbl/day 69.6 70.46 

Total range, bbl/day 429.37 440.0 

                                                                             Gas rates 

 Case 3.1 Case 3.2 

Mean, Sm3/day 377109.6 370621.84 

Standard deviation, Sm3/day 1707.24 1727.53 

Total range, bbl/day 10537 10786.84 

Table 5 – Main statistical parameters of the simulation results of Cases 3.x 

 

From the table we see that the computed standard deviations are similar to the ones in Case 1.1. On the 

other hand, the mean value of Case 3.2 varies considerably from Case 1.1 and Case 3.1. Table 6 shows 

the differences of means and standard deviations and its statistical significance as well as the total ranges 

differences. 

 
Parameter/Hypothesis Case1.1 and Case 3.1 Case 1.1 and Case 3.2 

                                                                                        Oil rates 

Sample means difference, bbl/day 6.9 260.3 

t-test p-value (H0: mean1=mean2) 0.2 3.01·10-88 

Standard deviation difference, bbl/day 2.67 3.53 

Total range difference, bbl/day 45.04 55.67 

Bartlett’s test p-value (H0: var1 = var2) 0.58 0.47 

                                                                                        Gas rates 

Sample means difference, Sm3/day 168.8 6318.95 

t-test p-value (H0: mean1=mean2) 0.2 1.8·10-90 

Standard deviation difference, Sm3/day 206.41 187.16 

Total range difference, Sm3/day 1118.13 1367.9 

Bartlett’s test p-value (H0: var1 = var2) 0.57 0.46 

Table 6 – Hypothesis testing and comparison of statistical parameters in Cases 3.x 
 

From the table we see that for Case 3.1 the hypothesis of equal population means cannot be rejected 

while for Case 3.2 it is strongly rejected. At the same time, for both cases the hypothesis about the 

population variances equalities cannot be rejected. This shows that only the means difference between 

Case 3.2 and Case 1.1 is statistically significant. 

For practical applications, the importance of this difference depends on the desired accuracy of the 

VFM system. As before, we evaluate the practical significance as a fraction of the mean estimate. In this 

particular case, the temperature drop of 5 ⁰C causes the mean estimate error 260.3 bbl/day which is 1.7% 

relative to the mean value. This is a relatively high value and for many practical cases the consequences 

of such an error can be critical. Since the VFM might have other factors which cause errors (e.g. noise 

and drift in pressure sensors), the absence of the correct temperature value can play a crucial role. Overall, 

we conclude that if the actual fluid temperature changes and the VFM system does not capture this change, 
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it can result in relatively high errors of the flowrate estimations. This fact should be taken into account if 

there is a probability of the reservoir temperature change in a particular field development case (e.g. water 

breakthrough). 

  

Heat transfer study 
As in the sensor degradation study, we plot the flowrate distributions for the initial visual analysis of the 

simulation results. Fig. 18 shows the oil and gas flowrate distributions. 

 

 
Fig.18 – Histograms of VFM flowrate predictions for Cases 4.x 

 

We see that the flowrate distributions in both cases are relatively similar with some occasional 

differences in frequency values and may follow the normal distribution pattern. Fig.19 confirms this 

observation. As in all the previous cases, except for a few points, the data samples are on the red line 

which represents the normal distribution. The normality assumption is also supported by D’Agostino test. 

Even though the flowrate distributions are relatively similar, we quantify the possible differences and 

evaluate if this difference is practically important for VFM systems. 

 

  

D’Agostino 

p-value = 0.92 

D’Agostino 

p-value = 0.13 

D’Agostino 

p-value = 0.92 

D’Agostino 

p-value = 0.13 
Fig. 19 – Normality testing of datasets from Cases 4.x 

 

Table 7 shows the statistical parameters and hypothesis tests of Case 4.1 and Case 4.2. From the table 

we see that the difference between the standard deviations is small and can be considered as statistically 

insignificant. On the other hand, we can reject the hypothesis about the population means equality at the 

significance level of 0.05. Thus, this difference is considered as statistically significant. However, we can 

see that this difference is only 0.45% of the mean value and can be considered as practically insignificant. 

In the sensor degradation case (Case 2), we observed that the increase of the 0.5% drift measurement error 
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introduced approximately 0.5% growth of the error of the mean estimate and we concluded that this 

difference was practically important. However, in that case we clearly observed the trend between the 

measurement drift and the estimates. In this case, there error caused by a different tuning strategy most 

likely will not significantly exceed the error of 0.45% which was computed for this particular case. The 

deviation may slightly change because of different initial guesses of the heat transfer coefficient values, 

however, there is not a clear evidence that this difference will increase considerably. Moreover, we 

observed that the difference of variances even statistically insignificant which also strengthens the point 

the applied tuning strategies practically give the same result. 

 
                                                                                  Oil rates 

 Case 4.1 Case 4.2 

Mean, bbl/day 15303.34 15373.77 

Sample means difference, bbl/day 70.43 

t-test p-value (H0: mean1=mean2) 4.44·10-5 

Standard deviation, bbl/day 216.14 210.96 

Standard deviation difference, bbl/day 5.18 

Total range, bbl/day 1131.13 1091.33 

Total range difference, bbl/day 39.8 

Bartlett’s test p-value (H0: var1 = var2) 0.73 

                                                                                  Gas rates 

 Case 4.1 Case 4.2 

Mean, Sm3/day 376917.40 375060.34 

Sample mean difference, Sm3/day 1718.79 

t-test p-value (H0: mean1=mean2) 4.47·10-5 

Standard deviation, Sm3/day 5297.55 5172.29 

Standard deviation difference, Sm3/day 125.26 

Total range, Sm3/day 27715.52 26752.47 

Total range difference, Sm3/day 963.05 

Bartlett’s test p-value (H0: var1 = var2) 0.74 

Table 7 – Main statistical parameters and hypothesis tests of the simulation results of Cases 4.x 
 

Since we found that the strategies produce very similar results in terms of accuracy, we conclude that 

the approach with only one tuning heat transfer coefficient is more efficient for practical applications. This 

is because this approach significantly reduces the computational time for tuning and estimation. In this 

particular case, the computational time was reduced by a factor of 3. Moreover, computing good initial 

guesses of the heat transfer coefficients using the physics behind can also take the time. In contrast, 

initializing a good initial guess of one heat transfer coefficient value is relatively easy and requires only 

one additional simulation. Therefore, we conclude that the tuning strategy with one heat transfer 

coefficient along the wellbore is accurate enough and suits better for practical applications than the 

strategy with multiple heat transfer coefficient values. 

 

Conclusions 
In this paper, we constructed a Virtual Flow Meter using a multiphase pipe model and an optimization 

routine from commercial packages and considered two case studies: the effect of the sensor degradation 

and two different tuning strategies on the VFM estimates. The sensor degradation effect was modeled as 

the measurement noise increase, measurement drift and sensors failure. As for the tuning strategies, the 

use of one versus multiple heat transfer coefficients along the tubing was compared. In addition, we 

applied a method for a statistical analysis approach of case sensitivity studies which evaluates the 

distribution of the possible outcomes rather than only critical values for specific boundary conditions. 

From the sensor degradation study we found that the noise increase introduces the increase of the 

flowrate estimates variances and observed close to a linear trend between the noise error and growth of 

the standard deviation. The quantification of the estimation error growth showed that if the measurement 

noise becomes relatively large, the associated error should be taken into account. However, if the required 

VFM accuracy is not high, this error can be neglected in practical applications. On the other hand, the 

measurement drift can cause more serious estimation deviations since there is almost a linear dependency 

of the mean estimation value change and the drift measurement error. Thus, it is advisable either to 
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calibrate the sensors (that is hard in practice) or validate the relationship of the VFM predictions and the 

sensor readings. This can be done by well tests or any other reliable flowrate measurements and preferably 

carried out more often than a severe sensor drift occurs. 

As for the temperature sensor failure, it can be disregarded in case the actual flow temperature does not 

change. On the other hand, if the actual temperature changes and it is not captured by the VFM, the 

flowrate predictions can deviate from the correct predictions considerably. This fact should be taken into 

account if there is a probability of reservoir temperature change.  

The case study on different tuning strategies showed that it is not necessary to use a complicated 

mechanical representation of the well and associated heat transfer coefficients to predict the flowrates 

accurately. The assumption about the constant heat transfer coefficient along the wellbore gives almost 

identical results, but can reduce the simulation time substantially. Thus, for practical applications the 

tuning of a constant heat transfer coefficient along the wellbore is a solid approach. 
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