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Abstract: We present a sensitivity-based predictor-corrector pathfollowing algorithm for fast1

nonlinear model predictive control (NMPC), and demonstrate it on a large case study with an2

economic cost function. The pathfollowing method is applied within the Advanced-Step NMPC3

framework to obtain fast and accurate approximate solutions of the NMPC problem. In our4

approach, we solve a sequence of quadratic programs to trace the optimal NMPC solution along a5

parameter change. A distinguishing feature of the path-following algorithm in this paper is that the6

strongly active inequality constraints are included as equality constraints in the quadratic programs,7

while the weakly active constraints are left as inequalities. This leads to close tracking of the optimal8

solution. The approach is applied to an economic NMPC case study consisting of a process with a9

reactor, a distillation column and a recycle. We compare the pathfollowing NMPC solution with an10

ideal NMPC solution, which is obtained by solving the full nonlinear programming problem. Our11

simulations show that the proposed algorithm effectively traces the exact solution.12

Keywords: Fast economic NMPC; NLP sensitivity; Pathfollowing algorithm; Nonlinear13

programming; Dynamic optimization14

1. Introduction15

The idea of economic model predictive control (MPC) is to integrate the economic optimization16

layer and the control layer in the process control hierarchy into a single dynamic optimization layer.17

While classic model predictive control approaches typically employ a quadratic objective to minimize18

the error between the setpoints and selected measurements, economic MPC adjusts the inputs to19

minimize the economic cost of operation directly. This makes it possible to optimize the cost during20

transient operation of the plant. In recent years, this has become increasingly desirable, as stronger21

competition, volatile energy prices and rapidly changing product specifications require agile plant22

operations, where also transients are optimized to maximize profit.23

The first industrial implementations of economic MPC are reported in [1,2] for oil refinery24

applications. The development of theory and stability analysis for economic MPC arose almost a25

decade afterwards see e.g., [3,4]. Recent progress on economic MPC is reviewed and surveyed in26

[5,6]. Most of the current research activities focus on the stability analysis of economic MPC, and do27

not discuss its performance (an exception is [7]).28

Because nonlinear process models are often used for economic optimization, a potential29

drawback of economic MPC is that it requires to solve a large-scale nonlinear optimization problem30

(NLP) associated with the nonlinear model predictive control (NMPC) problem at every sample time.31
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The solution of this NLP may take a significant amount of time [8], and this can lead to performance32

degradation and even to instability of the closed-loop system [9].33

To reduce the detrimental effect of computational delay in NMPC, several sensitivity-based34

methods were proposed [14,15,19]. All these fast sensitivity approaches exploit the fact that the35

NMPC optimization problems are identical at each sample time, except for one varying parameter:36

the initial state. Instead of solving the full nonlinear optimization problem when new measurements37

of the state become available, these approaches use the sensitivity of the NLP solution at a38

previously computed iteration to obtain fast approximate solutions to the new NMPC problem.39

These approximate solutions can be computed and implemented in the plant with minimal delay.40

A recent overview of the developments in fast sensitivity-based nonlinear MPC is given in [10], and a41

comparison of different approaches to obtain sensitivity updates for NMPC is compiled in the paper42

by Wolf and Marquardt [21] .43

Diehl et al. [11] proposed the concept of real-time iterations, in which the full NLP is not44

solved at all during the MPC iterations. Instead, at each NMPC sampling time, a single QP related45

to the sequential quadratic programming (SQP) iteration for solving the full NLP is solved. The46

real-time iteration scheme contains two phases: 1) Preparation phase and 2) Feedback phase. In the47

preparation phase, the model derivatives are evaluated using a predicted state measurement, and a48

QP is formulated based on data of this predicted state. In the feedback phase, once the new initial state49

is available, the QP is updated to include the new initial state, and solved for the control input that50

is injected into the plant. The real-time iteration scheme has been applied to economic NMPC in the51

context of wind turbine control [26,27]. Similar to the real-time iteration scheme are the approaches52

by Ohtsuka [17], and the early paper by Li and Biegler [25] where one single Newton-like iteration is53

performed per sampling time.54

A different approach, the Advanced-Step NMPC (asNMPC), was proposed by Zavala and55

Biegler [14]. The asNMPC approach involves solving the full NLP at every sample time. However,56

the full NLP solution is computed in advance for a predicted initial state. Once the new state57

measurement is available, the NLP solution is corrected using a fast sensitivity update to match58

the measured or estimated initial state. A simple sensitivity update scheme is implemented in the59

software package sIPOPT [16]. However, active set changes are handled rather heuristically, see60

[28] for an overview. Kadam and Marquardt [44] proposed a similar approach, where nominal NLP61

solutions are updated by solving QPs in a neighboring-extremal scheme, see also [19,20].62

The framework of asNMPC was also applied by Jäschke and Biegler [22] who use a multiple-step63

predictor pathfollowing algorithm to correct the NLP predictions. Their approach included measures64

to handle active set changes rigorously, and their pathfollowing Advanced-Step NMPC algorithm is65

also the first one to handle non-unique Lagrange multipliers.66

The contribution of this paper is to apply an improved path-following method for correcting the67

NLP solution within the Advanced-Step NMPC framework. In particular, we replace the predictor68

pathfollowing method from [22] by a predictor-corrector method, and demonstrate numerically that69

the method works efficiently on a large-scale case study. We present how the asNMPC with70

the predictor-corrector pathfollowing algorithm performs in presence of measurement noise, and71

compare it with a pure predictor pathfollowing asNMPC approach and an ideal NMPC approach,72

where the NLP is assumed to be solved instantly. We also give a brief discussion about how our73

method differs from previously published approaches.74

The structure of this paper is the following. We start by introducing the ideal NMPC and75

Advanced-Step NMPC frameworks in Section 2, and give a description of our pathfollowing76

algorithm together with some relevant background material and a brief discussion in Section 3. The77

proposed algorithm is applied to a process with a reactor, distillation and recycle in Section 4, where78

we consider the cases with and without measurement noise, and discuss the results. The paper is79

closed with our conclusions in Section 5.80
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Algorithm 1: General NMPC Algorithm

1 set k← 0
2 while MPC is running do
3 1. Measure or estimate xk.
4 2. Assign the initial state: set z0 = xk .
5 3. Solve the optimization problem Pnmpc to find v∗0 .
6 4. Assign the plant input uk = v∗0 .
7 5. Inject uk to the plant (1).
8 6. set k← k + 1

2. NMPC Problem Formulations81

2.1. The NMPC Problem82

We consider a nonlinear discrete-time dynamic system83

xk+1 = f (xk, uk) (1)

where xk ∈ Rnx denotes the state variable, uk ∈ Rnu is the control input, and f : Rnx ×Rnu → Rnx
84

is a continuous model function which calculates the next state xk+1 from the previous state xk and85

control input uk where k ∈ N. This system is optimized by a nonlinear model predictive controller86

which solves the problem87

(Pnmpc) : min
zl ,vl

Ψ(zN) +
N−1

∑
l=0

ψ(zl , vl) (2)

s.t. zl+1 = f (zl , vl) l = 0, . . . , N − 1,

z0 = xk,

(zl , vl) ∈ Z , l = 0, . . . , N − 1,

zN ∈ X f ,

at each sample time. Here zl ∈ Rnx is the predicted state variable, vl ∈ Rnu is the predicted control88

input, and zN ∈ X f is the final predicted state variable restricted to the terminal region X f ∈ Rnx .89

The stage cost is denoted by ψ : Rnx ×Rnu → R and the terminal cost by Ψ : X f → R. Further, Z90

denotes the path constraints, i.e., Z = {(z, v) | q (z, v) ≤ 0}, where q : Rnx ×Rnu → Rnq .91

The solution of the optimization problemPnmpc is denoted
{

z∗0 , . . . , z∗N , v∗0 , . . . , v∗N−1
}

. At sample92

time k an estimate or measurement of the state xk is obtained, and problem Pnmpc is solved. Then the93

first part of the optimal control sequence is assigned as plant input, such that uk = v∗0 . This first94

part of the solution to Pnmpc defines an implicit feedback law uk = κ (xk) and the system will evolve95

according to xk+1 = f (xk, κ (xk)). At the next sample time k + 1, when the measurement of the new96

state xk+1 is obtained, the procedure is repeated. The NMPC algorithm is summarized in Algorithm 1.97

98

2.2. Ideal NMPC and Advanced-Step NMPC framework99

For achieving optimal economic performance and good stability properties, problem Pnmpc100

needs to be solved instantly, so that the optimal input can be injected without time delay as soon101

as the values of the new states are available. We refer to this hypothetical case without computational102

delay as ideal NMPC.103

In practice, there will always be some time delay between obtaining the updated values of the104

states and injecting the updated inputs into the plant. The main reason for this delay is the time it105
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requires to solve the optimization problem Pnmpc. As the process models become more advanced,106

solving the optimization problems requires more time, and the computational delay cannot be107

neglected any more. This has led to the development of fast sensitivity-based NMPC approaches. One108

such approach that will be a adopted in this paper is the Advanced-Step NMPC (asNMPC) approach109

approach [14]. It is based on the following steps:110

1. Solve the NMPC problem at time k with a predicted state value of time k + 1111

2. When the measurement xk+1 becomes available at time k + 1, compute an approximation of the112

NLP solution using fast sensitivity methods.113

3. Update k← k + 1 and repeat from Step 1.114

Zavala and Biegler proposed a fast one-step sensitivity update that is based on solving a linear system115

of equations [14]. Under some assumptions this corresponds to a first-order Taylor approximation of116

the optimal solution. In particular, this approach requires strict complementarity of the NLP solution,117

which ensures no changes in the active set. A more general approach involves allowing for changes118

in the active set and making several sensitivity updates. This was proposed in [22], and will be119

developed further in this paper.120

3. Sensitivity-based Pathfollowing NMPC121

In this section we present some fundamental sensitivity results from the literature, and then use122

them in a pathfollowing scheme for obtaining fast approximate solutions to the NLP.123

3.1. Sensitivity Properties of NLP124

The dynamic optimization problem (2) can be cast as a general parametric NLP problem125

(PNLP) : min
χ

F (χ, p) (3)

s.t. c (χ, p) = 0

g (χ, p) ≤ 0,

where χ ∈ Rnχ are the decision variables (which generally include the state variables and the control126

input nχ = nx + nu) and p ∈ Rnp is the parameter, which is typically the initial state variable xk.127

In addition, F : Rnχ × Rnp → R is the scalar objective function, c : Rnχ × Rnp → Rnc denotes128

the equality constraints, and finally g : Rnχ × Rnp → Rng denotes the inequality constraints. The129

instances of Problem (3) that are solved at each sample time differ only in the parameter p.130

The Lagrangian function of this problem is defined as

L (χ, p, λ, µ) = F (χ, p) + λTc (χ, p) + µT g (χ, p) , (4)

and the KKT (Karush-Kuhn Tucker) conditions are131

c (x, p) = 0, g (x, p) ≤ 0 (primal f easibility) (5)

µ ≥ 0, (dual f easibility)

∇xL (x, p, λ, µ) = 0, (stationary condition)

µT g (x, p) = 0, (complementary slackness).

In order for the KKT condition to be a necessary condition of optimality, we require a constraint132

qualification (CQ) to hold. In this paper we will assume that the LICQ holds:133

Definition 1 (LICQ). Given a vector p and a point χ, the linear independence constraint qualification134

(LICQ) holds at χ if the set of vectors
{
{∇χci (χ, p)}i∈{1,...,nc} ∪ {∇χgi (χ, p)}i: gi(χ,p)=0

}
are linearly135

independent.136
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The LICQ implies that the multipliers (λ, µ) satisfying the KKT conditions are unique. If additionally137

a suitable second order condition holds, then the KKT conditions guarantee a unique local minimum.138

A suitable second order condition states that the Hessian matrix has to be positive definite in a set of139

appropriate directions, defined in the following property:140

Definition 2 (SSOSC). The strong second order sufficient condition (SSOSC) holds at χ with multipliers141

λ and µ if dT∇2
χL (χ, p, λ, µ) d > 0 for all d 6= 0 such that ∇χc (χ, p)T d = 0 and ∇χgi (χ, p)T d = 0142

for i such that gi (χ, p) = 0 and µi > 0.143

For a given p, denote the solution to (3) by χ∗(p), λ∗(p), µ∗(p), and if no confusion is possible144

we omit the argument and write simply χ∗, λ∗, µ∗. We are interested in knowing how the solution145

changes with a perturbation in the parameter p. Before we state a first sensitivity result, we define146

another important concept:147

Definition 3 (SC). Given a vector p and a solution χ∗ with vectors of multipliers λ∗ and µ∗, strict148

complimentary (SC) holds if µ∗i − gi (χ
∗, p) > 0 for each i = 1, . . . , ng.149

Now we are ready to state the result below given by Fiacco [24].150

Theorem 4 (Implicit function theorem applied to optimality conditions). Let χ∗(p) be a KKT point that151

satisfies (5), and assume that LICQ, SSOSC, and SC hold at χ∗. Further let the function F, c, g be at least152

k + 1 times differentiable in χ and k times differentiable in p. Then153

• χ∗ is an isolated minimizer, and the associated multipliers λ and µ are unique.154

• for p in a neighborhood of p0 the set of active constraints remains unchanged.155

• for p in a neighborhood of p0 there exists a k times differentiable function σ (p) =156 [
χ∗ (p)T λ∗ (p)T µ∗ (p)T

]
, that corresponds to a locally unique minimum for (3).157

Proof. See Fiacco [24].158

Using this result, the sensitivity of the optimal solution χ∗, λ∗, µ∗ in a small neighborhood of
p0 can be computed by solving a system of linear equations that arises from applying the implicit
function theorem to the KKT conditions of (3): ∇2

χχL (χ∗, p0, λ∗, µ∗) ∇χc (χ∗, p0) ∇χgA (χ∗, p0)

∇χc (χ∗, p0)
T 0 0

∇χgA (χ∗, p0)
T 0 0


 ∇pχ

∇pλ

∇pµ

 = −

 ∇2
pχL (χ∗, p0, λ∗, µ∗)
∇pc (χ∗, p0)

∇pgA (χ∗, p0)

 .

(6)
Here the constraint gradients with subscript, gA indicate that we only include the vectors and159

components of the Jacobian corresponding to the active inequality constraints at χ, i.e., i ∈ A if160

gi(χ, p0) = 0. Denoting the solution of the equation above as
[
∇pχ ∇pλ ∇pµ

]T
, for small ∆p161

we obtain a good estimate162

χ (p0 +4p) = χ∗ +∇pχ4p, (7)

λ (p0 +4p) = λ∗ +∇pλ4p, (8)

µ (p0 +4p) = µ∗ +∇pµ4p, (9)

of the solution to NLP problem (3) at the parameter value p0 + ∆p. This approach was applied by163

Zavala and Biegler [14].164
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If ∆p becomes large, the approximate solution may no longer be accurate enough, because165

the SC assumption implies that the active set cannot change. While that is usually true for small166

perturbations, large changes in ∆p may very well induce active set changes.167

It can be seen that the sensitivity system corresponds to the stationarity conditions for a168

particular QP. This is not coincidental. It can be shown that for ∆p small enough, the set {i : µ(p̄)i >169

0} is constant for p̄ = p0 + ∆p. Thus we can form a QP wherein we are potentially moving off of170

weakly active constraints while staying on the strongly active ones. The primal-dual solution of this171

QP is in fact the directional derivative of the primal-dual solution path χ∗(p), λ∗(p), µ∗(p).172

Theorem 5. Let F, c, g be twice continuously differentiable in p and χ near (χ∗, p0), and let the LICQ and173

SSOSC hold at (χ∗, p0). Then the solution (χ∗ (p) , λ∗ (p) , µ∗ (p)) is Lipschitz continuous in a neighborhood174

of (χ∗, λ∗, µ∗, p0), and the solution function (χ∗ (p) , λ∗ (p) , µ∗ (p)) is directionally differentiable.175

Moreover, the directional derivative uniquely solves the following quadratic problem176

min
4χ

1
24χT∇2

χχL (χ∗, p0, λ∗, µ∗)4χ +4χT∇2
pχL (χ∗, p0, λ∗, µ∗)4p (10)

s.t. ∇χci (χ
∗, p0)

T4χ +∇pci (χ
∗, p0)

T4p = 0 i = 1, . . . nc

∇χgj (χ
∗, p0)

T4χ +∇pgj (χ
∗, p0)

T4p = 0 j ∈ K+

∇χgj (χ
∗, p0)

T4χ +∇pgj (χ
∗, p0)

T4p ≤ 0 j ∈ K0,

where K+ =
{

j ∈ Z : µj > 0
}

is the strongly active set and K0 =
{

j ∈ Z : µj = 0
}

is the union of the weakly177

active and inactive set.178

Proof. See [42, Section 5.1-5.2] and [43, Proposition 3.4.1].179

The theorem above gives solution of the perturbed NLP (3) by solving a QP problem. Note that180

regardless of the inertia of the Lagrangian Hessian, if the SSOSC holds, it is positive definite on the181

null-space of the equality constraints, and thus the QP defined is convex with an easily obtainable182

finite global minimizer. In [30] it is noted that as the solution to this QP is the directional derivative183

of the primal-dual solution of the NLP, it is a predictor step, a tangential first-order estimate of the184

change in the solution subject to a change in the parameter. We refer to the QP (10) as a pure-predictor.185

Note that obtaining the sensitivity via (10) instead of (6) has the advantage that changes in the active186

set can be accounted for correctly and strict complementarity (SC) is not required. On the other hand,187

when SC does hold (6) and (10) are equivalent.188

3.2. Pathfollowing based on Sensitivity Properties189

Equation (6) and the QP (10) describe the change in the optimal solutions for small perturbations.190

They cannot be guaranteed to reproduce the optimal solution accurately for larger perturbations,191

because of curvature in the solution path and active set changes that happen further away from the192

linearization point. One approach to handle such cases is to divide the overall perturbation into193

several smaller intervals, and to iteratively use the sensitivity to track the path of optimal solutions.194

The general idea of a pathfollowing method is to reach the solution of the problem at a final195

parameter value p f by tracing a sequence of solutions (χk, λk, µk) for a series of parameter values196

p(tk) = (1− tk) p0 + tk p f with 0 = t0 < t1 < ... < tk < ... < tN = 1. The new direction is found197

by evaluating the sensitivity at the current point. This is similar to an Euler integration for ordinary198

differential equations.199

However, just as in the case of integrating differential equations with an Euler method, a200

pathfollowing algorithm that is only based on the sensitivity calculated by the pure predictor QP201

may fail to track the solution accurately enough, and may lead to poor solutions. To address this202

problem, a common approach is to include elements that are similar to a Newton step, which force203
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the pathfollowing algorithm towards the true solution. It has been found that such a corrector element204

can be easily included into a QP that is very similar to the predictor QP (10). Consider approximating205

(3) by a QP, linearizing with respect to both χ and p, but again enforcing equality of the strongly206

active constraints, as we expect them to remain strongly active at a perturbed NLP:207

min
4χ,4p

1
2
4χT∇2

χχL (χ∗, p0, λ∗, µ∗)4χ +4χT∇2
pχL (χ∗, p0, λ∗, µ∗)4p +∇χFT4χ +∇pF4p +

1
2
4pT∇2

ppL (χ∗, p0, λ∗, µ∗)4p

(11)

s.t.ci (χ
∗, p0) +∇χci (χ

∗, p0)
T4χ +∇pci (χ

∗, p0)
T4p = 0 i = 0, . . . nc

gj (χ
∗, p0) +∇χgj (χ

∗, p0)
T4χ +∇pgj (χ

∗, p0)
T4p = 0 j ∈ K+

gj (χ
∗, p0) +∇χgj (χ

∗, p0)
T4χ +∇pgj (χ

∗, p0)
T4p ≤ 0 j ∈ K0.

208

In our NMPC problem Pnmpc, the parameter p corresponds to the current "initial" state, xk.209

Moreover, the cost function is independent of p, and we have that ∇pF = 0. Since the parameter210

enters the constraints linearly, we have that ∇pc and ∇pg are constants. With these facts, the above211

QP simplifies to212

min
4χ

1
24χT∇2

χχL (χ∗, p0 +4p, λ∗, µ∗)4χ +∇χFT4χ (12)

s.t. ci (χ
∗, p0 +4p) +∇χci (χ

∗, p0 +4p)T4χ = 0 i = 1, . . . nc

gj (χ
∗, p0 +4p) +∇χgj (χ

∗, p0 +4p)T4χ = 0 j ∈ K+

gj (χ
∗, p0 +4p) +∇χgj (χ

∗, p0 +4p)T4χ ≤ 0 j ∈ K0.

We denote the QP formulation (12) as the predictor-corrector. We note that this QP is similar to the QP213

proposed in the real-time iteration scheme [11]. However, it is not quite the same, as we enforce the214

strongly active constraints as equality constraints in the QP. As explained in [30], this particular QP215

tries to estimate how the NLP solution changes as the parameter does in the predictor component216

and refines the estimate, in more closely satisfying the KKT conditions at the new parameter, as a217

corrector.218

The predictor-corrector QP (12) is well suited for use in a pathfollowing algorithm, where the
optimal solution path is tracked from p0 to a final value p f along a sequence of parameter points
p(tk) = (1− tk) p0 + tk p f with 0 = t0 < t1 < ... < tk < ... < tN = 1. At each point p(tk), the QP is
solved, and the primal-dual solutions updated as

χ(tk+1) = χ(tk) + ∆χ (13)

λ(tk+1) = ∆λ (14)

µ(tk+1) = ∆µ, (15)

where ∆χ is obtained from the primal solution of QP (12), and where ∆λ and ∆µ correspond to the219

Lagrange multipliers of QP (12).220

Changes in the active set along the path are detected by the QP as follows: If a constraint becomes221

inactive at some point along the path, the corresponding multiplier µj will first become weakly active,222

i.e. it will be added to the set K0. Since it is not included as an equality constraint, the next QP solution223

can move away from the constraint. Similarly, if a new constraint gj becomes active along the path, it224

will make the corresponding linearized inequality constraint in the QP active, and be tracked further225

along the path.226

The resulting pathfollowing algorithm is summarized with its main steps in Algorithm 2, and227

we are now in the position to apply it in the Advanced-Step NMPC setting described in Section228

2.2. In particular, the pathfollowing algorithm is used to find a fast approximation of the optimal229
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Algorithm 2: Pathfollowing Algorithm

Input: initial variables from NLP χ∗(p0), λ∗(p0), µ∗(p0)
fix stepsize4t and set N = 1

∆t
set initial parameter value p0,
set final parameter value p f ,
set t = 0,
set constant 0 < α1 < 1.
Output: primal variable χ and dual variables λ, µ along the path

1 for k← 1 to N do
2 Compute step ∆p = pk − pk−1
3 Solve QP problem ; /* to obtain ∆χ, ∆λ, ∆µ */

4 if QP is feasible then
5 /* perform update */

6 χ← χ + ∆χ; /* update primal variables */

7 Update dual variables appropriately; using equations (8) and (9) for the
pure-predictor method or (14) and (15) for the predictor-corrector method

8 t← t + ∆t ; /* update stepsize */

9 k← k + 1
10 else
11 /* QP is infeasible, reduce QP stepsize */

12 4t← α14t
13 t← t− α14t

NLP solution corresponding to the new available state measurement, which is done by following the230

optimal solution path from the predicted state to the measured state.231

3.3. Discussion of the path-following asNMPC approach232

In this section, we discuss some characteristics of the path-following asNMPC approach233

presented in this paper. We also present a small example to demonstrate the effect of including the234

strongly active constraints as equality constraints in the QP.235

A reader who is familiar with the real-time iteration scheme [11] will have realized that the QPs236

(12) that are solved in our path-following algorithm are similar to the ones proposed and solved in the237

real-time iteration scheme. However, there are some fundamental differences between the standard238

real-time iteration scheme as described in [11] and the asNMPC with a path-following approach.239

This work is set in the Advanced-Step NMPC framework, i.e. at every time-step, the full NLP is240

solved for a predicted state. When the new measurement becomes available, the precomputed NLP241

solution is updated by tracking the optimal solution curve from the predicted initial state to the new242

measured or estimated state. Any numerical homotopy algorithm can be used to update the NLP243

solution, and we have presented a suitable one in this paper. Note that the solution of the last QP244

along the path corresponds to the updated NLP solution, and only the inputs computed in this last245

QP will be injected into the plant.246

The situation is quite different in the RTI scheme described in [11]. Here the NLP is not solved247

at all during the MPC sampling times. Instead, at each sampling time, a single QP is solved, and the248

computed input is applied to the plant. This will require very fast sampling times, and if the QP fails249

to track the true solution due to very large disturbances, similar measures as in the Advanced-Step250

NMPC procedure (i.e. solving the full NLP) must be performed to get the controller “on track”251

again. Note that the inputs computed from every QP are applied to the plant, and not as in our252

path-following asNMPC only the input computed in the last QP along the homotopy.253

Finally, in the QPs of the previously published real-time iteration schemes [11] all inequality254

constraints are linearized and included as QP inequality constraints. Our approach in this paper,255
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Figure 1. Constraints of NLP (16) in Example 1, and their linearization at x̂ = (0.1,−2).

however, distinguishes between strongly and weakly active inequality constraints. Strongly active256

inequalities are included as linearized equality constraints in the QP, while weakly active constraints257

are linearized and added as inequality constraints to the QP. This ensures that the true solution path is258

tracked more accurately also when the full Hessian of the optimization problem becomes non-convex.259

We illustrate this in the small example below.260

Example 1. Consider the following parametric “NLP”261

min
x

x2
1 − x2

2 (16)

s.t. x2 ≥ −2 + t,

−x2 − x2
1 + 2 ≥ 0,

for which we have plotted the constraints at t = 0 in Figure 1a. The feasible region is between the262

parabola and the horizontal line. Taking t from 0 to 1 has the effect of moving the lower constraint263

up from x2 = −2 to x2 = −1. The objective gradient is ∇ f (x) = (2x1,−2x2) and the Hessian of the264

objective is always indefinite H =

(
2 0
0 −2

)
. The constraint gradients are ∇c(x) =

(
0 1
−2x1 −1

)
.265

For t ∈ [0, 1] the primal solution is given by x∗ (t) = (0, t− 2) and the second constraint is inactive.266

The dual solution is λ∗ (t) = (−2x2, 0). At t = 0 we have x∗ = (0,−2) and the optimal multiplier at267

t = 0 is λ∗ = (4, 0). The linearized constraints for this point are shown in Figure 1b.268

We consider starting from an approximate solution at the point x̂(t = 0) = (0.1,−2), with dual269

variables λ̂(t = 0) = (4, 0), such that the first constraint is strongly active. Now consider taking the270

homotopy to t = 1.271

The pure predictor QP has the form, recalling that we enforce linearized feasibility of the inactive272

upper constraint, and that we enforce the strongly active lower constraint as equality:273

min
∆x

∆x2
1 − ∆x2

2 (17)

s.t. ∆x2 = 1,

5− 2∆x1 − ∆x2 ≥ 0



Version February 3, 2017 submitted to Processes 10 of 19

This QP is convex with a unique solution ∆x = (0, 1) resulting in the subsequent point x̂(t = 1) =274

(0.1,−1).275

The predictor corrector QP has the form276

min
∆x

∆x2
1 − ∆x2

2 + 0.2∆x1 + 4∆x2 (18)

s.t. ∆x2 = 1,

5− 2∆x1 − ∆x2 ≥ 0.

Again the problem is convex with a unique primal solution ∆x = (−0.1, 1). This step has the effect of277

moving the iterate to the true optimal solution x̂(t = 1) = (0,−1) = x∗(t = 1).278

Now consider a QP, which is the predictor-corrector QP, but without enforcing the strongly active279

constraints as equalities. This QP has been popular in the literature, and has also been applied in the280

real-time iterations scheme:281

min
∆x

∆x2
1 − ∆x2

2 + 0.2∆x1 + 4∆x2 (19)

s.t. ∆x2 ≥ 1,

5− 2∆x1 − ∆x2 ≥ 0

This QP is nonconvex and unbounded; we can decrease the objective arbitrarily by setting ∆x =282

(2.5 − 0.5r, r) and letting a scalar r ≥ 1 go to infinity. Although, there is a local minimizer at283

∆x = (−0.1, 1), a QP solver that behaves "optimally" should find the unbounded "solution". This284

last approach cannot be expected to work reliably if the full Hessian of the optimization problem may285

become non-convex, which easily can be the case when optimizing economic objective functions. We286

note, however, that if the Hessian∇xxL is positive definite, QP (19) will give the same solution as QP287

(18).288

4. Numerical Case Study289

4.1. Process Description290

We demonstrate the path-following NMPC (pf-NMPC) on an isothermal reactor and separator291

process depicted in Figure 2. The continuously stirred tank reactor (CSTR) is fed with a stream F0292

containing pure component A, and a recycle R from the distillation column. A first-order reaction293

A → B takes place in the CSTR where B is the desired product and the product with flow rate294

F is fed to the column. In the distillation column, the unreacted raw material is separated from the295

product, and recycled into the reactor. The desired product B leaves the distillation column as bottom296

product, which is required to have a certain purity. Reaction kinetic parameters for the reactor are297

described in Table 1. The distillation column model is taken from [37]. Table 2 summarizes parameters298

used in the distillation. In total, the model has 84 state variables of which 82 are from the distillation299

(concentration and holdup for each stage) and 2 from the CSTR (one concentration and one holdup).300

Table 1. Reaction kinetics parameters

Reaction Reaction rate constant [min−1] Activation energy [in J/mol]

A → B 1× 108 6× 104
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Figure 2. Diagram of CSTR and Distillation Column

Table 2. Distillation column A parameters

Parameter Value

αAB 1.5
number of stages 41

feed stage location 21

The stage cost of the economic objective function to optimize under operation is

J = pFF0 + pVVB − pBB, (20)

where pF is the feed cost, pV is steam cost, and pB is the product price. The price setting is pF =

1 $/kmol, pV = 0.02 $/kmol, pB = 2 $/kmol. The operational constraints are the concentration of
the bottom product (xB ≤ 0.1), as well as the liquid holdup at the bottom and top of the distillation
column and in the CSTR (0.3 ≤ M{B,D,CSTR} ≤ 0.7) kmol. The control inputs are reflux flow (LT),
boilup flow (VB), feeding rate to the distillation (F), distillate (top) and bottom product flow rates (D
and B). These control inputs have bound constraints as follows

0.1
0.1
0.1
0.1
0.1

 ≤


LT
VB
F
D
B

 ≤


10
4.008

10
1.0
1.0

 [kmol/min] .

First, we run a steady-state optimization with the following feed rate F0 = 0.3 [kmol/min].301

This gives us the optimal values for control inputs and state variables. The optimal steady state

input values are us =
[

1.18 1.92 1.03 0.74 0.29
]T

. The optimal state and control inputs are
used to construct regularization term added to the objective function (20). Now, the regularized stage
becomes

Jm = pFF0 + pVVB − pBB− pDD + (z− xs)
T Q1 (z− xs) + (v− us)

T Q2 (v− us) . (21)

The weights Q1 and Q2 are selected to make the rotated stage cost of the steady state problem strongly302

convex, for details see [22]. This is done to obtain an economic NMPC controller that is stable.303
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10-4 Distillation: Bottom composition
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Figure 3. The difference in predicted states variables between iNMPC and pf-NMPC from second
iteration.

Secondly, we set up the NLP for calculating the predicted state variables z and predicted control304

inputs v. We employ a direct collocation approach on finite elements using Lagrange collocation to305

discretize the dynamics, where we use three collocation points in each finite element. By using the306

direct collocation approach, the state variables and control inputs become optimization variables.307

The economic NMPC case study is initialized with the steady state values for a production rate308

F0 = 0.29 kmol/min, such that the Economic NMPC controller is effectively controlling a throughput309

change from F0 = 0.29 kmol/min to F0 = 0.3 kmol/min. We simulate 150 MPC iterations, with a310

sample time of 1 minute. The prediction horizon of the NMPC controller is set to 30 minutes. This311

setting results in an NLP with 10314 optimization variables. We use CasADi [38] (version 3.1.0-rc1)312

with IPOPT [23] as NLP solver. For the QPs, we use MINOS QP [39] from TOMLAB.313

4.2. Comparison of Open-loop Optimization Results314

In this section we compare the solutions obtained from the pathfollowing algorithm with the315

“true” solution of the optimization problem Pnmpc obtained by solving the full NLP. To do this,316

we consider the second MPC iteration, where the pathfollowing asNMPC is used for the first time317

to correct the one-sample ahead-prediction (in the first MPC iteration, to start up the asNMPC318

procedure, the full NLP is solved twice). We focus on the interesting case where the predicted state319

is corrupted by noise, such that the pathfollowing algorithm is required to update the solution.320

In Figure 3 we have plotted the difference between a selection of predicted states, obtained by321

applying the pathfollowing NMPC approaches, and the ideal NMPC approach. We observe that322

the one-step pure-predictor tracks the ideal NMPC solution worst, and the four-step pathfollowing323

with predictor-corrector tracks best. This happens because the predictor-corrector pathfollowing QP324

has an additional linear term in the objective function and constraint for the purpose of moving closer325

to the solution of the NLP (the "corrector" component), as well as tracing the first order estimate of326

the change in the solution (the "predictor"). The four-step pathfollowing performs better because a327

smaller step size gives finer approximation of the parametric NLP solution.328
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Table 3. Approximation error using pathfollowing algorithms

Average approximation error between ideal NMPC and Pathfollowing asNMPC

PF with predictor QP, 1 step 4.516
PF with predictor QP, 4 step 4.517
PF with predictor-corrector QP, 1 step 1.333× 10−2

PF with predictor-corrector QP, 4 step 1.282× 10−2

This is also reflected in the average approximation errors given in 3. The average approximation329

error has been calculated by averaging the error 1-norm
∣∣∣∣∣∣χpath f ollowing − χideal NMPC

∣∣∣∣∣∣
1

over all MPC330

iterations.331

We observe that in this case study, the accuracy of a single predictor-corrector step is almost as332

good as performing four predictor-corrector steps along the path. That is, a single predictor-corrector333

QP update may be sufficient for this application. However, in general, in presence of larger noise334

magnitudes and longer sampling intervals, which cause poorer predictions, a single-step update may335

no longer lead to good approximations. We note that the large error in the predictor-path-following336

method the solution accuracy several orders of magnitude.337

On the other hand, given that the optimization vector χ has dimension 10164 for our case study,338

the average 1-norm approximation error of ca. 4.5 does result in very small errors on the individual339

variables.340

4.3. Closed-loop Results – No Measurement Noise341

In this section we compare the results for closed loop process operation. We consider first the case342

without measurement noise, and we compare the results for ideal NMPC with the results obtained343

by the pathfollowing algorithm with the pure-predictor QP (10) and the predictor-corrector QP (12).344

Figure 4 shows the trajectories of the top and bottom composition in the distillation column, and the345

reactor concentration and holdup. Note that around 120 minutes the bottom composition constraint346

in the distillation column becomes active, while the CSTR holdup is kept at its upper bound all the347

time (any reduction in the holdup will result in an economic and product loss). In this case (without348

noise), the prediction and the true solution only differ due to numerical noise. There is no need to349

update the prediction, and all approaches give exactly the same closed-loop behavior. This is also350

reflected in the accumulated stage cost, which is shown in Table 4.351

Table 4. Comparison of economic NMPC controllers. Accumulated stage cost is in $.

Economic NMPC controller Acc. stage cost

iNMPC -296.42
pure-predictor QP:

pf-NMPC one step -296.42
pf-NMPC four steps -296.42

predictor-corrector QP:
pf-NMPC one step -296.42
pf-NMPC four steps -296.42

The closed-loop control inputs are given in Figure 5. Note here that the feed rate into the352

distillation column is adjusted such that the reactor holdup is at its constraint all the time.353
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Figure 4. Recycle composition, bottom composition, reactor concentration, and reactor holdup.
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Figure 5. Optimized control inputs.
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Figure 6. Recycle composition, bottom composition, reactor concentration, and reactor holdup.

Table 5. Comparison of economic NMPC controllers. Accumulated stage cost is in $.

economic NMPC controller Acc. stage cost

iNMPC -296.82
pure-predictor QP:

pf-NMPC one step -297.54
pf-NMPC four steps -297.62

predictor-corrector QP:
pf-NMPC one step -296.82
pf-NMPC four steps -296.82

4.4. Closed-loop Results – With Measurement Noise354

Next, we run simulations with measurement noise on all the holdups in the system. The355

noise is taken to have a normal distribution with zero mean and a variance of one percent of the356

steady state values. This will result in corrupted predictions that have to be corrected for by the357

pathfollowing algorithms. Again, we perform simulations with one and four steps of pure-predictor358

and predictor-corrector QPs.359

Figure 6 shows the top and bottom compositions of the distillation column, together with the360

concentration and holdup in the CSTR. The states are obtained under closed-loop operation with the361

ideal and pathfollowing NMPC algorithms. Due to noise it is not possible to avoid violation of the362

active constraints in the holdup of the CSTR and the bottom composition in the distillation column.363

This is the case for both the ideal NMPC and the pathfollowing approaches.364

The input variables shown in Figure 7 are also reflecting the measurement noise, and again we365

see that the fast sensitivity NMPC approaches are very close to the ideal NMPC inputs.366

Finally, we compare the accumulated economic stage cost in Table 5. Here we observe that our367

proposed predictor-corrector pathfollowing algorithm performs identically to the ideal NMPC. This368

is as expected, since the predictor-corrector pathfollowing algorithm is trying to reproduce the true369

NLP solution. Interestingly, in this case, the larger error in the pure predictor pathfollowing NMPC370
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Figure 7. Optimized control inputs.

leads to a better economic performance of the closed loop system. This behavior is due to the fact371

that the random measurement noise can have positive and negative effect on the operation, which is372

not taken into account by the ideal NMPC (and also the predictor-corrector NMPC). In this case, the373

inaccuracy of the pure predictor pathfollowing NMPC led to better economic performance in closed374

loop. But it could also have been the opposite.375

5. Discussion and Conclusion376

We applied the pathfollowing ideas developed in Jäschke et al. [22] and Kungurtsev and377

Diehl [30] to a large-scale process containing a reactor, a distillation column and a recycle stream.378

Compared with single-step updates based on solving a linear system of equations as proposed by [14]379

our pathfollowing approach requires somewhat more computational effort. However, the advantage380

of the pathfollowing approach is that active set changes are handled rigorously. Moreover, solving a381

sequence of a few QPs can be expected to be much faster than solving the full NLP, especially since382

they can be initialized very well, such that the computational delay between obtaining the new state383

and injecting the updated input into the plant is still sufficiently small. In our computations, we have384

considered a fixed step-size for the pathfollowing, such that the number of QPs to be solved is known385

in advance.386

The case without noise does not require the pathfollowing algorithm to correct the solution,387

because the prediction and the true measurement are identical, except for numerical noise. However,388

when measurement noise is added to the holdups, the situation becomes different. In this case, the389

prediction and the measurements differ, such that an update is required. All four approaches track the390

ideal NMPC solution to some degree, however, in terms of accuracy the predictor-corrector performs391

consistently better. Given that the pure sensitivity QP and the predictor-corrector QP are very similar392

in structure, it is recommended to use the latter in the pathfollowing algorithm, especially for highly393

nonlinear processes and cases with significant measurement noise.394

We have presented basic algorithms for pathfollowing, and they seem to work well for the395

cases we have studied, such that the pathfollowing algorithms do not diverge from the true396

solution. In principle, however, the path-following algorithms may get lost, and more sophisticated397

implementations need to include checks and safeguards. We note, however, that the application of398
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the pathfollowing algorithm in the Advanced-Step NMPC framework has the desirable property that399

the solution of the full NLP acts as a corrector, such that if the pathfollowing algorithm diverges from400

the true solution, this will be most likely for only one sample time, until the next full NLP is solved.401

The pathfollowing algorithm in this paper (and the corresponding QPs) still relies on the402

assumption of linearly independent constraint gradients. If there are path-constraints present in the403

discretized NLP, care must be taken to formulate them in such a way that LICQ is not violated. In404

future work we will consider extending the pathfollowing NMPC approaches to handle more general405

situations with linearly dependent inequality constraints.406
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