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CONVERGENCE OF A PREDICTOR-CORRECTOR SENSITIVITY BASED
PARAMETRIC NLP SOLVER FOR DUAL-DEGENERATE PROBLEMS

VYACHESLAV KUNGURTSEV†, JOHANNES JÄSCHKE‡

Abstract. Parametric optimization, tracking the solution of an optimization problem dependant on a parameter
as the parameter changes, is an important research area for a number of practical problems. Most path-following
algorithms for tracing a solution path of a parametric nonlinear optimization problem are only certifiably convergent
under strong regularity assumptions about the problem functions, in particular, the linear independence of the
constraint gradients at the solutions, which implies a unique multiplier solution for each nonlinear program. In this
paper we propose and prove convergence results for a procedure designed to solve problems satisfying a weaker set
of conditions, allowing for non-unique (but bounded) multipliers, applying known sensitivity results for this class of
problems. Each iteration along the path consists of three parts: (1) a Newton corrector step for the primal and dual
variables, this is obtained by solving a linear system of equations. (2) a tangential predictor step for the primal and
dual variables, which is found as the solution of a quadratic programming problem, and (3) a jump step for the dual
variables, which is found as the solution of a linear programming problem. We present a convergence proof, and
demonstrate the robustness of the algorithm numerically on a couple of illustrative examples.

1. Introduction. We consider the parametric optimization problem, with f : Rn × R → R
and c : Rn × R→ Rm,

minx∈Rn f(x, t)

subject to ci(x, t) = 0, i ∈ E ,
ci(x, t) ≥ 0, i ∈ I.

(1.1)

where E = {1, ...,me} and I = {me + 1, ...,m} and we seek to trace the solution path along a
parameter change from t = 0 to t = 1.

We assume that ∇xc(x, t1) = ∇xc(x, t2) and ∇xxf(x, t1) = ∇xxf(x, t2) for all t1, t2 as well as
∇xtf(x1, t) = ∇xtf(x2, t) and ∇tc(x1, t) = ∇tc(x2, t) for any two x1 and x2. In particular, these
conditions imply that f(x, t) and c(x, t) are of the form f(x, t) = f0(x) + (aTf x)t and c(x, t) =

c0(x) + act where af ∈ Rn and ac ∈ Rm. This places the optimization problem under the standard
notion of canonical perturbations [17].

Note that the problem class in problem (1.1) is not as restrictive as it may seem, as a more
generic parametric optimization problem,

minx∈Rn f̃(x, s)

subject to c̃i(x, s) = 0, i ∈ {1, ..., m̃e},
c̃i(x, s) ≥ 0, i ∈ {m̃e + 1, ..., m̃},
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where s ∈ Rp is a vector and the solution is traced from s0 to sf , and f̃(x, s) and c̃(x, s) have
more arbitrary, potentially nonlinear dependence on s can be rewritten in the form (1.1) by the
incorporation of another variable z, writing f̃ and c̃ as f̃(x, z) and c̃(x, z) and adding the equality
constraint cm̃+1 = z − (1− t)s0 + tsf = 0.

Parametric problems such as (1.1) occur in many applications such as model predictive control
[4, 13, 18], stochastic optimization [6], global [26] and bilevel optimization [2]. Fast and accurate
performance is especially demanded for real-time model predictive control, for which procedures
that perform with sufficient speed for linear problems are abundant [24], but the implementation
for nonlinear models has generally been more challenging

In this paper we present an algorithm for parametric optimization algorithms that applies sen-
sitivity theory of optimization problems subject to perturbations. A novel feature of this algorithm
is that it will be shown that it is convergent for problems that are dual-degenerate, i.e., do not have
a unique multiplier for the optimization problem at every value of the parameter. In particular we
shall rely on the sensitivity results presented in [19], which shows B-differentiability of the primal
solution path under a set of weak regularity conditions.

1.1. Notation. Given vectors a and b with the same dimension, the vector with ith component
aibi is denoted by a · b. Similarly, min(a, b) is the vector with components min(ai, bi). The vectors
e and ej denote, respectively, the column vector of ones and the jth column of the identity matrix
I. The dimensions of e, ei and I are defined by the context. The ith component of a vector labeled
with a subscript will be denoted by [vα]i. Similarly, if K is an index set, vK and [vα]K indicate
the vector with |K| components composed of the entries of v and vα, respectively, corresponding to
those indices in K. If there exists a positive constant γ such that ‖αj‖ ≤ γβj , we write αj = O(βj).
If there exists a sequence γj → 0 such that ‖αj‖ ≤ γjβj , we say that αj = o(βj).

1.2. Background. We recall the definition of the first-order optimality conditions,

Definition 1.1 (First-order necessary conditions). A vector x∗ ∈ Rn satisfies the first-order
necessary optimality conditions for (1.1) at t if there exists a y∗ ∈ Rm such that,

∇xf(x∗, t) = ∇xc(x∗, t)y∗,
ci(x

∗, t) = 0, i ∈ E
ci(x

∗, t) ≥ 0, i ∈ I
c(x∗, t)T y∗ = 0,

y∗i ≥ 0, i ∈ I.

(1.2)

We denote Λ(x∗, t) as the set of dual vectors y∗ corresponding to x∗ such that (x∗, y∗) satisfy the
first order necessary conditions at t.

Denoting the normal cone N (y) to be,

N (y) =

{
{x|x ≥ 0 and xT y = 0} if y ≥ 0,

∅ otherwise

an alternative formulation of (1.2) is given as,

∇xf(x∗, t) = ∇xc(x∗, t)y∗,
cE(x∗, t) = 0,
cI(x∗, t) ∈ N (yI).
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These conditions necessarily hold for any local minimizer x∗ which satisfies a constraint qualifi-
cation, a geometric regularity condition involving the local properties of the feasible region. There
are a number of constraint qualifications of varying restrictiveness, a few of which we will mention
later in this section.

We will define A(x∗, t) to be the set of inequality constraint indices i ∈ I such that for i ∈
A(x∗, t), ci(x∗, t) = 0, A0(x∗, y∗, t) ⊆ A(x∗, t) to be the set such that i ∈ A0(x∗, y∗, t) implies that
[y∗]i = 0 and A+(x∗, y∗, t) ⊆ A(x∗, t) to be the set such that i ∈ A+(x∗, y∗, t) implies that [y∗]i > 0.
We define A+(x∗, t) = ∪y∗∈Λ(x∗,t)A+(x∗, y∗, t) and A0(x∗, t) = ∩y∗∈Λ(x∗,t)A0(x∗, y∗, t).

The Lagrangian function associated with (1.1) is L(x, y, t) = f(x, t) − c(x, t)T y. The Hessian
of the Lagrangian with respect to x is denoted by

H(x, y, t) := ∇2
xxf(x, t)−

m∑
i=1

yi∇2
xxci(x, t).

The strong form of the second-order sufficiency condition is defined as follows.

Definition 1.2 (Strong second-order sufficient conditions (SSOSC)).

A primal-dual pair (x∗, y∗) satisfies the strong second-order sufficient optimality conditions at
t if it satisfies the first-order conditions (1.2) and

dTH(x∗, y∗, t)d > 0 for all d ∈ C̃(x∗, y∗, t) \ {0}, (1.3)

where d ∈ C̃(x∗, y∗, t) if ∇xci(x∗, t)T d = 0 for i ∈ A+(x∗, y∗, t) ∪ E.

The generalized SSOSC is defined as,

Definition 1.3 (Generalized SSOSC (GSSOSC)). A primal vector x∗ satisfies the generalized
strong second-order sufficient optimality conditions at t if (x∗, y∗) satisfies the SSOSC for all y∗ ∈
Λ(x∗, t).

We shall now define a few constraint qualifications relevant for this paper.

Definition 1.4. The Linear Independence Constraint Qualification (LICQ) holds for (1.1) at
t for a feasible point x if the set of vectors {∇xci(x, t)}i∈E∪A(x,t) is linearly independent.

Definition 1.5. The Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds
for (1.1) at t for a feasible point x if,

1. {∇xci(x, t)}i∈E is linearly independent, and
2. There exists a p such that ∇xci(x, t)T p > 0 for all i ∈ A(x, t).

Equivalently, by the theorem of the alternative [22], the MFCQ holds if there is no set of scalars
{αi}i∈{1,...,m} such that

1. For i ∈ I, αi ≥ 0,
2. Either there exists i ∈ E such that αi 6= 0 or

∑
i∈I αi > 0 and,

3. ∑
i∈E∪A(x,t)

αi∇xci(x, t) = 0.

Definition 1.6. The Constant Rank Constraint Qualification (CRCQ) holds for (1.1) at t
for a feasible point x if there exists a neighborhood N of x such that for all subsets U ⊆ E ∪A(x, t),
the rank of {∇xci(x, t)}i∈U is equal to the rank of {∇xci(x̄, t)}i∈U for all x̄ ∈ N .

Next, we need the notion of an outer graphical derivative and proto-differentiability [21].
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Definition 1.7. For a multifunction S : Rp ⇒ Rd, the outer graphical derivative of S at w̄
for v̄ ∈ S(w̄) is denoted by DS(w̄|v̄) : Rp ⇒ Rd and defined as,

DS(w̄|v̄)w′ = {v′|∃w′ν → w′, τν ↓ 0 with (v̄ν − v̄)/τν → v′ for some v̄ν ∈ S(w̄ + τνw
′
ν)}.

S is said to be proto-differentiable at w̄ for v̄ if every vector (w′, v′) ∈ graph(DS(w̄|v̄)w′) is
equal to the following limit,

(w′, v′) = lim
s↓0

(w(s), v(s))− (w̄, v̄)

s
, (1.4)

for some selection mapping s→ (w(s), v(s)) : [0, ε]→ graph(S) for some small ε.
In particular, we will be interested in the multi-function corresponding to a local primal-dual

solution set for the NLP subject to a parameter,

K(t) := {x∗(t),Λ(x∗(t), t)}.

We define the distance of a point to the nearest primal-dual solution by δ(x, y, t),

δ(x, y, t) =
√
‖x− x∗(t)‖2 + dist(y,Λ(x∗(t), t))2,

where x∗(t) is the closest primal solution to (1.1) at t. We will also sometimes write δ(x, t) to
denote δ(x, t) = ‖x− x∗(t)‖.

The optimality residual η(x, y, t) is defined as

η(x, y, t) =

∣∣∣∣∣∣
∣∣∣∣∣∣
∇xf(x, t)−∇xc(x, t)y

c(x, t)E
[min(c(x, t), y)]I

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

.

2. Background.

2.1. Previous results on parametric optimization and our contribution. In this sec-
tion we review the literature on parametric optimization, highlighting several important features
that have proven crucial for the development of fast and reliable algorithms.

A general pathfollowing procedure for nonlinear parametric equations includes a predictor and
a corrector, where a predictor uses the tangent to the solution path to estimate the solution at a
subsequent parameter value, and a corrector modifies the predictor step by incorporating additional
information to take a step closer to the solution path (for an overview, see [1]). Predictor steps
are first-order approximations and corrector steps use some form of Newton iteration. See, for
instance [3, Chapter 5] for a discussion of Newton’s method for continuation methods. Of course,
optimization presents a generalized equation, instead of a standard nonlinear equation, and thus
extensions of standard pathfollowing concepts need to be developed.

The seminal book [10] considered the parametric optimization problem in considerable detail.
The authors classified all of the possible forms of primal or dual bifurcation of the parametric
optimization problem, and the degeneracy conditions that are associated with these bifurcations.
Based on this classification and the sensitivity theory available at the time, the authors formulated
plausible procedures for tracing the solution path along a homotopy. New sensitivity theory has been
developed after this book appeared, however, particularly for degenerate problems (see, e.g., [12]).

New results on the sensitivity of nonlinear programs subject to a parameter have motivated
some predictor methods [13,28]. However, the directional derivative (predictor) is just a first-order
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estimate. If the problem is highly nonlinear, and there is notable curvature in the solution path,
over the iterations, the path can slowly diverge from the true solution path.

Sequential Quadratic Programming (SQP) methods, wherein an nonlinear program (NLP) is
solved by solving a sequence of quadratic programs approximating it (QP), were presented as a rea-
sonable choice for solving parametric problems [4] because of their desirable warm-start properties.
For an overview of SQP methods, see [9]. In particular, one solves the problem at each parameter
with a few steps of an SQP algorithm, using the solution at the previous value of the parameter
as an initial guess for the subsequent one. With a correctly estimated active set, an SQP iteration
can be equivalent to a Newton step, and thus corresponds precisely to a corrector.

One major difficulty with practical implementation of SQP methods, however, is that whereas
at the solution satisfying the SSOSC, the reduced Hessian (Lagrangian Hessian in the particular
subspace) is positive definite, the full Hessian may not be, and the resulting subproblems may be
nonconvex, with possibly multiple or unbounded solutions (for a detailed discussion of these chal-
lenges, see [14, Chapter 5]). There are a number of strategies devised to deal with these issues. but
they typically require the use of inexact Hessian information, and thus lose the Newton/corrector-
like behavior of the algorithm and as such the major potential benefit of using SQP for parametric
optimization.

In addition, a strongly desirable property of a parametric optimization algorithm, in particular
one applicable to optimal control problems is the capacity to handle degeneracy. In this paper we will
assume that the MFCQ and the CRCQ hold for every t across the solution path, but not necessarily
the LICQ. This conditions are typical for optimal control problems [23] because the dynamics of
the system appear discretized as equality constraints in the optimization problem, and aside from
certain classes of singular ODEs/DAEs, these are expected to have linearly independent gradients
if they are well formulated. However, the controls and states are often subject to bound constraints
or simple linear constraints, and when many of these constraints are active, the entire set of equality
plus active bound constraints becomes overdetermined, and the set gradients corresponding to all
active constraints become linearly dependent. However, bound constraints are ”nice” in the sense
of providing a strictly feasible direction (to satisfy the MFCQ) and are constant, and thus trivially
have constant rank gradients across the entire primal space (thus satisfy the CRCQ).

The literature on proofs of convergence of parametric optimization algorithms, with the one
exception of [15], has always assumed strong regularity, which requires linear independence of
the constraint gradients at the solution, or at least the uniqueness of the optimal multiplier at
the solution for every parameter [5, 27]. The paper [15] considers the case of general degeneracy,
including problems satisfying no constraint qualification (but the existence of a Lagrange multiplier),
but the procedure suggested requires solving a number of LPs to find possible multipliers to branch
from, and thus relies on too weak assumptions for our purposes.

The development of an appropriate algorithm that follows the predictor-corrector framework
in a reliable and efficient way is challenging. The predictor has to use the appropriate sensitivity
results, the corrector needs to use a well-defined Newton iteration despite dual degeneracy, and
there must be a procedure to handle possible discontinuous jumps along the optimal multiplier
across a change in the parameter wherein there is a change in the optimal active set. The algorithm
presented here satisfies all of these features.
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t = 0

t = 0.5

t = 1

Fig. 1. Problem (2.1) illustrated. The axes are for x1 and x2, the straight lines are the constraints, the black
dot is the optimal point, and the grey area indicates the infeasible region.

2.2. Illustrative Example. We present the following problem,

minx −ex2 + 1
2 (x1 − x3)2

subject to x3 − 10t = 0
x1 − x2 ≥ 0

10t− x2 ≥ 0
−x1 − x2 + 20t ≥ 0

5− x1 ≥ 0
1
2x1 − x2 + 25

2 − 10t ≥ 0
− 1

2x1 − x2 + 15
2 − 10t ≥ 0

(2.1)

It can be verified that the solution is x∗(t) = (10t, 10t, 10t) for t ∈ [0, 1
2 ] and x∗(p) = (5, 10−10t, 10t)

for t ∈ [5, 10]. The MFCQ, but not the LICQ holds for all x∗(t), t ∈ [0, 1] (and indeed for all t).
Since all of the constraints are linear, the CRCQ also holds. The constraint gradients with respect
to t are,

∇tc(x, t) =



10
0
10
20
0
−10
−10


The first three inequality constraints are active for t ∈ [0, 1

2 ), all constraints are active at t = 0.5
and the last three constraints are active for t ∈ ( 1

2 , 1]. Noting that x3 is just a placeholder for
nonlinear dependence of the objective function with respect to the parameter, i.e., setting x3 = 10t,
we illustrate the problem with respect to x1 and x2 in Figure 1 for t = 0, 1

2 , 1, noting by a circular
dot where the primal solution is, the lines the constraints, and the grey area corresponds to the
infeasible region.
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The set of optimal multipliers are,

Λ(x∗(0)) = {(0, y1, y2, y1, 0, 0, 0), 2y1 + y2 = 1, y1, y2 ≥ 0},
Λ(x∗(0.5)) = {(0, y1, y2, y3, y4, y5, y6), y1 + y2 + y3 + y5 + y6 = e5, y1 − y3 − y4 + 1

2y5 − 1
2y6 = 0,

yi ≥ 0, for all i}
Λ(x∗(1)) = {(5, 0, 0, 0, y1, y2, y3), −2y1 + y2 − y3 = −5, y2 + y3 = 1}.

Notice that it holds that the last three multipliers are always zero for t ∈ [0, 1
2 ), then at least two

components are strictly positive for t ∈ ( 1
2 , 1]. Therefore, it is desired for a parametric optimization

algorithm to be able to formulate a multiplier that jumps discontinuously across t < 0.5 to t > 0.5.

3. Algorithm.

3.1. Overview. In this section we describe our new algorithm. To illustrate the procedure,
we recall the notions of a pathfollowing as given in, for example, [1], and consider Figure 2. Let the
current point be xk, the solution at tk and tk+∆t be x∗(tk) and x∗(tk+∆t), respectively. We wish
to take a step from xk that approximates x∗(tk + ∆t). A predictor step uses information about the
tangent of the solution path, using the slightly inaccurate information at xk (as in, one can take an
approximation of the tangent at x∗(tk) using problem information at xk). Taking a pure predictor
step would result in moving to x3. A pure corrector takes a step towards a more accurate solution
at a given point, which corresponds to x2. Combining the two, if we do not re-evaluate the function
or its derivatives at x2 or x3, a predictor-corrector would result in a step to x4.

Alternatively, one can re-evaluate the problem functions at x2 or x3 yielding a more accurate
pathfollowing procedure at the expense of additional computational cost. In our algorithm, however,
we take a corrector step, then, without performing any additional function evaluations, use the
corrector step and updated function estimates arising from linearizations, to generate a slightly
more accurate predictor, and so obtain the estimate x5 as the approximation to x∗(tk + ∆t).

xk

x∗(tk)

x∗(tk + ∆t)

x2 x3

x4

x5

x

t
tk + ∆ttk

Fig. 2. Predictor, corrector, predictor-
corrector, and corrected predictor steps

3.2. Algorithm Description. Let γ be a con-
stant satisfying 0 < γ < 1 and an estimate of the
active set be [7],

Aγ(x, y, t) = {i ∈ I : ci(x, t) ≤ η(x, y, t)γ}, (3.1)

We begin each iteration with a point xk and a mul-
tiplier yk such that {∇xci(xk)}E∪{i∈I:yi>0} is linearly
independent. For the initial point, we may solve the
problem approximately using a globalized NLP solver,
then use the procedure outlined at the end of this sec-
tion to obtain this yk. We then form an estimate of
the active set A and strongly active set A+ using (3.1)
and A+ = {i : yi > 0} ∪ E .

Given a step ∆t, the algorithm, at a given
(xk, yk, t) solves the linear system to obtain the fol-
lowing corrector step,
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(
H(xk, yk, t) −∇xcA+,k

(xk, t)
∇xcA+,k

(xk, t)
T 0

)(
∆cx
∆+y

)
= −

(
∇xf(xk, t)−∇xc(xk, t)yk

cA+,k
(xk, t)

)
(CorrectStep)

to obtain (∆cx,∆+y). If there exists an i /∈ E such that [yA+,k
+ ∆+y]i < 0 then this suggests that

we are not sufficiently close to a primal-dual solution, and so we revert to an external independent
globalized optimization software to find a new primal-dual point (xk, yk) closer to (x∗(t),Λ(x∗(t)))
and satisfying the needed linear independence conditions. Otherwise, we let ∆cy ∈ Rm be such
that [∆cy]A+,k

= ∆+y and [∆cy]{1,...,m}\A+,k
= 0.

Given the correct strongly active set and a good starting point, at a given t, it should hold
that, (‖xk + ∆cx − x∗(t)‖ + dist(yk + ∆cy,Λ(x∗(t), t))) ≤ C(‖xk − x∗(t)‖ + dist(yk,Λ(x∗(t), t)))2,
and the corrector step results in an iterate that is closer to the primal-dual solution set.

We then solve the corrected predictor QP subproblem,

min∆px (∇xf(xk, t+ ∆t)−∇xf(xk, t))
T∆px+ 1

2∆px
TH(xk, yk, t+ ∆t)∆px,

subject to ∇tci(xk, t)∆t+ (∇xci(xk, t+ ∆t) +∇2
xxci(xk, t+ ∆t)∆cx)T∆px = 0,

i ∈ A+,k,
∇tci(xk, t)∆t+ (∇xci(xk, t+ ∆t) +∇2

xxci(xk, t+ ∆t)∆cx)T∆px ≥ 0,
i ∈ Ak \A+,k

(QPPredict)
Denote the primal-dual solution of this subproblem as (∆px,∆py). Note that by the properties
of f and c as a function of t, no new function evaluations need to be performed between solv-
ing (CorrectStep) and (QPPredict).

Let (∆x,∆y) = (∆cx+ ∆px,∆cy + ∆py). We then check if any new constraints have become
violated by too high a tolerance, or that the step was not a sufficiently accurate estimate of (x∗(t+
∆t),Λ(x∗(t+ ∆t), t+ ∆t)). Specifically, if,

η(xk + ∆x, yk + ∆y, t+ ∆t) > max(η(xk, yk, t), η(xk, yk, t+ ∆t))1+γ . (3.2)

we decrease ∆t and solve (QPPredict) again. Otherwise, we obtain a new estimate for the active
set by Ak+1 = Aγ(xk + ∆x, yk + ∆y, t+ ∆t) ∪ E .

In effect, the corrector QP (CorrectStep) produces an iterate closer to the primal-dual solution
set at the given t, and without the additional term involving ∇2

xxci(xk, t+ ∆t)∆cx, (QPPredict)
would be an estimate for the tangent of the pathfollowing solution curve, with the estimate derived
from information at (xk, yk). Including this extra term uses the information from the corrector,
without requiring any new function evaluations, to improve upon and generate a more accurate
prediction.

We next solve for the new multiplier,

miny yT∇tc(x+ ∆x, t+ ∆t)∆t
subject to −|∇L(xk + ∆x, yk + ∆y, t+ ∆t)|

≤ ∇xf(xk + ∆x, t+ ∆t) +
∑
i∈Ak+1

∇xci(xk + ∆x, t+ ∆t)yi
≤ |∇L(xk + ∆x, yk + ∆y, t+ ∆t)|

yI ≥ 0,
yi/∈Ak+1

= 0,

(LPPC)
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where the absolute value is performed component-wise. We define the solution of this LP as y
(0)
k+1.

Finally we need to generate a new multiplier where the constraint gradients corresponding to
the positive components are linearly independent, in order for the system defining (QPPredict) at
the subsequent iteration to be nonsingular. We perform the procedure outlined on page 493 of [25].

In particular, if Ã+ = {i : [y
(0)
k+1]i > 0} ∪ E is such that

∑
i∈Ã+

∇xci(xk + ∆x, t + ∆t)w = 0, then
we know from dual form of the MFCQ, in Definition 1.5, that there is a w that has a component
j ∈ I such that wj < 0. We know that

1.
∑
i∈Ã+

∇xc(xk + ∆x, t+ ∆t)(yi +αwi) is constant with respect to α for any α with α ≥ 0,

2. [y
(0)
k+1]i + αwi ≥ 0 for i ∈ Ã+ ∩ I for α sufficiently small, and

3. ([y
(0)
k+1]i∈Ã+

+ αw)T [∇tc(x + ∆x, t + ∆t)∆t]i∈Ã+
is also constant for any α ≥ 0, because

otherwise (LPPC) would be able to find a solution with a lower objective, due to the two

properties above suggesting feasibility of [y
(0)
k+1]i + αwi for (LPPC).

We let [y
(0)
k+1]i∈Ã+

= [y
(0)
k+1]i∈Ã+

+ α̂w with α̂ = max{α : [y
(0)
k+1]i + α̂wi ≥ 0 for i ∈ Ã+ ∩ I}. We

then repeat the procedure until we find a satisfactory y
(0)
k+1 (i.e., satisfying the linearly independent

gradients condition), which we now set as yk+1.

We redefine A+,k = {i : [yk+1]i > 0} ∪ E . We then set xk+1 = xk + ∆x, and iterate k = k + 1.

The procedure is summarized as Algorithm 1

4. Convergence of the predictor-corrector path-following algorithm.

4.1. Preliminaries. We shall use the following results throughout the convergence theory.

Lemma 4.1. If the SSOSC and the MFCQ hold at (x∗, y∗), then for (x, y) sufficiently close to
(x∗, y∗), there exist constants C1(t) > 0 and C2(t) > 0 such that it holds that,

C1(t)δ(x, y, t) ≤ η(x, y, t) ≤ C2(t)δ(x, y, t).

Proof. See, e.g., Wright [25, Theorem A.1].

The next lemma verifies that the active set estimate is accurate.

Lemma 4.2. [7, Theorem 3.7] For all x, y such that δ(x, y, t) is sufficiently small, Aγ(x, y, t) =
A(x∗(t)).

Lemma 4.3. [11, Lemma 3] Given matrices Q∗ and P ∗, where Q∗ is symmetric, suppose that,

wTQ∗w ≥ α‖w‖2, whenever P ∗w = 0, w ∈ Rn.

Then given any δ > 0, there exists σ > 0 and neighborhoods P of P ∗ and Q of Q∗ such that,

vT (Q+
1

ρ
PTP )v ≥ (α− δ)‖v‖2,

for all v ∈ Rn, 0 < ρ ≤ σ, P ∈ P, and Q ∈ Q.

9



Algorithm 1 Predictor Corrector Sensitivity Pathfollowing Method

Input: t, x, y close to (x∗(t), Ŷ (t)) such that {∇xci(x, t)}{i∈I:yi>0}∪E is linearly independent.

1: Define parameters γ satisfying 0 < γ < 1 and ιmax ∈ N.
2: Estimate A using (3.1) evaluated at (x, y, 0) and define A+

3: Set ι = 1
4: while t < 1 do
5: Solve (CorrectStep) for (∆cx,∆+y).
6: if For some i /∈ E , [yA+

+ ∆+y]i < 0 then
7: Solve (1.1) at t for an approximate solution (x, y).
8: Set ι = 1.
9: end if

10: Define ∆cy ∈ Rm such that [∆cy]A+
= ∆+y and zero otherwise.

11: Solve (QPPredict) for (∆px,∆py).
12: Set (∆x,∆y) = (∆px,∆py) + (∆cx,∆cy)
13: if (3.2) does not hold then
14: if ι ≥ ιmax then
15: Solve (1.1) at t for an approximate solution (x, y).
16: Set ι = 1.
17: Go to Line 5
18: else
19: Decrease ∆t. Set ι = ι+ 1.
20: Go to Line 11
21: end if
22: end if
23: Compute A = Aγ(x+ ∆x, y + ∆y, t+ ∆t) ∪ E .
24: Solve (LPPC) for y(0).
25: Define Ã+ = {i : [y(0)]i > 0} ∪ E
26: while {∇xci(x+ ∆x, t+ ∆t)}i∈Ã+

has rank less than |Ã+| do
27: Solve for w satisfying

∑
i∈Ã+

∇xci(xk + ∆x, t+ ∆t)w = 0 and ∃i, wi < 0.

28: Set α̂ = max{α : [y(0)]i∈Ã+∩I + αw ≥ 0}.
29: Let [y(0)]i∈Ã+

= [y(0)]i∈Ã+
+ α̂w

30: end while
31: Set y = y(0).
32: Let A+ = {i : [y]i > 0} ∪ E .
33: Set t = t+ ∆t, x = x+ ∆x.
34: end while

The next Theorem summarizes the sensitivity results that hold under the MFCQ and the CRCQ
that are the theoretical foundation for the predictor-corrector algorithm we have formulated.

Theorem 4.4. Let f and c be twice continuously differentiable in t and x near (x∗(t0), t0),
and let the MFCQ and the SSOSC hold at x∗(t0).

1. The solution x∗(t) is continuous in a neighborhood of x∗(t0) and the solution function x∗(t)
is directionally differentiable, i.e.,

x∗(t0 + ∆t) = x∗(t0) + δx∗(x∗(t0), t0,∆t) + o(|∆t|), (4.1)
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where δx∗(x∗(t0), t0,∆t) is the directional derivative of x∗(t) with respect to t at t0 scaled
by ∆t, i.e.,

δx∗(x∗(t0), t0,∆t) = lim
ε↓0

x∗(t0 + ε)− x∗(t0)

ε
∆t.

2. Moreover, for each t in a neighborhood of t0 and direction ∆t, there exists a multiplier ŷ ∈
Λ(x∗, t0) such that the directional derivative uniquely solves the following convex quadratic
program,

min∆x ∆xT∇xtL(x∗(t0), ŷ, t0)∆t+ 1
2∆xTH(x∗(t0), ŷ, t0)∆x,

subject to ∇xci(x∗(t0), t0)T∆x+∇tci(x∗(t0), t0)∆t = 0, i ∈ A+(x∗(t0), ŷ, t0) ∪ E ,
∇xci(x∗(t0), t0)T∆x+∇tci(x∗(t0), t0)∆t ≥ 0, i ∈ A0(x∗(t0), ŷ, t0).

(SensitivityQP)
We denote the solution set of this program as (δx∗(x∗(t0), t0,∆t), δY

∗(x∗(t0), ŷ, t0,∆t))
(where δx∗(x∗(t0), t0,∆t) is a singleton). Note that δx∗(x∗(t0), t0,∆t) does not depend
on ŷ (if there are multiple ŷ satisfying the conditions of this part of the Theorem), but
δY ∗(x∗(t0), ŷ, t0,∆t) may.

3. If, in addition, the CRCQ holds, then the multiplier values ŷ at which the
QP (SensitivityQP) must be evaluated can be found as a solution of the following linear
program,

miny yT∇tc(x∗(t0), t0)∆t,
subject to ∇xf(x∗(t0))−∇xc(x∗(t0), t0)y = 0,

yI ≥ 0,
ci(x

∗(t0), t0)yi ∀i ∈ {1, ...,m}.

(SensitivityLP)

We denote its solution set as Ŷ (x∗(t0), t0). Note that this set is independent of ∆t as long
as ∆t > 0.

4. Moreover, the set {∇xci(x∗(t0), t0)}i∈A+(x∗(t0),ŷ,t0)∪E is linearly independent for some ŷ ∈
Ŷ (x∗(t0), t0).

5. The primal-dual solution set K(t0) is proto-differentiable at (x∗(t0), ŷ) for any ŷ ∈
Ŷ (x∗(t0), t0), and the outer graphical derivative is the solution set of (SensitivityQP),
i.e.,

DK(t0|x∗(t0), ŷ)∆t = (δx∗(x∗(t0), t0,∆t), δY
∗(x∗(t0), ŷ, t0,∆t))

This implies, in particular, that, for any δy∗ ∈ δY ∗(x∗(t0), ŷ, t0,∆t)

dist(ŷ + δy∗,Λ(x∗(t0 + ∆t), t0 + ∆t)) = o(|∆t|). (4.2)

Proof. Parts 1-3 appear as [13, Theorem 5] and [19, Theorems 1-2].

Part 4 follows from the proof of [16, Theorem 2.2]

Part 5 follows from [17, Proposition 2.5.1], where it can be seen that [17, (2.34)] are the optimal-
ity conditions of (SensitivityQP), if we consider that the problem is independent of any nonlinear
perturbation w, and let v′1 = ∇xtf(x, t)∆t and v′2 = ∇tc(x, t)∆t. The implication (4.2) follows
from the definition of proto-differentiability, e.g., in the notation of (1.4), let v′ = 1, reparametrize
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v(s) to be t0 + ∆t, then since (δx∗(x∗(t0), t0,∆t), δY
∗(x∗(t0), ŷ, t0,∆t)) is the directional deriva-

tive of K(x, y, t), it holds that, for any δy∗ ∈ δY ∗(x∗(t0), ŷ, t0,∆t), and for δx∗(x∗(t0), t0,∆t), the
corresponding selection w(s) = (x∗(s), y∗(s)) satisfies,

w(s)− w(0) = (δx∗(x∗(t0), t0,∆t)), δy
∗) + ∆tα(∆t),

where α(∆t)→ 0 as ∆t→ 0.

4.2. Convergence of Algorithm 1. We make the following assumptions,
Assumption 1. The functions f(x, t) and c(x, t) are two times Lipschitz continuously differ-

entiable for all x and t ∈ [0, 1] with respect to both x and t.
Assumption 2. There exists a continuous primal solution path x∗(t) to (1.1) for t ∈ [0, 1].

Hereafter, every result, unless otherwise noted, is with respect to a particular continuous such path
x∗(t).

Assumption 3. The CRCQ, the MFCQ, and the GSSOSC hold for all x∗(t), t ∈ [0, 1].
Lemma 4.5. [8] Λ(x∗(t), t) is bounded for all t.
Note that since the KKT conditions are linear in y, this implies that Λ(x∗(t), t) is a closed

convex polytope for any given x∗(t) and t.
Lemma 4.6. There exists a B such that for every ŷ ∈ Ŷ (x∗(t), t) for all t, ‖ŷ‖ ≤ B.
Proof. Suppose there is a sequence (ŷ(tk), tk) with ŷ(tk) ∈ Ŷ (x∗(t), t) such that ‖ŷ(tk)‖ ≥ k.

But since t is in a compact set, there exists a convergent subsequence and a cluster point t∗.
However, this implies that ‖ŷ(t∗)‖ =∞, which is impossible by Lemma 4.5.

Lemma 4.7. Consider the QP (SensitivityQP) evaluated at a ŷ(t) ∈ Ŷ (x∗(t), t) satisfying
Part 2 of Theorem 4.4. There exists a ∆t such that for all t ∈ [0, 1], there exists a B2 such that
any multiplier δy∗(t) ∈ δY ∗(x∗(t), ŷ(t), t) of the solution to (SensitivityQP) is bounded by B2.

Proof. It can be seen that the MFCQ holds for (SensitivityQP) at (x∗(t), ŷ(t)) by the
definition of ŷ(t) and the MFCQ holding for (1.1) at x∗(t). Suppose that there exists (tk) and
δy∗(tk) ∈ δY ∗(x∗(tk), ŷ(t), tk) such that ‖δy∗(tk)‖ ≥ k. But this implies that there exists a cluster
point t∗ such that ‖δy(t∗)∗‖ =∞, and this is impossible.

We are now ready to present the main result with regards to the predictor corrector step.
Theorem 4.8. If δ(xk, yk, tk), ‖yk− ŷ‖ and ∆t are sufficiently small for some ŷ ∈ Ŷ (x∗(t), tk)

satisfying the condition in Part 4 of Theorem 4.4, and A+,k = A+(x∗(tk), ŷ, tk) ∪ E, then consider
the point (xk + ∆x, yk + ∆y), where (∆x,∆y) = (∆px+ ∆cx,∆py + ∆cy) is defined as follows:

• (∆cx,∆+y) solves (CorrectStep),
• ∆cy ∈ Rm is such that [∆cy]A+,k

= ∆+y and [∆cy]i = 0 for i ∈ {1, ...,m} \A+,k, and
• ∆px solves (QPPredict) with any associated dual solution ∆py.

This primal-dual point (xk+∆x, yk+∆y) satisfies η(xk+∆x, yk+∆y, tk+∆t) ≤ η(xk, yk, tk)1+γ .
The next result states that given a primal-dual point (xk, yk) sufficiently close to the primal-

dual solution set (x∗(t),Λ(x∗(t), t), the solution of (LPPC) yields a good multiplier approximation
to from which to calculate the next predictor step.

Theorem 4.9. For all ε and ∆t, there exists a δ such that if dist((x, y), (x∗(t),Λ(x∗(t), t))) ≤ δ,
then the solution ȳ to

minȳ ȳ∇tc(x, t)∆t
subject to −|∇L(x, y, t)|

≤ ∇f(x, t) +
∑
i∈A(x∗(t))∪E ∇xci(x, t)ȳi

≤ |∇L(x, y, t)|

(4.3)
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satisfies dist(ȳ, Ŷ (x∗(t), t) ≤ ε.
The first theorem guarantees that the primal-dual solution for the corrector-predictor problems

result in a step that satisfies the conditions required by Algorithm 1 to accept the step, i.e., (3.2)
holds. It implies that the primal dual point is within the ball of local superlinear contraction and
the corrector step results in a point much closer to the solution of the problem for the current
value of the parameter. The predictor, (QPPredict) is a first-order estimate of the primal-dual
solution path, and by coupling it with the corrector (CorrectStep), we can ensure that the solution
estimate tracks the solution, in the sense of being able to produce a point that is an accurate enough
approximation of the appropriate primal-dual solution such that all subsequent estimates are as
close as desired by some predetermined amount.

The second Theorem states that, if the active set is estimated correctly, which follows
from Lemma 4.2, if the point at which the LP (LPPC) is evaluated sufficiently close to
(x∗(t + ∆t),Λ(x∗(t + ∆t), t + ∆t) then the multiplier solution can be made arbitrarily close to
the set Ŷ (x∗(t + ∆t)), . By assumption, we can make the starting point sufficiently close to the
primal dual solution (x∗(t), ŷ), so as to (possibly also by decreasing ∆t) to make the solution to the
predictor-corrector subproblems arbitrarily close to (x∗(t+∆t),Λ(x∗(t+∆t), t+∆t)). Theorem 4.9
implies that the final multiplier estimate can get within any desired distance to Ŷ (x∗(t+∆t), t+∆t).
This suggests that the new xk + ∆x can be in the neighborhood for which the CRCQ applies at
t+∆t, and the procedure used to find a multiplier in the corner of the polyhedron, i.e., one for which
the constraint gradients are linearly independent, can be successfully applied to yield a primal-dual
point that satisfies the conditions of Theorem 4.8 for the problem at t + ∆t. The argument then
repeats itself at t+ ∆t, and so on, until reaching t = 1. For any t to which we apply the argument,
we can make the solution estimate at the initial t = 0 close enough to yield all the desired results
across all the subsequent (0, t] up until the current value of the parameter.

Note that all of this is in terms of ε− δ reasoning, i.e., all primal-dual points can be arbitrarily
close to the desired points at the subsequent iteration, but nothing stronger than that can be
claimed. In particular, unless the radius of the Newton-Kantarovich ball of quadratic convergence
is uniformly bounded from above and below across t, the neighborhood for which the CRCQ applies
is also bounded across t, and other such conditions, finite termination without occasional reliance
on a globalized algorithm cannot be ensured. However, we expect that for many well-formulated
problems, it can be expected that the required conditions do hold. Since little is known about
regions of applicability of constraint qualifications and local convergence for Newton methods for
nonlinear programs, however, no precise statements can be made to that effect.

4.3. Proofs of results. In this section we prove the main two results of this paper.

Proof. of Theorem 4.8

The system (CorrectStep) is the Newton-Lagrange system for solving the NLP,

minx f(x, tk)
subject to ci(x, tk) = 0, i ∈ A+(x∗(tk), ŷ, tk) ∪ E . (4.4)

for which x∗(tk) is a stationary solution. By the linear independence of
{∇ci(x∗(tk), tk)}i∈A+(x∗(tk),ŷ,tk)∪E (thus the MFCQ holds for (4.4)) and the SSOSC, we can
invoke [20, Theorem 2.2] to conclude that the solution is isolated. Thus the Newton-Lagrange
step (CorrectStep) is associated with local convergence to (x∗(tk), ŷ) uniquely.

Denoting the (unique) solution to (CorrectStep) as (∆cx,∆cy), we have, from the usual
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Newton local convergence properties,

‖(xk + ∆cx− x∗(tk), yk + ∆cy − ŷ)‖ = O(‖(xk − x∗(tk), yk − ŷ)‖2). (4.5)

and,

‖(∆cx,∆cy)‖ = O(‖(xk − x∗(tk), yk − ŷ)‖). (4.6)

By the GSSOSC, subproblem (SensitivityQP) is strongly convex and has a unique solution.
By (4.6) and Lemma 4.3 it holds that (QPPredict) is also strongly convex and has a unique primal
solution for ‖(xk − x∗(tk), yk − ŷ)‖ sufficiently small.

We can now write the optimality conditions of (QPPredict) as, using ∇xc(x, tk) = ∇xc(x, tk+
∆t) and H(x, y, t) = H(x, y, t+ ∆t),

(∇xf(xk, tk + ∆t)−∇xc(xk, tk + ∆t)yk −∇xf(xk, tk) +∇xc(xk, tk)yk)
+H(xk, yk, tk + ∆t)∆px− (∇xc(xk, tk) +∇2

xxc(xk, tk)∆cx)∆py = 0,
(∇xci(xk, tk + ∆t) +∇2

xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t = 0, i ∈ A+,k,
(∇xci(xk, tk + ∆t) +∇2

xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t ∈ N ([∆py]i), i ∈ Ak \A+,k

(4.7)
Now, using the properties of f and c as functions with respect to t,

(∇xf(xk, tk + ∆t)−∇xc(xk, tk + ∆t)yk −∇xf(xk, tk) +∇xc(xk, tk)yk) = ∇xtL(xk, yk, tk)∆t

we can rewrite (4.7) as,

∇xtL(xk, yk, tk)∆t+H(xk, yk, tk + ∆t)∆px− (∇xc(xk, tk) +∇2
xxc(xk, tk)∆cx)∆py = 0,

(∇xci(xk, tk) +∇2
xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t = 0, i ∈ A+,k,

(∇xci(xk, tk) +∇2
xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t ∈ N ([∆y]i), i ∈ Ak \A+,k

(4.8)

We may consider this problem as a perturbation of the optimality conditions
of (SensitivityQP). Consider any δx and an associated dual δy solution to (4.8). We shall
apply the Upper Lipschitz continuity of solutions subject to perturbations given for a QP satisfying
the SSOSC and the MFCQ in [20, Theorem 4.2]. In particular, in the notation of the Theorem,
for the base perturbation γ0, ∇δxf̃(δx; γ0) = ∇xtL(x∗(t), ŷ, tk)∆t+H(x∗(t), ŷ, tk + ∆t)δx and for
the current point, considered at γ1, ∇δxf̃(δx; γ1) = ∇xtL(xk, yk, tk)∆t + H(xk, yk, tk + ∆t)δx,
and the constraint c̃ as c̃(δx; γ0) = (∇xci(x∗(t), tk))T δx + ∇tci(x∗(t), tk)∆t and c̃(δx; γ1) =
(∇xci(xk, tk) +∇2

xxci(xk, tk)∆cx)T δx+∇tci(xk, tk)∆t.
We see from the conclusion of [20, Theorem 4.2] that the solution (δx, δy) to (QPPredict)

satisfies,

‖δx− δx∗‖+ dist(δy, δY ∗(x∗(tk), ŷ, tk)) ≤∥∥∥∥∥∥∥∥∥∥


∇xtL(xk, yk, tk)∆t−∇xtL(x∗(tk), ŷ, tk)∆t

+(H(xk, yk, tk + ∆t)−H(x∗(tk), ŷ(t), tk + ∆t))δx

−(∇xc(x∗(tk), tk)−∇xc(xk, tk)−∇2
xxc(xk, tk)∆cx)δy

((∇xc(xk, tk) +∇2
xxc(xk, tk)∆cx)T −∇xc(x∗(tk), tk)T )δx

+∇tc(xk, tk)∆t−∇tc(x∗(tk), tk)∆t


∥∥∥∥∥∥∥∥∥∥
,

(4.9)

By the fact that ∇tc(x, t) and ∇xtf(x, t) is a constant, we have that,

∇xtL(xk, yk, tk)∆t−∇xtL(x∗(tk), ŷ, tk)∆t = 0, and
∇tc(xk, tk)∆t−∇tc(x∗(tk), tk)∆t = 0
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Given the two-times Lipschitz continuity of c and f we can obtain,

‖(H(xk, yk, t+ ∆t)−H(x∗(tk), ŷ, tk + ∆t))δx‖ =
∥∥((∇2

xxf(xk, tk + ∆t)−∇2
xxf(x∗(tk), t+ ∆t)

−
∑

[yk]i(∇2
xxci(xk)−∇2

xxci(x
∗(tk)))−

∑
([yk]i − [ŷ]i)∇2

xxci(x
∗(tk)))δx

∥∥
≤ ((CL +B + ‖yk − ŷ‖)‖xk − x∗(tk)‖+B‖yk − ŷ‖)‖δx‖

(4.10)
where CL is an upper bound for the Lipschitz constant for function and the first and second
derivatives of f and c and B is an upper bound on ŷ by Lemma 4.6. Using Taylor’s Theorem
and (4.5), (4.6),

‖(∇xc(x∗(tk), tk)−∇xc(xk, tk)−∇2
xxc(xk, tk)∆cx)δy‖

= ‖(∇xc(x∗(tk), tk)−∇xc(xk + ∆cx, tk))δy +O(‖∆cx‖2‖δy‖)
= O(‖(xk − x∗(tk), yk − ŷ)‖2‖δy‖)

(4.11)

and similarly,

‖(∇xc(xk, tk)T +∇2
xxc(xk, tk)∆cx−∇xc(x∗(tk), tk)T )δx‖ = O(‖(xk − x∗(tk))‖2‖δx‖). (4.12)

Let δy∗ satisfy,

‖δy − δy∗‖ = dist(δy, δY ∗(x∗(tk), ŷ, tk)).

This is unique by the fact that δY ∗(x∗(tk), ŷ, tk) is a convex polyhedral set.

From applying (4.10), (4.11), and (4.12) to (4.9), and then applying the triangle inequality to
write ‖δx‖ ≤ ‖δx+ δx∗‖+ ‖δx∗‖ and ‖δy‖ ≤ ‖δy + δy∗‖+ ‖δy∗‖, we can deduce,

‖δx− δx∗(x∗(tk), tk)‖+ ‖δy − δy∗‖
= O(‖(xk, yk)− (x∗(tk), ŷ)‖)(‖δx− δx∗‖+ ‖δx∗‖)

+O(‖(xk, yk)− (x∗(tk), ŷ)‖2)(‖δx∗‖+ ‖δy − δy∗‖+ ‖δy∗‖)).
(4.13)

By taking ‖(xk, yk) − (x∗(tk), ŷ(tk))‖ sufficiently small, we can ensure that all terms above of
the form O(‖(xk, yk)− (x∗(tk), ŷ(tk))‖) are less than one half. We can then subtract, 1

2‖δx−δx
∗‖+

1
2‖δy − δy

∗‖ from both sides of (4.13), then double both sides of the resulting equation, to get,

‖δx−δx∗‖+‖δy−δy∗‖ = O(‖(xk, yk)−(x∗(tk), ŷ)‖2)(‖δx∗‖+‖δy∗‖)+O(‖(xk, yk)−(x∗(tk), ŷ)‖)‖δx∗‖
(4.14)

Theorem 4.4 Part 1 and 5 implies that,

‖x∗(tk) + δx∗(x∗(tk), tk)− x∗(tk + ∆t)‖+ ‖ŷ + δy∗ − y∗(tk + ∆t)‖ = o(∆t). (4.15)

where y∗(tk + ∆t) satisfies,

‖ŷ + δy∗ − y∗(tk + ∆t)‖ = dist(ŷ + δy∗,Λ(x∗(tk + ∆t), tk + ∆t)).

Furthermore, it holds that as ∆t→ 0, δx∗(x∗(tk), tk,∆t)→ 0 and by Lemma 4.7 it holds that
‖δy∗‖ ≤ B2. Let E(∆t) = ‖δx∗(x∗(tk), tk,∆t)‖.
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Finally, using Lemma 4.1, we get,

η(xk + ∆x, yk + ∆y, t+ ∆t)

≤ C2(tk + ∆t)
(
‖xk + ∆cx+ δx− x∗(t+ ∆t)‖+ dist(xk + ∆cy + δy,Λ(x∗(tk + ∆t), tk))

)
≤ C2(tk + ∆t) (‖xk + ∆cx− x∗(tk)‖+ ‖yk + ∆cy − ŷ‖

+‖x∗(tk) + δx∗(x∗(tk), tk)− x∗(tk + ∆t)‖+ ‖ŷ + δy∗ − y∗(tk + ∆t)‖
+‖δx− δx∗(x∗(tk), tk)‖+ ‖δy − δy∗‖

)
= O(‖(xk − x∗(tk), yk − ŷ)‖2) + o(∆t) +O(‖(xk, yk)− (x∗(tk), ŷ)‖2)

+O(‖(xk, yk)− (x∗(tk), ŷ)‖)E(∆t)
= O(‖(xk, yk)− (x∗(tk), ŷ)‖2) + o(∆t) +O(‖(xk, yk)− (x∗(tk), ŷ)‖)E(∆t)
= O(η(xk, yk, t)

2) + o(∆t) +O(η(xk, yk, t))E(∆t)
(4.16)

Thus, by making ∆t sufficiently small, we get the desired result for sufficiently small ‖(xk, yk) −
(x∗(tk), ŷ)‖.

Proof. of Theorem 4.9

Let the constant vector r be defined to be r ≡ ∇tc(x, t)∆t.
Recall that by the MFCQ and Gauvin [8], it holds that the set Λ(x∗(t), t) is bounded, and since

the KKT conditions are linear with respect to y, it is also closed and convex, and thus compact,
and is defined as a polytope.

Let {ỹj}j∈{1,...,J} = Ỹ (x∗(t), t) be the set of extreme points of this polytope. It holds that for
each ỹj , for the set I(ỹj) ⊆ I such that [ỹj ]I(ỹj) > 0, {∇ci(x∗(t), t)}i∈I(ỹj)∪E is linearly independent
and there exists a δ1 such that {∇ci(x̃, t)}i∈I(ỹj)∪E is linearly independent for x̃ such that ‖x̃ −
x∗(t)‖ ≤ δ1 by the CRCQ condition. By the implicit function theorem, for any ε̃ > 0 there exists
ε1 such that if Jρ and gρ are perturbations of the objective and constraint gradients satisfying
‖Jρ −∇xc(x∗(t), t)‖ ≤ ε1 and ‖gρ −∇xf(x∗(t), t)‖ ≤ ε1, it holds that [Jρ]I(ỹj)∪E [ỹj(ρ)]I(ỹj)∪E = gρ
with [ỹj(ρ)]I ≥ 0 and ‖ỹj(ρ)− ỹj‖ ≤ ε̃.

By Part 3 of Theorem 4.4 we have that rT ŷ < rT y∗ for all y∗ ∈ Λ(x∗(t), t) with y∗ /∈ Ŷ (x∗(t), t),
ŷ ∈ Ŷ (x∗(t), t). Therefore for all ε2, there exists some ε̂2 such that for perturbations ρ of the
extremal multipliers ỹj satisfying ‖ỹj(ρ)− ỹj‖ ≤ ε̂2, it holds that

rT ỹĵ(ρ) < rT ỹǰ(ρ)− ε2 (4.17)

for all ĵ such that ỹĵ ∈ Ŷ (x∗(t), t) ∩ Ỹ (x∗(t), t) and ǰ such that ỹǰ ∈ Ỹ (x∗(t), t) \ Ŷ (x∗(t), t).
Since ∇xL(x, y), ∇xf(x, t)−∇xf(x∗(t), t) and ∇xc(x, t)−∇xc(x∗(t), t) are all O(δ(x, y, t)),the

constraints of (4.3) correspond to a set of perturbation of the stationarity conditions. Let us say
they are all bounded by Cδ(x, y, t).

Finally, choose ε as given in the statement of Theorem 4.9, i.e., satisfying the de-
sired estimate dist(ȳ, Ŷ (x∗(t), t) ≤ ε. Let ε2 ≥ ε, and a corresponding ε̂2 ≤
1
4ε

2 (2 max{1, ‖r‖∞}max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1
such that (4.17) holds for ‖ỹj(ρ)− ỹj‖ ≤ ε̂2.

Now choose ε̂1 and then take some appropriate x and y as stated in the conditions of the
Theorem, such that for Cδ(x, y, t) ≤ min(δ1, ε̂1), for all yα satisfying

−|∇xL(x, y, t)| ≤ ∇xf(x, t)−∇xc(x, t)yα ≤ |∇xL(x, y, t)|, yα ≥ 0,

it holds that ‖yα −
∑
j∈J αj ỹj‖ ≤ min(ε̂2,

ε
2 ) for some αj with αj ≥ 0 for j ∈ I,

∑
j αj = 1.
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Now let yα be a solution to the (4.3), i.e., yα is feasible and rT yα ≤ rT yβ for all feasible yβ .
Let αj be defined as above, with

‖yα −
∑
j∈J

αj ỹj‖ ≤ min(ε̂2,
ε

2
) (4.18)

Consider any feasible yβ satisfying ‖yβ − ỹk̂‖ ≤ ε̂2 for some ỹĵ ∈ Ŷ (x∗(t), t) ∩ Ỹ (x∗(t), t).

Let Ĵ be such that if ĵ ∈ Ĵ then ỹĵ ∈ Ŷ (x∗(t), t) ∩ Ỹ (x∗(t), t).
It holds that,

rT yα ≤ rT yβ
(4.18) =⇒ rT

∑
j∈J αj ỹj − ‖r‖∞ε̂2 < rT yβ

=⇒ rT
∑
j∈J αj ỹj − 2‖r‖∞ε̂2 < rT ỹĵ

=⇒ rT
∑
j∈J αj ỹj −

ε2

2 (max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1
< rT ỹĵ

=⇒ rT
∑
j∈Ĵ αj ỹj + rT

∑
j∈J\Ĵ αj ỹj −

ε2

2 (max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1
< rT ỹĵ

=⇒ ε2
∑
j∈J\Ĵ αj −

ε2

2 (max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1
< 0

=⇒ ε2
∑
j∈J\Ĵ αj (max{‖y‖∞ : y ∈ Λ(x∗(t), t)}) < ε2

2

=⇒
∑
j∈J\Ĵ αj (max{‖y‖∞ : y ∈ Λ(x∗(t), t)}) < ε

2

which together with (4.18) implies that ‖yα −
∑
j∈Ĵ αj ỹj‖ ≤ ε, proving the Theorem.

5. Numerical Results.

5.1. Problem with degenerate constraints throughout and an active set change.
We consider problem (2.1) for t ∈ [0, 1]. Notice at the point wherein there is an active set change,
t = 0.5, the vector ∇tc(x, t)∆t is, 

−10
0
10
20
0
−10
−10


|∆t|,

and thus the solution to (SensitivityLP), recalling that,

Λ(x∗(5)) = (0, y1, y2, y3, y4, y5, y6), y1 + y2 + y3 + y5 + y6 = e5, y1− y3− y4 +
1

2
y5−

1

2
y6 = 0, yi ≥ 0,

is (0, 0, 0, 0, 0, 1
2e

5, 1
2e

5), indicating that the last two constraints should be strongly active, and for
t ∈ [0.5, 1], the solution should trace along these constraints.

Indeed we find that the algorithm successfully traces the solution and (LPPC) performs the
jump in the multipliers at t = 0.5. If, in the implementation of the algorithm, we turn (LPPC)
off, then the algorithm gets stuck at t = 0.5 and proceeds no further along the homotopy. We show
the plots of the primal and dual variables in Figure 3.

Note that x follows the true solution closely, y2 and y4 are always effectively zero, and there
is a discontinuous jump halfway along the homotopy path where y3 jumps from being positive to
zero and y5, y6 jump from zero to positive.
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Fig. 3. Path of primal and dual variables tracing the approximate solution to (2.1) across t = [0, 1]

5.2. Degenerate Nonlinear Problem. We now consider a problem with nonlinear con-
straints. In particular, we consider the problem,

minx −x2

subject to:
c1(x) := x3 = 1 + 9t,
c2(x) := x1 ≥ 0,
c3(x) := −x3

2 − x1x2 − x2
1 + x2

3 ≥ 0,
c4(x) := −ex1 − ex2 + ex3 + 1 ≥ 0,
c5(x) := −x2

1 − x1x2 + (x2 − (2.5 + 0.5x3))2 − (2.5 + 0.5x3)4x1 − 100(x2 − (2.5 + 0.5x3)) ≥ 0,
c6(x) := −x2

1 + x1x2 + (x2 − (2.5 + 0.5x3))2 + (2.5 + 0.5x3)4x1 − 100(x2 − (2.5 + 0.5x3)) ≥ 0,
(5.1)
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Fig. 4. Five nonlinear constraints for p=1, 10

For this problem x∗(t) = (0, 1 + 9t) for t ∈ [0, 4
9 ], and x∗(t) = (0, 3 + 4.5t) for t ∈ [ 4

9 , 1]. For
t ∈ [0, 4

9 ) constraints 1, 2, 3, and 4 are active (including one equality constraint), and for t ∈ ( 4
9 , 1],

constraints 1, 2, 5 and 6 are active. At t = 4
9 all constraints are active. Since there are always at

least 4 active constraints and n is three, the Jacobian is trivially rank deficient. However, for all t,
(0, 1) is a strictly feasible direction at x∗(t), and so the MFCQ holds. Furthermore, it can be seen
that the CRCQ holds at x∗(p) for all p.

The constraints are shown in Figure 4. Notice that x3 is just a placeholder for the nonlinear
parameter dependence, so we can plot the constraints entirely in x1 and x2.

The results are given in Figure 5. Note the discontinuous jump of some of the multipliers for
t = 4/9.

6. Conclusion. In this paper we investigated the properties of a predictor-corrector pathfol-
lowing algorithm for parametric optimization. The algorithm consists of solving a linear system
that corresponds to a corrector step, a QP that corresponds to a corrected predictor, an LP used to
jump over discontinuities in the optimal Lagrange multiplier, and a procedure to obtain a new mul-
tiplier estimate corresponding to an extreme point in the approximate solution multiplier polytope.
The procedure exhibits several desirable properties for an appropriate algorithm for the problems
of interest, and in particular we have proven its convergence properties without assuming the LICQ
holds at any of the primal solutions along the path.

In future research we will formulate this procedure in a suitable way to be applied to problems
arising in NMPC, and test it on some real-world fast real-time control examples. From our numerical
experience with toy examples, we believe that there is a possibility that this algorithm could be the
basis of promising software for solving NMPC problems.
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