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A PREDICTOR-CORRECTOR PATH-FOLLOWING ALGORITHM
FOR DUAL-DEGENERATE PARAMETRIC OPTIMIZATION
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Abstract. Most path-following algorithms for tracing a solution path of a parametric nonlinear
optimization problem are only certifiably convergent under strong regularity assumptions about the
problem functions. In particular, linear independence of the constraint gradients at the solutions is
typically assumed, which implies unique multipliers. In this paper we propose a procedure designed to
solve problems satisfying a weaker set of conditions, allowing for nonunique (but bounded) multipliers.
Each iteration along the path consists of three parts: (1) a Newton corrector step for the primal and
dual variables, which is obtained by solving a linear system of equations, (2) a predictor step for
the primal and dual variables, which is found as the solution of a quadratic programming problem,
and (3) a jump step for the dual variables, which is found as the solution of a linear programming
problem. We present a convergence proof and demonstrate the successful solution tracking of the
algorithm numerically on a couple of illustrative examples.
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1. Introduction. We consider the parametric optimization problem with f :
Rn × R→ R and c : Rn × R→ Rm,

(1.1)

minx∈Rn f(x, t)

subject to ci(x, t) = 0, i ∈ E ,
ci(x, t) ≥ 0, i ∈ I,

where E = {1, . . . ,me}, and I = {me + 1, . . . ,m}, and we seek to trace the solution
path along a parameter change from t = 0 to t = 1.

We assume that ∇xc(x, t1) = ∇xc(x, t2) and ∇xxf(x, t1) = ∇xxf(x, t2) for all
t1, t2 as well as ∇xtf(x1, t) = ∇xtf(x2, t) and ∇tc(x1, t) = ∇tc(x2, t) for any two
x1 and x2. In particular, these conditions imply that f(x, t) and c(x, t) are of the
form f(x, t) = f0(x) + (aTf x)t and c(x, t) = c0(x) + act, where af ∈ Rn and ac ∈
Rm. This places the optimization problem under the standard notion of canonical
perturbations [28].
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Note that the problem class in problem (1.1) is not as restrictive as it may seem,
as a more generic parametric optimization problem,

minx∈Rn f̃(x, s)

subject to c̃i(x, s) = 0, i ∈ {1, . . . , m̃e},
c̃i(x, s) ≥ 0, i ∈ {m̃e + 1, . . . , m̃},

where s ∈ Rp is a vector and the solution is traced from s0 to sf , and f̃(x, s) and
c̃(x, s) have more arbitrary, potentially nonlinear dependence on s, can be rewritten
in the form (1.1) by the incorporation of another variable z, writing f̃ and c̃ as f̃(x, z)
and c̃(x, z) and adding the equality constraint cm̃+1 = z − (1− t)s0 − tsf = 0.

Parametric problems such as (1.1) occur in many applications such as model pre-
dictive control [7, 24, 29] and stochastic [12], global [38], and bilevel optimization [5].
Fast and accurate performance is especially demanded for real-time model predictive
control, for which procedures that perform with sufficient speed for linear problems
are abundant, for example, [36], but the implementation for nonlinear models has
generally been more challenging

In this paper we present an algorithm for parametric optimization algorithms that
applies sensitivity theory of optimization problems subject to perturbations. A novel
feature of this path-following algorithm is that it is provably convergent for problems
that are dual-degenerate, i.e., do not have a unique multiplier for the optimization
problem at every value of the parameter.

1.1. Notation. Given vectors a, b ∈ Rn, min(a, b) is the vector with components
min(ai, bi). The vectors e and ej denote, respectively, the column vector of ones and
the jth column of the identity matrix I. The dimensions of e, ei, and I are defined by
the context. The ith component of a vector labeled with a subscript will be denoted
by [vα]i. Similarly, if K is an index set, vK and [vα]K indicate the vector with |K|
components composed of the entries of v and vα, respectively, corresponding to those
indices in K. If there exists a positive constant γ such that ‖αj‖ ≤ γβj , we write
αj = O(βj). If there exists a sequence γj → 0 such that ‖αj‖ ≤ γjβj , we say that
αj = o(βj).

1.2. Definitions. It is important to define some foundational terminology nec-
essary for understanding the presentation of the material. We begin with presenting
the form of the optimality conditions we will be using in this paper. These conditions
necessarily hold for any local minimizer x∗ which satisfies a constraint qualification,
a geometric regularity condition involving the local properties of the feasible region.
There are a number of constraint qualifications of varying restrictiveness, and we will
mention a few of them later in this section.

Definition 1.1 (first-order necessary conditions). A vector x∗ ∈ Rn satisfies
the first-order necessary optimality conditions for (1.1) at t if there exists a y∗ ∈ Rm
such that

(1.2)

∇xf(x∗, t) = ∇xc(x∗, t)y∗,
ci(x

∗, t) = 0, i ∈ E ,
ci(x

∗, t) ≥ 0, i ∈ I,
c(x∗, t)T y∗ = 0,

y∗i ≥ 0, i ∈ I.

We denote Λ(x∗, t) as the set of dual vectors y∗ corresponding to x∗ such that (x∗, y∗)
satisfy the first-order necessary conditions at t.
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Denoting the cone N (y) to be

N (y) =

{
{z|z ≥ 0 and zT y = 0} if y ≥ 0,

∅ otherwise,

an alternative formulation of (1.2) is given as

∇xf(x∗, t) = ∇xc(x∗, t)y∗,
cE(x∗, t) = 0,
cI(x∗, t) ∈ N (yI).

We will define A(x∗, t) to be the set of inequality constraint indices i ∈ I such
that for i ∈ A(x∗, t), ci(x∗, t) = 0, A0(x∗, y∗, t) ⊆ A(x∗, t) to be the set such that i ∈
A0(x∗, y∗, t) implies that [y∗]i = 0 and A+(x∗, y∗, t) ⊆ A(x∗, t) to be the set such that
i ∈ A+(x∗, y∗, t) implies that [y∗]i > 0. We defineA+(x∗, t) = ∪y∗∈Λ(x∗,t)A+(x∗, y∗, t)
and A0(x∗, t) = ∩y∗∈Λ(x∗,t)A0(x∗, y∗, t).

The Lagrangian function associated with (1.1) is L(x, y, t) = f(x, t) − c(x, t)T y.
The Hessian of the Lagrangian with respect to x is denoted by

H(x, y, t) := ∇2
xxf(x, t)−

m∑
i=1

yi∇2
xxci(x, t).

The strong form of the second-order sufficiency condition is defined as follows.

Definition 1.2 (strong second-order sufficient conditions (SSOSC)). Let us de-
fine the set,

C̃(x∗, y∗, t) :=
{
d : ∇xci(x∗, t)T d = 0 for i ∈ A+(x∗, y∗, t) ∪ E

}
A primal-dual pair (x∗, y∗) satisfies the strong second-order sufficient optimality con-
ditions at t if it satisfies the first-order conditions (1.2) and

(1.3) dTH(x∗, y∗, t)d > 0 for all d ∈ C̃(x∗, y∗, t) \ {0}.

We will be interested in the general SSOSC, applied across all multipliers in the
optimal set.

Definition 1.3 (general SSOSC (GSSOSC)). A primal vector x∗ satisfies the
General Strong Second-order Sufficient Optimality Conditions at t if (x∗, y∗) satisfies
the SSOSC for all y∗ ∈ Λ(x∗, t).

We shall now define a few constraint qualifications (CQs) relevant for this paper.
A CQ is required to hold at a feasible point in order for a point being a local mini-
mizer for an optimization problem to imply that the optimality conditions hold. It is
standard for convergence proofs for algorithms to assume some CQ, and the weaker
the CQ condition is, the more problems the convergence theory applies to.

Definition 1.4. The linear independence constraint qualification (LICQ) holds
for (1.1) at t for a feasible point x if the set of vectors {∇xci(x, t)}i∈E∪A(x,t) is linearly
independent.

Definition 1.5. The Mangasarian–Fromovitz constraint qualification (MFCQ)
holds for (1.1) at t for a feasible point x if

1. {∇xci(x, t)}i∈E is linearly independent and
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2. there exists a p such that ∇xci(x, t)T p = 0 for all i ∈ E and ∇xci(x, t)T p > 0
for all i ∈ A(x, t).

Equivalently, by the theorem of the alternative [34], the MFCQ holds if there is no set
of scalars {αi}i∈{1,...,m} such that

1. for i ∈ I, αi ≥ 0,
2. either there exists i ∈ E such that αi 6= 0 or

∑
i∈I αi > 0, and

3. ∑
i∈E∪A(x,t)

αi∇xci(x, t) = 0.

Definition 1.6. The constant rank constraint qualification (CRCQ) holds for
(1.1) at t for a feasible point x if there exists a neighborhood N of x such that
for all subsets U ⊆ E ∪ A(x, t), the rank of {∇xci(x, t)}i∈U is equal to the rank of
{∇xci(x̄, t)}i∈U for all x̄ ∈ N .

Of special interest in this paper is the multifunction corresponding to a local
primal-dual solution set for the NLP subject to a parameter,

K(t) := {x∗(t),Λ(x∗(t), t)}.

Since in general, under the assumptions we are concerned with in this paper, Λ(x∗(t), t)
is not a singleton, some notion of set-valued differentiabiliy will be necessary, as we
are interested in tracing some optimal λ∗(t) ∈ Λ(x∗(t), t) along t. We shall employ
the outer graphical derivative and the concept of proto-differentiability [33], one gen-
eralized notion of differentiability for set-valued maps.

Definition 1.7. For a multifunction S : Rp ⇒ Rd, the outer graphical derivative
of S at w̄ for v̄ ∈ S(w̄) is denoted by DS(w̄|v̄) : Rp ⇒ Rd and defined as

DS(w̄|v̄)w′ = {v′|∃w′ν → w′, τν ↓ 0 with (v̄ν−v̄)/τν → v′ for some v̄ν ∈ S(w̄+τνw
′
ν)}.

S is said to be proto-differentiable at w̄ for v̄ if every vector (w′, v′) ∈
graph(DS(w̄|v̄)w′) is equal to the following limit:

(1.4) (w′, v′) = lim
s↓0

(w(s), v(s))− (w̄, v̄)

s

for some selection mapping s→ (w(s), v(s)) : [0, ε]→ graph(S) for some small ε.

We further define the distance of a point to the nearest primal-dual solution by
θ(x, y, t),

θ(x, y, t) =
√
‖x− x∗(t)‖2 + dist(y,Λ(x∗(t), t))2,

where x∗(t) is the closest primal solution to (1.1) at t. We will also sometimes write
θ(x, t) to denote θ(x, t) = ‖x− x∗(t)‖. The optimality residual η(x, y, t) is defined as

η(x, y, t) =

∣∣∣∣∣∣
∣∣∣∣∣∣
∇xf(x, t)−∇xc(x, t)y

c(x, t)E
[min(c(x, t), y)]I

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

.
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2. Background.

2.1. Previous results on parametric optimization and contribution of
this paper. In this section we review the literature on parametric optimization,
highlighting several important features that have proven useful for the development
of fast and reliable algorithms.

A typical path-following procedure for nonlinear parametric equations includes a
predictor and a corrector, where a predictor uses the tangent to the solution path to
estimate the solution at a subsequent parameter value, and a corrector modifies the
predictor step by incorporating additional information to take a step closer to the
solution path. (For an overview, see [1].) Predictor steps are first-order approxima-
tions, and corrector steps use some form of Newton iteration. In the case of parametric
NLPs, the notion of sensitivity, how the optimal solution and objective value change
as a parameter in an optimization problem is subject to small perturbations [3], is
essential for formulating appropriate predictors. For understanding corrector steps
and a discussion of Newton’s method for continuation, see, for instance, [6, Chap-
ter 5]. When a predictor and corrector are combined in an overall algorithm, to avoid
additional function evaluations, approximate information is used for problem data for
a Newton step. This necessitates the analysis framework of inexact Newton meth-
ods [4]. (See also [11, 23] for contemporary frameworks.) In addition, in some cases
arising in optimal control, approximate problem information is used to begin with [8],
also necessitating analysis from an inexact Newton perspective.

The seminal book [19] considered the parametric optimization problem in con-
siderable detail. The authors classified all of the possible forms of primal or dual
bifurcation of the parametric optimization problem and the degeneracy conditions
that are associated with these bifurcations. Based on this classification and the sen-
sitivity theory available at the time, the authors formulated procedures for tracing
the solution path along a homotopy. New sensitivity theory has been developed after
this book appeared, however, particularly for degenerate problems (see, e.g., [22]).
We note, also, that out of this literature arose path-following algorithms that can be
applied as machinery to solve one-off NLPs [20].

New results on the sensitivity of nonlinear programs (NLPs) subject to a param-
eter have motivated some predictor methods [24, 40]. (See also [31] for a predictor
algorithm for multiobjective optimization.) However, the directional derivative (pre-
dictor) is just a first-order estimate. If the problem is highly nonlinear and there is
notable curvature in the solution path, the computed path can diverge from the true
solution path.

Because of their desirable warm-start properties, sequential quadratic program-
ming (SQP) methods [18], wherein a solution of an NLP is found by solving a se-
quence of approximating quadratic programs (QP), were presented as a reasonable
choice for solving parametric problems [7]. In particular, one solves the problem
at each parameter with a few steps of an SQP algorithm, using the solution at the
previous value of the parameter as an initial guess for the subsequent one. With
a correctly estimated active set, an SQP iteration can be equivalent to a New-
ton step and thus corresponds precisely to a corrector. One major difficulty with
practical implementation of SQP methods, however, is that whereas at the solution
satisfying the SSOSC, the reduced Hessian (Lagrangian Hessian in the particular
subspace) is positive definite, the full Hessian may not be, and the resulting sub-
problems may be nonconvex, with possibly multiple or unbounded solutions. (For
a detailed discussion of these challenges, see [25, Chapter 5].) There are a num-
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ber of strategies devised to deal with these issues, but they typically require the use
of inexact Hessian information and thus lose the Newton/corrector-like behavior of
the algorithm and as such the major potential benefit of using SQP for parametric
optimization.

In addition, a strongly desirable property of a parametric optimization algorithm,
in particular one applicable to optimal control problems, is the capacity to handle
degeneracy. In this paper we will assume that the MFCQ and the CRCQ hold for
every t across the solution path, but not necessarily the LICQ. These conditions are
typical for optimal control problems [35] (see also [24]) because the dynamics of the
system appear discretized as equality constraints in the optimization problem, and
aside from certain classes of singular ODEs/DAEs, these are expected to have linearly
independent gradients if they are well formulated. However, the controls and states
are often subject to bound constraints or simple linear constraints, and when many
of these constraints are active, the entire set of equality plus active bound constraints
becomes overdetermined, and the set gradients corresponding to active constraints
become linearly dependent. However, bound constraints are “nice” in the sense of
providing a strictly feasible direction (to satisfy the MFCQ) and are constant, and
thus trivially have constant rank gradients across the entire primal space (and thus
satisfy the CRCQ).

The literature with proofs of convergence of parametric optimization algorithms,
while producing some interesting and powerful algorithms, with insightful analysis
on the properties of the parametric problems, has always assumed strong regular-
ity, which requires linear independence of the constraint gradients at the solution,
or at least the uniqueness of the optimal multiplier at the solution for every pa-
rameter [9, 10, 39]. The paper [26] is the sole exception and considers the case of
general degeneracy, including problems satisfying no constraint qualification (but the
existence of a Lagrange multiplier), but the procedure suggested requires solving a
number of linear programs (LPs) to find possible multipliers to branch from, and thus
relies on too weak assumptions for our purposes. We note that even achieving fast
local convergence for problems under weak constraint qualification conditions has just
fairly recently shown to be possible, under perturbed Newtonian methods. (See, for
instance, [14, 37], and [16] for a complete algorithm.)

The contributions of this paper are the following: First, we develop a predictor-
corrector path-following algorithm that includes a Newton corrector step, a QP pre-
dictor step, and a multiplier jump LP step. Although the multipliers can be nonunique
along the path, our algorithm also traces a multiplier path that is used to calculate
the optimal primal sensitivity for the predictor step. Second, we give a proof of the
convergence for the algorithm. Finally, we demonstrate that the algorithm functions
as intended numerically on illustrative examples.

The corrector step is based on principles of SQP to obtain a step that contracts
superlinearly to the primal-dual solution. The predictor QP and multiplier jump
step are based on the sensitivity results of [30], which shows B-differentiability of the
primal solution path under the CRCQ and MFCQ and the form of the directional
derivative as well as how to identify the optimal multiplier to follow the path from.
We also incorporate active set estimation based on [13].

In the next section we present a small example to demonstrate some of the issues
that arise when tracking a solution path with nonunique multipliers.
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t = 0

t = 0.5

t = 1

Fig. 1. Problem (2.1) illustrated. The axes are for x1 and x2, the straight lines are the
constraints, the black dot is the optimal point, and the grey area indicates the infeasible region.

2.2. Illustrative example. We consider the following problem:

(2.1)

minx −ex2 + 1
2 (x1 − x3)2

subject to x3 − 10t = 0,

x1 − x2 ≥ 0,

10t− x2 ≥ 0,

−x1 − x2 + 20t ≥ 0,

5− x1 ≥ 0,
1
2x1 − x2 + 15

2 − 10t ≥ 0,

− 1
2x1 − x2 + 25

2 − 10t ≥ 0.

It can be verified that the solution is x∗(t) = (10t, 10t, 10t) for t ∈ [0, 1
2 ] and x∗(t) =

(5, 10 − 10t, 10t) for t ∈ [ 1
2 , 1]. The MFCQ, but not the LICQ, holds for all x∗(t),

t ∈ [0, 1] (and indeed for all t). Since all of the constraints are linear, the CRCQ also
holds.

The first three inequality constraints are active for t ∈ [0, 1
2 ), all constraints are

active at t = 1
2 , and the last three constraints are active for t ∈ ( 1

2 , 1]. Noting that x3

is just a placeholder for nonlinear dependence of the objective function with respect
to the parameter, i.e., setting x3 = 10t, we illustrate the problem with respect to x1

and x2 in Figure 1 for t = 0, 1
2 , 1, noting by a circular dot where the primal solution

is, the lines the constraints, and the grey area corresponds to the infeasible region.
The sets of optimal multipliers are

Λ(x∗(0)) = {(0, y1, y2, y1, 0, 0, 0) : 2y1 + y2 = 1, y1, y2 ≥ 0},

Λ(x∗(0.5)) =

{
(0, y1, y2, y3, y4, y5, y6) : y1 + y2 + y3 + y5 + y6 = e5,

y1 − y3 − y4 +
1

2
y5 −

1

2
y6 = 0, yi ≥ 0, for all i

}
,

Λ(x∗(1)) = {(5, 0, 0, 0, y1, y2, y3) : −2y1 + y2 − y3 = −5, y2 + y3 = 1}.

Note that the last three multipliers are always zero for t ∈ [0, 1
2 ), and then at least

two components are strictly positive for t ∈ ( 1
2 , 1]. Therefore, it is desired for a

parametric optimization algorithm to be able to formulate a multiplier that jumps
discontinuously across t < 0.5 to t > 0.5.
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xk

x∗(tk)

x∗(tk + ∆t)

x2 x3

x4

x5

x

t
tk + ∆ttk

Fig. 2. Predictor, corrector, predictor-corrector, and corrected predictor steps.

3. Algorithm.

3.1. Overview. To illustrate our algorithm, we recall the notions of a path-
following as given in, for example, [1], and consider Figure 2. Let the current point
be xk and the solution at tk and tk + ∆t be x∗(tk) and x∗(tk + ∆t), respectively.
We wish to take a step from xk that approximates x∗(tk + ∆t). A predictor step
uses information about the tangent of the solution path, using the slightly inaccurate
information at xk (as in, one can take an approximation of the tangent at x∗(tk) using
problem information at xk). Taking a pure predictor step would result in moving to
x3. A pure corrector takes a step toward a more accurate solution at a given point,
which corresponds to x2. If we do not reevaluate the function or its derivatives at x2

or x3, combining the predictor and corrector would result in a step to x4.
Alternatively, one can reevaluate the problem functions at x2 or x3 yielding a

more accurate path-following procedure at the expense of additional computational
cost. In our algorithm, however, starting from xk we take a corrector step to x2 and,
without performing any additional function evaluations, use the corrector step and
updated function estimates arising from linearizations, to generate a more accurate
predictor, and so obtain the estimate x5 as the approximation to x∗(tk + ∆t). This
procedure is repeated until the final value of t is reached.

3.2. Algorithm description. Now we describe the main steps of our path-
following algorithm. A more detailed discussion about practical implementation will
follow in section 5.

We begin each iteration with a point xk and a multiplier yk. The primal vector
xk needs to be (sufficiently) close to a primal solution x∗(tk), and the dual vector yk
needs to be close to a multiplier ŷ ∈ Λ(x∗(tk), tk) in the optimal multiplier set for
which the set {∇xci(x∗(tk), tk) : ŷi > 0} is linearly independent. We will see later
how to obtain this multiplier.

Consider the robust active set estimator,

(3.1) Aγ(x, y, t) = {i ∈ I : ci(x, t) ≤ η(x, y, t)γ},

where γ is a constant satisfying 0 < γ < 1 [13]. We then form an estimate of the
active set A = Aγ(xk, yk, tk) and strongly active set A+ = {i : yi > 0} ∪ E .
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3.2.1. Corrector step. At a given (xk, yk, t) we first solve the linear system
(CorrectStep)(

H(xk, yk, t) −∇xcA+,k
(xk, t)

∇xcA+,k
(xk, t)

T 0

)(
∆cx
∆+y

)
= −

(
∇xf(xk, t)−∇xc(xk, t)yk

cA+,k
(xk, t)

)
to obtain the corrector step (∆cx,∆+y). We let ∆cy ∈ Rm be such that [∆cy]A+,k

=
∆+y and [∆cy]{1,...,m}\A+,k

= 0.
It can be observed that the corrector step is essentially a Newton step on the

NLP at the current value of t subject to only the strongly active constraints. Given
a correctly estimated strongly active set and a good starting point, at a given t, it
should hold that (‖xk+∆cx−x∗(t)‖+dist(yk+∆cy,Λ(x∗(t), t))) ≤ C(‖xk−x∗(t)‖+
dist(yk,Λ(x∗(t), t)))2, and the corrector step results in an iterate that is closer to the
primal-dual solution set for the current t. In Figure 2, the corrector step corresponds
to a step from xk to x2.

3.2.2. Predictor. We then solve the perturbed predictor QP subproblem
(QPPredict)

min∆px (∇xf(xk, t+ ∆t)−∇xf(xk, t))
T∆px+

1

2
∆px

TH(xk, yk, t+ ∆t)∆px

subject to ∇tci(xk, t)∆t+ (∇xci(xk, t+ ∆t) +∇2
xxci(xk, t+ ∆t)∆cx)T∆px = 0,

i ∈ A+,k,
∇tci(xk, t)∆t+ (∇xci(xk, t+ ∆t) +∇2

xxci(xk, t+ ∆t)∆cx)T∆px ≥ 0,
i ∈ Ak \A+,k.

Note that the second derivative terms ∇2
xxci(xk, t+ ∆t) are multiplying the corrector

∆cx that was previously computed in (CorrectStep), and the primal variable ∆px
of (QPPredict) appears just once in each constraint, so despite the presence of the
second derivative, the constraints are still affine and the subproblem is a standard
QP.

A standard predictor step, as used, for instance, in [24, 40], corresponds to this
QP without the additional term ∇2

xxci(xk, t + ∆t)∆cx in the constraints. Note that
by the properties of f and c as a function of t, no new function evaluations need to
be performed between solving (CorrectStep) and (QPPredict).

In effect, (CorrectStep) produces an iterate closer to the primal-dual solution
set at the given t, and without the additional term involving ∇2

xxci(xk, t + ∆t)∆cx,
(QPPredict) would be an estimate for the tangent of the path-following solution curve,
with the estimate derived from information at (xk, yk). In Figure 2 this would corre-
spond to, after the corrector step to x2, taking a step to x4. By including this extra
term, the predictor uses some information from the corrector, and so the step is to x5.
Thus, this modification allows for the predictor step to improve upon and generate a
more accurate prediction without requiring any new function evaluations.

Denote the primal-dual solution of this subproblem as (∆px,∆py). Let (∆x,∆y) =
(∆cx + ∆px,∆cy + ∆py). We then obtain a new estimate for the active set by
Ak+1 = Aγ(xk + ∆x, yk + ∆y, t+ ∆t) ∪ E .

3.2.3. Multiplier jump step. Under the MFCQ and the CRCQ, but without
the LICQ holding for (1.1) across all values of t, the optimal primal solution x∗(t) is
continuous, but it could hold that any optimal multiplier path y∗(t) ∈ Λ(x∗(t), t) is
discontinuous and has one or more discrete jumps. This has been illustrated in the
example given in section 2.2, where there is no continuous path of optimal multipliers
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that solve the problem across each side of t = 0.5. For t ≤ 0 some multipliers are
positive and bounded away from zero that must become zero for t > 0.5, and some
multipliers must be zero for t < 0 and then become positive for t > 0.5. Thus we
need to compute a step in the estimate of the optimal dual variables y that performs
this jump.

We calculate the new multiplier, and we allow for jumps by selecting the multiplier
as the solution of the following LP problem:
(JumpLP)

miny yT∇tc(x+ ∆x, t+ ∆t)∆t
subject to −|∇L(xk + ∆x, yk + ∆y, t+ ∆t)|

≤ ∇xf(xk + ∆x, t+ ∆t) +
∑

i∈Ak+1

∇xci(xk + ∆x, t+ ∆t)yi

≤ |∇L(xk + ∆x, yk + ∆y, t+ ∆t)|,
yI ≥ 0,
yi/∈Ak+1

= 0,

where the absolute value is performed componentwise. We let the solution of this LP
be yk+1 and redefine A+,k = {i : [yk+1]i > 0} ∪ E . We then set xk+1 = xk + ∆x and
k = k + 1 and repeat from the beginning.

Note that for the next iteration, the constraint gradients corresponding to the
equality constraints together with inequality constraints corresponding to the posi-
tive components of yk+1 must be linearly independent. This is required for the system
defining (CorrectStep) to be nonsingular. The constraints of (JumpLP), the approx-
imate KKT conditions, define a polytope for the feasible set of multipliers. If the
solution is on a vertex, then under the assumptions we make, the positive components
of the corresponding multiplier solution corresponds to a linearly independent set of
constraint gradients. Thus a problem can arise only when the solution to (JumpLP)
is found on a face of the polytope. For the time being, we assume that the solution
to (JumpLP) is on a vertex and the constraint gradients {∇xci(xk, yk) : [yk]i > 0} are
linearly independent. Note that this will always be the case if a simplex solver is used
for (JumpLP). Even otherwise, however, there are a number of reasons to believe
that, in practice, a vertex solution to the LP corresponding to linearly independent
constraint gradients for positive components of yk+1 will be found. We will revisit
this topic in section 5, where we discuss this issue in more detail.

The basic steps of the procedure are summarized in Algorithm 1. A more detailed
description of our implementation is given in section 5.

4. Convergence of the predictor-corrector path-following algorithm.

4.1. Preliminaries. We shall use the following results throughout the conver-
gence theory.

Lemma 4.1. If the SSOSC and the MFCQ hold at (x∗(t), y∗) for some y∗ ∈
Λ(x∗(t), t), then for (x, y) sufficiently close to (x∗(t), y∗), there exist constants C1(t) >
0 and C2(t) > 0 such that it holds that

C1(t)θ(x, y, t) ≤ η(x, y, t) ≤ C2(t)θ(x, y, t).

Proof. See, e.g., Wright [37, Theorem A.1].

The next lemma verifies that the active set estimate Aγ(x, y, t), given in (3.1) is
accurate.
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Algorithm 1 Predictor Corrector Sensitivity Path-Following Method.

Input: ∆t, initial x, y such that {∇xci(x, 0)}{i∈I:yi>0}∪E is linearly independent.

1: Define γ satisfying 0 < γ < 1.
2: Estimate A using (3.1) evaluated at (x, y, 0) and define A+

3: while t < 1 do
4: Solve (CorrectStep) for (∆cx,∆+y).
5: Define ∆cy ∈ Rm such that [∆cy]A+ = ∆+y and zero otherwise.
6: Solve (QPPredict) for (∆px,∆py).
7: Set (∆x,∆y) = (∆px,∆py) + (∆cx,∆cy).
8: Compute A = Aγ(x+ ∆x, y + ∆y, t+ ∆t) ∪ E .
9: Solve (JumpLP) to redefine y.

10: Let A+ = {i : [y]i > 0} ∪ E .
11: Set t = t+ ∆t, x = x+ ∆x.
12: end while

Lemma 4.2 (see [13, Theorem 3.7]). For all x, y such that θ(x, y, t) is sufficiently
small, Aγ(x, y, t) = A(x∗(t)).

Lemma 4.3 (see [21, Lemma 3]). Given matrices Q∗ and P ∗, where Q∗ is sym-
metric, suppose that

wTQ∗w ≥ α‖w‖2, whenever P ∗w = 0, w ∈ Rn.

Then given any ζ > 0, there exists σ > 0 and neighborhoods P of P ∗ and Q of Q∗

such that

vT
(
Q+

1

ρ
PTP

)
v ≥ (α− ζ)‖v‖2

for all v ∈ Rn, 0 < ρ ≤ σ, P ∈ P, and Q ∈ Q.

The next theorem summarizes the sensitivity results that hold under the MFCQ
and the CRCQ that are the theoretical foundation for the predictor-corrector algo-
rithm we have formulated.

Theorem 4.4. Let f and c be twice continuously differentiable in t and x near
(x∗(t0), t0), and let the MFCQ and the GSSOSC hold at x∗(t0).

1. The solution x∗(t) is continuous in a neighborhood of x∗(t0) and the solution
function x∗(t) is directionally differentiable, i.e.,

(4.1) x∗(t0 + ∆t) = x∗(t0) + δx∗(x∗(t0), t0,∆t) + o(|∆t|),

where δx∗(x∗(t0), t0,∆t) is the directional derivative of x∗(t) with respect to
t at t0 scaled by ∆t, i.e.,

δx∗(x∗(t0), t0,∆t) = lim
ε↓0

x∗(t0 + ε)− x∗(t0)

ε
∆t.

2. Moreover, for each t in a neighborhood of t0 and direction ∆t, there exists
a multiplier ŷ ∈ Λ(x∗, t0) such that the directional derivative uniquely solves
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the following convex quadratic program:
(SensitivityQP)

min∆x ∆xT∇xtL(x∗(t0), ŷ, t0)∆t+
1

2
∆xTH(x∗(t0), ŷ, t0)∆x

subject to ∇xci(x∗(t0), t0)T∆x+∇tci(x∗(t0), t0)∆t = 0,
i ∈ A+(x∗(t0), ŷ, t0) ∪ E ,

∇xci(x∗(t0), t0)T∆x+∇tci(x∗(t0), t0)∆t ≥ 0,
i ∈ A0(x∗(t0), ŷ, t0).

We denote the solution set of this program as

(δx∗(x∗(t0), t0,∆t), δY
∗(x∗(t0), ŷ, t0,∆t))

(where δx∗(x∗(t0), t0,∆t) is a singleton). Note that δx∗(x∗(t0), t0,∆t) does
not depend on ŷ (if there are multiple ŷ satisfying the conditions of this part
of the Theorem), but δY ∗(x∗(t0), ŷ, t0,∆t) may.

3. If, in addition, the CRCQ holds, then the multiplier values ŷ at which the
QP (SensitivityQP) must be evaluated can be found as a solution of the fol-
lowing linear program:

(SensitivityLP)

miny yT∇tc(x∗(t0), t0)∆t
subject to ∇xf(x∗(t0), t0)−∇xc(x∗(t0), t0)y = 0,

yI ≥ 0,
ci(x

∗(t0), t0)yi = 0 for all i ∈ {1, . . . ,m}.

We denote its solution set as Ŷ (x∗(t0), t0). Note that this set is independent
of ∆t as long as ∆t > 0.

4. Moreover, the set {∇xci(x∗(t0), t0)}i∈A+(x∗(t0),ŷ,t0)∪E is linearly independent

for some ŷ ∈ Ŷ (x∗(t0), t0); specifically, all extreme points of Ŷ (x∗(t0), t0)
satisfy this condition.

5. The primal-dual solution set K(t0) is proto-differentiable at (x∗(t0), ŷ) for
any ŷ ∈ Ŷ (x∗(t0), t0), and the outer graphical derivative is the solution set
of (SensitivityQP), i.e.,

DK(t0|x∗(t0), ŷ)∆t = (δx∗(x∗(t0), t0,∆t), δY
∗(x∗(t0), ŷ, t0,∆t)).

This implies, in particular, that, for any δy∗ ∈ δY ∗(x∗(t0), ŷ, t0,∆t)

(4.2) dist(ŷ + δy∗,Λ(x∗(t0 + ∆t), t0 + ∆t)) = o(|∆t|).

Proof. Parts 1–3 appear as [24, Theorem 5] and [30, Theorems 1-2].
Part 4 follows from the proof of [27, Theorem 2.2]
Part 5 follows from [28, Proposition 2.5.1], where it can be seen that [28, (2.34)]

are the optimality conditions of (SensitivityQP), if we consider that the problem is
independent of any nonlinear perturbation w, and let v′1 = ∇xtf(x, t)∆t and v′2 =
∇tc(x, t)∆t. The implication (4.2) follows from the definition of proto-differentiability,
e.g., in the notation of (1.4), let v′ = 1, reparametrize v(s) to be t0+∆t, and then since
(δx∗(x∗(t0), t0,∆t), δY

∗(x∗(t0), ŷ, t0,∆t)) is the directional derivative of K(x, y, t),
it holds that, for any δy∗ ∈ δY ∗(x∗(t0), ŷ, t0,∆t), and for δx∗(x∗(t0), t0,∆t), the
corresponding selection w(s) = (x∗(s), y∗(s)) satisfies

w(s)− w(0) = (δx∗(x∗(t0), t0,∆t)), δy
∗) + ∆tα(∆t),

where α(∆t)→ 0 as ∆t→ 0.
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4.2. Convergence of Algorithm 1. We make the following assumptions.

Assumption 1. The functions f(x, t) and c(x, t) are two times Lipschitz continu-
ously differentiable for all x and t ∈ [0, 1] with respect to both x and t.

Assumption 2. There exists a continuous primal solution path x∗(t) to (1.1) for
t ∈ [0, 1].

Hereafter, every result, unless otherwise noted, is with respect to a particular
continuous such path x∗(t).

Assumption 3. The CRCQ, the MFCQ, and the GSSOSC hold for all x∗(t), t ∈
[0, 1].

Lemma 4.5 (see [15]). Λ(x∗(t), t) is bounded for all t.

Note that since the KKT conditions are linear in y, this implies that Λ(x∗(t), t)
is a closed convex polytope for any given x∗(t) and t.

Lemma 4.6. There exists a B such that for every ŷ ∈ Ŷ (x∗(t), t) for all t, ‖ŷ‖≤B.

Proof. Suppose there is a sequence (ŷ(tk), tk) with ŷ(tk) ∈ Ŷ (x∗(t), t) such that
‖ŷ(tk)‖ ≥ k. But since t is in a compact set, there exists a convergent subsequence
and a cluster point t∗. However, this implies that ‖ŷ(t∗)‖ = ∞, which is impossible
by Lemma 4.5.

Lemma 4.7. Consider the QP (SensitivityQP) evaluated at a ŷ(t) that is an ex-
treme point of Ŷ (x∗(t), t) satisfying Part 4 of Theorem 4.4. There exists a B2 such
that for all t ∈ [0, 1], there exists a δy∗(t) ∈ δY ∗(x∗(t), ŷ(t), t), the dual solution set
to (SensitivityQP), that is bounded by B2.

Proof. For any t, we can obtain a set of constraints active (or equality) at δx∗(t)
with linearly independent gradients. Then δx∗(t) is also a solution of the QP with
the rest of the constraints removed, for which the LICQ now holds, and thus there
is a bounded subset of δY ∗(x∗(t), ŷ(t), t). Now suppose that there exists (tk) such
that for all δy∗(tk) ∈ δY ∗(x∗(tk), ŷ(tk), tk) it holds that ‖δy∗(tk)‖ ≥ k. But this
implies that there exists a cluster point t∗ such that ‖δy(t∗)∗‖ = ∞ for all δy∗(t∗) ∈
δY ∗(x∗(t∗), ŷ(t∗), t∗), and this is impossible.

We are now ready to present the main result with regards to the predictor-
corrector step.

Theorem 4.8. If θ(xk, yk, tk), ‖yk − ŷ‖ and ∆t are sufficiently small for some
ŷ ∈ Ŷ (x∗(t), tk) satisfying the condition in part 4 of Theorem 4.4, and A+,k =
A+(x∗(tk), ŷ, tk) ∪ E, then consider the point (xk + ∆x, yk + ∆y), where (∆x,∆y) =
(∆px+ ∆cx,∆py + ∆cy) is defined as follows:

• (∆cx,∆+y) solves (CorrectStep),
• ∆cy ∈Rm is such that [∆cy]A+,k

= ∆+y and [∆cy]i=0 for i∈ {1, . . . ,m}\A+,k,
and

• ∆px solves (QPPredict) with any associated dual solution ∆py.
This primal-dual point (xk + ∆x, yk + ∆y) satisfies η(xk + ∆x, yk + ∆y, tk + ∆t) ≤
η(xk, yk, tk)1+γ , where γ is the constant appearing in the active set estimate (3.1).

The next result states that given a primal-dual point (xk, yk) sufficiently close
to the primal-dual solution set (x∗(t),Λ(x∗(t), t), the solution of (JumpLP) yields a
good multiplier approximation from which to calculate the next predictor step.

Theorem 4.9. For all ε and ∆t, there exists a ν such that if

dist((x, y), (x∗(t),Λ(x∗(t), t))) ≤ ν,
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then the solution ȳ to

(4.3)

minȳ ȳ∇tc(x, t)∆t
subject to −|∇L(x, y, t)|

≤ ∇f(x, t) +
∑

i∈A(x∗(t))∪E
∇xci(x, t)ȳi

≤ |∇L(x, y, t)|
satisfies dist(ȳ, Ŷ (x∗(t), t)) ≤ ε.

The first theorem guarantees that the primal-dual solution for the corrector-
predictor problems result in a step that produces a point that is arbitrarily close
to the solution to the parametric NLP evaluated at t + ∆t, given an original iterate
(xk, yk) sufficiently close to (x∗(t), ŷ). It implies that the primal dual point is within
the ball of local superlinear contraction and the corrector step results in a point much
closer to the solution of the problem for the current value of the parameter. Recall
that the predictor (QPPredict) is a first-order estimate of the primal-dual solution
path, and by coupling it with the corrector (CorrectStep), we can ensure that the so-
lution estimate tracks the solution, in the sense of being able to produce a point that
is an accurate enough approximation of the appropriate primal-dual solution such
that all subsequent estimates are as close as desired by some predetermined amount.

The second theorem states that if the active set is estimated correctly, which
follows from Lemma 4.2, if the point at which the LP (JumpLP) is evaluated is
sufficiently close to (x∗(t+ ∆t),Λ(x∗(t+ ∆t), t+ ∆t), then the multiplier solution can
be made arbitrarily close to the set Ŷ (x∗(t+ ∆t)). By assumption, we can make the
starting point sufficiently close to the primal dual solution (x∗(t), ŷ), so as to (possibly
also by decreasing ∆t) to make the solution to the predictor-corrector subproblems
arbitrarily close to (x∗(t+ ∆t),Λ(x∗(t+ ∆t), t+ ∆t)). Theorem 4.9 implies that the
final multiplier estimate can get within any desired distance to Ŷ (x∗(t+ ∆t), t+ ∆t).
This suggests that the new xk + ∆x can be in the neighborhood for which the CRCQ
applies at t + ∆t, and together with the multiplier returned by (JumpLP) yield a
primal-dual point that satisfies the conditions of Theorem 4.8 for the problem at
t + ∆t. The argument then repeats itself at t + ∆t, and so on, until reaching t = 1.
For any t to which we apply the argument, we can make the solution estimate at the
initial t = 0 close enough to yield all the desired results across all the subsequent (0, t]
up until the current value of the parameter.

Conceptually, the argument can be thought of as presenting results that are
slightly stronger than basic ε − δ theory. Specifically, all primal-dual points can be
arbitrarily close to the desired points at the subsequent iteration, and in particular
the error with respect to the primal dual solution can be made to always be bounded
by the previous error. However, nothing stronger than that can be claimed. In par-
ticular, unless the radius of the Newton–Kantarovich ball of quadratic convergence is
uniformly bounded from below across t (i.e., there exists some c̃1 independent of t such
that if dist((x, y), (x∗(t), ŷ)) ≤ c̃1, then Newton’s method initiated at (x, y) applied
to the equality constrained NLP (4.4) results in a superlinearly/quadratically con-
vergent sequence of iterates converging to (x∗(t), ŷ)), the neighborhood for which the
CRCQ applies is also bounded across t, and other such conditions, finite termination
without occasional reliance on a globalized algorithm cannot be ensured. However, we
expect that for many well-formulated problems, it can be expected that the required
conditions do hold. Since little is known about regions of applicability of constraint
qualifications and local convergence for Newton methods for NLPs, however, no pre-
cise statements can be made to that effect. The nature and limitations of the proof
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theory presented here also apply to other algorithms implementing path-following for
parametric NLP problems, e.g., [9, 39]. So these techniques seem to be standard for
this class of problems and algorithms. An exception is [10], which proves a uniform
strong regularity result which permits a proof of finite termination upon finding an
initial solution. This was proved in the case of strong regularity for the problem (in
this case a variational inequality) at all values of the parameter, however, and the
question as to whether something similar can be shown for the setting assumed in
this paper, or, alternatively, what the weakest conditions for such a result would be,
can be a topic for future research.

A technical point is the following: We can get the solution of the algorithm at
any given iteration arbitrarily close to the solution of the PNLP at tk + ∆t if we
make the previous point close enough to the solution at tk. This means that when
we use O notation, it is all with respect to a specific k (specifically as the base point
approaches the solution at the base parameter value). This is different from standard
NLP algorithms and global convergence proofs, which are concerned with limit points
of the sequence (xk, yk) as k →∞.

4.3. Proofs of results. In this section we prove the main two results of this
paper.

Proof of Theorem 4.8. The system (CorrectStep) is the Newton–Lagrange system
for solving the NLP,

(4.4)
minx f(x, tk),

subject to ci(x, tk) = 0, i ∈ A+(x∗(tk), ŷ, tk) ∪ E ,

for which x∗(tk) is a stationary solution. By the linear independence of
{∇ci(x∗(tk), tk)}i∈A+(x∗(tk),ŷ,tk)∪E (thus the MFCQ holds for (4.4)) and the SSOSC,
we can invoke [32, Theorem 2.2] to conclude that the solution is isolated. Thus
the Newton–Lagrange step (CorrectStep) is associated with local convergence to
(x∗(tk), ŷ) uniquely.

Denoting the solution to (CorrectStep) as (∆cx,∆cy), we have, from the usual
Newton local convergence properties,

(4.5) ‖(xk + ∆cx− x∗(tk), yk + ∆cy − ŷ)‖ = O(‖(xk − x∗(tk), yk − ŷ)‖2),

and

(4.6) ‖(∆cx,∆cy)‖ = O(‖(xk − x∗(tk), yk − ŷ)‖).

By the GSSOSC, subproblem (SensitivityQP) is strongly convex and has a unique
solution. By (4.6) and Lemma 4.3 it holds that (QPPredict) is also strongly convex
and has a unique primal solution for ‖(xk − x∗(tk), yk − ŷ)‖ sufficiently small.

We can now write the optimality conditions of (QPPredict) as, using ∇xc(x, tk) =
∇xc(x, tk + ∆t) and H(x, y, t) = H(x, y, t+ ∆t),
(4.7)
(∇xf(xk, tk + ∆t)−∇xc(xk, tk + ∆t)yk −∇xf(xk, tk) +∇xc(xk, tk)yk)

+ H(xk, yk, tk + ∆t)∆px− (∇xc(xk, tk) +∇2
xxc(xk, tk)∆cx)∆py = 0,

(∇xci(xk, tk + ∆t) +∇2
xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t = 0, i ∈ A+,k,

(∇xci(xk, tk + ∆t) +∇2
xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t ∈ N ([∆py]i),

i ∈ Ak \A+,k.
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Now, using the properties of f and c as functions with respect to t,

(∇xf(xk, tk + ∆t)−∇xc(xk, tk + ∆t)yk −∇xf(xk, tk) +∇xc(xk, tk)yk)

= ∇xtL(xk, yk, tk)∆t,

we can rewrite (4.7) as
(4.8)
∇xtL(xk, yk, tk)∆t+H(xk, yk, tk + ∆t)∆px− (∇xc(xk, tk)

+ ∇2
xxc(xk, tk)∆cx)∆py = 0,

(∇xci(xk, tk) +∇2
xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t = 0, i ∈ A+,k,

(∇xci(xk, tk) +∇2
xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t ∈ N ([∆y]i), i ∈ Ak \A+,k.

We may consider this system as a perturbation of the optimality conditions
of (SensitivityQP). Consider any δx and an associated dual δy solution to (4.8).
We shall apply the upper Lipschitz continuity of solutions subject to perturbations
given for a QP satisfying the SSOSC and the MFCQ in [32, Theorem 4.2]. In par-
ticular, in the notation of the theorem, for the base perturbation γ0, ∇δxf̃(δx; γ0) =
∇xtL(x∗(t), ŷ, tk)∆t+H(x∗(t), ŷ, tk + ∆t)δx, and for the current point, considered at
γ1, ∇δxf̃(δx; γ1) = ∇xtL(xk, yk, tk)∆t+H(xk, yk, tk + ∆t)δx, and the constraint c̃ as
c̃(δx; γ0) = (∇xci(x∗(t), tk))T δx + ∇tci(x∗(t), tk)∆t and c̃(δx; γ1) = (∇xci(xk, tk) +
∇2
xxci(xk, tk)∆cx)T δx+∇tci(xk, tk)∆t.

We see from the conclusion of [32, Theorem 4.2] that the solution (δx, δy) to
(QPPredict) satisfies
(4.9)
‖δx− δx∗‖+ dist(δy, δY ∗(x∗(tk), ŷ, tk))

≤

∥∥∥∥∥∥∥∥∥∥


∇xtL(xk, yk, tk)∆t−∇xtL(x∗(tk), ŷ, tk)∆t

+ (H(xk, yk, tk + ∆t)−H(x∗(tk), ŷ(t), tk + ∆t))δx

− (∇xc(x
∗(tk), tk)−∇xc(xk, tk)−∇2

xxc(xk, tk)∆cx)δy

((∇xc(xk, tk) +∇2
xxc(xk, tk)∆cx)T −∇xc(x

∗(tk), tk)T )δx
+ ∇tc(xk, tk)∆t−∇tc(x

∗(tk), tk)∆t


∥∥∥∥∥∥∥∥∥∥
.

By the fact that ∇tc(x, t) and ∇xtf(x, t) is a constant, we have that

∇xtL(xk, yk, tk)∆t−∇xtL(x∗(tk), ŷ, tk)∆t = 0 and

∇tc(xk, tk)∆t−∇tc(x∗(tk), tk)∆t = 0.

Given the two-times Lipschitz continuity of c and f we can obtain
(4.10)
‖(H(xk, yk, t+ ∆t)−H(x∗(tk), ŷ, tk + ∆t))δx‖

=
∥∥∥((∇2

xxf(xk, tk + ∆t)−∇2
xxf(x∗(tk), t+ ∆t)

−
∑

[yk]i(∇2
xxci(xk)−∇2

xxci(x
∗(tk)))−

∑
([yk]i − [ŷ]i)∇2

xxci(x
∗(tk)))δx

∥∥∥
≤ ((CL +B + ‖yk − ŷ‖)‖xk − x∗(tk)‖+B‖yk − ŷ‖)‖δx‖,

where CL is an upper bound for the Lipschitz constant for function and the first and
second derivatives of f and c and B is an upper bound on ŷ by Lemma 4.6. Using
Taylor’s theorem and (4.5), (4.6),

(4.11)

‖(∇xc(x∗(tk), tk)−∇xc(xk, tk)−∇2
xxc(xk, tk)∆cx)δy‖

= ‖(∇xc(x∗(tk), tk)−∇xc(xk + ∆cx, tk))δy +O(‖∆cx‖2‖δy‖)
= O(‖(xk − x∗(tk), yk − ŷ)‖2‖δy‖),
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and similarly,

(4.12)
∥∥(∇xc(xk, tk)T +∇2

xxc(xk, tk)∆cx−∇xc(x∗(tk), tk)T )δx
∥∥

= O(‖(xk − x∗(tk))‖2‖δx‖).

Let δy∗ be an element of δY ∗(x∗(tk), ŷ, tk) satisfying Lemma 4.7.
From applying (4.10), (4.11), and (4.12) to (4.9) and then applying the triangle

inequality to write ‖δx‖ ≤ ‖δx + δx∗‖ + ‖δx∗‖ and ‖δy‖ ≤ ‖δy + δy∗‖ + ‖δy∗‖, we
can deduce
(4.13)

‖δx− δx∗(x∗(tk), tk)‖+ ‖δy − δy∗‖
= O(‖(xk, yk)− (x∗(tk), ŷ)‖)(‖δx− δx∗‖+ ‖δx∗‖)

+ O(‖(xk, yk)− (x∗(tk), ŷ)‖2)(‖δx∗‖+ ‖δy − δy∗‖+ ‖δy∗‖)).

By taking ‖(xk, yk) − (x∗(tk), ŷ(tk))‖ sufficiently small, we can ensure that all
terms above of the form O(‖(xk, yk)− (x∗(tk), ŷ(tk))‖) are less than one half. We can
then subtract 1

2‖δx− δx
∗‖+ 1

2‖δy − δy
∗‖ from both sides of (4.13) and then double

both sides of the resulting equation to get

(4.14) ‖δx− δx∗‖+ ‖δy − δy∗‖ = O(‖(xk, yk)− (x∗(tk), ŷ)‖2)(‖δx∗‖+ ‖δy∗‖)
+O(‖(xk, yk)− (x∗(tk), ŷ)‖)‖δx∗‖.

Theorem 4.4 parts 1 and 5 imply that

(4.15) ‖x∗(tk) + δx∗(x∗(tk), tk)− x∗(tk + ∆t)‖+ ‖ŷ + δy∗ − y∗(tk + ∆t)‖ = o(∆t),

where y∗(tk + ∆t) satisfies

‖ŷ + δy∗ − y∗(tk + ∆t)‖ = dist(ŷ + δy∗,Λ(x∗(tk + ∆t), tk + ∆t)).

Furthermore, it holds that as ∆t→ 0, δx∗(x∗(tk), tk,∆t)→ 0, and by Lemma 4.7
it holds that ‖δy∗‖ ≤ B2. Let E(∆t) = ‖δx∗(x∗(tk), tk,∆t)‖.

Finally, using Lemma 4.1, we get
(4.16)

η(xk + ∆x, yk + ∆y, t+ ∆t)

≤ C2(tk + ∆t)
(
‖xk + ∆cx+ δx− x∗(t+ ∆t)‖
+ dist(xk + ∆cy + δy,Λ(x∗(tk + ∆t), tk))

)
≤ C2(tk + ∆t) (‖xk + ∆cx− x∗(tk)‖+ ‖yk + ∆cy − ŷ‖

+ ‖x∗(tk) + δx∗(x∗(tk), tk)− x∗(tk + ∆t)‖
+ ‖ŷ + δy∗ − y∗(tk + ∆t)‖
+ ‖δx− δx∗(x∗(tk), tk)‖+ ‖δy − δy∗‖

)
= O(‖(xk − x∗(tk), yk − ŷ)‖2) + o(∆t) +O(‖(xk, yk)− (x∗(tk), ŷ)‖2)

+ O(‖(xk, yk)− (x∗(tk), ŷ)‖)E(∆t)

= O(‖(xk, yk)− (x∗(tk), ŷ)‖2) + o(∆t) +O(‖(xk, yk)− (x∗(tk), ŷ)‖)E(∆t)

= O(η(xk, yk, t)
2) + o(∆t) +O(η(xk, yk, t))E(∆t).

Thus, by making ∆t sufficiently small, we get the desired result for sufficiently small
‖(xk, yk)− (x∗(tk), ŷ)‖.
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Proof of Theorem 4.9. Let the constant vector r be defined to be r ≡ ∇tc(x, t)∆t.
Recall that by the MFCQ and Gauvin [15], it holds that the set Λ(x∗(t), t) is bounded,
and since the KKT conditions are linear with respect to y, it is also closed and convex,
and thus compact, and is defined as a polytope.

Let {ỹj}j∈{1,...,J} = Ỹ (x∗(t), t) be the set of extreme points of this polytope. It
holds that for each ỹj , for the set I(ỹj) ⊆ I such that [ỹj ]I(ỹj) > 0, the corresponding
set of constraint gradients {∇ci(x∗(t), t)}i∈I(ỹj)∪E is linearly independent. Moreover,
by CRCQ there exists a ν1 such that {∇ci(x̃, t)}i∈I(ỹj)∪E is linearly independent for
x̃ such that ‖x̃ − x∗(t)‖ ≤ ν1. By the implicit function theorem, for any ε̃ > 0 there
exists ε1 such that if Jρ and gρ are perturbations of the objective and constraint
gradients satisfying ‖Jρ −∇xc(x∗(t), t)‖ ≤ ε1 and ‖gρ −∇xf(x∗(t), t)‖ ≤ ε1, it holds
that [Jρ]I(ỹj)∪E [ỹj(ρ)]I(ỹj)∪E = gρ with [ỹj(ρ)]I ≥ 0 and ‖ỹj(ρ)− ỹj‖ ≤ ε̃.

By part 3 of Theorem 4.4 we have that rT ŷ < rT y∗ for all y∗ ∈ Λ(x∗(t), t) with
y∗ /∈ Ŷ (x∗(t), t), ŷ ∈ Ŷ (x∗(t), t). Therefore for all ε2, there exists some ε̂2 such that
for perturbations ρ of the extremal multipliers ỹj satisfying ‖ỹj(ρ)− ỹj‖ ≤ ε̂2, it holds
that

(4.17) rT ỹĵ(ρ) < rT ỹǰ(ρ)− ε2

for all ĵ such that ỹĵ ∈ Ŷ (x∗(t), t) ∩ Ỹ (x∗(t), t) and ǰ such that ỹǰ ∈ Ỹ (x∗(t), t) \
Ŷ (x∗(t), t).

Since ∇xL(x, y), ∇xf(x, t) − ∇xf(x∗(t), t) and ∇xc(x, t) − ∇xc(x∗(t), t) are all
O(θ(x, y, t)), the constraints of (4.3) correspond to a set of perturbation of the sta-
tionarity conditions. Let us say they are all bounded by Cθ(x, y, t).

Finally, choose ε as given in the statement of Theorem 4.9, i.e., satisfying the
desired estimate dist(ȳ, Ŷ (x∗(t), t) ≤ ε. Let ε2 ≥ ε, and a corresponding ε̂2 ≤
1
4ε

2(2 max{1, ‖r‖∞}max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1 such that (4.17) holds for ‖ỹj(ρ)−
ỹj‖ ≤ ε̂2.

Now choose ε̂1 and then take some appropriate x and y as stated in the conditions
of the Theorem, such that for Cθ(x, y, t) ≤ min(ν1, ε̂1), for all yα satisfying

−|∇xL(x, y, t)| ≤ ∇xf(x, t)−∇xc(x, t)yα ≤ |∇xL(x, y, t)|, yα ≥ 0,

it holds that ‖yα −
∑
j∈J αj ỹj‖ ≤ min(ε̂2,

ε
2 ) for some αj with αj ≥ 0 for j ∈ I,∑

j αj = 1.

Now let yα be a solution to the (4.3), i.e., yα is feasible and rT yα ≤ rT yβ for all
feasible yβ . Let αj be defined as above with

(4.18)

∥∥∥∥∥∥yα −
∑
j∈J

αj ỹj

∥∥∥∥∥∥ ≤ min
(
ε̂2,

ε

2

)
.

Consider any feasible yβ satisfying ‖yβ − ỹk̂‖ ≤ ε̂2 for some ỹĵ ∈ Ŷ (x∗(t), t) ∩
Ỹ (x∗(t), t).

Let Ĵ be such that if ĵ ∈ Ĵ , then ỹĵ ∈ Ŷ (x∗(t), t) ∩ Ỹ (x∗(t), t).
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It holds that

rT yα ≤ rT yβ

(4.18) =⇒ rT
∑
j∈J

αj ỹj − ‖r‖∞ε̂2 < rT yβ

=⇒ rT
∑
j∈J

αj ỹj − 2‖r‖∞ε̂2 < rT ỹĵ

=⇒ rT
∑
j∈J

αj ỹj −
ε2

2
(max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1

< rT ỹĵ

=⇒ rT
∑
j∈Ĵ

αj ỹj + rT
∑
j∈J\Ĵ

αj ỹj −
ε2

2
(max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1

< rT ỹĵ

=⇒ ε2
∑
j∈J\Ĵ

αj −
ε2

2
(max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1

< 0

=⇒ ε2
∑
j∈J\Ĵ

αj (max{‖y‖∞ : y ∈ Λ(x∗(t), t)}) < ε2

2

=⇒
∑
j∈J\Ĵ

αj (max{‖y‖∞ : y ∈ Λ(x∗(t), t)}) < ε

2
,

which together with (4.18) implies that ‖yα−
∑
j∈Ĵ αj ỹj‖ ≤ ε, proving the theorem.

5. Discussion and practical implementation. Algorithm 1 in section 3.2
is a basic skeleton of a path-following algorithm for tracing a solution curve of a
parametric optimization problem. The convergence results presented in the previous
section show the fundamental theoretical results that demonstrate the efficacy of the
steps in the procedure. This section discusses some of the issues that are relevant for
a practical implementation.

To begin with, an initial point satisfying the requirements laid out needs to be
generated. For generating this point, at t = 0, consider that we solve the standalone
NLP, (1.1) evaluated at t = 0, using some globalized NLP solver, to obtain at least an
approximate solution, i.e., one for which η(x, y, 0) is close to zero, or the magnitude
of tolerance one desires to track across the homotopy. By assumption the MFCQ and
the CRCQ both hold at the solution of the problem. Thus any NLP solver that is
globally convergent for NLPs satisfying these constraint qualifications is sufficient to
perform this task. This is not a very stringent requirement; for example, augmented
Lagrangian methods are known to be globally convergent for assumptions weaker than
this [2, 17]. The appropriate y0 can then be found by solving (JumpLP) evaluated at
this primal-dual (approximate) solution.

As mentioned in section 4.2, it may happen that the ε − δ’s do not line up, i.e.,
that the distance to the solution required for Theorems 4.8 and 4.9 to apply at a
particular point happens to be smaller than the one obtained from the previous iter-
ation. Fundamentally, this means that to entirely avoid having to rerun a globalized
solver one would need to a priori know the required balls of local convergence and
neighborhoods relevant to the CQ across the homotopy in order to determine ∆t as
well as the required distance of the initial point to the solution at t = 0. In practice,
however, we expect this to rarely be an issue, as in most contexts in which one would
use a path-following optimization algorithm the differences in the NLPs across the
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possible values of t is not so large, so we expect relatively stable convergence and
CQ neighborhood radii required for tracking. Note that this is a standard issue for
parametric optimization algorithms, such as [9, 39]. Homotopy solvers rely on local
properties of the NLP and also prove similar ε− δ type results. As such they require
an initial point sufficiently close to the solution as well as possibly a resolve if things
break down.

Recall from the theoretical results that there are two important quantities that
determine the success of the primary steps of the path-following algorithm, the value
of ∆t and the distance of the current point to the solution. Both have to be small
enough. We may not know, if a complete iteration is a failure, which quantity was not
sufficiently small. We may check required properties of individual steps, and through
experimentation we can devise a reasonable procedure that seeks to diminish these
two quantities, either by changing ∆t or obtaining a closer point with a globalized
solver, appropriately. Of course diminishing ∆t is far less difficult and computationally
expensive, so we naturally err toward reducing ∆t and only revert to a globalized
solver when necessary. In our experiments, we found that as long as the first point
corresponding to the problem for t = 0 is sufficiently close to the solution, we did not
need to revert to a globalized solver during the course of the homotopy, but had to
modify ∆t at times.

At each iteration on the first step, the algorithm computes (CorrectStep). We
assume the original point to be in the radius of local convergence for the problem, and
so the resulting step would result in a point that corresponds to at least a superlinear
reduction in the distance to the solution. We perform a simple check that the initial
point was within the radius of local convergence by looking at the sign of the resulting
multipliers. In particular, if there exists an i /∈ E such that [yA+,k

+ ∆+y]i < 0, then
this suggests that we are not sufficiently close to a primal-dual solution, and so we re-
vert to an external independent globalized optimization software to find a new primal-
dual point (xk, yk) closer to (x∗(t),Λ(x∗(t))) and satisfying the needed conditions for
the multiplier. One can also check the optimality residual for superlinear contraction.

In addition, the step (QPPredict) must be evaluated at a point sufficiently close
to the primal-dual solution to result in a step that is sufficiently close to the solution
at t + ∆t. Specifically, we check if any new constraints have become violated by
too high a tolerance, or that the step was not a sufficiently accurate estimate of
(x∗(t+ ∆t),Λ(x∗(t+ ∆t), t+ ∆t)). Specifically, if

(5.1) η(xk + ∆x, yk + ∆y, t+ ∆t) > max(η(xk, yk, t), ηtol),

we decrease ∆t and solve (QPPredict) again. In this case, ηtol is some value that de-
fines an approximate optimality tolerance. We found that if we were to solely enforce
monotonic tracking, the algorithm would be forced to make ever tighter approxi-
mations, necessitating ever smaller values of ∆t, which is inefficient and practically
unnecessary.

Finally, we discuss the issue of generating a solution at the vertex and hence
obtaining a multiplier whose positive components correspond to a set of linearly in-
dependent constraint gradients.

1. The problem can entirely be avoided by using a simplex solver for (JumpLP)
which completely ensures that a vertex solution is sought. In practice, simplex
methods perform very well, so this would be the recommended approach.

2. A nonvertex solution can arise only when the ratio of ∇tci(x+ ∆x, t+ ∆t) to
∇xci(x+ ∆x, t+ ∆t) is the same for two or more constraints. For nonlinear
problems, this is extremely unlikely, and except for particularly contrived
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Algorithm 2 Predictor Corrector Sensitivity Path-Following Method.

Input: t, x, y close to (x∗(t), Ŷ (t)) such that {∇xci(x, t)}{i∈I:yi>0}∪E is linearly
independent.

1: Define parameters γ satisfying 0 < γ < 1 and ιmax ∈ N.
2: Estimate A using (3.1) evaluated at (x, y, 0) and define A+.
3: Set ι = 1
4: while t < 1 do
5: Solve (CorrectStep) for (∆cx,∆+y).
6: if for some i /∈ E , [yA+ + ∆+y]i < 0 then
7: Solve (1.1) at t for an approximate solution (x, y).
8: Set ι = 1.
9: end if

10: Define ∆cy ∈ Rm such that [∆cy]A+
= ∆+y and zero otherwise.

11: Solve (QPPredict) for (∆px,∆py).
12: Set (∆x,∆y) = (∆px,∆py) + (∆cx,∆cy)
13: if (5.1) does hold then
14: if ι ≥ ιmax then
15: Solve (1.1) at t for an approximate solution (x, y).
16: Set ι = 1.
17: Go to Line 5
18: else
19: Decrease ∆t. Set ι = ι+ 1.
20: Go to Line 11
21: end if
22: end if
23: if η(xk + ∆x, yk + ∆y, t+ ∆t) < η(xk, yk, t)

1+γ (very good step) then
24: Increase ∆t.
25: end if
26: Compute A = Aγ(x+ ∆x, y + ∆y, t+ ∆t) ∪ E .
27: Solve (JumpLP) to redefine y.
28: Let A+ = {i : [y]i > 0} ∪ E .
29: Set t = t+ ∆t, x = x+ ∆x.
30: end while

problems could hold for only a finite set of x ∈ R. In inexact numerical
arithmetic the probability of this occurring would be zero for any problems.
For linear problems, it could happen that throughout the space some of these
constraint gradients are proportional in this sense, but in this case they can be
precomputed and the constraints appropriately regularized prior to running
the path-following algorithm.

3. Finally, there is a procedure outlined on page 493 of [37] that finds an ap-
propriate y that satisfies the linear independence of constraint gradients cor-
responding to positive multiplier values condition, starting from any feasible
multiplier. The procedure requires the computation of a null-space, which
can be done by a matrix factorization.

We outline our complete implementation with worst case safeguards in Algo-
rithm 2. We found that, aside from finding the initial starting point, we never had
to revert to a globalized solver in our experiments, but we did sometimes have to
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decrease ∆t following a poor predictor step and then have to resolve (QPPredict).
We expect in general that reverting to a globalized solver is unnecessary for most
practical problems. However, we included all safeguards for completeness sake.

6. Numerical results.

6.1. Problem with degenerate constraints throughout and an active set
change. We consider problem (2.1) for t ∈ [0, 1]. Notice at the point wherein there
is an active set change, t = 0.5, the vector ∇tc(x, t)∆t is

∇tc(x, t)∆t =
(
−10 0 10 20 0 −10 −10

)T
∆t,

and thus the solution to (SensitivityLP), recalling that

Λ

(
x∗
(

1

2

))
= (0, y1, y2, y3, y4, y5, y6), y1 + y2 + y3 + y5 + y6

= e5, y1 − y3 − y4 +
1

2
y5 −

1

2
y6 = 0, yi ≥ 0,

is (0, 0, 0, 0, 0, 1
2e

5, 1
2e

5), indicating that the last two constraints should be strongly
active, and for t ∈ [0.5, 1], the solution should trace these constraints.

Indeed we find that the algorithm successfully traces the solution and (JumpLP)
performs the jump in the multipliers at t = 0.5. If, in the implementation of
the algorithm, we turn (JumpLP) off and instead use the multiplier solution ∆y
from (CorrectStep) and (QPPredict), then the algorithm gets stuck at t = 0.5 and
proceeds no further along the homotopy. We show the plots of the primal and dual
variables in Figure 3. Note that x follows the true solution closely, y2 and y4 are al-
ways effectively zero, and there is a discontinuous jump halfway along the homotopy
path where y3 jumps from being positive to zero and y5, y6 jump from zero to positive.

6.2. Degenerate nonlinear problem. We now consider a problem with non-
linear constraints. In particular, we consider the problem

(6.1)

minx −x2

subject to:

c1(x) := x3 = 1 + 9t,

c2(x) := x1 ≥ 0,

c3(x) := −x3
2 − x1x2 − x2

1 + x2
3 ≥ 0,

c4(x) := −ex1 − ex2 + ex3 + 1 ≥ 0,

c5(x) := −x2
1 − x1x2 + (x2 − (2.5 + 0.5x3))2 − (2.5 + 0.5x3)4x1

− 100(x2 − (2.5 + 0.5x3)) ≥ 0,

c6(x) := −x2
1 + x1x2 + (x2 − (2.5 + 0.5x3))2 + (2.5 + 0.5x3)4x1

− 100(x2 − (2.5 + 0.5x3)) ≥ 0.

For this problem x∗(t) = (0, 1+9t, 1+9t) for t ∈ [0, 4
9 ], and x∗(t) = (0, 3+4.5t, 1+9t)

for t ∈ [ 4
9 , 1]. For t ∈ [0, 4

9 ) constraints 1, 2, 3, and 4 are active (including one equality
constraint), and for t ∈ ( 4

9 , 1], (only) constraints 1, 2, 5, and 6 are active. At t = 4
9

all constraints are active. Since there are always at least four active constraints and
n is three, the Jacobian is trivially rank deficient. However, for all t, (0,−1, 0) is a
strictly feasible direction at x∗(t), and so the MFCQ holds. Furthermore, it can be
seen that the CRCQ holds at x∗(p) for all p. The results are given in Figure 4. Note
the discontinuous jump of some of the multipliers for t = 4/9.
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Fig. 3. Path of primal and dual variables tracing the approximate solution to (2.1) across
t = [0, 1].

6.3. Convergence and comparison. In order to illustrate the convergence
properties of the algorithm and their implications for practical application, we plot
the values of η(xk, yk, tk) as we trace the homotopy for problem (2.1) in Figure 5 and
for problem (6.1) in Figure 6. The tolerance in (5.1) was chosen as ηtol =1e-5, and
∆t is allowed to increase to speed up the tracking, as long as η < ηtol. We observe
superlinear contraction followed by repeatedly allowing η to inch up toward the op-
timality tolerance before decreasing ∆t again for achieving the required accuracy. In
the figures, we also show how η evolves when we implement the path-following algo-
rithm using only the predictor (and not the corrector), as proposed in [24]. We clearly
see that it diverges, suggesting a necessity for a corrector. We also considered drop-
ping (JumpLP) from the algorithm and just using the multipliers from (CorrectStep)
and (QPPredict), and as expected, the homotopy is traced up until the jump seen
at t = 0.5, at which point the algorithm fails to trace the optimal solution path. In
this case, the values of all the variables and η are the same as in our algorithm up
to t = 0.5. We note that we have essentially no algorithms to compare ours to in
terms of performance in iterations or speed, because Algorithm 1 solves a new class
of problems for which previously no algorithm exists, aside from [24], which has no
convergence theory and as we see does not stay close to the solution curve, or [26],
which requires solving an exponentially cascading sequence of LPs, unnecessary for
the problem setting we consider, and thus becomes prohibitively slow for an increasing
number of constraints.
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Fig. 4. Primal-dual approximate solution trajectories for Algorithm 1 applied to (6.1).
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Fig. 5. Plot of η across the homotopy for Algorithm 1 and pure predictor and LP Jump
algorithm [24] to (2.1) across t = [0, 1].

7. Conclusion. In this paper we investigated the properties of a predictor-
corrector path-following algorithm for parametric optimization. The algorithm con-
sists of solving a linear system that corresponds to a corrector step, a QP that cor-
responds to a corrected predictor, and an LP used to jump over discontinuities in
the optimal Lagrange multiplier. The procedure exhibits several desirable properties
for an appropriate algorithm for the problems of interest, and in particular we have
proved its convergence properties without assuming the LICQ holds at any of the
primal solutions along the path.
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Fig. 6. Plot of η across the homotopy for Algorithm 1 and pure predictor and LP Jump
algorithm [24] to (6.1) across t = [0, 1].

Future research on the topic can include several directions: first, solving problems
with even weaker assumptions on the problem data, inspired by singular systems in
optimal control with bifurcations in the solution to the dynamics; second, applying
the algorithm to problems arising in particular settings, especially nonlinear model
predictive control; third, it may be possible to modify the predictor-corrector subprob-
lems to be reformed as a phase 1-phase 2 type solver for standalone NLPs; fourth,
studying uniformity properties of the sensitivity theory used in the paper, as men-
tioned in the discussion of the convergence theory results in section 4.2; finally, it
would be interesting to investigate the application of this algorithm in parametric
problems with uncertainty, i.e., subject to additional parameters, to be optimized in
an either robust (worst-case) or stochastic/statistical sense.

Acknowledgments. J.J. would like to thank Larry Biegler for many interesting
discussions on the topic of path-following and sensitivity. V.K. would like to thank
Daniel P. Robinson for his helpful suggestions for improving the readability of the
paper. In addition the authors would like to thank two anonymous referees as well
as the Associate Editor, Mikhail Solodov, for their recommendations in revising the
manuscript.

REFERENCES

[1] E. L. Allgower and K. Georg, Numerical path following, Handb. Numer. Anal., 5 (1997),
pp. 3–207.

[2] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, On augmented
Lagrangian methods with general lower-level constraints, SIAM J. Optim., 18 (2007),
pp. 1286–1309.

[3] J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour,
SIAM Rev., 40 (1998), pp. 228–264.

[4] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400–408.

[5] S. Dempe, Foundations of Bilevel Programming, Springer, New York, 2002.
[6] P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive

Algorithms, Vol. 35, Springer, New York, 2011.
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[24] J. Jäschke, X. Yang, and L. T. Biegler, Fast economic model predictive control based on
NLP-sensitivities, J. Process Control, 24 (2014), pp. 1260–1272.

[25] V. Kungurtsev, Second-Derivative Sequential Quadratic Programming Methods for Nonlinear
Optimization, Ph.D. thesis, University of California, San Diego, 2013.

[26] V. Kungurtsev and M. Diehl, Sequential quadratic programming methods for parametric
nonlinear optimization, Comput. Optim. Appl., 59 (2014), pp. 475–509.

[27] J. Kyparisis, Sensitivity analysis for nonlinear programs and variational inequalities with
nonunique multipliers, Math. Oper. Res., 15 (1990), pp. 286–298.

[28] A. B. Levy, Solution sensitivity from general principles, SIAM J. Control Optim., 40 (2001),
pp. 1–38.

[29] T. Ohtsuka, A continuation/GMRES method for fast computation of nonlinear receding hori-
zon control, Automatica, 40 (2004), pp. 563–574.

[30] D. Ralph and S. Dempe, Directional derivatives of the solution of a parametric nonlinear
program, Math. Program., 70 (1995), pp. 159–172.
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