
A PREDICTOR-CORRECTOR PATH-FOLLOWING ALGORITHM FOR
DUAL-DEGENERATE PARAMETRIC OPTIMIZATION PROBLEMS

VYACHESLAV KUNGURTSEV†, JOHANNES JÄSCHKE‡

Abstract. Most path-following algorithms for tracing a solution path of a parametric nonlinear optimization
problem are only certifiably convergent under strong regularity assumptions about the problem functions. In par-
ticular, linear independence of the constraint gradients at the solutions is typically assumed, which implies unique
multipliers. In this paper we propose a procedure designed to solve problems satisfying a weaker set of conditions,
allowing for non-unique (but bounded) multipliers. Each iteration along the path consists of three parts: (1) a
Newton corrector step for the primal and dual variables, which is obtained by solving a linear system of equations,
(2) a predictor step for the primal and dual variables, which is found as the solution of a quadratic programming
problem, and (3) a jump step for the dual variables, which is found as the solution of a linear programming problem.
We present a convergence proof, and demonstrate the successful solution tracking of the algorithm numerically on a
couple of illustrative examples.

Key words. Parametric optimization, Predictor-corrector path-following, Dual-degeneracy, Optimal solution
sensitivity

AMS subject classifications. 90C30, 90C31

1. Introduction. We consider the parametric optimization problem, with f : Rn × R → R
and c : Rn × R→ Rm,

minx∈Rn f(x, t)

subject to ci(x, t) = 0, i ∈ E ,
ci(x, t) ≥ 0, i ∈ I,

(1.1)

where E = {1, ...,me}, and I = {me + 1, ...,m} and we seek to trace the solution path along a
parameter change from t = 0 to t = 1.

We assume that ∇xc(x, t1) = ∇xc(x, t2) and ∇xxf(x, t1) = ∇xxf(x, t2) for all t1, t2 as well as
∇xtf(x1, t) = ∇xtf(x2, t) and ∇tc(x1, t) = ∇tc(x2, t) for any two x1 and x2. In particular, these
conditions imply that f(x, t) and c(x, t) are of the form f(x, t) = f0(x) + (aTf x)t and c(x, t) =

c0(x) + act where af ∈ Rn and ac ∈ Rm. This places the optimization problem under the standard
notion of canonical perturbations [28].

Note that the problem class in problem (1.1) is not as restrictive as it may seem, as a more
generic parametric optimization problem,

minx∈Rn f̃(x, s)

subject to c̃i(x, s) = 0, i ∈ {1, ..., m̃e},
c̃i(x, s) ≥ 0, i ∈ {m̃e + 1, ..., m̃},

†Agent Technology Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical
University in Prague. Research supported by the European social fund within the framework of realizing the project
Support of inter-sectoral mobility and quality enhancement of research teams at the Czech Technical University in
Prague, CZ.1.07/2.3.00/30.0034, the Cisco-CTU Sponsored Research Agreement project WP5 and the Czech Science
Foundation project 17-26999S vyacheslav.kungurtsev@fel.cvut.cz.

‡Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU)
jaschke@ntnu.no.

1

where s ∈ Rp is a vector and the solution is traced from s0 to sf , and f̃(x, s) and c̃(x, s) have
more arbitrary, potentially nonlinear dependence on s can be rewritten in the form (1.1) by the
incorporation of another variable z, writing f̃ and c̃ as f̃(x, z) and c̃(x, z) and adding the equality
constraint cm̃+1 = z − (1− t)s0 − tsf = 0.

Parametric problems such as (1.1) occur in many applications such as model predictive control
[7,24,29], and stochastic [12], global [38] and bilevel optimization [5]. Fast and accurate performance
is especially demanded for real-time model predictive control, for which procedures that perform
with sufficient speed for linear problems are abundant, for example [36], but the implementation
for nonlinear models has generally been more challenging

In this paper we present an algorithm for parametric optimization algorithms that applies
sensitivity theory of optimization problems subject to perturbations. A novel feature of this path-
following algorithm is that it is provably convergent for problems that are dual-degenerate, i.e., do
not have a unique multiplier for the optimization problem at every value of the parameter.

1.1. Notation. Given vectors a, b ∈ Rn, min(a, b) is the vector with components min(ai, bi).
The vectors e and ej denote, respectively, the column vector of ones and the jth column of the
identity matrix I. The dimensions of e, ei and I are defined by the context. The ith component of
a vector labeled with a subscript will be denoted by [vα]i. Similarly, if K is an index set, vK and
[vα]K indicate the vector with |K| components composed of the entries of v and vα, respectively,
corresponding to those indices in K. If there exists a positive constant γ such that ‖αj‖ ≤ γβj , we
write αj = O(βj). If there exists a sequence γj → 0 such that ‖αj‖ ≤ γjβj , we say that αj = o(βj).

1.2. Definitions. It is important to define some foundational terminology necessary for un-
derstanding the presentation of the material. We begin with presenting the form of the optimality
conditions we will be using in this paper. These conditions necessarily hold for any local mini-
mizer x∗ which satisfies a constraint qualification, a geometric regularity condition involving the
local properties of the feasible region. There are a number of constraint qualifications of varying
restrictiveness, and we will mention a few of them later in this section.

Definition 1.1 (First-order necessary conditions). A vector x∗ ∈ Rn satisfies the first-order
necessary optimality conditions for (1.1) at t if there exists a y∗ ∈ Rm such that,

∇xf(x∗, t) = ∇xc(x∗, t)y∗,
ci(x

∗, t) = 0, i ∈ E ,
ci(x

∗, t) ≥ 0, i ∈ I,
c(x∗, t)T y∗ = 0,

y∗i ≥ 0, i ∈ I.

(1.2)

We denote Λ(x∗, t) as the set of dual vectors y∗ corresponding to x∗ such that (x∗, y∗) satisfy the
first order necessary conditions at t.

Denoting the cone N (y) to be,

N (y) =

{
{z|z ≥ 0 and zT y = 0} if y ≥ 0,

∅ otherwise,

an alternative formulation of (1.2) is given as,

∇xf(x∗, t) = ∇xc(x∗, t)y∗,
cE(x∗, t) = 0,
cI(x∗, t) ∈ N (yI).

2

We will define A(x∗, t) to be the set of inequality constraint indices i ∈ I such that for i ∈
A(x∗, t), ci(x∗, t) = 0, A0(x∗, y∗, t) ⊆ A(x∗, t) to be the set such that i ∈ A0(x∗, y∗, t) implies that
[y∗]i = 0 and A+(x∗, y∗, t) ⊆ A(x∗, t) to be the set such that i ∈ A+(x∗, y∗, t) implies that [y∗]i > 0.
We define A+(x∗, t) = ∪y∗∈Λ(x∗,t)A+(x∗, y∗, t) and A0(x∗, t) = ∩y∗∈Λ(x∗,t)A0(x∗, y∗, t).

The Lagrangian function associated with (1.1) is L(x, y, t) = f(x, t) − c(x, t)T y. The Hessian
of the Lagrangian with respect to x is denoted by

H(x, y, t) := ∇2
xxf(x, t)−

m∑
i=1

yi∇2
xxci(x, t).

The strong form of the second-order sufficiency condition is defined as follows.
Definition 1.2 (Strong second-order sufficient conditions (SSOSC)). Let us define the set,

C̃(x∗, y∗, t) :=
{
d : ∇xci(x∗, t)T d = 0 for i ∈ A+(x∗, y∗, t) ∪ E

}
A primal-dual pair (x∗, y∗) satisfies the strong second-order sufficient optimality conditions at t if
it satisfies the first-order conditions (1.2) and

dTH(x∗, y∗, t)d > 0 for all d ∈ C̃(x∗, y∗, t) \ {0}. (1.3)

We will be interested in the General SSOSC, applied across all multipliers in the optimal set.
Definition 1.3 (General SSOSC (GSSOSC)). A primal vector x∗ satisfies the General Strong

Second-order Sufficient Optimality Conditions at t if (x∗, y∗) satisfies the SSOSC for all y∗ ∈
Λ(x∗, t).

We shall now define a few constraint qualifications (CQs) relevant for this paper. A CQ is
required to hold at a feasible point in order for a point being a local minimizer for an optimiza-
tion problem to imply that the optimality conditions hold. It is standard for convergence proofs
for algorithms to assume some CQ, and the weaker the CQ condition is, the more problems the
convergence theory applies to.

Definition 1.4. The Linear Independence Constraint Qualification (LICQ) holds for (1.1) at
t for a feasible point x if the set of vectors {∇xci(x, t)}i∈E∪A(x,t) is linearly independent.

Definition 1.5. The Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds
for (1.1) at t for a feasible point x if,

1. {∇xci(x, t)}i∈E is linearly independent, and
2. There exists a p such that ∇xci(x, t)T p = 0 for all i ∈ E and ∇xci(x, t)T p > 0 for all

i ∈ A(x, t).
Equivalently, by the theorem of the alternative [34], the MFCQ holds if there is no set of scalars
{αi}i∈{1,...,m} such that

1. For i ∈ I, αi ≥ 0,
2. Either there exists i ∈ E such that αi 6= 0 or

∑
i∈I αi > 0 and,

3. ∑
i∈E∪A(x,t)

αi∇xci(x, t) = 0.

Definition 1.6. The Constant Rank Constraint Qualification (CRCQ) holds for (1.1) at t
for a feasible point x if there exists a neighborhood N of x such that for all subsets U ⊆ E ∪A(x, t),
the rank of {∇xci(x, t)}i∈U is equal to the rank of {∇xci(x̄, t)}i∈U for all x̄ ∈ N .

3

Of special interest in this paper is the multi-function corresponding to a local primal-dual
solution set for the NLP subject to a parameter,

K(t) := {x∗(t),Λ(x∗(t), t)}.

Since in general, under the assumptions we are concerned with in this paper, Λ(x∗(t), t) is not a
singleton, some notion of set-valued differentiabiliy will be necessary, as we are interested in tracing
some optimal λ∗(t) ∈ Λ(x∗(t), t) along t. We shall employ the outer graphical derivative and the
concept of proto-differentiability [33], one generalized notion of differentiability for set-valued maps.

Definition 1.7. For a multifunction S : Rp ⇒ Rd, the outer graphical derivative of S at w̄
for v̄ ∈ S(w̄) is denoted by DS(w̄|v̄) : Rp ⇒ Rd and defined as,

DS(w̄|v̄)w′ = {v′|∃w′ν → w′, τν ↓ 0 with (v̄ν − v̄)/τν → v′ for some v̄ν ∈ S(w̄ + τνw
′
ν)}.

S is said to be proto-differentiable at w̄ for v̄ if every vector (w′, v′) ∈ graph(DS(w̄|v̄)w′) is
equal to the following limit,

(w′, v′) = lim
s↓0

(w(s), v(s))− (w̄, v̄)

s
, (1.4)

for some selection mapping s→ (w(s), v(s)) : [0, ε]→ graph(S) for some small ε.
We further define the distance of a point to the nearest primal-dual solution by θ(x, y, t),

θ(x, y, t) =
√
‖x− x∗(t)‖2 + dist(y,Λ(x∗(t), t))2,

where x∗(t) is the closest primal solution to (1.1) at t. We will also sometimes write θ(x, t) to
denote θ(x, t) = ‖x− x∗(t)‖. The optimality residual η(x, y, t) is defined as

η(x, y, t) =

∣∣∣∣∣∣
∣∣∣∣∣∣
∇xf(x, t)−∇xc(x, t)y

c(x, t)E
[min(c(x, t), y)]I

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

.

2. Background.

2.1. Previous results on parametric optimization and contribution of this paper.
In this section we review the literature on parametric optimization, highlighting several important
features that have proven useful for the development of fast and reliable algorithms.

A typical pathfollowing procedure for nonlinear parametric equations includes a predictor and
a corrector, where a predictor uses the tangent to the solution path to estimate the solution at a
subsequent parameter value, and a corrector modifies the predictor step by incorporating additional
information to take a step closer to the solution path (for an overview, see [1]). Predictor steps
are first-order approximations and corrector steps use some form of Newton iteration. In the case
of parametric NLPs, the notion of sensitivity, how the optimal solution and objective value change
as a parameter in an optimization problem is subject to small perturbations [3], is essential for
formulating appropriate predictors. For understanding corrector steps, and a discussion of New-
ton’s method for continuation, see, for instance [6, Chapter 5]. When a predictor and corrector
are combined in an overall algorithm, to avoid additional function evaluations, approximate infor-
mation is used for problem data for a Newton step. This necessitates the analysis framework of
inexact Newton methods [4] (see also [11, 23] for contemporary frameworks). In addition, in some

4

cases arising in optimal control, approximate problem information is used to begin with [8], also
necessitating analysis from an inexact Newton perspective.

The seminal book [19] considered the parametric optimization problem in considerable detail.
The authors classified all of the possible forms of primal or dual bifurcation of the parametric opti-
mization problem, and the degeneracy conditions that are associated with these bifurcations. Based
on this classification and the sensitivity theory available at the time, the authors formulated pro-
cedures for tracing the solution path along a homotopy. New sensitivity theory has been developed
after this book appeared, however, particularly for degenerate problems (see, e.g., [22]). We note,
also, that out of this literature arose pathfollowing algorithms that can be applied as machinery to
solve one-off NLPs [20].

New results on the sensitivity of nonlinear programs subject to a parameter have motivated some
predictor methods [24,40] (see also [31] for a predictor algorithm for multi-objective optimization).
However, the directional derivative (predictor) is just a first-order estimate. If the problem is highly
nonlinear and there is notable curvature in the solution path, the computed path can diverge from
the true solution path.

Because of their desirable warm-start properties, Sequential Quadratic Programming (SQP)
methods [18], wherein a solution of a nonlinear program (NLP) is found by solving a sequence of
approximating quadratic programs (QP), were presented as a reasonable choice for solving para-
metric problems [7]. In particular, one solves the problem at each parameter with a few steps of
an SQP algorithm, using the solution at the previous value of the parameter as an initial guess for
the subsequent one. With a correctly estimated active set, an SQP iteration can be equivalent to
a Newton step, and thus corresponds precisely to a corrector. One major difficulty with practical
implementation of SQP methods, however, is that whereas at the solution satisfying the SSOSC,
the reduced Hessian (Lagrangian Hessian in the particular subspace) is positive definite, the full
Hessian may not be, and the resulting subproblems may be nonconvex, with possibly multiple or
unbounded solutions (for a detailed discussion of these challenges, see [25, Chapter 5]). There are a
number of strategies devised to deal with these issues, but they typically require the use of inexact
Hessian information, and thus lose the Newton/corrector-like behavior of the algorithm and as such
the major potential benefit of using SQP for parametric optimization.

In addition, a strongly desirable property of a parametric optimization algorithm, in particular
one applicable to optimal control problems is the capacity to handle degeneracy. In this paper
we will assume that the MFCQ and the CRCQ hold for every t across the solution path, but not
necessarily the LICQ. These conditions are typical for optimal control problems [35] (see also [24])
because the dynamics of the system appear discretized as equality constraints in the optimization
problem, and aside from certain classes of singular ODEs/DAEs, these are expected to have linearly
independent gradients if they are well formulated. However, the controls and states are often subject
to bound constraints or simple linear constraints, and when many of these constraints are active, the
entire set of equality plus active bound constraints becomes overdetermined, and the set gradients
corresponding to active constraints become linearly dependent. However, bound constraints are
”nice” in the sense of providing a strictly feasible direction (to satisfy the MFCQ) and are constant,
and thus trivially have constant rank gradients across the entire primal space (thus satisfy the
CRCQ).

The literature with proofs of convergence of parametric optimization algorithms, while pro-
ducing some interesting and powerful algorithms, with insightful analysis on the properties of the
parametric problems, has always assumed strong regularity, which requires linear independence of
the constraint gradients at the solution, or at least the uniqueness of the optimal multiplier at the

5

solution for every parameter [9,10,39]. The paper [26] is the sole exception, and considers the case
of general degeneracy, including problems satisfying no constraint qualification (but the existence
of a Lagrange multiplier), but the procedure suggested requires solving a number of linear programs
(LPs) to find possible multipliers to branch from, and thus relies on too weak assumptions for our
purposes. We note that even achieving fast local convergence for problems under weak constraint
qualification conditions has just fairly recently shown to be possible, under perturbed Newtonian
methods (see, for instance, [14,37], and [16] for a complete algorithm).

The contributions of this paper are the following: First, we develop a predictor-corrector path-
following algorithm that includes a Newton corrector step, a QP predictor step and a multiplier
jump LP step. Although the multipliers can be non-unique along the path, our algorithm also
traces a multiplier path, that is used to calculate the optimal primal sensitivity for the predictor
step. Second, we give a proof of the convergence for the algorithm. Finally, we demonstrate that
the algorithm functions as intended numerically on illustrative examples.

The corrector step is based on principles of SQP to obtain a step that contracts superlinearly
to the primal-dual solution. The predictor QP and multiplier jump step are based on the sensitivity
results of [30], which shows B-differentiability of the primal solution path under the CRCQ and
MFCQ and the form of the directional derivative as well as how to identify the optimal multiplier
to follow the path from. We also incorporate active set estimation based on [13].

In the next section we present a small example to demonstrate some of the issues that arise
when tracking a solution path with non-unique multipliers.

2.2. Illustrative Example. We consider the following problem,

minx −ex2 + 1
2 (x1 − x3)2

subject to x3 − 10t = 0
x1 − x2 ≥ 0

10t− x2 ≥ 0
−x1 − x2 + 20t ≥ 0

5− x1 ≥ 0
1
2x1 − x2 + 15

2 − 10t ≥ 0
− 1

2x1 − x2 + 25
2 − 10t ≥ 0.

(2.1)

It can be verified that the solution is x∗(t) = (10t, 10t, 10t) for t ∈ [0, 1
2] and x∗(t) = (5, 10−10t, 10t)

for t ∈ [1
2 , 1]. The MFCQ, but not the LICQ holds for all x∗(t), t ∈ [0, 1] (and indeed for all t).

Since all of the constraints are linear, the CRCQ also holds.
The first three inequality constraints are active for t ∈ [0, 1

2), all constraints are active at t = 1
2

and the last three constraints are active for t ∈ (1
2 , 1]. Noting that x3 is just a placeholder for

nonlinear dependence of the objective function with respect to the parameter, i.e., setting x3 = 10t,
we illustrate the problem with respect to x1 and x2 in Figure 1 for t = 0, 1

2 , 1, noting by a circular
dot where the primal solution is, the lines the constraints, and the grey area corresponds to the
infeasible region.

The sets of optimal multipliers are

Λ(x∗(0)) = {(0, y1, y2, y1, 0, 0, 0) : 2y1 + y2 = 1, y1, y2 ≥ 0},
Λ(x∗(0.5)) = {(0, y1, y2, y3, y4, y5, y6) : y1 + y2 + y3 + y5 + y6 = e5,

y1 − y3 − y4 + 1
2y5 − 1

2y6 = 0, yi ≥ 0, for all i}
Λ(x∗(1)) = {(5, 0, 0, 0, y1, y2, y3) : −2y1 + y2 − y3 = −5, y2 + y3 = 1}.

6

t = 0

t = 0.5

t = 1

Fig. 1. Problem (2.1) illustrated. The axes are for x1 and x2, the straight lines are the constraints, the black
dot is the optimal point, and the grey area indicates the infeasible region.

Note that the last three multipliers are always zero for t ∈ [0, 1
2), then at least two components are

strictly positive for t ∈ (1
2 , 1]. Therefore, it is desired for a parametric optimization algorithm to

be able to formulate a multiplier that jumps discontinuously across t < 0.5 to t > 0.5.

3. Algorithm.

xk

x∗(tk)

x∗(tk + ∆t)

x2 x3

x4

x5

x

t
tk + ∆ttk

Fig. 2. Predictor, corrector, predictor-
corrector, and corrected predictor steps

3.1. Overview. To illustrate our algorithm, we
recall the notions of a pathfollowing as given in, for
example, [1], and consider Figure 2. Let the current
point be xk and the solution at tk and tk+∆t be x∗(tk)
and x∗(tk + ∆t), respectively. We wish to take a step
from xk that approximates x∗(tk + ∆t). A predictor
step uses information about the tangent of the solution
path, using the slightly inaccurate information at xk
(as in, one can take an approximation of the tangent
at x∗(tk) using problem information at xk). Taking a
pure predictor step would result in moving to x3. A
pure corrector takes a step towards a more accurate
solution at a given point, which corresponds to x2. If
we do not re-evaluate the function or its derivatives at
x2 or x3, combining the predictor and corrector would
result in a step to x4.

Alternatively, one can re-evaluate the problem
functions at x2 or x3 yielding a more accurate path-
following procedure at the expense of additional computational cost. In our algorithm, however,
starting from xk we take a corrector step to x2 and, without performing any additional func-
tion evaluations, use the corrector step and updated function estimates arising from linearizations,
to generate a more accurate predictor, and so obtain the estimate x5 as the approximation to
x∗(tk + ∆t). This procedure is repeated until the final value of t is reached.

3.2. Algorithm Description. Now we describe the main steps of our path-following algo-
rithm. A more detailed discussion about practical implementation will follow in Section 5.

We begin each iteration with a point xk and a multiplier yk. The primal vector xk needs
to be (sufficiently) close to a primal solution x∗(tk), and the dual vector yk needs to be close to a

7

multiplier ŷ ∈ Λ(x∗(tk), tk) in the optimal multiplier set for which the set {∇xci(x∗(tk), tk) : ŷi > 0}
is linearly independent. We will see later how to obtain this multiplier.

Consider the robust active set estimator,

Aγ(x, y, t) = {i ∈ I : ci(x, t) ≤ η(x, y, t)γ}, (3.1)

where γ is a constant satisfying 0 < γ < 1 [13]. We then form an estimate of the active set
A = Aγ(xk, yk, tk) and strongly active set A+ = {i : yi > 0} ∪ E .

3.2.1. Corrector Step. At a given (xk, yk, t) we first solve the linear system

(
H(xk, yk, t) −∇xcA+,k

(xk, t)
∇xcA+,k

(xk, t)
T 0

)(
∆cx
∆+y

)
= −

(
∇xf(xk, t)−∇xc(xk, t)yk

cA+,k
(xk, t)

)
,

(CorrectStep)
to obtain the corrector step (∆cx,∆+y). We let ∆cy ∈ Rm be such that [∆cy]A+,k

= ∆+y and
[∆cy]{1,...,m}\A+,k

= 0.
It can be observed that the corrector step is essentially a Newton step on the NLP at the current

value of t subject to only the strongly active constraints. Given a correctly estimated strongly active
set and a good starting point, at a given t, it should hold that, (‖xk + ∆cx − x∗(t)‖ + dist(yk +
∆cy,Λ(x∗(t), t))) ≤ C(‖xk − x∗(t)‖ + dist(yk,Λ(x∗(t), t)))2, and the corrector step results in an
iterate that is closer to the primal-dual solution set for the current t. In Figure 2, the corrector
step corresponds to a step from xk to x2.

3.2.2. Predictor. We then solve the perturbed predictor QP subproblem,

min∆px (∇xf(xk, t+ ∆t)−∇xf(xk, t))
T∆px+ 1

2∆px
TH(xk, yk, t+ ∆t)∆px,

subject to ∇tci(xk, t)∆t+ (∇xci(xk, t+ ∆t) +∇2
xxci(xk, t+ ∆t)∆cx)T∆px = 0,

i ∈ A+,k,
∇tci(xk, t)∆t+ (∇xci(xk, t+ ∆t) +∇2

xxci(xk, t+ ∆t)∆cx)T∆px ≥ 0,
i ∈ Ak \A+,k.

(QPPredict)
Note that the second derivative terms ∇2

xxci(xk, t+∆t) are multiplying the corrector ∆cx that was
previously computed in (CorrectStep), and the primal variable ∆px of (QPPredict) appears
just once in each constraint, so despite the presence of the second derivative, the constraints are
still affine and the subproblem is a standard QP.

A standard predictor step, as used for instance in [24, 40], corresponds to this QP without the
additional term ∇2

xxci(xk, t+ ∆t)∆cx in the constraints. Note that by the properties of f and c as
a function of t, no new function evaluations need to be performed between solving (CorrectStep)
and (QPPredict).

In effect, (CorrectStep) produces an iterate closer to the primal-dual solution set at the
given t, and without the additional term involving ∇2

xxci(xk, t + ∆t)∆cx, (QPPredict) would
be an estimate for the tangent of the pathfollowing solution curve, with the estimate derived from
information at (xk, yk). In Figure 2 this would correspond to, after the corrector step to x2, taking
a step to x4. By including this extra term, the predictor uses some information from the corrector,
and so the step is to x5. Thus, this modification allows for the predictor step to improve upon and
generate a more accurate prediction without requiring any new function evaluations.

8

Denote the primal-dual solution of this subproblem as (∆px,∆py). Let (∆x,∆y) = (∆cx +
∆px,∆cy + ∆py). We then obtain a new estimate for the active set by Ak+1 = Aγ(xk + ∆x, yk +
∆y, t+ ∆t) ∪ E .

3.2.3. Multiplier Jump Step. Under the MFCQ and the CRCQ, but without the LICQ
holding for (1.1) across all values of t, the optimal primal solution x∗(t) is continuous, but it could
hold that any optimal multiplier path y∗(t) ∈ Λ(x∗(t), t) is discontinuous and has one or more
discrete jumps. This has been illustrated in the example given in Section 2.2, where there is no
continuous path of optimal multipliers that solve the problem across each side of t = 0.5. For t ≤ 0
some multipliers are positive and bounded away from zero that must become zero for t > 0.5, and
some multipliers must be zero for t < 0 and then become positive for t > 0.5. Thus we need to
compute a step in the estimate of the optimal dual variables y that performs this jump.

We calculate the new multiplier, and we allow for jumps by selecting the multiplier as the
solution of the following linear programming (LP) problem.

miny yT∇tc(x+ ∆x, t+ ∆t)∆t
subject to −|∇L(xk + ∆x, yk + ∆y, t+ ∆t)|

≤ ∇xf(xk + ∆x, t+ ∆t) +
∑
i∈Ak+1

∇xci(xk + ∆x, t+ ∆t)yi
≤ |∇L(xk + ∆x, yk + ∆y, t+ ∆t)|

yI ≥ 0,
yi/∈Ak+1

= 0,

(JumpLP)

where the absolute value is performed component-wise. We let the solution of this LP be yk+1 and
redefine A+,k = {i : [yk+1]i > 0}∪ E . We then set xk+1 = xk + ∆x, and k = k+ 1, and repeat from
the beginning.

Note that for the next iteration, the constraint gradients corresponding to the equality con-
straints together with inequality constraints corresponding to the positive components of yk+1 must
be linearly independent. This is required for the system defining (CorrectStep) to be nonsingular.
The constraints of (JumpLP), the approximate KKT conditions, define a polytope for the feasible
set of multipliers. If the solution is on a vertex, then under the assumptions we make, the positive
components of the corresponding multiplier solution corresponds to a linearly independent set of
constraint gradients. Thus a problem can arise only when the solution to (JumpLP) is found on a
face of the polytope. For the time being, we assume that the solution to (JumpLP) is on a vertex
and the constraint gradients {∇xci(xk, yk) : [yk]i > 0} are linearly independent. Note that this
will always be the case if a simplex solver is used for (JumpLP). Even otherwise, however, there
are a number of reasons to believe that, in practice, a vertex solution to the LP corresponding to
linearly independent constraint gradients for positive components of yk+1 will be found. We will
revisit this topic in Section 5 where we discuss this issue in more detail.

The basic steps of the procedure are summarized in Algorithm 1. A more detailed description
of our implementation is given in Section 5.

4. Convergence of the predictor-corrector path-following algorithm.

4.1. Preliminaries. We shall use the following results throughout the convergence theory.
Lemma 4.1. If the SSOSC and the MFCQ hold at (x∗(t), y∗) for some y∗ ∈ Λ(x∗(t), t), then

for (x, y) sufficiently close to (x∗(t), y∗), there exist constants C1(t) > 0 and C2(t) > 0 such that it
holds that,

C1(t)θ(x, y, t) ≤ η(x, y, t) ≤ C2(t)θ(x, y, t).

9

Algorithm 1 Predictor Corrector Sensitivity Pathfollowing Method

Input: ∆t, initial x, y such that {∇xci(x, 0)}{i∈I:yi>0}∪E is linearly independent.

1: Define γ satisfying 0 < γ < 1.
2: Estimate A using (3.1) evaluated at (x, y, 0) and define A+

3: while t < 1 do
4: Solve (CorrectStep) for (∆cx,∆+y).
5: Define ∆cy ∈ Rm such that [∆cy]A+

= ∆+y and zero otherwise.
6: Solve (QPPredict) for (∆px,∆py).
7: Set (∆x,∆y) = (∆px,∆py) + (∆cx,∆cy)
8: Compute A = Aγ(x+ ∆x, y + ∆y, t+ ∆t) ∪ E .
9: Solve (JumpLP) to redefine y.

10: Let A+ = {i : [y]i > 0} ∪ E .
11: Set t = t+ ∆t, x = x+ ∆x.
12: end while

Proof. See, e.g., Wright [37, Theorem A.1].
The next lemma verifies that the active set estimate Aγ(x, y, t), given in (3.1) is accurate.
Lemma 4.2. [13, Theorem 3.7] For all x, y such that θ(x, y, t) is sufficiently small, Aγ(x, y, t) =

A(x∗(t)).
Lemma 4.3. [21, Lemma 3] Given matrices Q∗ and P ∗, where Q∗ is symmetric, suppose that,

wTQ∗w ≥ α‖w‖2, whenever P ∗w = 0, w ∈ Rn.

Then given any ζ > 0, there exists σ > 0 and neighborhoods P of P ∗ and Q of Q∗ such that,

vT (Q+
1

ρ
PTP)v ≥ (α− ζ)‖v‖2,

for all v ∈ Rn, 0 < ρ ≤ σ, P ∈ P, and Q ∈ Q.
The next theorem summarizes the sensitivity results that hold under the MFCQ and the CRCQ

that are the theoretical foundation for the predictor-corrector algorithm we have formulated.
Theorem 4.4. Let f and c be twice continuously differentiable in t and x near (x∗(t0), t0),

and let the MFCQ and the GSSOSC hold at x∗(t0).
1. The solution x∗(t) is continuous in a neighborhood of x∗(t0) and the solution function x∗(t)

is directionally differentiable, i.e.,

x∗(t0 + ∆t) = x∗(t0) + δx∗(x∗(t0), t0,∆t) + o(|∆t|), (4.1)

where δx∗(x∗(t0), t0,∆t) is the directional derivative of x∗(t) with respect to t at t0 scaled
by ∆t, i.e.,

δx∗(x∗(t0), t0,∆t) = lim
ε↓0

x∗(t0 + ε)− x∗(t0)

ε
∆t.

2. Moreover, for each t in a neighborhood of t0 and direction ∆t, there exists a multiplier ŷ ∈
Λ(x∗, t0) such that the directional derivative uniquely solves the following convex quadratic

10

program,

min∆x ∆xT∇xtL(x∗(t0), ŷ, t0)∆t+ 1
2∆xTH(x∗(t0), ŷ, t0)∆x,

subject to ∇xci(x∗(t0), t0)T∆x+∇tci(x∗(t0), t0)∆t = 0, i ∈ A+(x∗(t0), ŷ, t0) ∪ E ,
∇xci(x∗(t0), t0)T∆x+∇tci(x∗(t0), t0)∆t ≥ 0, i ∈ A0(x∗(t0), ŷ, t0).

(SensitivityQP)
We denote the solution set of this program as (δx∗(x∗(t0), t0,∆t), δY

∗(x∗(t0), ŷ, t0,∆t))
(where δx∗(x∗(t0), t0,∆t) is a singleton). Note that δx∗(x∗(t0), t0,∆t) does not depend
on ŷ (if there are multiple ŷ satisfying the conditions of this part of the Theorem), but
δY ∗(x∗(t0), ŷ, t0,∆t) may.

3. If, in addition, the CRCQ holds, then the multiplier values ŷ at which the
QP (SensitivityQP) must be evaluated can be found as a solution of the following linear
program,

miny yT∇tc(x∗(t0), t0)∆t,
subject to ∇xf(x∗(t0), t0)−∇xc(x∗(t0), t0)y = 0,

yI ≥ 0,
ci(x

∗(t0), t0)yi = 0∀i ∈ {1, ...,m}.

(SensitivityLP)

We denote its solution set as Ŷ (x∗(t0), t0). Note that this set is independent of ∆t as long
as ∆t > 0.

4. Moreover, the set {∇xci(x∗(t0), t0)}i∈A+(x∗(t0),ŷ,t0)∪E is linearly independent for some ŷ ∈
Ŷ (x∗(t0), t0), specifically, all extreme points of Ŷ (x∗(t0), t0) satisfy this condition.

5. The primal-dual solution set K(t0) is proto-differentiable at (x∗(t0), ŷ) for any ŷ ∈
Ŷ (x∗(t0), t0), and the outer graphical derivative is the solution set of (SensitivityQP),
i.e.,

DK(t0|x∗(t0), ŷ)∆t = (δx∗(x∗(t0), t0,∆t), δY
∗(x∗(t0), ŷ, t0,∆t))

This implies, in particular, that, for any δy∗ ∈ δY ∗(x∗(t0), ŷ, t0,∆t)

dist(ŷ + δy∗,Λ(x∗(t0 + ∆t), t0 + ∆t)) = o(|∆t|). (4.2)

Proof. Parts 1-3 appear as [24, Theorem 5] and [30, Theorems 1-2].

Part 4 follows from the proof of [27, Theorem 2.2]

Part 5 follows from [28, Proposition 2.5.1], where it can be seen that [28, (2.34)] are the optimal-
ity conditions of (SensitivityQP), if we consider that the problem is independent of any nonlinear
perturbation w, and let v′1 = ∇xtf(x, t)∆t and v′2 = ∇tc(x, t)∆t. The implication (4.2) follows
from the definition of proto-differentiability, e.g., in the notation of (1.4), let v′ = 1, reparametrize
v(s) to be t0 + ∆t, then since (δx∗(x∗(t0), t0,∆t), δY

∗(x∗(t0), ŷ, t0,∆t)) is the directional deriva-
tive of K(x, y, t), it holds that, for any δy∗ ∈ δY ∗(x∗(t0), ŷ, t0,∆t), and for δx∗(x∗(t0), t0,∆t), the
corresponding selection w(s) = (x∗(s), y∗(s)) satisfies,

w(s)− w(0) = (δx∗(x∗(t0), t0,∆t)), δy
∗) + ∆tα(∆t),

where α(∆t)→ 0 as ∆t→ 0.

11

4.2. Convergence of Algorithm 1. We make the following assumptions,
Assumption 1. The functions f(x, t) and c(x, t) are two times Lipschitz continuously differ-

entiable for all x and t ∈ [0, 1] with respect to both x and t.
Assumption 2. There exists a continuous primal solution path x∗(t) to (1.1) for t ∈ [0, 1].

Hereafter, every result, unless otherwise noted, is with respect to a particular continuous such path
x∗(t).

Assumption 3. The CRCQ, the MFCQ, and the GSSOSC hold for all x∗(t), t ∈ [0, 1].
Lemma 4.5. [15] Λ(x∗(t), t) is bounded for all t.
Note that since the KKT conditions are linear in y, this implies that Λ(x∗(t), t) is a closed

convex polytope for any given x∗(t) and t.
Lemma 4.6. There exists a B such that for every ŷ ∈ Ŷ (x∗(t), t) for all t, ‖ŷ‖ ≤ B.
Proof. Suppose there is a sequence (ŷ(tk), tk) with ŷ(tk) ∈ Ŷ (x∗(t), t) such that ‖ŷ(tk)‖ ≥ k.

But since t is in a compact set, there exists a convergent subsequence and a cluster point t∗.
However, this implies that ‖ŷ(t∗)‖ =∞, which is impossible by Lemma 4.5.

Lemma 4.7. Consider the QP (SensitivityQP) evaluated at a ŷ(t) that is an extreme point
of Ŷ (x∗(t), t) satisfying Part 4 of Theorem 4.4. There exists a B2 such that for all t ∈ [0, 1], there
exists a δy∗(t) ∈ δY ∗(x∗(t), ŷ(t), t), the dual solution set to (SensitivityQP), that is bounded by
B2.

Proof. For any t, we can obtain a set of constraints active (or equality) at δx∗(t) with linearly
independent gradients. Then δx∗(t) is also a solution of the QP with the rest of the constraints
removed, for which the LICQ now holds, and thus there is a bounded subset of δY ∗(x∗(t), ŷ(t), t).
Now suppose that there exists (tk) such that for all δy∗(tk) ∈ δY ∗(x∗(tk), ŷ(tk), tk) it holds that
‖δy∗(tk)‖ ≥ k. But this implies that there exists a cluster point t∗ such that ‖δy(t∗)∗‖ =∞ for all
δy∗(t∗) ∈ δY ∗(x∗(t∗), ŷ(t∗), t∗), and this is impossible.

We are now ready to present the main result with regards to the predictor-corrector step.
Theorem 4.8. If θ(xk, yk, tk), ‖yk− ŷ‖ and ∆t are sufficiently small for some ŷ ∈ Ŷ (x∗(t), tk)

satisfying the condition in Part 4 of Theorem 4.4, and A+,k = A+(x∗(tk), ŷ, tk) ∪ E, then consider
the point (xk + ∆x, yk + ∆y), where (∆x,∆y) = (∆px+ ∆cx,∆py + ∆cy) is defined as follows:

• (∆cx,∆+y) solves (CorrectStep),
• ∆cy ∈ Rm is such that [∆cy]A+,k

= ∆+y and [∆cy]i = 0 for i ∈ {1, ...,m} \A+,k, and
• ∆px solves (QPPredict) with any associated dual solution ∆py.

This primal-dual point (xk + ∆x, yk + ∆y) satisfies η(xk + ∆x, yk + ∆y, tk + ∆t) ≤ η(xk, yk, tk)1+γ ,
where γ is the constant appearing in the active set estimate (3.1).

The next result states that given a primal-dual point (xk, yk) sufficiently close to the primal-dual
solution set (x∗(t),Λ(x∗(t), t), the solution of (JumpLP) yields a good multiplier approximation
from which to calculate the next predictor step.

Theorem 4.9. For all ε and ∆t, there exists a ν such that if dist((x, y), (x∗(t),Λ(x∗(t), t))) ≤ ν,
then the solution ȳ to

minȳ ȳ∇tc(x, t)∆t
subject to −|∇L(x, y, t)|

≤ ∇f(x, t) +
∑
i∈A(x∗(t))∪E ∇xci(x, t)ȳi

≤ |∇L(x, y, t)|
yI ≥ 0,
yi/∈A = 0

(4.3)

satisfies dist(ȳ, Ŷ (x∗(t), t)) ≤ ε.
12

The first theorem guarantees that the primal-dual solution for the corrector-predictor problems
result in a step that produces a point that is arbitrarily close to the solution to the parametric NLP
evaluated at t+ ∆t, given an original iterate (xk, yk) sufficiently close to (x∗(t), ŷ). It implies that
the primal dual point is within the ball of local superlinear contraction and the corrector step results
in a point much closer to the solution of the problem for the current value of the parameter. Recall
that the predictor, (QPPredict) is a first-order estimate of the primal-dual solution path, and by
coupling it with the corrector (CorrectStep), we can ensure that the solution estimate tracks the
solution, in the sense of being able to produce a point that is an accurate enough approximation of
the appropriate primal-dual solution such that all subsequent estimates are as close as desired by
some predetermined amount.

The second theorem states that, if the active set is estimated correctly, which follows from
Lemma 4.2, if the point at which the LP (JumpLP) is evaluated is sufficiently close to (x∗(t +
∆t),Λ(x∗(t + ∆t), t + ∆t) then the multiplier solution can be made arbitrarily close to the set
Ŷ (x∗(t+ ∆t)). By assumption, we can make the starting point sufficiently close to the primal dual
solution (x∗(t), ŷ), so as to (possibly also by decreasing ∆t) to make the solution to the predictor-
corrector subproblems arbitrarily close to (x∗(t+ ∆t),Λ(x∗(t+ ∆t), t+ ∆t)). Theorem 4.9 implies
that the final multiplier estimate can get within any desired distance to Ŷ (x∗(t+ ∆t), t+ ∆t). This
suggests that the new xk + ∆x can be in the neighborhood for which the CRCQ applies at t+ ∆t,
and together with the multiplier returned by (JumpLP) yield a primal-dual point that satisfies the
conditions of Theorem 4.8 for the problem at t+∆t. The argument then repeats itself at t+∆t, and
so on, until reaching t = 1. For any t to which we apply the argument, we can make the solution
estimate at the initial t = 0 close enough to yield all the desired results across all the subsequent
(0, t] up until the current value of the parameter.

Conceptually, the argument can be thought of as presenting results slightly stronger than ba-
sic ε − δ theory. Specifically, all primal-dual points can be arbitrarily close to the desired points
at the subsequent iteration, and in particular the error with respect to the primal dual solution
can be made to always bounded by the previous error. However nothing stronger than that can
be claimed. In particular, unless the radius of the Newton-Kantarovich ball of quadratic conver-
gence is uniformly bounded from below across t (i.e., there exists some c̃1 independent of t such
that if dist((x, y), (x∗(t), ŷ)) ≤ c̃1, then Newton’s method initiated at (x, y) applied to the equal-
ity constrained NLP (4.4) results in a superlinearly/quadratically convergent sequence of iterates
converging to (x∗(t), ŷ)), the neighborhood for which the CRCQ applies is also bounded across t,
and other such conditions, finite termination without occasional reliance on a globalized algorithm
cannot be ensured. However, we expect that for many well-formulated problems, it can be expected
that the required conditions do hold. Since little is known about regions of applicability of con-
straint qualifications and local convergence for Newton methods for nonlinear programs, however,
no precise statements can be made to that effect. The nature and limitations of the proof theory
presented here also applies to other algorithms implementing path-following for parametric NLP
problems, e.g., [9, 39]. So these techniques seem to be standard for this class of problems and
algorithms. An exception is [10] which proves a uniform strong regularity result which permits a
proof of finite termination upon finding an initial solution. This was proved in the case of strong
regularity for the problem (in this case a variational inequality) at all values of the parameter,
however, and the question as to whether something similar can be shown for the setting assumed
in this paper, or, alternatively, what the weakest conditions for such a result would be, can be a
topic for future research.

A technical point: We can get the solution of the algorithm at any given iteration arbitrarily

13

close to the solution of the PNLP at tk + ∆t if we make the previous point close enough to the
solution at tk. This means that when we use O notation, it is with all with respect to a specific
k (specifically as the base point approaches the solution at the base parameter value). This is
different from standard NLP algorithms and global convergence proofs, which are concerned with
limit points of the sequence (xk, yk) as k →∞.

4.3. Proofs of results. In this section we prove the main two results of this paper.
Proof of Theorem 4.8. The system (CorrectStep) is the Newton-Lagrange system for solving the
NLP,

minx f(x, tk)
subject to ci(x, tk) = 0, i ∈ A+(x∗(tk), ŷ, tk) ∪ E , (4.4)

for which x∗(tk) is a stationary solution. By the linear independence of
{∇ci(x∗(tk), tk)}i∈A+(x∗(tk),ŷ,tk)∪E (thus the MFCQ holds for (4.4)) and the SSOSC, we can
invoke [32, Theorem 2.2] to conclude that the solution is isolated. Thus the Newton-Lagrange
step (CorrectStep) is associated with local convergence to (x∗(tk), ŷ) uniquely.

Denoting the solution to (CorrectStep) as (∆cx,∆cy), we have, from the usual Newton local
convergence properties,

‖(xk + ∆cx− x∗(tk), yk + ∆cy − ŷ)‖ = O(‖(xk − x∗(tk), yk − ŷ)‖2), (4.5)

and,

‖(∆cx,∆cy)‖ = O(‖(xk − x∗(tk), yk − ŷ)‖). (4.6)

By the GSSOSC, subproblem (SensitivityQP) is strongly convex and has a unique solution.
By (4.6) and Lemma 4.3 it holds that (QPPredict) is also strongly convex and has a unique primal
solution for ‖(xk − x∗(tk), yk − ŷ)‖ sufficiently small.

We can now write the optimality conditions of (QPPredict) as, using ∇xc(x, tk) = ∇xc(x, tk+
∆t) and H(x, y, t) = H(x, y, t+ ∆t),

(∇xf(xk, tk + ∆t)−∇xc(xk, tk + ∆t)yk −∇xf(xk, tk) +∇xc(xk, tk)yk)
+H(xk, yk, tk + ∆t)∆px− (∇xc(xk, tk) +∇2

xxc(xk, tk)∆cx)∆py = 0,
(∇xci(xk, tk + ∆t) +∇2

xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t = 0, i ∈ A+,k,
(∇xci(xk, tk + ∆t) +∇2

xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t ∈ N ([∆py]i), i ∈ Ak \A+,k

(4.7)
Now, using the properties of f and c as functions with respect to t,

(∇xf(xk, tk + ∆t)−∇xc(xk, tk + ∆t)yk −∇xf(xk, tk) +∇xc(xk, tk)yk) = ∇xtL(xk, yk, tk)∆t,

we can rewrite (4.7) as,

∇xtL(xk, yk, tk)∆t+H(xk, yk, tk + ∆t)∆px− (∇xc(xk, tk) +∇2
xxc(xk, tk)∆cx)∆py = 0,

(∇xci(xk, tk) +∇2
xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t = 0, i ∈ A+,k,

(∇xci(xk, tk) +∇2
xxci(xk, tk)∆cx)T∆px+∇tci(xk, tk)∆t ∈ N ([∆y]i), i ∈ Ak \A+,k

(4.8)

We may consider this system as a perturbation of the optimality conditions
of (SensitivityQP). Consider any δx and an associated dual δy solution to (4.8). We shall apply

14

the Upper Lipschitz continuity of solutions subject to perturbations given for a QP satisfying the
SSOSC and the MFCQ in [32, Theorem 4.2]. In particular, in the notation of the Theorem, for
the base perturbation γ0, ∇δxf̃(δx; γ0) = ∇xtL(x∗(t), ŷ, tk)∆t + H(x∗(t), ŷ, tk + ∆t)δx and for
the current point, considered at γ1, ∇δxf̃(δx; γ1) = ∇xtL(xk, yk, tk)∆t + H(xk, yk, tk + ∆t)δx,
and the constraint c̃ as c̃(δx; γ0) = (∇xci(x∗(t), tk))T δx + ∇tci(x∗(t), tk)∆t and c̃(δx; γ1) =
(∇xci(xk, tk) +∇2

xxci(xk, tk)∆cx)T δx+∇tci(xk, tk)∆t.
We see from the conclusion of [32, Theorem 4.2] that the solution (δx, δy) to (QPPredict)

satisfies,

‖δx− δx∗‖+ dist(δy, δY ∗(x∗(tk), ŷ, tk)) ≤∥∥∥∥∥∥∥∥∥∥

∇xtL(xk, yk, tk)∆t−∇xtL(x∗(tk), ŷ, tk)∆t

+(H(xk, yk, tk + ∆t)−H(x∗(tk), ŷ(t), tk + ∆t))δx

−(∇xc(x∗(tk), tk)−∇xc(xk, tk)−∇2
xxc(xk, tk)∆cx)δy

((∇xc(xk, tk) +∇2
xxc(xk, tk)∆cx)T −∇xc(x∗(tk), tk)T)δx

+∇tc(xk, tk)∆t−∇tc(x∗(tk), tk)∆t

∥∥∥∥∥∥∥∥∥∥
.

(4.9)

By the fact that ∇tc(x, t) and ∇xtf(x, t) is a constant, we have that,

∇xtL(xk, yk, tk)∆t−∇xtL(x∗(tk), ŷ, tk)∆t = 0, and
∇tc(xk, tk)∆t−∇tc(x∗(tk), tk)∆t = 0.

Given the two-times Lipschitz continuity of c and f we can obtain,

‖(H(xk, yk, t+ ∆t)−H(x∗(tk), ŷ, tk + ∆t))δx‖ =
∥∥((∇2

xxf(xk, tk + ∆t)−∇2
xxf(x∗(tk), t+ ∆t)

−
∑

[yk]i(∇2
xxci(xk)−∇2

xxci(x
∗(tk)))−

∑
([yk]i − [ŷ]i)∇2

xxci(x
∗(tk)))δx

∥∥
≤ ((CL +B + ‖yk − ŷ‖)‖xk − x∗(tk)‖+B‖yk − ŷ‖)‖δx‖,

(4.10)
where CL is an upper bound for the Lipschitz constant for function and the first and second
derivatives of f and c and B is an upper bound on ŷ by Lemma 4.6. Using Taylor’s Theorem
and (4.5), (4.6),

‖(∇xc(x∗(tk), tk)−∇xc(xk, tk)−∇2
xxc(xk, tk)∆cx)δy‖

= ‖(∇xc(x∗(tk), tk)−∇xc(xk + ∆cx, tk))δy +O(‖∆cx‖2‖δy‖)
= O(‖(xk − x∗(tk), yk − ŷ)‖2‖δy‖),

(4.11)

and similarly,

‖(∇xc(xk, tk)T +∇2
xxc(xk, tk)∆cx−∇xc(x∗(tk), tk)T)δx‖ = O(‖(xk − x∗(tk))‖2‖δx‖). (4.12)

Let δy∗ be an element of δY ∗(x∗(tk), ŷ, tk) satisfying Lemma 4.7.
From applying (4.10), (4.11), and (4.12) to (4.9), and then applying the triangle inequality to

write ‖δx‖ ≤ ‖δx− δx∗‖+ ‖δx∗‖ and ‖δy‖ ≤ ‖δy − δy∗‖+ ‖δy∗‖, we can deduce,

‖δx− δx∗(x∗(tk), tk)‖+ ‖δy − δy∗‖
= O(‖(xk, yk)− (x∗(tk), ŷ)‖)(‖δx− δx∗‖+ ‖δx∗‖)

+O(‖(xk, yk)− (x∗(tk), ŷ)‖2)(‖δx∗‖+ ‖δy − δy∗‖+ ‖δy∗‖)).
(4.13)

By taking ‖(xk, yk) − (x∗(tk), ŷ(tk))‖ sufficiently small, we can ensure that all terms above of
the form O(‖(xk, yk)− (x∗(tk), ŷ(tk))‖) are less than one half. We can then subtract, 1

2‖δx−δx
∗‖+

1
2‖δy − δy

∗‖ from both sides of (4.13), then double both sides of the resulting equation, to get,

15

‖δx−δx∗‖+‖δy−δy∗‖ = O(‖(xk, yk)−(x∗(tk), ŷ)‖2)(‖δx∗‖+‖δy∗‖)+O(‖(xk, yk)−(x∗(tk), ŷ)‖)‖δx∗‖
(4.14)

Theorem 4.4 Part 1 and 5 implies that,

‖x∗(tk) + δx∗(x∗(tk), tk)− x∗(tk + ∆t)‖+ ‖ŷ + δy∗ − y∗(tk + ∆t)‖ = o(∆t), (4.15)

where y∗(tk + ∆t) satisfies,

‖ŷ + δy∗ − y∗(tk + ∆t)‖ = dist(ŷ + δy∗,Λ(x∗(tk + ∆t), tk + ∆t)).

Furthermore, it holds that as ∆t→ 0, δx∗(x∗(tk), tk,∆t)→ 0 and by Lemma 4.7 it holds that
‖δy∗‖ ≤ B2. Let E(∆t) = ‖δx∗(x∗(tk), tk,∆t)‖.

Finally, using Lemma 4.1, we get,

η(xk + ∆x, yk + ∆y, t+ ∆t)

≤ C2(tk + ∆t)
(
‖xk + ∆cx+ δx− x∗(t+ ∆t)‖+ dist(xk + ∆cy + δy,Λ(x∗(tk + ∆t), tk))

)
≤ C2(tk + ∆t) (‖xk + ∆cx− x∗(tk)‖+ ‖yk + ∆cy − ŷ‖

+‖x∗(tk) + δx∗(x∗(tk), tk)− x∗(tk + ∆t)‖+ ‖ŷ + δy∗ − y∗(tk + ∆t)‖
+‖δx− δx∗(x∗(tk), tk)‖+ ‖δy − δy∗‖

)
= O(‖(xk − x∗(tk), yk − ŷ)‖2) + o(∆t) +O(‖(xk, yk)− (x∗(tk), ŷ)‖2)

+O(‖(xk, yk)− (x∗(tk), ŷ)‖)E(∆t)
= O(‖(xk, yk)− (x∗(tk), ŷ)‖2) + o(∆t) +O(‖(xk, yk)− (x∗(tk), ŷ)‖)E(∆t)
= O(η(xk, yk, t)

2) + o(∆t) +O(η(xk, yk, t))E(∆t).
(4.16)

Thus, by making ∆t sufficiently small, we get the desired result for sufficiently small ‖(xk, yk) −
(x∗(tk), ŷ)‖. �

Proof of Theorem 4.9. Let the constant vector r be defined to be r ≡ ∇tc(x, t)∆t. Recall that
by the MFCQ and Gauvin [15], it holds that the set Λ(x∗(t), t) is bounded, and since the KKT
conditions are linear with respect to y, it is also closed and convex, and thus compact, and is defined
as a polytope.

Let {ỹj}j∈{1,...,J} = Ỹ (x∗(t), t) be the set of extreme points of this polytope. It holds that for
each ỹj , for the set I(ỹj) ⊆ I such that [ỹj]I(ỹj) > 0, the corresponding set of constraint gradients
{∇ci(x∗(t), t)}i∈I(ỹj)∪E is linearly independent and there exists a ν1 such that {∇ci(x̃, t)}i∈I(ỹj)∪E
is linearly independent for x̃ such that ‖x̃ − x∗(t)‖ ≤ ν1 by the CRCQ condition. By the implicit
function theorem, for any ε̃ > 0 there exists ε1 such that if Jρ and gρ are perturbations of the
objective and constraint gradients satisfying ‖Jρ−∇xc(x∗(t), t)‖ ≤ ε1 and ‖gρ−∇xf(x∗(t), t)‖ ≤ ε1,
it holds that [Jρ]I(ỹj)∪E [ỹj(ρ)]I(ỹj)∪E = gρ with [ỹj(ρ)]I ≥ 0 and ‖ỹj(ρ)− ỹj‖ ≤ ε̃.

By Part 3 of Theorem 4.4 we have that rT ŷ < rT y∗ for all y∗ ∈ Λ(x∗(t), t) with y∗ /∈ Ŷ (x∗(t), t),
ŷ ∈ Ŷ (x∗(t), t). Therefore for all ε2, there exists some ε̂2 such that for perturbations ρ of the
extremal multipliers ỹj satisfying ‖ỹj(ρ)− ỹj‖ ≤ ε̂2, it holds that

rT ỹĵ(ρ) < rT ỹǰ(ρ)− ε2, (4.17)

for all ĵ such that ỹĵ ∈ Ŷ (x∗(t), t) ∩ Ỹ (x∗(t), t) and ǰ such that ỹǰ ∈ Ỹ (x∗(t), t) \ Ŷ (x∗(t), t).

16

Since ∇xL(x, y), ∇xf(x, t)−∇xf(x∗(t), t) and ∇xc(x, t)−∇xc(x∗(t), t) are all O(θ(x, y, t)),the
constraints of (4.3) correspond to a set of perturbation of the stationarity conditions. Let us say
they are all bounded by Cθ(x, y, t).

Finally, choose ε as given in the statement of Theorem 4.9, i.e., satisfying the de-
sired estimate dist(ȳ, Ŷ (x∗(t), t) ≤ ε. Let ε2 ≥ ε, and a corresponding ε̂2 ≤
1
4ε

2 (2 max{1, ‖r‖∞}max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1
such that (4.17) holds for ‖ỹj(ρ)− ỹj‖ ≤ ε̂2.

Now choose ε̂1 and then take some appropriate x and y as stated in the conditions of the
Theorem, such that for Cθ(x, y, t) ≤ min(ν1, ε̂1), for all yα satisfying

−|∇xL(x, y, t)| ≤ ∇xf(x, t)−∇xc(x, t)yα ≤ |∇xL(x, y, t)|, yα ≥ 0,

it holds that ‖yα −
∑
j∈J αj ỹj‖ ≤ min(ε̂2,

ε
2) for some αj with αj ≥ 0 for j ∈ I,

∑
j αj = 1.

Now let yα be a solution to the (4.3), i.e., yα is feasible and rT yα ≤ rT yβ for all feasible yβ .
Let αj be defined as above, with

‖yα −
∑
j∈J

αj ỹj‖ ≤ min(ε̂2,
ε

2
). (4.18)

Consider any feasible yβ satisfying ‖yβ − ỹk̂‖ ≤ ε̂2 for some ỹĵ ∈ Ŷ (x∗(t), t) ∩ Ỹ (x∗(t), t).

Let Ĵ be such that if ĵ ∈ Ĵ then ỹĵ ∈ Ŷ (x∗(t), t) ∩ Ỹ (x∗(t), t).
It holds that,

rT yα ≤ rT yβ
(4.18) =⇒ rT

∑
j∈J αj ỹj − ‖r‖∞ε̂2 < rT yβ

=⇒ rT
∑
j∈J αj ỹj − 2‖r‖∞ε̂2 < rT ỹĵ

=⇒ rT
∑
j∈J αj ỹj −

ε2

2 (max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1
< rT ỹĵ

=⇒ rT
∑
j∈Ĵ αj ỹj + rT

∑
j∈J\Ĵ αj ỹj −

ε2

2 (max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1
< rT ỹĵ

=⇒ ε2
∑
j∈J\Ĵ αj −

ε2

2 (max{‖y‖∞ : y ∈ Λ(x∗(t), t)})−1
< 0

=⇒ ε2
∑
j∈J\Ĵ αj (max{‖y‖∞ : y ∈ Λ(x∗(t), t)}) < ε2

2

=⇒
∑
j∈J\Ĵ αj (max{‖y‖∞ : y ∈ Λ(x∗(t), t)}) < ε

2 ,

which together with (4.18) implies that ‖yα −
∑
j∈Ĵ αj ỹj‖ ≤ ε, proving the Theorem. �

5. Discussion and Practical Implementation. Algorithm 1 in Section 3.2 is a basic skele-
ton of a pathfollowing algorithm for tracing a solution curve of a parametric optimization problem.
The convergence results presented in the previous section show the fundamental theoretical results
that demonstrate the efficacy of the steps in the procedure. This section discusses some of the
issues that are relevant for a practical implementation.

To begin with, an initial point satisfying the requirements laid out needs to be generated.
For generating this point, at t = 0, consider that we solve the standalone NLP, (1.1) evaluated
at t = 0, using some globalized NLP solver, to obtain at least an approximate solution, i.e., one
for which η(x, y, 0) is close to zero, or the magnitude of tolerance one desires to track across the
homotopy. By assumption the MFCQ and the CRCQ both hold at the solution of the problem.
Thus any NLP solver that is globally convergent for NLPs satisfying these constraint qualifications
is sufficient to perform this task. This is not a very stringent requirement, for example augmented
Lagrangian methods are known to be globally convergent for assumptions weaker than this [2,

17

17]. The appropriate y0 can then be found by solving (JumpLP) evaluated at this primal-dual
(approximate) solution.

As mentioned in Section 4.2, it may happen that the ε − δs do not line up, i.e., that the
distance to the solution required for Theorems 4.8 and 4.9 to apply at a particular point happens
to be smaller than the one obtained from the previous iteration. Fundamentally, this means that
to entirely avoid having to rerun a globalized solver one would need to a priori know the required
balls of local convergence and neighborhoods relevant to the CQ across the homotopy in order to
determine ∆t as well as the required distance of the initial point to the solution at t = 0. In
practice, however, we expect this to rarely be an issue, as in most contexts in which one would use
a pathfollowing optimization algorithm the differences in the NLPs across the possible values of t
is not so large, so we expect relatively stable convergence and CQ neighborhood radii required for
tracking. Note that this is a standard issue for parametric optimization algorithms, such as [9,39].
Homotopy solvers rely on local properties of the NLP and also prove similar ε− δ type results. As
such they require an initial point sufficiently close to the solution as well as possibly a re-solve if
things break down.

Recall from the theoretical results that there are two important quantities that determine the
success of the primary steps of the pathfollowing algorithm, the value of ∆t and the distance of
the current point to the solution. Both have to be small enough. We may not know, if a complete
iteration is a failure, which quantity was not sufficiently small. We may check required properties
of individual steps, and through experimentation we can devise a reasonable procedure that seeks
to diminish these two quantities, either by changing ∆t or obtaining a closer point with a globalized
solver, appropriately. Of course diminishing ∆t is far less difficult and computationally expensive,
so we naturally err towards reducing ∆t and only revert to a globalized solver when necessary. In
our experiments, we found that as long as the first point corresponding to the problem for t = 0 is
sufficiently close to the solution, we did not need to revert to a globalized solver during the course
of the homotopy, but had to modify ∆t at times.

At each iteration on the first step, the algorithm computes (CorrectStep). We assume the
original point to be in the radius of local convergence for the problem, and so the resulting step
would result in a point that corresponds to at least a superlinear reduction in the distance to the
solution. We perform a simple check that the initial point was within the radius of local convergence
by looking at the sign of the resulting multipliers. In particular, if there exists an i /∈ E such that
[yA+,k

+∆+y]i < 0 then this suggests that we are not sufficiently close to a primal-dual solution, and
so we revert to an external independent globalized optimization software to find a new primal-dual
point (xk, yk) closer to (x∗(t),Λ(x∗(t))) and satisfying the needed conditions for the multiplier. One
can also check the optimality residual for superlinear contraction.

In addition, the step (QPPredict) must be evaluated at a point sufficiently close to the primal-
dual solution so as to result in a step that is sufficiently close to the solution at t+ ∆t. Specifically,
we check if any new constraints have become violated by too high a tolerance, or that the step was
not a sufficiently accurate estimate of (x∗(t+ ∆t),Λ(x∗(t+ ∆t), t+ ∆t)). Specifically, if,

η(xk + ∆x, yk + ∆y, t+ ∆t) > max(η(xk, yk, t), ηtol), (5.1)

we decrease ∆t and solve (QPPredict) again. In this case, ηtol is some value that defines an
approximate optimality tolerance. We found that if we were to solely enforce monotonic tracking,
the algorithm would be forced to make ever tighter approximations, necessitating ever smaller values
of ∆t, which is inefficient and practically unnecessary.

18

Finally, we discuss the issue of generating a solution at the vertex, and hence obtaining a mul-
tiplier whose positive components correspond to a set of linearly independent constraint gradients.

1. The problem can entirely be avoided by using a simplex solver for (JumpLP) which com-
pletely ensures that a vertex solution is sought. In practice, simplex methods perform very
well, so this would be the recommended approach.

2. A non-vertex solution can arise only when the ratio of ∇tci(x + ∆x, t + ∆t) to ∇xci(x +
∆x, t+∆t) is the same for two or more constraints. For nonlinear problems, this is extremely
unlikely, and except for particularly contrived problems could hold for only a finite set of
x ∈ R. In inexact numerical arithmetic the probability of this occurring would be zero for
any problems. For linear problems, it could happen that throughout the space some of
these constraint gradients are proportional in this sense, but in this case they can be pre-
computed and the constraints appropriately regularized prior to running the pathfollowing
algorithm.

3. Finally, there is a procedure outlined on page 493 of [37] that finds an appropriate y
that satisfies the linear independence of constraint gradients corresponding to positive
multiplier values condition, starting from any feasible multiplier. The procedure requires
the computation of a null-space, which can be done by a matrix factorization.

We outline our complete implementation with worst case safeguards in Algorithm 2. We found
that, aside from finding the initial starting point, we never had to revert to a globalized solver in
our experiments, but we did sometimes have to decrease ∆t following a poor predictor step and
then have to resolve (QPPredict). We expect in general that reverting to a globalized solver is
unnecessary for most practical problems. However, we included all safeguards for completeness
sake.

6. Numerical Results.

6.1. Problem with degenerate constraints throughout and an active set change.
We consider problem (2.1) for t ∈ [0, 1]. Notice at the point wherein there is an active set change,
t = 0.5, the vector ∇tc(x, t)∆t is,

∇tc(x, t)∆t =
(
−10 0 10 20 0 −10 −10

)T
∆t,

and thus the solution to (SensitivityLP), recalling that,

Λ(x∗(
1

2
)) = (0, y1, y2, y3, y4, y5, y6), y1 +y2 +y3 +y5 +y6 = e5, y1−y3−y4 +

1

2
y5−

1

2
y6 = 0, yi ≥ 0,

is (0, 0, 0, 0, 0, 1
2e

5, 1
2e

5), indicating that the last two constraints should be strongly active, and for
t ∈ [0.5, 1], the solution should trace these constraints.

Indeed we find that the algorithm successfully traces the solution and (JumpLP) performs the
jump in the multipliers at t = 0.5. If, in the implementation of the algorithm, we turn (JumpLP)
off and instead use the multiplier solution ∆y from (CorrectStep) and (QPPredict), then the
algorithm gets stuck at t = 0.5 and proceeds no further along the homotopy. We show the plots
of the primal and dual variables in Figure 3. Note that x follows the true solution closely, y2 and
y4 are always effectively zero, and there is a discontinuous jump halfway along the homotopy path
where y3 jumps from being positive to zero and y5, y6 jump from zero to positive.

19

Algorithm 2 Predictor Corrector Sensitivity Pathfollowing Method

Input: t, x, y close to (x∗(t), Ŷ (t)) such that {∇xci(x, t)}{i∈I:yi>0}∪E is linearly independent.

1: Define parameters γ satisfying 0 < γ < 1 and ιmax ∈ N.
2: Estimate A using (3.1) evaluated at (x, y, 0) and define A+

3: Set ι = 1
4: while t < 1 do
5: Solve (CorrectStep) for (∆cx,∆+y).
6: if for some i /∈ E , [yA+

+ ∆+y]i < 0 then
7: Solve (1.1) at t for an approximate solution (x, y).
8: Set ι = 1.
9: end if

10: Define ∆cy ∈ Rm such that [∆cy]A+
= ∆+y and zero otherwise.

11: Solve (QPPredict) for (∆px,∆py).
12: Set (∆x,∆y) = (∆px,∆py) + (∆cx,∆cy)
13: if (5.1) does hold then
14: if ι ≥ ιmax then
15: Solve (1.1) at t for an approximate solution (x, y).
16: Set ι = 1.
17: Go to Line 5
18: else
19: Decrease ∆t. Set ι = ι+ 1.
20: Go to Line 11
21: end if
22: end if
23: if η(xk + ∆x, yk + ∆y, t+ ∆t) < η(xk, yk, t)

1+γ (very good step) then
24: Increase ∆t.
25: end if
26: Compute A = Aγ(x+ ∆x, y + ∆y, t+ ∆t) ∪ E .
27: Solve (JumpLP) to redefine y.
28: Let A+ = {i : [y]i > 0} ∪ E .
29: Set t = t+ ∆t, x = x+ ∆x.
30: end while

6.2. Degenerate Nonlinear Problem. We now consider a problem with nonlinear con-
straints. In particular, we consider the problem,

minx −x2

subject to:
c1(x) := x3 = 1 + 9t,
c2(x) := x1 ≥ 0,
c3(x) := −x3

2 − x1x2 − x2
1 + x2

3 ≥ 0,
c4(x) := −ex1 − ex2 + ex3 + 1 ≥ 0,
c5(x) := −x2

1 − x1x2 + (x2 − (2.5 + 0.5x3))2 − (2.5 + 0.5x3)4x1 − 100(x2 − (2.5 + 0.5x3)) ≥ 0,
c6(x) := −x2

1 + x1x2 + (x2 − (2.5 + 0.5x3))2 + (2.5 + 0.5x3)4x1 − 100(x2 − (2.5 + 0.5x3)) ≥ 0,
(6.1)

20

Fig. 3. Path of primal and dual variables tracing the approximate solution to (2.1) across t = [0, 1]

For this problem x∗(t) = (0, 1 + 9t, 1 + 9t) for t ∈ [0, 4
9], and x∗(t) = (0, 3 + 4.5t, 1 + 9t) for

t ∈ [4
9 , 1]. For t ∈ [0, 4

9) constraints 1, 2, 3, and 4 are active (including one equality constraint),
and for t ∈ (4

9 , 1], (only) constraints 1, 2, 5 and 6 are active. At t = 4
9 all constraints are active.

Since there are always at least 4 active constraints and n is three, the Jacobian is trivially rank
deficient. However, for all t, (0,−1, 0) is a strictly feasible direction at x∗(t), and so the MFCQ
holds. Furthermore, it can be seen that the CRCQ holds at x∗(p) for all p. The results are given
in Figure 4. Note the discontinuous jump of some of the multipliers for t = 4/9.

6.3. Convergence and Comparison. In order to illustrate the convergence properties of the
algorithm and their implications for practical application, we plot the values of η(xk, yk, tk) as we
trace the homotopy for problem (2.1) in Figure 5 and for problem (6.1) in Figure 6. The tolerance
in (5.1) was chosen as ηtol =1e-5, and ∆t is allowed to increase to speed up the tracking, as long as
η < ηtol. We observe superlinear contraction followed by repeatedly allowing η to inch up towards
the optimality tolerance before decreasing ∆t again for achieving the required accuracy. In the
figures, we also show how η evolves when we implement the path-following algorithm using only the
predictor (and not the corrector), as proposed in [24]. We clearly see that it diverges, suggesting
a necessity for a corrector. We also considered dropping (JumpLP) from the algorithm and just

21

Fig. 4. Primal-dual approximate solution trajectories for Algorithm 1 applied to (6.1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−7

10−6

10−5

10−4

10−3

10−2

t

et
a

Predictor Algorithm in [24]

Predictor−Corrector Pathfollowing Algorithm

Fig. 5. Plot of η across the homotopy for Algorithm 1 and pure predictor and LP Jump algorithm [24] to (2.1)
across t = [0, 1]

22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−8

10−7

10−6

10−5

10−4

10−3

10−2

t

et
a

Predictor Algorithm in [24]

Predictor−Corrector Pathfollowing Algorithm

Fig. 6. Plot of η across the homotopy for Algorithm 1 and pure predictor and LP Jump algorithm [24] to (6.1)
across t = [0, 1]

using the multipliers from (CorrectStep) and (QPPredict), and as expected, the homotopy is
traced up until the jump seen at t = 0.5, at which point the algorithm fails to trace the optimal
solution path. In this case, the values of all the variables and η are the same as in our algorithm
up to t = 0.5. We note that we have essentially no algorithms to compare ours to in terms of
performance in iterations or speed, because Algorithm 1 solves a new class of problems for which
previously no algorithm exists, aside from [24], which has no convergence theory and as we see
does not stay close to the solution curve, or [26], which requires solving an exponentially cascading
sequence of LPs, unnecessary for the problem setting we consider, and thus becoming prohibitively
slow for an increasing number of constraints.

7. Conclusion. In this paper we investigated the properties of a predictor-corrector pathfol-
lowing algorithm for parametric optimization. The algorithm consists of solving a linear system
that corresponds to a corrector step, a QP that corresponds to a corrected predictor, and an LP
used to jump over discontinuities in the optimal Lagrange multiplier. The procedure exhibits sev-
eral desirable properties for an appropriate algorithm for the problems of interest, and in particular
we have proven its convergence properties without assuming the LICQ holds at any of the primal
solutions along the path.

Future research on the topic can include several directions. First, solving problems with even
weaker assumptions on the problem data, inspired by singular systems in optimal control with
bifurcations in the solution to the dynamics. Second, applying the algorithm to problems arising
in particular settings, especially nonlinear model predictive control. Third, it may be possible to
modify the predictor-corrector subproblems to be reformed as a phase 1-phase 2 type solver for
standalone NLPs. Fourth, studying uniformity properties of the sensitivity theory used in the
paper, as mentioned in the discussion of the convergence theory results in Section 4.2. Finally, it
would be interesting to investigate the application of this algorithm in parametric problems with
uncertainty, i.e., subject to additional parameters, to be optimized in an either robust (worst-case)
or stochastic/statistical sense.

Acknowledgements. J.J. would like to thank Larry Biegler for many interesting discussions
on the topic of path-following and sensitivity. V.K. would like to thank Daniel P. Robinson for
his helpful suggestions for improving the readability of the paper. In addition the authors would
like to thank two anonymous referees as well as the Associate Editor, Mikhail Solodov, for their
recommendations in revising the manuscript.

23

REFERENCES

[1] Eugene L Allgower and Kurt Georg. Numerical path following. Handbook of numerical analysis, 5:3–207, 1997.
[2] Roberto Andreani, Ernesto G Birgin, José Mario Mart́ınez, and Maŕıa Laura Schuverdt. On augmented La-

grangian methods with general lower-level constraints. SIAM Journal on Optimization, 18(4):1286–1309,
2007.

[3] J Frédéric Bonnans and Alexander Shapiro. Optimization problems with perturbations: A guided tour. SIAM
review, 40(2):228–264, 1998.

[4] Ron S Dembo, Stanley C Eisenstat, and Trond Steihaug. Inexact Newton methods. SIAM Journal on Numerical
analysis, 19(2):400–408, 1982.

[5] Stephan Dempe. Foundations of bilevel programming. Springer Science & Business Media, 2002.
[6] Peter Deuflhard. Newton methods for nonlinear problems: affine invariance and adaptive algorithms, vol-

ume 35. Springer Science & Business Media, 2011.
[7] Moritz Diehl, H Georg Bock, Johannes P Schlöder, Rolf Findeisen, Zoltan Nagy, and Frank Allgöwer. Real-

time optimization and nonlinear model predictive control of processes governed by differential-algebraic
equations. Journal of Process Control, 12(4):577–585, 2002.

[8] Moritz Diehl, Andrea Walther, Hans Georg Bock, and Ekaterina Kostina. An adjoint-based SQP algorithm
with quasi-Newton Jacobian updates for inequality constrained optimization. Optimization Methods &
Software, 25(4):531–552, 2010.

[9] Quoc Tran Dinh, Carlo Savorgnan, and Moritz Diehl. Adjoint-based predictor-corrector sequential convex
programming for parametric nonlinear optimization. SIAM Journal on Optimization, 22(4):1258–1284,
2012.

[10] Asen L Dontchev, MI Krastanov, R Tyrrell Rockafellar, and Vladimir M Veliov. An Euler–Newton continuation
method for tracking solution trajectories of parametric variational inequalities. SIAM Journal on Control
and Optimization, 51(3):1823–1840, 2013.

[11] Asen L Dontchev and R Tyrrell Rockafellar. Convergence of inexact Newton methods for generalized equations.
Mathematical Programming, 139(1-2):115–137, 2013.

[12] Jitka Dupačová. Stability and sensitivity-analysis for stochastic programming. Annals of operations research,
27(1):115–142, 1990.

[13] Francisco Facchinei, Andreas Fischer, and Christian Kanzow. On the accurate identification of active con-
straints. SIAM Journal on Optimization, 9(1):14–32, 1998.

[14] Damián Fernández and Mikhail Solodov. Stabilized sequential quadratic programming for optimization and a
stabilized Newton-type method for variational problems. Mathematical programming, 125(1):47–73, 2010.

[15] Jacques Gauvin. A necessary and sufficient regularity condition to have bounded multipliers in nonconvex
programming. Mathematical Programming, 12(1):136–138, 1977.

[16] Philip E Gill, Vyacheslav Kungurtsev, and Daniel P Robinson. A stabilized SQP method: superlinear conver-
gence. Center for Computational Mathematics Report CCoM, pages 14–01, 2014.

[17] Philip E Gill, Vyacheslav Kungurtsev, and Daniel P Robinson. A stabilized SQP method: global convergence.
IMA Journal of Numerical Analysis, page drw004, 2016.

[18] Philip E Gill and Elizabeth Wong. Sequential quadratic programming methods. In Mixed integer nonlinear
programming, pages 147–224. Springer, 2012.

[19] Jürgen Guddat, F Guerra Vazquez, and Hubertus Th Jongen. Parametric optimization: singularities, pathfol-
lowing and jumps. Springer, 1990.

[20] Jürgen Guddat, Francisco Guerra Vázquez, Dieter Nowack, and Jan-J Rückmann. A modified standard embed-
ding with jumps in nonlinear optimization. European journal of operational research, 169(3):1185–1206,
2006.

[21] William W Hager. Stabilized sequential quadratic programming. Computational optimization and Applications,
12(1-3):253–273, 1999.

[22] AF Izmailov. Solution sensitivity for Karush–Kuhn–Tucker systems with non-unique Lagrange multipliers.
Optimization, 59(5):747–775, 2010.

[23] Alexey F Izmailov and Mikhail V Solodov. Inexact Josephy–Newton framework for generalized equations
and its applications to local analysis of Newtonian methods for constrained optimization. Computational
Optimization and Applications, 46(2):347–368, 2010.

[24] Johannes Jäschke, Xue Yang, and Lorenz T Biegler. Fast economic model predictive control based on NLP-
sensitivities. Journal of Process Control, 24(8):1260–1272, 2014.

[25] Vyacheslav Kungurtsev. Second-derivative sequential quadratic programming methods for nonlinear optimiza-
tion. PhD thesis, UC-San Diego, 2013.

[26] Vyacheslav Kungurtsev and Moritz Diehl. Sequential quadratic programming methods for parametric nonlinear

24

optimization. Computational Optimization and Applications, 59(3):475–509, 2014.
[27] Jerzy Kyparisis. Sensitivity analysis for nonlinear programs and variational inequalities with nonunique multi-

pliers. Mathematics of operations research, 15(2):286–298, 1990.
[28] Adam B Levy. Solution sensitivity from general principles. SIAM journal on control and optimization, 40(1):1–

38, 2001.
[29] Toshiyuki Ohtsuka. A continuation/GMRES method for fast computation of nonlinear receding horizon control.

Automatica, 40(4):563 – 574, 2004.
[30] Daniel Ralph and Stephan Dempe. Directional derivatives of the solution of a parametric nonlinear program.

Mathematical Programming, 70(1-3):159–172, 1995.
[31] Maik Ringkamp, Sina Ober-Blöbaum, Michael Dellnitz, and Oliver Schütze. Handling high-dimensional prob-

lems with multi-objective continuation methods via successive approximation of the tangent space. Engi-
neering Optimization, 44(9):1117–1146, 2012.

[32] Stephen M Robinson. Generalized equations and their solutions, part II: Applications to nonlinear programming.
Optimality and Stability in Mathematical Programming, pages 200–221, 1982.

[33] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science & Business
Media, 2009.

[34] Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.
[35] Lúıs N Vicente and Stephen J Wright. Local convergence of a primal-dual method for degenerate nonlinear

programming. Computational Optimization and Applications, 22(3):311–328, 2002.
[36] Yang Wang and Stephen Boyd. Fast model predictive control using online optimization. Control Systems

Technology, IEEE Transactions on, 18(2):267–278, 2010.
[37] Stephen J Wright. Modifying SQP for degenerate problems. SIAM Journal on Optimization, 13(2):470–497,

2002.
[38] Patrice Ogou Yapo, Hoshin Vijai Gupta, and Soroosh Sorooshian. Multi-objective global optimization for

hydrologic models. Journal of hydrology, 204(1):83–97, 1998.
[39] Victor M Zavala and Mihai Anitescu. Real-time nonlinear optimization as a generalized equation. SIAM

Journal on Control and Optimization, 48(8):5444–5467, 2010.
[40] Victor M Zavala and Lorenz T Biegler. The advanced-step NMPC controller: Optimality, stability and robust-

ness. Automatica, 45(1):86–93, 2009.

25

