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Abstract— In moving horizon estimation (MHE), a computa-
tionally expensive nonlinear program (NLP) is solved at each
sampling time to determine the current state of the system.
To overcome the computational challenges, an advanced-step
MHE (asMHE) framework has been proposed in the literature.
asMHE consists of a computationally expensive offline part
and a fast NLP sensitivity based online part. We propose a
predictor-corrector pathfollowing method for the online part
within asMHE. In this method, we solve a few quadratic
programs sequentially in order to follow the optimal solution
of the NLP for tracking a parameter change, which is the
difference between a predicted measurement value and the
real measurement value corresponding to the latest sample.
This allows it to track the active set changes as they occur.
To demonstrate the method, we performed simulations on a
gas phase three component batch reaction model. We compare
the solutions from the ideal-MHE and the pathfollowing based
MHE. The results indicate that the pathfollowing based MHE
is able to effectively trace the exact solution and the changes
in active set in an efficient manner.

I. INTRODUCTION

In moving horizon estimation (MHE), estimates for states
and parameters are found by minimizing an objective func-
tion, which is a summation of weighted least squares of
process noises and measurement noises in a horizon con-
sisting of several measurement samples from immediate past,
subject to model equations, output equations and constraints.
When a new measurement arrives, the new sample is in-
cluded in the horizon while the oldest sample is discarded.
Thus, the horizon keeps moving one sampling time forward
with each sample, thereby limiting the computational ex-
pense. This optimization problem is discretized into a non-
linear program (NLP) if the model equations are nonlinear.

Although MHE has evolved in the past decade as a useful
tool for estimation in constrained nonlinear systems, its
large computational expense and the cost associated with
model development have deterred its application for online
estimation in large scale systems. Even for a relatively short
horizon with few states, the optimization problem can take a
non-negligible amount of time to solve. A delayed estimate
leads to a delayed control action, which can deteriorate the
closed loop performance and potentially lead to instability
[1]. Two approaches have been developed in the literature
to address the issue of computational burden associated with
MHE problems. Both approaches include an offline phase
(preparation phase) and an online phase (estimation phase).
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The first approach is known as the real time iteration (RTI)
scheme [2]. In RTI, the idea is to limit the computational
expense of solving the NLP to one sequential quadratic
programming (SQP) iteration i.e. one quadratic program
(QP), which results in an efficient approximate solution. The
preparation phase carries out the linearizations necessary
to set up the Newton step for the KKT system, while
the estimation phase embeds the final measurement as it
arrives and computes the step to update the solution from
the previous time step. Note that here the full NLP is never
solved. In RTI, the gap between the approximate solution and
the optimal solution can be narrowed by a better initial guess
at each sample time by a procedure called warm-starting.

The other approach to handle computational expense of the
MHE problem is to use the advanced step MHE (asMHE)
[3], wherein the full NLP is solved to a given optimality
tolerance in the offline part, using a predicted value for the
upcoming measurement in order to obtain an approximate
solution. This solution is referred as predicted solution and
the corresponding problem predicted NLP. In the online part,
the predicted solution is updated using the measurement (as
it arrives) and the optimal sensitivity of the predicted solution
to a change in the final measurement.

In comparison to other estimation techniques, MHE offers
a distinct advantage in terms of the ability to handle inequal-
ity constraints. This is especially important for applications
in which the variables of interest tend to be very close to the
bounds. Such applications include high purity separation pro-
cesses, such as distillation or reactors in which one or more
species is completely consumed. In the RTI scheme, handling
of inequality constraints is natural due to its adoption of QPs
as a tool to solve the optimization problems. In asMHE,
however, changes in the active set (set of active inequality
constraints) cause a change in the dimension of the KKT
matrix. The KKT matrix structure is consequently changed
in the online part by applying Schur complement techniques
to the factorized KKT matrix obtained from the offline part
[3], which is somewhat heuristic. A rigorous approach to
handle active set changes was presented within advanced step
model predictive control framework in [4] and [5], where the
authors presented a pathfollowing based sensitivity update.

Inspired by [4] and [5], we propose the pathfollowing
advanced step MHE (pasMHE), in which we use a predictor-
corrector pathfollowing method to compute a change of the
predicted NLP solution in the online part. In our pathfol-
lowing method, a series of QPs are solved to trace the
NLP solution for a change in parameter, i.e. such that the
latest measurement in predicted NLP is corrected for the
real measurement value.



The main contribution of this paper is to present a fast
MHE method that ensures that the solution can effectively
track the changes in active set as they occur while adapting
the final measurement variable in the online part. This is
achieved by including strongly active inequality constraints
as equality constraints and weakly active ones as inequality
constraints in the pathfollowing QPs.

This paper is structured in the following way. In section II,
we formulate the MHE problem. In section III, we present
the sensitivity properties of the associated NLP. In section IV,
we discuss pathfollowing approaches for NLP. We present
pathfollowing advanced step MHE algorithm in section V.
In section VI, the proposed algorithm is applied to a state
estimation case study, for which the results can be found in
section VII. We conclude the paper with a discussion and
final remarks in section VIII.

II. MOVING HORIZON ESTIMATION PROBLEM
FORMULATION

A. A general Moving Horizon Estimation framework
We consider NLP formulation (1) for MHE with dis-

crete time dynamics spanning a horizon length of N finite
elements, such that at time instant i, xi and yi represent
the state and the output, respectively and ui represents
piecewise constant input between time instants i and i + 1.
f : Rnx × Rnu → Rnx represents discretized state dynam-
ics, whereas h : Rnx → Rny represents state to output
mapping. The MHE objective function spans over two
time segments: tpast = {i | 0 ≤ i < k − N} and thorizon =
{i | k − N ≤ i ≤ k}, where k represents the current time step
and the horizon consists of latest N+1 measurement samples.
The contribution to the objective function from tpast is
summarized in the arrival cost, whereas that from thorizon
in the stage costs.{

x̂k−N |k, v̂k−N |k, ŵk−N |k, . . . , ŵk−1 |k, x̂k |k, v̂k |k
}
=

arg min
{Xk

k−N
,V k

k−N
,W k−1

k−N }

Stage costs︷                                            ︸︸                                            ︷[
k−1∑

i=k−N

wT
i Q−1wi +

k∑
i=k−N

vTi R−1vi

]

+

Arrival cost︷                                                               ︸︸                                                               ︷

xk−N − x̂k−N |k−1


2
Π−1
k−N |k−1

− ‖Y − Oxk−N ‖
2
W−1

s.t. xi+1 = f (xi, ui) + wi

yi = h (xi) + vi
xlb ≤ xi ≤ xub

(1)
We consider additive Gaussian noises denoted by wi ∼

N (0,Q) for process noise and vi ∼ N (0, R) for
measurement noise. The decision variables in (1) are
the sequence of states Xk

k−N
= {xk−N, . . . , xk}, pro-

cess noises Wk−1
k−N

= {wk−N, . . . ,wk−1} and measure-
ment noises Vk

k−N
= {vk−N, . . . , vk} in thorizon denoted

by
{

Xk
k−N

,Vk
k−N

,Wk−1
k−N

}
. The smoothed and filtered es-

timates of the states and the noises in thorizon condi-
tioned on measurement data from thorizon are obtained by

solving the optimization problem (1) and are denoted as{
x̂k−N |k, v̂k−N |k, ŵk−N |k, . . . , ŵk−1 |k, x̂k |k, v̂k |k

}
, where, x̂k |k

represents the state estimate of xk given all the measurement
information until time point k. Bound constraints on the
states are included in the optimization problem as inequality
constraints, whereas the discretized model equations and
output equations appear as equality constraints. The lower
and upper bounds on the states are denoted by xlb and
xub , respectively. Note that in (1) the weighted 2-norm ‖z‖2Z
expands as zT Zz.

We consider a smoothed arrival cost approximation in
our NLP formulation (1) for MHE [6], assuming a nor-
mally distributed probability density function for xk−N |k−1 ∼
N

(
x̂k−N |k−1,Πk−N |k−1

)
. In the arrival cost, the first term

represents a penalty on the deviation of the first state xk−N
from the smoothed estimate x̂k−N |k−1 obtained from the NLP
solved at time instant k−1. The covariance matrix Πk−N |k−1
is extracted from the reduced Hessian of the Lagrangian of
the NLP for time instant k − 1 as in [7]. The second term in
the arrival cost is a correction to the first term, such that the
measurement data Y k−1

k−N
are not counted twice in the arrival

cost. For the exact definition of the matrices Y,O and W,
refer to the Appendix.

B. Ideal Moving Horizon Estimation

Ideal moving horizon estimation (ideal MHE) are MHE
problems that are solved at each sampling times k with
the measurement sequence and arrival cost updated at each
sampling time. As soon as the new measurement arrives, the
NLP is assumed to be solved with no time delay.

C. Advanced step Moving Horizon Estimation framework

In reality, the MHE problem is impossible to be solved
with no time delay. To reduce the time delay between
receiving the new measurement value and having the new
state available, the advanced step moving horizon estimation
(asMHE) was proposed [3]. It involves the following two
steps:

1) Offline step: In this step, the MHE is solved based on
a prediction of the newest measurement, rendering an
approximate solution together with the corresponding
NLP sensitivity of the solution to a change in the
parameter i.e. the final measurement.

2) Online step: In this step, the approximate solution from
the offline step is updated (or corrected) using the real
measurement and the NLP sensitivity.

III. SENSITIVITY IN PARAMETRIC NONLINEAR
PROGRAMMING

The MHE problems solved in the offline step can be
framed as a parametric NLP as follows:

min
X

F (X)

s.t . C (X, p) =0
G (X, p) ≤0

(2)

Here, X ∈ RnX is a vector of decision variables (pri-
mal variables) containing state sequence and the process



and measurement noise sequences in the horizon window.
p ∈ Rny is a parameter vector corresponding to the final
measurement. F : RnX → R is the scalar objective function,
C : RnX × Rny → RnC denotes the equality constraints
corresponding to the model equations and G : RnX ×Rny →
RnG denotes the inequality constraints corresponding to the
constraints on states.

The Lagrangian function of (2) is defined below, where
λ and µ represent the vectors of Lagrange multipliers (dual
variables) for equality constraints and inequality constraints,
respectively.

L (X, p, λ, µ) = F (X) + λTC (X, p) + µTG (X, p)

The Karush-Kuhn-Tucker (KKT) conditions for (2) are:

∇XL (X, p, λ, µ) = 0
C (X, p) = 0
G (X, p) ≤ 0

µTG (X, p) = 0
µ ≥ 0

(3)

A point (X∗, λ∗, µ∗) that satisfies (3) for a given parameter
vector p∗ is called a KKT point.

Definition 1: (Active set) For problem (2) at a KKT point
X and parameter vector p, the active set A refers to the
set

{
j ∈ (1, . . . , nG) | G j (X, p) = 0

}
, and the corresponding

vector of active constraints denoted by GA (X, p) is given by{
G j (X, p) | j ∈ A

}
. The complement of set A is inactive set

A−, where A− =
{

j ∈ (1, . . . , nG) | G j (X, p) < 0
}
.

Definition 2: (Strongly active set) The strongly active set
is a subset of set A given by K+ =

{
j ∈ A | µj > 0

}
and

the corresponding vector of active constraints in set K+ is
denoted by GK+ (X , p). The weakly active set is a subset
of set A given by KW =

{
j ∈ A | µj = 0

}
. Set K0 is given

by K0 = A
−
⋃
KW . The corresponding vector of inequality

constraints in the index set K0 is denoted by GK0 (X , p).
Definition 3: (LICQ) For a parameter vector p and vector

X , the linear independence constraint qualification holds if
the vectors in

{
{∇XCi (X, p)}i∈{1,...,nC }

⋃
{∇XGi (X, p)}i : i∈A

}
are linearly independent.

LICQ warrants that the Lagrange multipliers λ and µ
corresponding to a KKT point are unique.

Definition 4: (SSOSC) The strong second order sufficient
condition holds at a KKT point (X∗, λ∗, µ∗) for all non-
zero directions d if dT∇2

XXL (X
∗, p∗, λ∗, µ∗) d > 0 such that

∇XGK+ (X
∗, p∗)T d = 0 and ∇XC (X∗, p∗)T d = 0.

In conjunction with LICQ, SSOSC guarantees that a KKT
point is a unique local minimum.

Definition 5: (SC) Strict complimentarity holds if for a
given parameter vector p∗ the KKT point (X∗, λ∗, µ∗) satis-
fies µ∗i − Gi (X

∗, p) > 0 for each i = 1, . . . , nG .
Theorem 1: Let X∗ satisfy KKT conditions (3) for a given

parameter vector p0, and LICQ, SSOSC, and SC hold at
X∗ (p0). Further, let F,C, and G be k+1 times differentiable
in X and k times differentiable in p. Then
• X∗ is an isolated minimizer and its corresponding

Lagrange multipliers λ∗ and µ∗ are unique.

• For p in the neighborhood of p0, the set A does not
change.

• There exists a k times differentiable function σ(p) =[
X∗ (p)T λ∗ (p)T µ∗ (p)T

]T
of p in the neighborhood

of p0, where σ(p) corresponds to a unique local mini-
mum for (2).

Proof: Refer to Fiacco [8].
Based on this result, we can compute the sensitivities ∇pX ,
∇pλ, ∇pµ of the optimal solution X∗, λ∗, µ∗ to changes
in the parameter vector p by solving the system of linear
equations resulting from the application of the implicit
function theorem to KKT conditions (3) :

K

∇pX
∇pλ
∇pµ

 = −

∇2

pXL (X
∗, p0, λ

∗, µ∗)

∇pC (X∗, p0)
∇pGA (X∗, p0)

 (4)

where

K =

∇2
XXL (X

∗, p0, λ
∗, µ∗) ∇XC (X∗, p0) ∇XGA (X∗, p0)

∇XC (X∗, p0)
T 0 0

∇XGA (X∗, p0)
T 0 0


(5)

Using the optimal solution and the sensitivities computed in
(4), the solution manifold in the neighborhood of p0 can be
estimated using the following equations.

X (p0 + ∆p)
λ (p0 + ∆p)
µ (p0 + ∆p)

 =

X∗ (p0)
λ∗ (p0)
µ∗ (p0)

 +

∇pX
∇pλ
∇pµ

 ∆p (6)

Within the advanced step MHE framework [3], the on-
line step executes the above mentioned sensitivity update,
wherein the upcoming measurement is treated as parameter,
making the MHE problem (1) a parametric NLP (2).

Note that if SC does not hold at p0, above mentioned
sensitivity updates by solving (4) will not follow the optimal
solution manifold as a step ∆p can induce changes in set
A. Hence, we propose pathfollowing as an alternative, in
which we take multiple smaller steps that are fractions of
∆p using quadratic programs. This ensures closer tracking
of the optimal solution.

IV. SENSITIVITY USING PATHFOLLOWING

In the more general case where SC does not hold the NLP
sensitivity can be obtained from a quadratic program (QP)
that gives the change in solution vector ∆X given a change
in the parameter vector ∆p.

Theorem 2: Let LICQ and SSOSC hold at point X∗ (p0)
for a parameter vector p0. Let F,C, and G be twice contin-
uously differentiable both in X and p near point (X∗, p0).
Then

• The solution function (X∗ (p) , λ∗ (p) , µ∗ (p)) is Lips-
chitz continuous in the neighborhood of (X∗, p0, λ

∗, µ∗).
• The directional derivative of solution path
(X∗ (p) , λ∗ (p) , µ∗ (p)) exists and is uniquely given by
the solution of the following QP.



min
∆X

1
2
∆XT∇2

XXL (X
∗, p0, λ

∗, µ∗)∆X

+∆pT∇2
pXL (X

∗, p0, λ
∗, µ∗)∆X

s.t. ∇XC (X∗, p0)
T
∆X + ∇pC (X∗, p0)

T
∆p = 0

∇XGK+ (X
∗, p0)

T
∆X + ∇pGK+ (X

∗, p0)
T
∆p = 0

∇XGKW (X
∗, p0)

T
∆X + ∇pGKW (X

∗, p0)
T
∆p ≤ 0

(7)

Proof: Refer to [9].
Remark 1: The solution of QP (7) is a solution step ∆X

for a given parameter change ∆p in the tangential direction
at point X∗ (p0). The step ∆X is a predictor step. To this
end, the QP (7) is referred as pure-predictor QP [4]. The
KKT conditions for QP (7) under limit ∆p→ 0 leads to (4),
whenever SC holds.

Remark 2: Since a QP allows inequality constraints in
problem definition, QP (7) provides the flexibility of closely
tracking the correct solution manifold under changes in the
set A induced by large parameter perturbations. This property
is absent in (4) and (6).
Iteratively applying a pure-predictor pathfollowing QP re-
sembles an Euler scheme of integration. To further improve
the approximation accuracy, we can include some corrector
elements in the optimization problem as shown in e.g. [10].
Formulating (2) as a QP by linearizing the constraints at
point (X∗, p0, λ

∗, µ∗) leads to several terms in the objective
function of the QP vanishing as the parameter p enters
linearly into the constraints of (2), leaving us with (8). Here,
note that we retain the classification of inequality constraints
in sets K+ and K0.

min
∆X

1
2
∆XT∇2

XXL
(
X∗, p0, λ

∗, µ∗
)
∆X + ∇XF

(
X∗

)T
∆X

s.t. ∇pC
(
X∗, p0

)
∆p + ∇XC

(
X∗, p0

)T
∆X = 0

∇pGK+
(
X∗, p0

)
∆p + ∇XGK+

(
X∗, p0

)T
∆X = 0

GK0

(
X∗, p0

)
+ ∇pGK0

(
X∗, p0

)
∆p + ∇XGK0

(
X∗, p0

)T
∆X ≤ 0

(8)
Since the parameter p enters the constraints in (2) linearly,
∇pC (X∗, p0)∆p can be replaced by C

(
X∗, p f

)
−C (X∗, p0),

where C (X∗, p0) = 0. Similar substitutions can be made
for ∇pGK+ (X

∗, p0)∆p and ∇pGK0 (X
∗, p0)∆p to arrive at

formulation (9). Here, note that ∇X or ∇2
XX terms are free

of parameter p, which means we can replace p0 with p f

without any change.

min
∆X

1
2
∆XT∇2

XXL
(
X∗, p f , λ

∗, µ∗
)
∆X + ∇XF (X∗)T∆X

s.t. C
(
X∗, p f

)
+ ∇XC

(
X∗, p f

)T
∆X = 0

GK+
(
X∗, p f

)
+ ∇XGK+

(
X∗, p f

)T
∆X = 0

GK0

(
X∗, p f

)
+ ∇XGK0

(
X∗, p f

)T
∆X ≤ 0

(9)

We call problem (9) predictor-corrector QP. However, we
can give an alternative form of (9) in which ∆p appears in
the formulation and we enforce it to be equal to some value
ε . This is necessary if we do not want to take a full step

(
p f − p0

)
, instead multiple smaller steps ε =

(
p f − p0

)
/m,

where (m − 1) ∈ N and iteratively update the solution.

min
∆X

1
2
∆XT∇2

XXL (X
∗, p0 + ∆p, λ∗, µ∗)∆X + ∇XF (X∗)T∆X

s.t. C (X∗, p0 + ∆p) + ∇XC (X∗, p0 + ∆p)T ∆X = 0
GK+ (X

∗, p0 + ∆p) + ∇XGK+ (X
∗, p0 + ∆p)T ∆X = 0

GK0 (X
∗, p0 + ∆p) + ∇XGK0 (X

∗, p0 + ∆p)T ∆X ≤ 0
(10)

V. PATHFOLLOWING ADVANCED STEP MOVING
HORIZON ESTIMATION

Based on the developments above, we propose the path-
following advanced step MHE (pasMHE) algorithm in Algo-
rithm 1, which includes both the offline and the online parts.
We start with the solution from the predicted NLP X∗ (p0) as
the initial point for the pathfollowing algorithm. To initiate
the pathfollowing algorithm, we provide the number of steps
m and the real final measurement yk , which is used to
compute the parameter step length ε , as shown in Algorithm
1, where N represents the number of finite elements. (10)
is solved m times and after each solution, the pathfollowing
solution is updated by adding the optimal change ∆X to the
previous solution. Likewise, the initial parameter p0 and the
Lagrange multipliers are updated. Note that the Lagrange
multipliers of (10) are approximations of the NLP Lagrange
multipliers themselves and not their change.

Algorithm 1: pasMHE algorithm
input : Initiate the estimator with X∗ (p0), m and yk
output: State estimate x̂p f

k |k
and Πp f

k |k
for each k

1 while k ≥ N do
2 Offine: solve predicted NLP
3 p0 ← predicted measurement
4 Xp f (p0) ← predicted NLP solution X∗ (p0)
5 p f ← yk as measurement yk becomes available
6 ∆p←

(
p f − p0

)
/m

7 ε ← ∆p
8 for i ← 1 to m do
9 Online: solve (10) using ∆p to get ∆X

10 Xp f (p0 + ∆p) ← Xp f (p0) + ∆X
11 λ (p0 + ∆p) ← Lagrange multiplier of (10)
12 µ (p0 + ∆p) ← Lagrange multiplier of (10)
13 p0 ← p0 + ∆p
14 end
15 x̂p f

k |k
← Xp f

(
p f

)
pathfollowing solution

16 Π
p f

k |k
← Extracted reduced Hessian at Xp f

(
p f

)
17 end

Remark 3: In the pasMHE algorithm, if the QP is infeasi-
ble, ε should be reduced until it becomes feasible again. After
every QP solution in pathfollowing, the algorithm checks for
active set changes by monitoring the Lagrange multipliers. If
an active set change is observed, sets K+ and K0 are updated
in the next QP.



VI. CASE STUDY

We consider a batch reaction system in gas phase with
three components given by i ∈ {A, B,C} undergoing the
following two reactions, where k j , j ∈ {1, 2, 3, 4} denotes
reaction rate constant [11].

A
k1


k2

B + C 2B
k3


k4

C (11)

The stoichiometry matrix ν and reaction rate matrix r for
(11) are as follows:

ν =

[
−1 1 1
0 −2 1

]
, r =

[
k1cA − k2cBcC

k3c2
B − k4cC

]
(12)

The state vector c is a vector of concentrations (in Molar) of
the components ci such that c =

[
cA cB cC

]T . We consider
pressure in the reaction vessel as the only measurement
given by P = (

∑
ci) RgT , where pressure is in bar , Rg =

0.08314 bar
Molar .K is the universal gas constant and T denotes

reaction temperature in the vessel in K . The pressure sensor
has a standard deviation of 0.1 bar . Hence, the measurement
noise covariance is R = 0.01. Further, we assume that the
reaction temperature is controlled at 400 K . The reaction rate
constants k j used in the simulation are given below:

k1 k2 k3 k4
0.5 0.05 0.2 0.01

The model equations are dc
dt = νT r with ci ≥ 0, since

concentrations cannot be negative. The process noise affects
the states directly such that in the plant model we have
dc
dt = ν

T r +w, where w is zero mean Gaussian random noise
of the form w ∼ N

(
[0 0 0]T , 10−4 × [2.5 1 1]T

)
, hence, the

process noise covariance matrix is Q = 10−4 × [2.5 1 1]T .
The plant simulations were performed in MATLAB

Simulink using a fixed step solver ode3 with a step size
of 0.1 min and initial condition [0.5 0.05 0]T to generate
the data for true states and the pressure measurement. The
pressure measurement data were used within the estimator
to estimate the three states. For the estimator, an initial
estimate of x0 |0 = [0.7 0.5 0.1]T with an initial estimate
error covariance Π0 |0 = 10−3×diag([10 2.5 1]) was provided.
The moving horizon estimator was set up considering 5
measurements in the horizon. The MHE was formulated as
a NLP by discretizing the continuous time dynamics using
direct collocation method. The discretization was performed
using an algorithmic differentiation tool CasADi (version
3.0.0) [12]. The formulated NLPs for predicted MHE and
the ideal MHE were solved using interior point solver IPOPT
[13]. For pasMHE, we chose m = 2 and used the MATLAB
QP solver quadprog.

Note that in our MHE problems, we consider that the
start up phase includes increasing horizon full information
estimation (FIE) problems as described in Fig. 1. Hence,
the first horizon in the start up phase includes only two
measurements. The correction terms in the arrival cost were
only implemented in the post start up phase. We also
implemented a continuous-discrete Extended Kalman Filter
(EKF) [14] to see if it gives infeasible estimates.

Increasing FIE horizons until it reaches desired horizon length

Sampling time points

Initial time: Provide
(

x0j0;Π0j0

)

Moving horizons of fixed horizon length

First moving horizon

Fig. 1. MHE initialization with increasing horizon FIE problems (x0|0 is
the initial estimate and Π0|0 is the initial estimate error covariance matrix)

VII. RESULTS

A. Results from Ideal MHE, predicted MHE and EKF

Firstly, we compare the state estimates obtained from the
ideal MHE and EKF to the true values of the three states in
the figure below.
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Fig. 2. True states, EKF estimates and ideal MHE estimates

We notice that the rapidly changing concentrations are
tracked reasonably well by estimators. We obtained a sum
of squared error (SSE) between the estimated states and
the true states of 0.5795 for the ideal MHE estimates, of
0.7367 for the predicted MHE estimates and of 1.1957 for
EKF estimates. While using the EKF, we obtained infeasible
estimates for cA at the following time points.

Time (min) 17.9 18.0 18.1 21.2 22.5
cA (Molar) −0.0004 −0.0008 −0.0024 −0.0024 −0.0001

B. Results from pasMHE

Here, we compare the pasMHE estimates to the ideal MHE
estimates because pasMHE is proposed as an alternative to
the ideal MHE problem. We computed the SSE between the
ideal MHE estimates and the pasMHE estimates, which was
6.6743×10−7 for 300 sample points. Hence, we conclude that
pasMHE is a suitable alternative to the ideal MHE because
pasMHE solution closely tracks the ideal MHE solution.



Lastly, the pasMHE method was proposed to show that
this method can accurately track the active set changes
happening in the ideal MHE solution. We noticed that
in the ideal MHE solution, the estimate cA was active
(i.e. equal to 0) at the following time points in minutes:
{15.2, 17.9, 18.0, 18.1, 21.1, 21.2}. Hence, in Fig. 3 we show
the error between the pasMHE solution and the ideal MHE
solution obtained for cA for the sample times between 15
and 22 minutes. We notice fairly small errors, hence, active
set changes are also very closely tracked by the pasMHE
solution. We further notice that at points where cA ≥ 0
is active, the error is non-negative, indicating that pasMHE
solution is not violating the constraints.
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Fig. 3. Error between pasMHE solution and ideal MHE solution for cA

VIII. CONCLUSION AND DISCUSSION

In this paper, we presented a predictor-corrector based
pathfollowing approach within advanced step moving hori-
zon estimation framework. The key motivation is to track
the solution of the original NLP as closely as possible by
making the strongly active constraints as equality constraints
and weakly active constraints as inequality constraints. This
procedure ensures that the changes in active set within the
online part of the algorithm are tracked accurately, which is
important for applications, such as distillation and reaction
systems, in which estimated variables tend to be very close
to their bounds.

pasMHE and RTI based MHE (RTI-MHE) [2] are similar
methods because both solve QPs, however, the real difference
between them is two fold. Firstly, pasMHE solves full NLP,
whereas RTI does not. Secondly, in pasMHE, the strongly ac-
tive constraints and the weakly active constraints are treated
differently, ensuring that the QPs solved are always strongly
convex even if the Hessian of the Lagrangian is not positive
definite. This property, which warrants fast convergence at
a minor overhead of identifying active constraints outside
QP, is missing in reported RTI schemes. The effect of not
enforcing strongly active constraints has been demonstrated
in Section 3.3 in [5]. In NLP for MHE problems, nonlinear
constraints arising from the model can potentially make the
Hessian of the Lagrangian indefinite.

Computationally, pasMHE is more costly than RTI-MHE
because the NLP is solved at each sample time. However,
as long as the NLP can be solved in between two samples,
the computational delay will be the time needed to solve

the pathfollowing problems, which typically are a few QP
iterations.

APPENDIX

Matrices Y,O andW used in (1) are below [7], where H
denotes ∂h

∂x , J denotes the Jacobian of the state derivatives
with respect to states and ω and ν represent respectively the
estimates of process and measurement noises obtained from
the previous horizon MHE problem.

Y = Oxk−N |k−1 +Mω + ν

W = OΠk−N |k−1O
T +MQMT + R

O =


Hk−N

Hk−N+1Jk−N
...

Hk−1Jk−2Jk−3 · · · Jk−N


; ω =


wk−N

...
wk−1

 ; ν =


vk−N
...

vk−1


M =


0 0 0 0

Hk−N+1 0 0 0
Hk−N+2Jk−N+1 Hk−N+2 0 0

...
...

. . .
...

Hk−1Jk−2Jk−3 · · ·Jk−N+1 Hk−1Jk−2Jk−3 · · ·Jk−N+2 · · · Hk−1


Q = diag (Q, . . . ,Q)︸      ︷︷      ︸

N−1 times

; R = diag (R, . . . , R)︸      ︷︷      ︸
N times
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nomic NMPC with a Path-Following Approach, Processes, vol. 5(1),
8, 2017.
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