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Abstract

We consider the optimal operation of energy storage in buildings with focus

on the optimization of an electric water heating system. The optimization

objective is to minimize the energy costs of heating the water, with the re-

quirement that we should satisfy the uncertain demand at any time. The

main complications in this problem are the time varying nature of the elec-

tricity price and the unpredictability of the future water demand. In this

paper we use the water heating system as an example for formulating a gen-

eral framework which could easily be applied to similar problems with energy

storage capacity. Feasibility and optimality are discussed and the main points

are illustrated in the simulation case studies.

Keywords: thermal energy storage, dynamic optimization, control policies,

water heater, demand side management, flexible operation

1. Introduction

Recently, considerable attention has been paid to renewable energy sources

like wind turbines and photovoltaic parks. These alternative energy sources
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suffer a major drawback, however, due to their strong dependence on uncon-

trolled and varying weather conditions. This is an important limitation since

the energy production is expected to cover the demand at any given time.

A possible approach for handling these fluctuations in the production is

to shift the consumer load to periods where a lot of energy can be produced

cheaply. This is referred to as demand side load management [1]. Field

tests in the USA have demonstrated that such an optimization of domestic

energy consumption can significantly reduce load peaks [2, 3]. This can be

achieved by manipulating the energy price according to demand information

and weather forecasts. Electricity consumers are thus encouraged to con-

sume electricity more prudently in order to minimize their electric bill. The

dynamic energy pricing for demand load management is in itself a non-trivial

problem and it is currently an active research area. The interested reader

may check the literature [4, 5, 6] for more information, as this problem is

outside the scope of this work.

Local energy storage in such setting provides several benefits for the con-

sumer without having to adjust their consumption pattern. In particular, it

enables

1. Higher peak capacity. For example, one may heat extra hot water in

the morning to make sure there is enough water for everyone to have a

shower.

2. Taking advantage of varying energy price. Energy can be purchased

when prices are low and it can be used when the prices are high. (Since

human users typically have a weak response to energy prices [7], auto-

matically controlled consumers are better suited for a variable pricing
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scenario.)

3. Taking advantage of favourable outdoor conditions (e.g. cooling at

night or heating during the day )

Energy storage devices could include hot water tanks, batteries, ice banks,

liquid nitrogen, thermal storage building mass thermal capacity and com-

pressed air storage [7].

Recently, there has been significant research activity around the problem

of optimal usage of energy storing devices. For example, in [8] the problem

of optimizing the end-consumer energy storage policies is considered. The

proposed idea is to charge batteries when the electricity price is low and use

the stored energy when the price is high. The authors show that the optimal

policy has a simple structure based on two threshold levels: if the battery

level is below a certain lower threshold value, the optimal policy is to charge

it as close to the lower threshold value as possible. If the battery level lies

above some upper threshold value then it is optimal to use the stored energy

from the battery instead of purchasing from the grid. The difficulty lies in

the computation of the optimal threshold levels which are a function of the

varying energy price. However, analytical results can be derived for a few

simplified cases, e.g. assuming perfect efficiency for charging and discharging

the battery.

[9] presented results from a large scale Norwegian project where load

control was applied on domestic hot water heaters. The main idea was to

disconnect the water heaters from the electricity grid during peak hours in

order to reduce the peak load. Electrical consumption of 475 households were

investigated over a six month period from November 2003 to May 2004. The
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results show significant peak shavings in consumption during disconnection

of hot water heaters. However, the researchers observed a considerable in-

creased consumption after the reconnection of the heaters, which may have

the adverse consequence of causing a new peak in the system.

[10] consider the optimization of the cooling system in commercial build-

ings. The authors propose shifting the thermal load by precooling the build-

ings structure at night, in addition to using active storage means such as

ice thermal storage. The ultimate goal is to take advantage of ambient con-

ditions and of real-time pricing to maximize the energy cost savings. The

simulations show that the cost savings and on-peak demand reductions can

be substantial (up to 57% and 50%, respectively) if a good model and accu-

rate weather predictions are used.

Many recent contributions use model predictive control (MPC) solutions

for this problem. In [11] a MPC controller is used to minimize a multi-

objective function which trades off energy cost and comfort level in a dynamic

real-time pricing scenario. They show that there is a good potential for

savings compared to traditional control strategies. Not surprisingly, it is

shown that the energy cost increases as the comfort level increases.

In this paper, we focus on the optimization of an electric water heat-

ing system which provides hot water for domestic usage. The optimization

objective is to minimize the energy costs while obeying some operating con-

straints. The main idea is to use the heat capacity of the water tank to store

energy in times when electric power is cheap and use it to match the demand

when energy is expensive. The main contribution of this paper is to provide

a systematic comparison between different strategies to operate the system.
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The idea here is to have a better understanding of the potential benefits of

using energy storage in this problem. A comparison of the various strategies

will be presented. We will distinguish between the following cases:

• Ideal case, where the optimal solution is computed assuming perfect

knowledge of the future demand. This is a theoretical limit which

cannot be achieved in practice, unless the future demand is known

exactly.

• Maximum storage policy, where we maintain maximum storage in the

tank at all times. This is achieved by fixing the tank temperature

setpoint Ts and tank volume setpoint Vs at their maximum allowed

value. This is the safest policy in terms of avoiding constraint violation

caused by unforeseen high demand as it minimizes the risk of not having

enough hot water.

• Simple variable storage policy, an intuitive money saving strategy in

which we buy and store as much energy as possible during the night to

be used during the day. The idea is to activate a ’storage mode’ during

night, when we set the energy storage setpoint Es to its maximum, and

a ’saving mode’ during the day when we set Es to a lower value. This

policy is analogous to the work of [8], where the setpoint Es plays the

role of the switching threshold discussed in that paper.

• Optimal variable storage policy, where the temperature setpoint Ts and

tank volume setpoint Vs are updated at every time step using a moving

horizon optimization (MHO) approach. The optimization algorithm

relies on a simple forecast model to predict the future demand. A
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detailed derivation of this method is presented in an accompanying

paper [12].

Additional contributions of this paper include:

1. A detailed general problem formulation which may also be suitable for

different applications involving dynamic optimization, energy storage

and variable energy prices.

2. Guidelines about implementation strategies including control struc-

tures.

The paper is organized as follows: Section 2 presents the process mod-

elling; Section 3 formulates the optimal control problem; In Section 4, insights

into the implementation strategies are given; In Section 5 we detail different

strategies for control and optimization of the system; Section 6 details a sim-

ulation study comparing various approaches. Section 7 presents a discussion

on the subject and Section 8 concludes the paper.

2. Process model for hot water storage tank

The process we are dealing with consists of a heater which provides hot

water for domestic usage. A simplified process flow scheme is shown in Figure

1 where the important notation is presented. The system includes a cold

water source, a thermally insulated tank, a heating coil with adjustable power

and control valves that regulate the cold water inflow qin and the hot water

outflow qout. A somewhat unusual feature of this system is that the hot water

that leaves the tank (qout) is mixed with a cold water stream (qcw) from the

same water source. This extra mixer is to allow extra flexibility and implies
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Figure 1: Simplified process flow scheme
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that the water in the storage tank (Tout = T ) can be heated to a higher

temperature than the hot water to the consumer (Thw).

We defined the tank as our control volume and derive a dynamic model

from mass and energy balances for the water in the tank. The mass balance

for the tank is
d(ρV )

dt
= ρinqin − ρoutqout [kg/s] (1)

where V [m3] is the volume of the tank. We will assume constant fluid density

(ρ = ρin = ρout). Assuming constant pressure and no mechanical work

and neglecting kinetic and potential energy, the energy balance for the tank

becomes (e.g, [13])

dH

dt
= hin − hout +Q−Qloss [J/s] (2)

where Qloss [J/s] is the heat loss to the surroundings, H [J ] is the enthalpy

of the system, hin [J/s] and hout [J/s] is the enthalpy of the streams and

Q [J/s] is the added power. The standby heat loss from the heater to the

surroundings is

Qloss = UA(T − Tsurr) (3)

where UA [W/K] is the heat transfer constant and Tsurr is the temperature

of the surroundings. Assuming constant heat capacity cp, no phase change

and perfect mixing (Tout = T ), the enthalpies are given by [13]

H = ρV cp(T − Tref ) [J ] (4)

hin = ρqincp(Tcw − Tref ) [J/s] (5)

hout = ρqoutcp(T − Tref ) [J/s] (6)
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where Tref [K] is a fixed reference temperature, q [m3/s] is the flowrate and

Tcw is the temperature of the cold water from the network. Combining equa-

tions (1) and (2), with the assumption of constant cp and ρ, the dynamic

model of the tank becomes

dV

dt
= qin − qout (7a)

dT

dt
=

1

V

[
qin(Tcw − T ) +

Q−Qloss

ρcp

]
(7b)

where T is the tank water temperature and Tcw is the temperature of the

inlet flow. Note that Tref drops out of the equations.

Similarly, we may write mass and energy balances for the mixer system,

which is assumed to be a static process. The mass balance is given by

qhw = qout + qcw (8)

The steady sate energy balance for the mixer is given by

hhw = hcw + hout [J/s] (9)

where hcw and hhw are the enthalpies of the cold and hot water streams,

which are defined as

hcw = ρqcwcp(Tcw − Tref ) (10)

hhw = ρqhwcp(Thw − Tref ) (11)

Rearranging (9) gives the hot water temperature

Thw =
qoutT + qcwTcw

qhw
(12)

9



2.1. Energy storage and demand

In this subsection we introduce some terms that will be useful for analysis.

We define the energy stored in the tank relative to the current cold water

supply temperature (Tcw) as

E = ρcpV (T − Tcw) [J ] (13)

We define the power demand at any given time as

Qdemand = ρcpqhw(Thw − Tcw) [J/s] (14)

This is the power we would need to supply at any given time if there were

no energy storage. Upon combining (2) and (9) we obtain the overall energy

balance of the combined tank-mixer system

dH

dt
= hin + hcw − hhw +Q−Qloss (15)

By introducing E and Qdemand, the energy balance can be written in the

following alternative form (see Appendix ?? for derivation)

dE

dt
= Q−Qdemand −Qloss − ρV cp

dTcw
dt

(16)

which will be useful for analysis of the system. Note that for the case with

constant cold water supply temperature (dTcw
dt

= 0), which is also assumed in

the case study, we simply get

dE

dt
= Q−Qdemand −Qloss (17)

that is, the change in the stored energy is the difference between the current

heating (Q−Qloss) and current use Qdemand. It is also relevant to define the

maximum energy capacity as

Emax = ρcpVmax(Tmax − Tcw) (18)
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and the minimum energy amount that needs to be satisfied at all times as

Emin = ρcpVmin(Tmin − Tcw) (19)

The bounds for volume and temperature Vmin, Vmax, Tmin and Tmax are

discussed in section 3.2. For analysis it will be helpful to define the scaled

stored energy

Ē(t) =
E(t)− Emin
Emax − Emin

(20)

which lies between Ēmin = 0 and Ēmax = 1.

3. Problem formulation

3.1. Independent variables

3.1.1. Control degrees of freedom

From Fig. 2, the system has four independent variables, namely, Q, qcw,

qhw and qin. However, as discussed next, two of these variables (qhw and

qcw) are used to satisfy demand requirements on the hot water flow and

temperature, respectively. The remaining two degrees of freedom (decision

variables) for control and optimization are the power input Q and the cold

water inlet flow qin.

3.1.2. Disturbances

The hot water flow rate, qhw, and the hot water temperature setpoint,

Thw,s are set by the user and are considered disturbances from a control point

of view. We assume perfect temperature control (Thw = Thw,s) whenever

feasible. By ’whenever feasible’ we mean whenever the tank temperature is

above the delivery setpoint, T ≥ Thw,s. In this case, the flows qout and qcw
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are given by (8) and (12) with Thw = Thw,s. For the case when T < Thw,s, we

cannot achieve the desired setpoint and we set qcw = 0 in order to maximize

the delivery temperature Thw, and we get qout = qhw and Thw = T .

The main disturbances for the optimization are related to the user de-

mand (Thw,s and qhw), the cooling water temperature (Tcw) and the price of

electricity (p) and can be regarded as stochastic variables. The cold water

temperature (Tcw) can vary significantly in the long term (e.g. from summer

to winter), but this variation is not important in our time scale (which is from

minutes to hours). From an operational point of view, the effect of changes

in both qhw or Thw,s, is a change in the power demand Qdemand. Therefore, for

simplicity, we here assume that Thw,s is constant and consider disturbances

in the hot water demand, qhw. In the case study we assume Tcw is constant.

3.2. Constraints

The operation of the system should respect constraints related to physical

limitations, safety and specifications. Firstly, in terms of inputs, the heating

power and water inflows are limited, so that

0 ≤ Q ≤ Qmax (21)

0 ≤ qin ≤ qmax (22)

In terms of output constraints, the temperature of the water should be

bounded above (Tmax) for safety reasons and indirectly bounded below (Thw,s)

to guarantee that the desirable temperature of the hot water is achievable.
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Naturally, the volume is bounded by the size of the tank. Therefore, we have

Tmin ≤ T ≤ Tmax (23)

Vmin ≤ V ≤ Vmax (24)

where Tmin = Thw,s.

3.3. Optimal control problem formulation

In its simplest form, the objective we would like to minimize is the future

energy cost

J =

∫ tf

t0

p(t)Qdt (25)

where p(t) is the time-varying electricity prices, Q(t) is the power we buy at

time t, t0 is the initial time and tf is the final time. In addition, we want to

satisfy the operational constraints (21), (22), (23) and (24) and we have to

satisfy the process dynamics (7). Notice that the process dynamics introduce

nonlinearity into the optimization problem, which makes the problem more

difficult to solve.

4. Insights into the optimal solution

In this section we will present some properties of the solution that can be

used to simplify the optimization problem. In addition, these insights will

be used to derive simple implementation strategies for this system.

4.1. Ideal liquid level

When a target for the energy storage E is specified (e.g. by an opti-

mization algorithm) a decision on the appropriate values for T and V that
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achieve the given energy storage needs to be made. This is because of the

non-uniqueness in the energy storage E = ρcpV (T − Tcw) in terms of tem-

perature and volume. In practice, to reduce the heat loss, we want to keep

the temperature T as low as possible, which for a given energy storage (E)

is achieved by maximizing the tank filling. We then have the following im-

portant insight:

For a given energy storage E it is optimal to keep the liquid V in the tank

as large as possible to minimize energy losses.

This means that we will keep V = Vmax as long as the temperature in

the tank T is above the hot water setpoint Thw,s. When the temperature T

reaches Thw,s we may have to reduce the refilling cold water, which means

that V will drop below Vmax. However, note that for safety reasons we always

have to keep V ≥ Vmin.

4.2. Initial condition and terminal state constraint

The electricity price tends to be at its lowest during night and it typically

peaks in the morning when the demand is high. The hot water demand

profiles show a similar behaviour, with demand peaking early in the morning.

Based on this observation we have the following insight

It is optimal to have maximum energy stored (V = Vmax and T = Tmax)

late in the night.

This is an important insight because it means that we can always consider a

24 hours optimization horizon, even when the actual horizon (tf ) is longer.
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For an optimization horizon of 24 hours this implies that we should have

T (t0) = T (t0 + 24h) = Tmax (26)

V (t0) = V (t0 + 24h) = Vmax (27)

where the initial time t0 should be appropriately chosen. For example, it

could be some time after midnight. This suggests that the optimization of

every 24-hours interval may be performed independently because the terminal

constraints decouple the optimization problems of two consecutive days.

5. Solution approaches

In this section we will describe in more details the different approaches

that will be compared.

5.1. The ideal solution

The solution to the optimization problem (25) requires the characteriza-

tion of future price p(t) and demand qhw(t) for the horizon of interest. In the

ideal case, we assume perfect knowledge of the future demand qhw. The term

ideal refers to the fact that this assumption is generally not satisfied and this

solution should be regarded as a theoretical limit. The results obtained in

this case are very useful to benchmark the performance of any other policy.

5.2. Maximum storage policy

This is the simplest policy, where we maintain maximum energy storage

in the tank at all times. This is achieved by fixing the tank temperature

setpoint Ts and tank volume setpoint Vs at their maximum allowed value.

The control structure that can be used is shown in Fig. 2. This is the safest
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policy in terms of avoiding constraint violation caused by unexpectedly high

demand, but it does not seek to reduce the electricity costs.

5.3. Simple variable storage policy

The observations and insight presented in Section 4.2 suggests a simple

money-saving strategy in which we attempt to store as much energy as possi-

ble during the night. Therefore, the idea is to manipulate the energy storage

setpoint Es using a simple time-based feedforward rule

Simple policy:

Es = Emax during night (storage mode)

Es = Emin + Ebackoff during day (saving mode)
(28)

Where the positive constant Ebackoff is a backoff from the constraint to reduce

the risk of frequent constraint violation caused by large demand during the

day. The backoff should be adjusted such that the amount of constraint viola-

tions is acceptable for the given case. Using Es = Emax at night accomplishes

two things: takes advantage of more favourable electricity prices at night and

it anticipates for a high consumer demand in the morning. The main prob-

lem here is to determine the most beneficial times to switch between the

setpoints. One approach is to use historical price data to compute the time

interval with the lowest price in average. Such time interval should be long

enough to ensure a full tank with maximum temperature before entering the

’saving mode’.

5.3.1. Simple policy: temperature and volume setpoints

For a practical implementation using control it is convenient to know what

the simple policy (28) means in terms of temperature and volume setpoints.

During ’storage mode’ we obviously have Ts = Tmax and Vs = Vmax. On the
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other hand, during ’saving mode’ we need to use the insight in Section 4.1

to compute the setpoints which for small backoff (Ebackoff) becomes

Ts = Thw,s

Vs =
Emin + Ebackoff

ρcp(Thw,s − Tcw)
= Vmin + Vbackoff

where the constant Vbackoff = Ebackoff

ρcp(Thw,s−Tcw)
is non-negative. When the backoff

Ebackoff is large enough we will have Vs = Vmax and the temperature setpoint

needs to be greater than the lower bound (Ts > Thw,s).

After switching from one mode to another, there will always be a transient

period where we are not meeting the energy storage setpoint Es. During the

transition from storing to saving mode (night to day) we don’t want to add

any power Q because of the high price in this period. In addition, to reduce

heat losses we should let the temperature T drop to the setpoint Ts before we

start reducing the volume to the new setpoint. This can be easily achieved by

keeping Vs = Vmax while T > Thw,s and only when the temperature reaches

the new setpoint (T = Thw,s) we switch the volume setpoint to the desired

’saving mode’ level (Vs = Vmin + Vbackoff).

On the other hand, during the transition from day to night operation

we should first increase the tank level until V = Vmax and then we start

increasing T to reduce losses. This can be achieved by settingQ = Qmax while

using the water refilling to keep T = Thw,s until the tank is full (V = Vmax).

At this point then switch to the structure in Fig. 2 for the night operation.

5.3.2. Simple policy: Implementing insights using control

The policy during ’storage mode’ can be implemented using feedback

control:
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• Use the water refilling (qin) to keep V at constant setpoint Vmax.

• Use the power input (Q) to control T at constant setpoint Tmax.

Figure 2 depicts the control structure for this case. During ’saving mode’

(after the transient) a similar structure can be used. However, for large

disturbances the temperature controller might saturate (Q = Qmax) and it

is not advantageous to have V = Vs = Vmin + Vbackoff as it will force T to

drop below Thw,s and we should let V drop. A simple way to achieve this is

to use split range control as shown in Fig. 3. The basic idea is that a single

controller uses both the power input Q and the level setpoint Vs to control

the temperature when the setpoint is Ts = Thw,s. The temperature controller

computes a virtual control action u which is translated to values for Q and

Vs according to a defining function as depicted in Fig. 4. When the volume

setpoint reaches the lower bound Vs = Vmin the temperature control is lost

and T drops below Thw,s.

5.4. Optimal variable storage policy

The main idea here is to use a moving horizon optimization (MHO)

scheme to solve the problem. At each time sample a model-based dynamic

optimization problem with horizon h is solved using the information that is

currently available. However, only the first portion of the optimal profile

corresponding to t ∈ [t0, t0 + ∆t] is implemented, where t0 is the initial

time and ∆t is the sample time. Within this framework we find two different

implementation philosophies:

• Single layer strategy in which optimization and control are inte-

grated; Here, optimization problem (25) is solved using a moving hori-
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Figure 2: Proposed control structure when Ts = Tmax and Vs = Vmax (Simple policy (28)

during night).
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Figure 3: Split range control structure, used when Ts = Thw,s and Vs may vary between

Vmin + Vbackoff and V min; see Fig. 4. (Simple policy (28) during day). The lower

temperature controller, where extra cold water is mixed in, is not active during normal

day operation. In the transition period between night (Fig. 2) and day (Fig. 3) operation,

we set Q = 0 and first let Tout drop from Tmax to Thw,s (with Vs = Vmax) and then set

qin = 0 and let V drop from Vmax to Vmin + Vbackoff.
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zon approach and the optimal inputs (qin and Q) are re-computed di-

rectly (by the optimizer) at every time sample. This is, in theory, the

optimal approach. However, it requires high computational power as

the full optimization problem needs to be solved at every time sam-

ple. In the literature this strategy is sometimes called economic model

predictive control [14].

• Two level strategy where the optimization problem is decomposed

in two simpler problems where the economic objectives are decoupled

from the control objetives.

The second strategy is our preferred and is the approach used in this paper.

The basic idea is to decompose the overall problem of economic optimization

and control (Eq. (25)) into simpler sub-problems by using a cascade feedback

structure. In this scheme the bottom layer is a regulatory control layer that

follow the set-points specified by an optimizer in the upper layer. In our

problem the regulatory control layer is similar to that of Fig. 2 and the task

of the optimizer is to update the setpoints Ts and Vs. Our idea is to write

a simplified optimization problem in terms of the energy storage E only and

then translate the optimal energy level Eopt into setpoints Vs and Ts.

A detailed derivation of this method is presented in the accompanying

paper [12]. In [12] it is shown that the remaining optimization problem for

the upper layer can be written as a simple linear program (LP) which can

be solved very efficiently at a low computational cost.

An important factor for the success of this optimization scheme is to have

relevant information about the user demand and the future price. An idea is

to construct a demand model based on the empirical distribution of hot water
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consumption for every time step using historical data. This model can be

updated online as new measurements become available, making it possible to

adapt to new consumption patterns when necessary. However, our simulation

studies suggest that even simpler models (e.g. assume constant demand)

can give satisfactory results if the optimization problem is resolve frequently

enough. For simplicity, we will assume the electricity price is known 24h in

advance.

As in the simple policy (28), it may be necessary to include a backoff

Ebackoff from the constraint in order to reduce the probability of breaking

the constraints due to large disturbances. The idea is to shift the current

desired energy level Es (computed by the optimizer) if it is too close from

the boundary Emin so that Es ≥ Emin + Ebackoff.

6. Case Study

In this section we will show a simulation example of the methodology

presented in the previous section. The idea here is to have a better under-

standing of the potential benefits of using energy storage in this problem. A

comparison of the various strategies will be presented.

6.1. Electricity prices

For simulation and optimization we used the electricity price data avail-

able in the archives of Nord Pool spot market [15]. A sample of the electricity

price for the first 10 days of February, 2012 in Trondheim, Norway is shown

in Fig. 5. Although Norway currently does not use real-time pricing for the

end-user, the spot prices provide a reasonable real-time pricing estimates.

The resolution of the price data is one hour.
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6.2. Realistic hot water demand

For a realistic comparison, we emulate hot-water flow demand (qhw) pro-

files based on the empirical probability distributions published by [16]. The

consumption profiles have a resolution of one minute and correspond to a

single family house with a mean load volume of 350 litres per day. An ex-

ample of a consumption profile is depicted in Fig. 5, where twenty unique

hot-water profiles were generated. For simplicity, we will assume constant

temperature setpoint Thw,s and cold water temperature Tcw.

6.3. Heat loss

The typical heat loss from a domestic hot water tank is approximately

0.1kWh/h at a temperature of 75◦C [9]. For a room temperature Tsurr =

25◦C it follows from (3) that the heat transfer constant (UA) for domestic

water heaters is approximately

UA =
Qloss

T − Tsurr
=

0.1

50
= 0.002 [kW/K] (29)

which we assume constant throughout the simulations. Additional important

parameter values for our case study are presented in Table 1.

6.4. Ideal case

To compute the ideal solution, we discretize the optimal control prob-

lem using orthogonal collocation in a simultaneous approach [17]. In this

approach, the differential equations are converted to algebraic ones by or-

thogonal collocation which should be satisfied only at the solution of the

optimization problem [17]. The key characteristic here is that both states

and manipulated variables profiles are approximated, with the same accuracy,
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Figure 5: Electricity price and hot water demand.

by orthogonal polynomials, resulting in a large scale nonlinear programming

problem (NLP). An interesting characteristic of this method is that it can

efficiently handle problems with constraints on states and control inputs.

We formulate the problem in Matlab and solve it using the sparse NLP

solver SNOPT [18]. This solver employs a sparse SQP algorithm with quasi-

Newton approximations to the Hessian. Gradient information is obtained
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Table 1: Parameters for case study

Parameter Description Value Unit

Qmax Maximum power 5 kW

Qmin Minimum power 0.0 kW

Tmax Temperature upper bound 90 ◦C

Vmax Volume upper bound 150 l

Vmin Volume lower bound 50 l

Tcw Cold water temperature 5 ◦C

T sphw Hot water temperature 50 ◦C

cp Heat capacity of the water 4.19 kJ/kg/K

UA Heat transfer constant 0.002 kW/K

Tsurr Room temperature 25 ◦C

using a symbolic differentiation approach. The interface between Matlab

and SNOPT is handled by the optimization environment TOMLAB.

The optimization for every day is carried out independently, where we

consider the initial time t0 = 4h in the morning and a horizon h = 24 hours.

The tank is always initially full (E(t0) = Emax) and we impose the terminal

constraint E(tf ) = Emax. The penalty terms p∗1 and p∗2 were adjusted so that

a constraint violation (Thw,s − T ) of 20 degrees results in a compensation of

p∗(T ) = 2 NOK/kWh, slightly above the highest electricity price observed.

6.5. Simple variable storage policy

The main decision in the design of the simple policy (28) is the time to

switch the temperature setpoints. The duration of the ’storage mode’ period
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(∆tnight) should be long enough to ensure that maximum storage energy

(E = Emax) can always be reached at the end of the interval. This value

depends on the size of the tank, the maximum water inflow rate and the

installed electric power. After determining the minimum duration ∆tnight we

can use historical price data to determine the period of the day with duration

∆tnight with the lowest price in average. In this case study we have chosen

to activate the ’storage mode’ only from 2 am to 6 am. In this example, we

have chosen the backoff level Ebackoff = 0.2(Emax−Emin), which corresponds

to Vbackoff = 50 l.

6.6. Optimal variable storage policy

As in the ideal solution, we include the terminal constraint E(tf ) = Emax

into our optimization problem. This suggests a shrinking horizon approach

where the optimization horizon h is periodically decreased according to

hk = hk−1 −∆t (30)

where ∆t is the time between two consecutive optimizations. When hk = ∆t

we have to reset it to the initial horizon h0. The initial horizon is chosen

as h0 = 24 h. The electricity price changes every hour so we discretize the

optimization problem with sample time ∆to = 1h. Note that ∆to may differ

from the time between consecutive optimizations ∆t. In that case, we may

need to vary the size of the first step of the discretized problem in order to

synchronize with price variations. To estimate hot water consumption we

used the simplest model where the predicted flow q̄hw is assumed constant

throughout the day. Here we have chosen q̄hw = 0.2431 l/min to match the
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daily average consumption of 350 l/day. The backoff level Ebackoff was chosen

the same as in the simple policy (28).

6.7. Simulation results

Figures 7 and 8 show a comparison between the costs achieved by the

various strategies when subjected to the disturbances in price and demand

shown in Fig. 5. The figure includes the result for the optimal variable

storage policy with time between consecutive optimizations ∆t = 5 min.

The first thing to notice from these results is that all methods give substan-

tial savings compared to the maximum storage policy. The optimal variable

storage approach results in close-to-ideal performance even with very limited

information about the demand available to the optimizer. More remarkable

is the performance of the simple variable storage policy. Without any opti-

mization algorithm or information about the price or demand it is able to

give results comparable to that of the optimization-based approach. This

finding should encourage practitioners to implement such simple polices to

manage their energy storage units even when limited resources for advanced

computer control are available.

The behaviour of the different methods can be analysed by looking at

the tank volume and temperature in Fig. 9. We chose to show only the

first three days to facilitate the visualization. Information about price and

demand for the first three days is repeated in Fig. 6. The simple variable

storage policy, the optimal variable storage and the ideal solution show very

similar temperature trends. However, they differ in terms of volume. During

the day, both the optimal and the simple variable storage policy try to keep

the volume above a certain level Vs = Vmin + Vbackoff which is function of the
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backoff Ebackoff. On the other hand, the ideal case is able to bring the volume

close to the limit Vmin without violating constraints.

The information of temperature and volume can be summarized by the

energy levels E given by the different approaches, as shown in Fig. 10. The

scaling is done according to (20) to ease the analysis. Because of the perfect

knowledge of the demand the ideal solution is able to take maximum advan-

tage of price variations by letting the energy levels drop close to minimum.

This is in contrast with the simple and the optimal variable storage poli-

cies, which enforce an additional buffer to ensure feasibility. In addition, the

knowledge of future price allows the optimization-based approaches to buy

cheaper energy in advance. This behaviour can be exemplified in the first

and third days as seen in Fig. 10. Nonetheless, all strategies show similar

behaviour during the night, when they seek to maximize the stored energy.

7. Discussion

7.1. Choice of the method

We presented several strategies for operation of the water heater aim-

ing at taking advantage of the flexibility given by the energy storage. The

simple variable storage policy (28) gives big savings compared to the maxi-

mum storage policy, with performance comparable to that of more complex

optimization-based approaches. However, the question of whether or not the

increased complexity and computational load in the optimal variable storage

policy is justified will depend on the specific case. In scenarios in which the

time intervals with the lowest price vary considerably from day to day we

can expect the optimization-based method to be more beneficial. This is be-
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Figure 6: Electricity price and hot water demand. First three days.

cause the performance of the simple policy (28) is sensitive to our definition

of ’day’ or ’night’.

The ideal solution has two fundamental advantages compared to other

approaches: knowledge of the future price, which allows it to buy cheaper

energy in advance; and its perfect knowledge of the demand, which makes it
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Figure 7: Accumlated cost for the different strategies.

possible to operate closer to feasibility limits. Although perfect knowledge of

future demand is not realistic for this problem, there might be cases where

the demand is more predictable, for instance, when the demand is linked to

a contract between supplier and consumer.

7.2. Power consumption

Figure 11 shows the hourly average of 20 days of electric power consump-

tion. The figure shows the reduction of electricity consumption during the
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Figure 8: Accumlated cost for the different strategies. First three days.

peak hours by using an appropriate strategy. Notice that the total consump-

tion is equal in both cases, but in the ideal case we are able to shift the load

to a more beneficial period. During the peak hours in the morning (from

6am to 10am) we are able to reduce the average consumption from 1.3 kW

to 0.43 kW. This indicates that the flexibility given by the thermal energy

storage capacity of water heaters can be a good allied for reducing the peak

demand in the electricity grid.
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Figure 9: Tank volume and temperature. Red lines: ideal case. Green lines: simple

variable storage policy. Blue lines: maximum storage policy. Violet lines: optimal variable

storage policy.

7.3. Design considerations: benefits of increasing storage size

The amount of savings that can be achieved strongly depends on the

storage capacity. Ideally we would like to have enough capacity so that all
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the demand during high price period can be supplied with energy purchased

at the lowest price. The electricity price may show large variations within a

day where the price is usually the lowest during the first hours. Therefore,

an appropriate tank capacity should exceed the average daily consumption

of the household.
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Figure 11: Power consumption by hour of the day. Average of 100 days. Comparison

between ideal and base cases. The figure shows the reduction of electricity consumption

during the peak hours (morning and afternoon).

In order to study this aspect of the problem we have computed ideal

solutions to the optimization problem for a specific day where we varied the

maximum tank capacity (Vmax) from 60 to 600 liters but kept the same price

and demand profiles. The chosen price and demand profiles represent the

first day shown in Fig. 5. Figure 12 depicts the optimal savings with respect
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to the maximum storage policy for different capacities. The savings obtained

by the simple variable storage policy are also shown. The saving is defined

as follows

Saving =
J∗

base − J∗
method

J∗
base

× 100 (31)

where J∗
base is the cost (including the penalty as in (25)) for the maximum

storage policy and J∗
method is the cost for a particular approach.

The study showed that there is a substantial benefit in increasing the tank

size. For small tank capacities (below 100 liters) the simple variable storage

policy performs worse than the maximum storage policy because of frequent

constraint violations. In these cases the simple policy is not storing enough

energy to handle the demand variations. However, for large capacities the

simple policy performs very well and eventually becomes optimal.

Another interesting conclusion is that the savings flatten out for capacities

above a certain level. The tank size after which the savings flattens out

depends on the size of the demand for a given day. The total demand for

this period in terms of energy is given by

Edemand =

∫ t0+24

t0

Qdemand(t)dt (32)

For the ideal case there is not benefit in increasing the tank size when E(t0) =

Edemand + Emin. If we assume E(t0) = Emax we can compute the ideal tank

volume using Vopt = Edemand+Emin
ρcp(Tmax−Tcw)

. For this particular day Vopt = 272 liters.

The ideal tank size for the simple variable storage policy can be computed in

a similar way. The only difference is that we need to take the backoff Ebackoff

into consideration so Vopt = Edemand+Emin+Ebackoff

ρcp(Tmax−Tcw)
. In this case the ideal tank

size for the simple policy is Vopt = 297 liters.
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day. The savings are relative to the maximum storage policy. The nominal capacity for

the case study is 150 liters.

7.4. Alternative applications

The methodology and insights presented in this paper could help solving

other problems involving energy storage. An example is a district heating

system with storage capacity. Although these systems are typically closed,

in which the volume of the heating medium is constant, there might be a

possibility of manipulating volume and temperature at different parts of the

system if more than one storage tanks are in place. This would allow a
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straightforward application of the strategies presented here.

The simple policy (28) or the optimal variable storage policy could be

directly used to control home batteries, which can help electricity consumers

avoid paying peak rates.

7.5. Comments on the modelling assumptions

In the derivation of the dynamic model we made use of the simplifying

assumption of perfect mixing in the tank. This assumption is unlikely to

hold for domestic hot water systems, where vertical thermal stratification is

often observed [19, 20]. Nevertheless, this assumption does not affect the

actual results in terms of operating policies. This is because the standby

losses to through the walls are approximately the same whether we consider

an homogeneous temperature or a vertical temperature of the water in the

tank. In addition, the economical performance depends mainly on the rela-

tion between the power that we supply (Q) and remove (Qdemand) and the

current energy stock (E), and is not affected by the temperature distribution

in the tank.

8. Conclusion

In this paper we discussed the optimal operation of the water heater

system. We aimed at presenting a problem formulation that is sufficiently

general to be used in similar problems that include energy storage and vari-

able energy price and uncertain demand. The goal is to exploit the flexibility

given by the energy storage capacity to take advantage of varying electricity

prices. We showed that the economical benefits of energy storage can be large

for the consumer, and they increase with the storage capacity. In addition, we
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showed that such strategies can help reducing the power consumption during

peak hours, which will benefit the electricity producers. We presented several

alternatives strategies for operation of the system and we showed that simple

policies can give very good performance when compared to more complex,

optimization based approaches. This finding should encourage practitioners

to implement such simple polices to manage their energy storage units even

when very limited resources are available.
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Appendix A. Derivation of the alternative energy balance

The energy balance of the combined tank-mixer system is

dH

dt
= hin + hcw − hhw +Q−Qloss (A.1)

For sake of simplicity, we will use the notation RHS , hin + hcw − hhw +

Q−Qloss and LHS , dH
dt

.

The left hand side can be expanded as

1

ρcp
LHS = (T − Tref )

dV

dt
+ V

dT

dt
(A.2)

By adding and subtracting (Tcw
dV
dt

+ V dTcw
dt

) to the right hand side of (A.2)

we obtain

1

ρcp
LHS = (T − Tcw)

dV

dt
+ V

d(T − Tcw)

dt︸ ︷︷ ︸
1
ρcp

dE/dt

+(Tcw − Tref )
dV

dt
+ V

dTcw
dt

(A.3)

The right hand side of (A.1) is written as

1

ρcp
(RHS) = qin(Tcw−Tref ) + qcw(Tcw−Tref )− qhw(Thw−Tref ) +

Q−Qloss

ρcp
(A.4)

Adding and subtracting qhw(Tcw−Tref ) to the right hand side of (A.4), after

some rearrangements yields

1

ρcp
(RHS) = (Tcw − Tref )

dV/dt︷ ︸︸ ︷
(qin + qcw − qhw)−

Qdemand/ρcp︷ ︸︸ ︷
qhw(Thw − Tcw) +

Q−Qloss

ρcp
(A.5)
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where we have introduced the mass balance:

dV

dt
= qin + qcw − qhw (A.6)

Finally, by equating (A.5) and (A.3) we get the alternative form of the

energy balance:

dE

dt
= Q−Qdemand −Qloss − ρV cp

dTcw
dt

(A.7)
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