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Abstract
The application of self-optimizing control theory to a two-stage refrigeration cycle was investi-
gated. Defining the cost function as the economical trade-off between the power consumption
and the evaporator outlet temperatures, it was found that the optimal point of operation leaves
two unconstrained degrees of freedom for implementing a self-optimizing control structure. We
consider two cases: (1) where the self-optimizing control structure is designed to optimally reject
only physical process disturbances, and (2) where the control structure in addition handles
changes in the economic parameters of the cost function. The control structure is able to keep
the process close to optimal despite disturbances and changes in the product prices, and thus
makes a supervisory real-time optimization (RTO) layer unnecessary.
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1. INTRODUCTION

In recent years there has been an increased focus on
improving energy efficiency and profitability in industry.
Especially in large processes such as in the petrochemical
industry, there are substantial potentials for savings due
to the large power consumption. Multi-stage refrigeration
cycles are large consumers of energy, so their optimal
operation is an important topic of research.
In the presence of disturbances, implementation errors
and changing operating conditions, the optimal operation
of a process plant becomes non-trivial. One method for
achieving optimal operation at all times is economic model
predictive control (EMPC) (Ellis et al., 2014). Unfortu-
nately, this method can be quite costly since it is based
on the repeated optimization of a control trajectory over a
prediction horizon. Depending on the complexity of the
model, this dynamic optimization can be very compu-
tationally intensive and expensive to maintain. MPC of
refrigeration cycles was investigated by Larsen (2006) and
Leducq et al. (2006). A lot of research has been done on
the field of EMPC of supermarket refrigeration systems,
see for instance Larsen et al. (2007); Sarabia et al. (2007);
Hovgaard et al. (2012) and the therein included references.
The disadvantage of a model predictive control approach
is that it requires a good model of the process, and that
the computation time might be prohibitive.
A much simpler approach is to use a simple control struc-
ture to keep a carefully selected controlled variable at a
constant set-point. This concept was introduced in Sko-
gestad (2000) and coined "self-optimizing control". More
precisely: "Self-optimizing control is when we can achieve
an acceptable loss with constant set-point values for the
controlled variables (without the need to re-optimize when
disturbances occur)." Skogestad (2000)

The self-optimizing controlled variables are often selected
as either single measurements or linear combinations of
measurements, which are usually controlled by simple PI
or PID controllers.
Optimal operation of simple refrigeration cycles without
MPC was studied by Jensen and Skogestad (2007a,b),
who propose to use a feedback controller to keep a linear
combination of two measurements, the high pressure and
a temperature, constant. They determine the optimal
combination of the measurements using the extended null
space method (Alstad and Skogestad, 2007). Larsen et al.
(2003) propose a similar strategy based on using a cascade
formulation with the outer loop calculating the setpoint
for the condenser pressure slave controller. Both Jensen
and Larsen consider different variations of a single-stage
layout.
The contributions of this paper are as follows: We design
a self-optimizing control structure for a two-stage refrig-
eration cycle to ensure the optimal operation. We thereby
generalize the results suggested by Jensen and Skogestad
(2007b) by including all plant measurements rather than
just pressure and temperature measurements. We also
apply a branch and bound algorithm (Kariwala and Cao,
2009) to find the optimal subset of measurements that
minimize the loss. Then we include measurements of cost
function parameters (prices), and thereby show how self-
optimizing control can be used to ensure optimal operation
when the prices change.
The paper is organized as follows. In Section 2, a brief
overview of selected results from self-optimizing control
theory is presented. In Section 3, the model of the two-
stage refrigeration cycle are presented. Two cases are
studied. The first case results in a self-optimizing control
structure with five plant measurements. The second case
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results in a self-optimizing control structure with measure-
ments of the economic parameters from the cost function
in addition to the five plant measurements. Simulation
results are presented in Section 3 and Section 5. Finally,
the conclusion is given in Section 6.

2. SELF-OPTIMIZING CONTROL

In this section, a short overview of self-optimizing control
(SOC) is given for reader convenience. For more details,
the reader is referred to Alstad et al. (2009).

Definition of optimal operation

After satisfying the active constraints, optimal operation
can be formulated as an unconstrained optimization prob-
lem (Skogestad, 2000)

min
u

J(u,d), (1)
where J denotes the objective function. The optimal
inputs u in the presence of disturbances d are calculated by
a feedback control structure. It is useful for designing the
control structure to work with the loss instead of using the
cost directly (Halvorsen et al., 2003). The loss is defined
as

L(u,d) = J(u,d)− Jopt(d), (2)
where Jopt denotes the optimal cost for a given distur-
bance.

Exact local method

Since J(d) is constant for a given disturbance, an equiva-
lent optimization problem can be defined to replace Equa-
tion 1

min
u

L(u,d). (3)
The controlled variable c in the feedback controller is
chosen as a linear combination of measurements y

c = Hy. (4)
The matrix H is also called the measurement combination
matrix. The goal of SOC is to select c such that the loss
L in Equation 3 is minimized.
The exact local method (Alstad et al., 2009) is a method
for finding H which is based on a quadratic approximation
of the loss and a linearized model for the measurements

y = Gyu + Gy
dd + ny. (5)

Here, Gy and Gy
d are the gain matrices from u to y and d

to y, respectively. The variable ny denotes Gaussian noise
on the measurements.
Scaled variables are introduced, such that

d = Wdd′ (6)
and

u = Wnyny′. (7)
d′ and ny′ are normally distributed with zero mean and
unit variance. It is shown by Kariwala et al. (2008) that
the average local loss for normally distributed noise and
disturbances is given by

Lavg = 1
2

∥∥∥[Juu
1/2 (HGy)−1 HY

]∥∥∥2

F
, (8)

where ‖·‖F denotes the Frobenius norm and
Y = [FWd Wny ] . (9)

Here, F = dyopt

dd denotes the optimal sensitivity matrix.
Subsequently, the combination matrix that minimizes the
average loss from (8) is given by the following expression.

min
H

=
∥∥∥Juu

1/2 (HGy)−1 HY
∥∥∥

F
. (10)

It can be shown that an analytical solution of (10) is
(Yelchuru and Skogestad, 2010)

Hᵀ = (YYᵀ)−1 Gy. (11)

3. PROCESS DESCRIPTION

The model studied in this work is based on the two-
stage refrigeration cycle described by Asmar (1991). A full
description of the model used in this work can be found in
Verheyleweghen (2015). The process is based on a similar
refrigeration cycle that is currently being operated in a
petrochemical plant. A schematic of the process can be
seen in Figure 1.
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Figure 1. Process diagram of the refrigeration cycle. Key
process variables are shown in blue, disturbances are
shown in green and manipulated variables are shown
in red.

The process is a two-stage refrigeration cycle with two-
stage throttling. Ethylene is used as the working fluid. The
two compressor models are based on compressor curves,
relating the compressor head, the suction volumetric flow
rate and the compressor speed. A variable speed steam
turbine drives the compressors, which are connected to
the steam turbine through a common drive shaft. For
simplicity, it is assumed that mechanical and thermal heat
losses are negligible, so that the energy consumption of
the compressors is equal to the enthalpy difference of
the refrigerant from inlet to outlet. Interstage injection
of saturated refrigerant increases the energy efficiency by
reducing the load in the low pressure evaporator and
by reducing the overheat into the second compressor
(Granryd, 2009). The injection of saturated vapor can be
adjusted by manipulating the control valve u1.
Heat is removed from the system at three different tem-
peratures. The majority of the heat is removed in a kettle
reboiler at low pressure (LP) and low temperature. The
pressure in this vessel is approximately 1 bar. At interme-
diate pressure (IP), heat is removed in a flash evaporator at
a higher temperature. The pressure in this vessel is around
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4 bar. The LP evaporator is approximately ten times larger
than the IP evaporator. The distribution of gas and liquid
in the two evaporators can be shifted by adjusting the
control valves u1 and u2. In both evaporators the process
streams exchange heat with the refrigerant through coiled
pipes. It is ensured that the heating coils are always fully
submerged in the liquid by constraining the levels in the
tank. The heat transfer coefficient and the heat transfer
area are therefore assumed to remain constant at all times.
The compressed refrigerant is condensed in an air-cooled
condenser. The condensate is collected in a receiver ves-
sel which also acts as a buffer tank against disturbances
and helps to ensure constant operating conditions in the
evaporators and the compressors. The large size of the
receiver introduces a large capacity to the cycle. This is
especially noticeable for temperature (and consequently
also saturation pressure) measurements, which take a very
long time to reach a new steady-state value after a step
change.
The thermodynamic states of the refrigerant are calcu-
lated using polynomial approximations of the Helmholtz
equations of state calculated by the AllProps software
(Lemmon et al., 1994).
The complete process model is a semi-explicit DAE system
with six differential equations and ten algebraic equations.

3.1 Definition of the cost function

The objective of the optimization is to find the optimal
economic trade-off between the energy consumption of the
cooling cycle and the recovery of valuable molecules on
the process side. The recovery is favored by low outlet
temperatures from the evaporators. The cost function can
be written as

J = αWtot + βTout
1 + γTout

2 . (12)
Here, α, β and γ are the weighting parameters (prices).
A large energy cost α causes the optimizer to prioritize
minimization ofWtot, whereas a high value of the recovered
molecules causes the optimizer to prioritize the minimiza-
tion of the outlet temperatures Tout

1 and Tout
2 .

Since the process stream entering the LP evaporator has a
lower temperature and a larger mass flow rate than the
process stream entering the IP evaporator, β is chosen
much larger than γ. We assume that

α =0.1e/kWh
β =12e/(K · h)
γ =0.1e/(K · h).

(13)

As a first case, we assume the price parameters are
constant. Due to fluctuations in the economic conditions,
this may not be the case in practice. It is possible to use
real-time optimization to include the effect of changes in
α, β and γ. Alternatively, one can include measurements
of these parameters in the controller set-point, which will
be discussed in Case 2 in Section 5.

3.2 Nominal optimal solution

Given the model and the cost function from Equation
12, we define a nonlinear programming problem (NLP)

to find the optimal steady-state solution. The NLP was
solved using the interior point algorithm in the fmincon-
function in MATLAB. For this particular combination of
cost function parameters and constraints, we found that
the optimal solution had two unconstrained degrees of
freedom after controlling the levels of the three pressure
vessels, in accordance with the rules for inventory control
defined by Aske and Skogestad (2009). In particular, u2
and u3 are used to control the levels in the LP evaporator
and in the IP evaporator, respectively. Furthermore, it is
found that the constraint on the coolant flow u3 is always
active on the upper bound, since no cost is associated
with it. The two unconstrained degrees of freedom are the
turbine speed u4 and the valve opening u1. Both u4 and
u1 are approximately half open at the optimal solution,
though it is observed that the constraint region in which
u1 is unconstrained is relatively narrow. The nominal cost
is J = 2821e/h.
In the following sections, two cases are considered. In Case
1, a self-optimizing control structure which uses only plant
measurements is designed. In Case 2, measurements of the
parameters α, β and γ are considered in addition to the
plant measurements.

4. CASE ONE - REGULAR SELF-OPTIMIZING
CONTROL WITHOUT MEASUREMENTS OF

ECONOMIC PARAMETERS

4.1 Optimal selection of measurements

Using all available measurements in the calculation of the
combination matrix H would give the best possible con-
trol. However, this is not a viable strategy in practice, since
each added sensor increases the overall chance of failure
of the control structure. Structural complexity and the
increased investment cost and complexity of the control
structure also advise against excessive use of measure-
ments. For these reasons, the number of measurements
used in H should be kept to a minimum. Heuristics can
give a good indication of which measurements to include,
but this approach requires system knowledge and is not
feasible when the system is complex. In such a case, the
best subset of measurements can be determined using the
branch and bound algorithm proposed by Kariwala and
Cao (2009).
For the studied process, only temperature-, pressure- and
flow measurements correspond to real, measurable entities.
From this potential set of 25 measurements, the branch
and bound algorithm is used to determine the combination
of five measurements which give the lowest loss. For Case
1, the five best measurements selected by the branch and
bound algorithm are

y1 =
[
Tdis P1 Tout

1 F1 F3
]ᵀ
. (14)

4.2 Optimality of controlled variables

A self-optimizing control structure is implemented with
the remaining two unconstrained degrees of freedom. The
scaling matrix Wny is constructed assuming that the
variance of each measurement is equal to 1% of the
nominal value. For temperature measurements, 0.5 K is
used. The expected disturbance vector is assumed to be

d =
[
Tin

1 Tin
2 Tin

3 Fp1 Fp2
]ᵀ
, (15)
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Table 1. Case 1: Steady-state losses for self-
optimizing control and constant input policy

for selected disturbances.

Variable Disturbance Steady-state loss [e/h]
Self-optimizing Constant inputs

Tin
1 +3K 0.340 · 10−2 15.114 · 10−2

Tin
2 +3K 0.076 · 10−2 0.018 · 10−2

Tin
3 +3K 0.020 · 10−2 3.424 · 10−2

Fp1 +10W K−1 17.146 · 10−2 29.366 · 10−2

Fp2 +3W K−1 0.190 · 10−2 0.208 · 10−2

being the inlet temperatures to the LP evaporator, the
inlet temperature to the IP evaporator and the inlet
temperature of the air in the condenser, respectively. Fp1
and Fp2, being the combined mass flow rate and heat
capacity of the process inlet to the LP and IP evaporators
respectively, are also treated as disturbances. The matrix
Wd is

Wd =


3 K 0 0 0 0
0 3 K 0 0 0
0 0 5 K 0 0
0 0 0 10 W/K 0
0 0 0 0 3 W/K

 . (16)

For the five best measurements, the combination matrix
H is calculated using Equation 11 as

H =
[

0.0063 −6.4947 0.0076 −2.4821 4.7882
−0.0000 0.4243 0.0030 0.2204 −0.3913

]
. (17)

The performance of the control structure is tested for a
set of disturbances as shown in Table 1. The steady-state
losses are compared to the losses from a constant-input
policy. It can be seen that for some disturbances the losses
are in fact higher for the controlled system. However, on
average the closed-loop loss is significantly lower than the
open-loop loss.
It is also observed that the losses are almost negligible
compared to the value of the cost function. Indeed, simu-
lations revealed that the cost function was very flat around
the nominal point. This means that the process will result
in a cost function value that is very close to optimal even
when in an open-loop configuration. It does therefore not
make a significant difference if the system is controlled
using c = Hy or if the unconstrained degrees of freedom
are not used for control at all. In conclusion, with the given
cost function, the self-optimizing control is achieved also
without any control (open loop).

4.3 Dynamic simulation

The self-optimizing controller was implemented in two PID
controllers. Based on analysis of the RGA, it was chosen
to pair the compressor speed u4 with c1 and the valve
opening u1 with c2. The PID tunings are derived based
on the SIMC rules (Skogestad, 2003). As can be seen from
Figure 2, the resulting closed-loop control structure has
a large time constant. The controller could have been be
tuned more aggressively by choosing a smaller closed-loop
time constant, but here it was chosen as recommended in
Skogestad (2003), where the closed-loop time constant is
set equal to the effective delay.
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Figure 2. Case 1: Responses of the controlled variables
(∆c1 and ∆c2) and the manipulated variables (u4 and
u1) to a −3 K step in Tin

1 for open loop and closed
loop. The final plot compares the loss for the open
loop and the closed loop.

The dynamic performance of the system was tested by
applying a step in the inlet temperature to the LP evap-
orator, Tin

1 . The resulting open-loop and closed-loop re-
sponses can be seen in Figure 2. We see that although
the process behaves quite differently in open-loop and in
closed-loop, the cost function is hardly affected. The other
previously mentioned disturbances were also applied to the
system. The responses are very similar to those shown for
a disturbance in Tin

1 , so they are not included here.
From Figure 2 it can also be seen that it takes a relatively
long time for the loss to stabilize after it has been dis-
turbed, even though the controlled variable reaches its set-
point almost immediately. This behavior is due to the slow
dynamics of the system. The slow dynamics are caused by
the very large capacity of the HP receiver, and are an
inherent property of this refrigeration cycle.

5. CASE TWO - INCLUDING MEASUREMENTS OF
COST PARAMETERS (α, β, γ)

A second case is considered to study the possibility of
including measurements of the cost parameters α, β and
γ in the set-point of the self-optimizing controller.
The same process model and cost function as previously
discussed in Section 3 are used, so the optimal steady-state
solution is the same as for the first case.
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Table 2. Case 2: Steady-state losses for self-
optimizing control and constant input policy

for selected disturbances.

Variable Disturbance Steady-state loss [e/h]
Self-optimizing Constant inputs

Tin
1 +3K 0.372 · 10−2 15.114 · 10−2

Tin
2 +3K 0.004 · 10−2 0.018 · 10−2

Tin
3 +3K 0.091 · 10−2 3.424 · 10−2

Fp1 +10W K−1 11.35 · 10−2 29.366 · 10−2

Fp2 +3W K−1 0.103 · 10−2 0.208 · 10−2

α +0.01e/kWh 1.959 20.47
β +1.2e/(K · h) 1.206 18.71
γ +0.01e/(K · h) 0.017 0.017

5.1 Optimal selection of measurements

In Case 2, the parameters α, β and γ are included in the
set of measurements y, the new measurement vector being

yaug =

y
α
β
γ

 . (18)

Using
yaug = Gy,augu + Gy,aug

d daug, (19)
where

Gy,aug =
[
Gy

0

]
(20)

and

Gy,aug
d =

[
Gy

d
I

]
, (21)

the previously described approach for selecting H is ap-
plied to find a new controlled variable

c = Haugyaug. (22)
This way, the control structure can react to changes
in the electricity prices and the prices of the products
immediately, without being dependent on an overlying
real-time optimization layer. A similar idea is discussed
by Jäschke and Skogestad (2011). The control structure
will give optimal operation of the plant in spite of random
price fluctuations. We assume that α, β and γ are known
exactly, meaning that there are no measurement errors.
The best subset of measurements is again found using the
branch and bound algorithm. It was found that the best
subset of eight measurements is

y2 =
[
u1 P1 P3 Tout

1 F4 F7 α β
]ᵀ
. (23)

It can be seen that the branch and bound algorithm does
not give a set of measurements including all three economic
parameters. γ is not included because the benefit from
being able to control Tout

1 more accurately far outweighs
the drawback of having no information about the price of
Tout

2 . Consequently the control structure will not be able
to react to changes in the price of the process stream in the
IP evaporator, but they will not impact the cost anyway
significantly, anyway.
The combination matrix Haug is calculated from Equation
11
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Figure 3. Case 2: Responses of the controlled variables
(∆c1 and ∆c2) and the manipulated variables (u4 and
u1) to a step α1 to α2 for open loop and closed loop.
The final plot compares the loss in the cost function
for the open loop and the closed loop.

Haug =



−5.4431 0.4448
−6.9398 0.5136
−0.2496 0.0218
0.0009 0.0002
4.0947 −0.3249
1.3960 −0.1061
0.0554 0.0096
−0.0017 0.0000



ᵀ

. (24)

The steady-state losses for various disturbances can be
seen in Table 2. It is observed that the self-optimizing
control structure consistently outperforms the constant
input policy. The control structure achieves comparable
losses to the one proposed for Case 1. It is interesting to
note that the changes in α, β and γ cause losses which
are several orders of magnitude larger than the physical
process disturbances. The self-optimizing control structure
is able to reduce the losses significantly, except for changes
in γ, since no measurement of γ is included in c.
The closed loop response to a +10% step in the energy
price α is shown in Figure 3.
The self-optimizing control structure is able to react to
changes in the economic parameters. Again, it is observed
that the slow dynamics of the system cause the loss to very
slowly reach a new steady state value. After approximately
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7 minutes the closed-loop self-optimizing control structure
starts outperforming the open-loop system.

6. CONCLUSION

In this paper we investigated the possibilities of applying
self-optimizing control to a two-stage refrigeration cycle.
Since the cost function is formulated to give a trade-
off between energy consumption and evaporator outlet
temperature, it was found that the optimal point of
operation leaves the compressor speed u4 unconstrained.
In addition, it was found that the valve opening u1
remained unconstrained. Using the two degrees of freedom,
a self-optimizing control structure was implemented.
It was found that the self-optimizing control structure does
decrease the deviation from optimal operating conditions
when disturbed. However, the decrease in observed loss is
very small, mainly due to the flatness of the cost surface.
This means that self-optimizing control is also achieved in
open-loop operation.
More promising were the results from the second case, in
which it was shown that self-optimizing control can include
economic measurements to maintain optimal operation
under price fluctuations. It was found that the steady-
state loss can be significantly reduced. Consequently, self-
optimizing control can be a viable alternative to supervi-
sory real-time optimization.
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