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Abstract 
 
The combination of real-time optimization (RTO) and model predictive control (MPC) 
methodologies is widely used in the chemical and petrochemical industry to optimize 
continuous processes. However, often the setpoint updates computed by the RTO are not 
frequent enough to capture all disturbances. This leads to suboptimal process operation, because 
the system is not re-optimized after a disturbance, until it has reached its new (suboptimal) 
steady state. An efficient way to handle this issue is to include economic considerations in the 
design of the lower MPC layer. This is the main idea of self-optimizing control (SOC), where 
controlled variables are selected, such that keeping them constant results in near-optimal 
operation without requiring an RTO update. Thus, we argue that SOC is complementary to 
RTO, and we develop a new MPC strategy with zone control and SOC variable targets. In 
particular, we present an approach towards solving the problem of low-frequency setpoint 
updates, also when the active set changes. We demonstrate the performance of our approach in  
steady state and dynamic simulations, and compared it to a classic RTO/MPC combination. The 
results show that our approach improves the coordination between the RTO and MPC layers. As 
it gives better performance in between RTO executions, it also leads to a higher overall profit. 
 
Keywords: hierarchical control structure, real-time optimization, self-optimizing control, model 
predictive control  
 
 

1. Introduction 
 

The petrochemical industry is a mature business that has two main innovation targets: 

economic (due to competition) and environmental (due to new and stricter laws)[1]. Process 

automation is playing a key role to help the petrochemical industry to meet new requirements in 

energy efficiency and economic performance. The overall control framework in a petrochemical 

industry typically follows a hierarchical structure characterized either by a functional or a 

temporal decomposition [2]. Functional decomposition sorts the control objectives in order of 
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optimization methodologies, such as Economic MPC or Dynamic Real Time Optimization, 

which rely on dynamic models to update the economic set points promptly without waiting for 

steady state [6, 7]. 

On the other hand, the single layer control approach using Dynamic Real Time 

Optimization (D-RTO) requires quite accurate dynamic process models, and these are not 

always available. If only linear models are available, the control framework may lead to 

suboptimal solutions since there is an intrinsic mismatch between plant and model. On the other 

hand, accurate nonlinear dynamic models lead to large-scale optimization problems, which 

nowadays are not difficult to solve, but still present some challenges with respect to solution 

time and synchronization between plant and control. For this reason the two layer control 

approach with RTO on the top and a fast (MPC) control layer below remains an attractive 

alternative for many process systems. Moreover, the two-layer approach may have a higher 

acceptance among plant operators, because if the optimizer fails, there are still the familiar 

setpoints that can be set by manually by the operators in order to keep the plant at a given 

operating point.  

The approach described in this paper applies directly to two-layer implementations of 

RTO and is straightforward to implement within commercial software such as Aspen RTO and 

Invensys ROMeo. The main idea is to include information about the plant economics into the 

lower layer, such that the MPC control layer is tightly coordinated with the RTO layer. In 

particular, the MPC layer is designed to reject disturbances in between RTO executions in a 

near-optimal manner. This may be achieved by using self-optimizing controlled (SOC) 

variables in the MPC layer [8]. The main idea of the SOC concept is to choose a set of 

controlled variables that have optimal set point values that are insensitive to disturbances 

(including variables that remain at their active constraints despite the presence of disturbances). 

In other words, when controlling self-optimizing controlled variables at their constant set points 

acceptable performance  in terms of the economic profit is achieved.  

Skogestad and coworkers [8, 9] presents a procedure to find a set of self-optimizing 

controlled variables using the information provided by a steady state model. This technique was 
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successfully applied to large-scale chemical processes as described in [9, 10]. Another 

alternative for SOC is to create artificial output variables insensitive to the disturbances, using 

linear combinations of measured variables [11]. 

Several methods have been developed in this area that consider the local worst-case loss 

minimization. Examples include the Exact Local Method [12], which considers a second order 

approximation around the optimal point to find measurement combinations that are self-

optimizing with respect to disturbances changes and implementation error (noise). In addition, 

the Null Space method in [13] uses the optimum output sensitivity to disturbances to find a 

matrix of measurement combinations as controlled variables. Locally, this method leads to 

controlled variables that give zero loss with respect to the analyzed disturbances. The Null 

Space method was extended in [11] by using extra measurements to reduce the loss caused by 

measurement noise.  

Jäschke and Skogestad [14] developed a method to identify combinations of measured 

variables using only process data. In this method, plant tests are performed to estimate the 

measurement gain matrix, while the reduced Hessian matrix is computed from a second order 

black box model obtained from historical process data. Despite the fact that it does not require a 

process model, this method demands large amounts of process data, which can make it difficult 

to implement in practice. 

Kariwala and coworkers [15] developed an efficient way to derive an expression for the 

measurement combination that minimizes the average loss criteria, considering disturbances and 

implementation error. 

Ye et al. [16] combine concepts of necessary condition of optimality (NCO) and SOC to 

indirectly control the compressed reduced gradient to zero. In their work, the reduced gradients 

(or controlled variables) are approximated by response surface models over the entire operating 

space. The method leads to reduced profit loss for a larger disturbance region compared to local 

methods that are only valid in the vicinity of the nominal operating point. 

SOC ideas have also previously been used in an RTO-like framework. In [17], a 

“necessary conditions of optimality” (NCO) tracking procedure [18] was used in the upper 
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layer, and SOC was applied in the lower layer. Ye et al. [17] developed a new hierarchical 

control structure, integrating SOC and RTO. They used the NCO as controlled variables and 

developed a statistical criterion of non-optimality to decide when the controlled variable should 

be updated.. 

All the SOC methods described above assume that the active set remains the same when 

a disturbance occurs. However, one of the main difficulties encountered in practice when 

designing a self-optimizing control structures is how to handle changing active constraints, 

because when a constraint becomes active or inactive, the number of degrees of freedom 

changes. Because of this, it is usually necessary to re-configure the control structure to remain 

near-optimal. As an example, consider a distillation column, where the boilup is used for 

controlling an important temperature in the column. Now if the boilup reaches its maximum 

value, the control structure will have to be reconfigured, such that e.g. the feed rate to the 

distillation column is lowered in order maintain the important temperature. Alternatively, 

control of the temperature must be given up to keep the feed rate at its specified value. 

Hu et al. [19] propose a way to find a control structure that does not change when the 

true active set changes. This comes at the expense of generally not enforcing control for the 

active set. This approach results in some loss, and in some cases it may even not be feasible to 

find controlled variables that can be kept at their constant setpoints over all the disturbance 

space. 

More rigorous approaches first enforce the active constraints in the different regions, 

and then use the remaining unconstrained degrees of freedom to control self-optimizing 

variables. Cao [20] presented a method that uses a cascade control approach that can be used 

when the process is operated with unconstrained degrees of freedom most of the time. Here the 

inner loop will enforce the constraints, if necessary, while an outer loop modifies the setpoint of 

the inner loop to control a self-optimizing variable. A saturation block is added to the outer loop 

to make sure that the setpoint provided does not result in a constraint violation. This approach is 

somewhat limited, as it requires the number of potentially active constraints to be lower than the 

number of controlled variables. 
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Manum and Skogestad [21] propose to handle this problem by using the Null Space 

method to find a set of controlled variables in each active constraint region. Then in each region 

a so-called descriptor function is constructed as a function of measurements. The point at which 

to switch from one region (control structure) to another is detected by monitoring the difference 

in the signs of the descriptor functions of neighboring regions. Optimal operation is then 

achieved by using the descriptor functions for identifying active set changes, and by 

implementing the corresponding control structure in each region. This approach will work well, 

when the number of regions is small, and the process moves continuously from one operating 

point to another, without “jumping” over regions. 

The challenge faced by this method is the need to identify and store all the different 

active set regions, the descriptor functions, and the corresponding set of self-optimizing control 

variables. Although the computations are performed offline, the number of active constraint 

regions can become very large. In fact, the number of regions can become so large that this 

approach becomes practically infeasible. Moreover, as the analysis is for optimal steady state 

optimization, and depends on local information (current and neighboring regions) large dynamic 

disturbance effects may cause the algorithm to fail to detect active set changes, or suggest 

wrongly to change the active set. In this case a re-optimization of the overall system must be 

performed, in order to re-identify the correct active set, and then restart this algorithm. Finally, 

if the process is very nonlinear, it may be necessary to add further heuristics for region 

detection, because the method is based on approximating the nonlinear plant by a QP. 

In contrast, the approach in this paper is different, as we do not pre-compute all controlled 

variables for all regions a-priori. Instead we use an RTO that is executed at given sample times, 

and that computes the nominal setpoints for the controlled variables in the current RTO interval, 

together with a set of self-optimizing controlled variables. Compared to the parametric 

programming approach by [21], our approach has several advantages: 

• We do not need to solve a large multiparametric program and store all results 

together with the descriptor functions. 

• We do not need to include heuristics to handle nonlinearities. 
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• By using MPC in the lower layer, we can handle active set changes to some 

degree without waiting for the next RTO update, by using a concept that we call 

“zone control.”  

• If an active set change is not detected between RTO executions, it will be 

corrected by the following RTO update. 

If the disturbances do not change the active set, the lower layer MPC will control the self-

optimizing controlled variables to their setpoints and enforce the correct active set given by the 

RTO. This is simply the standard self-optimizing control idea, where optimal operation is 

achieved by controlling the self-optimizing controlled variables and the active constraints to 

their given setpoints. 

When considering active set changes, there are two fundamental cases that must be 

handled by every method that attempts to give optimal operation: 

1. Detecting when a new constraint becomes active: Here a degree of freedom is 

consumed for controlling the new constraint, and control of one of the 

unconstrained self-optimizing controlled variables must be given up. 

2. Detecting when a previously active constraint becomes inactive: Here the 

constraint that was enforced previously must be released, and a new self-

optimizing variable must be controlled instead.  

The approach described in this paper is designed to handle Case 1 between RTO updates, 

i.e., detecting and enforcing previously inactive constraints. Case 1 is the most important one in 

terms of plant economics, because the economic cost for not enforcing the correct constraint has 

a  linear bound in the error [22]. That is, the economic loss is proportional to the error.  

In our approach, the lower MPC layer (without the need to execute the RTO) uses a “zone 

control” concept to detect when a new constraint becomes active, and controls it to its new 

optimal value.  

On the other hand, our approach does not handle Case 2 in between RTO updates. That is, 

if a constraint becomes inactive in between RTO runs, it will be kept at its bound until the next 

RTO execution. However, handling Case 2 correctly in between RTO updates is not as critical 
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in terms of economic loss, as implementing Case 1. That is, because the cost for controlling a 

“wrong” active constraint has a quadratic bound in the error [22]. So when a disturbance causes 

the constraint to become inactive, keeping it at its bound has only a minor effect on the 

economic loss, until it is relaxed at the next RTO execution.  

In summary, the contribution of this paper is to develop steps towar solving the problem 

that occurs frequently in RTO, where a long time delay between RTO updates can lead to 

economic loss [5]. The RTO computes new SOC variables and their optimal setpoints at each 

RTO execution, and these are implemented by the MPC layer below. The zone control concept 

makes it possible to handle situations where disturbances cause previously inactive constraints 

to become active. In contrast to [21], where all regions and controlled variables are generated 

off-line, in this work the required information is generated online by the RTO, and only for the 

required region.  This simplifies the implementation significantly, because:  

• It is not necessary to keep track of all the regions and implement a logic to 

determine active set changes. 

• No logic is required to detect region changes and switch the control structures. 

• No extra measures have to be taken to change from one control structure to 

another in a smooth way (bumpless transfer). 

• No additional mechanisms are required to recover from wrongly identified active 

set changes. This will be taken care of at the next RTO execution. 

Although Case 2 is not addressed in this paper, we believe that our approach is an 

important step toward improving suboptimal performance due to low frequency RTO updates. 

In particular, it handles most disturbances that occur in between RTO executions in a near-

optimal manner, especially when the active set does not change, or when a new constraint 

becomes active.  

The paper is organized as follows. Section 2 describes the integration between the RTO 

and SOC methodologies. Section 3 presents the development of MPC with zone control and 

SOC targets, which is capable of handling active set changes. The first case study in section 4 

deals with the production of ammonia. Section 5 presents a second case study using a 



Benzene/Toluene/Xylene (BTX) separation 

5.1 and dynamically in Section 5.2. Final 

 
2. RTO framework implementation

 
We assume that the problem of operating a process optimally at steady state can be 

formulated in terms of the following optimization problem:

min
y,u

subject

where :φ  ℝ ×zn ℝ ×un ℝ →dn ℝ is the economic objective function, 

model states, ∈u  ℝ un
 the vector of model inputs and 

Further, :f  ℝ ×zn ℝ ×un ℝ →dn ℝ n

→dn ℝ gn denotes the inequality constraints. Finally, 

measurements and h: ℝ ×zn  ℝ ×un

variables and disturbances to the measurements. 

real plant, the hierarchical structure shown in 

adopted in the present work.  

Figure 2: Proposed framework

separation plant, which is analyzed at steady state in section 

. Final discussions and conclusions are given in section 6

framework implementation with SOC 

We assume that the problem of operating a process optimally at steady state can be 

formulated in terms of the following optimization problem: 

ϕ(z,u, d)

to f (z,u, d) = 0
g(z,u, d) ≤ 0
y = h(z,u, d)

 (1) 

the economic objective function, ∈z  ℝ zn
 is the vector of 

the vector of model inputs and ∈d  ℝ dn
 is the vector of disturbance

f  denotes the model equations and :g  ℝ ×zn  ℝ n

inequality constraints. Finally, ∈y ℝ yn  denotes the process 

× ℝ →dn  ℝ yn  the corresponding mapping from process 

variables and disturbances to the measurements. To implement the optimal solution of (1) in the 

hierarchical structure shown in Fig.2 is often used in industry, and it is also 

 
framework for the implementation of SOC in the RTO 

 

ection 

6. 

We assume that the problem of operating a process optimally at steady state can be 

is the vector of 

is the vector of disturbances. 

×un  ℝ 

denotes the process 

the corresponding mapping from process 

(1) in the 

industry, and it is also 
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Our RTO cycle starts with the detection of plant steady state conditions. Then the 

process measurements are screened for consistency and presence of gross errors in the 

reconciliation module. After that, the reconciled data are used by the parameter estimation 

module to update the process model. The next stage of our approach comprises the optimization 

of an economic objective function subject to the updated model, which provides the optimal set 

points for the controlled variables ∈*c ℝ cn  as well as a sensitivity analysis of the optimal 

solution. This sensitivity information is used as in Alstad et al. [13] for finding self-optimizing 

controlled variables that are linear combinations of measurements, c Hy= . In particular, the 

optimal sensitivity is needed to construct the measurement combination matrix ∈H ℝ yc nn × . 

These controlled variables c, together with the currently active constraints are then passed down 

to the MPC layer, which computes the plant inputs u .  

The idea is that when disturbances change, controlling the self-optimizing controlled 

variables will lead to near-optimal adjustments of the inputs also in between the RTO runs, and 

will thus improve the economic performance of the plant, without waiting for the next RTO 

execution. 

The zone-control MPC layer enforces the currently active constraints and tries to adjust 

the inputs u to control the self-optimizing variables to their setpoints. If a disturbance causes a 

previously inactive constraint to become active, then the MPC will no longer be able to 

maintain controlled variables at their setpoints, because one or more of the zone constraints has 

become active. In this case the MPC will give up on perfectly controlling the self-optimizing 

controlled variables to their setpoints, and instead enforce the constraints. 

The measurement combination matrix H is determined by the optimal sensitivity of 

economic objective function of NLP (1). In particular, the self-optimizing control variables  

c = Hy are calculated as linear combinations of measured variables by the Null Space method 

[13], where H is selected to be in the left null space of the optimal sensitivity matrix 

∈F  ℝ dy nn × , such that HF = 0.  Here F  is defined as: 
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The NLP sensitivity matrix F describes the optimal changes of the (unconstrained) 

outputs y with respect to the disturbances, i.e., 
optyF
d

∂
=

∂
 is the sensitivity of the optimal steady-

state process output y  for a given disturbance ( d ). Note that the rows in F  must be linearly 

independent in order to result in a full rank matrix for F . Based on (2), the number of artificial 

self-optimizing variables is equal to dyc nnn −= , which should be selected to fill the number 

of controlled variables. 

 
Remark: The condition for existence of a non-trivial null-space is that rank(F) < ny. This 

implies in general that there are more measurements y than there are disturbances d .  

 
In this study the NLP sensitivity matrix F is computed by re-solving the optimization 

problem for each disturbance, and applying finite differences. Alternatively, F may be 

calculated based on the implicit function theorem applied to the optimality conditions, as is 

done in the software sIPOPT [23]. 

 

3. Development of an MPC with zone control and artificial SOC variables 
targets for RTO implementation 

 
 

As mentioned above, keeping the self-optimizing variables at their setpoints when the 

active set changes, can lead to violation of other process constraints. This section proposes an 

algorithm capable of respecting the process constraints and assuring an acceptable profit loss by 

integrating both RTO and SOC methodologies. Here, the self-optimizing control methodology 

is implemented through MPC with zone control. The MPC guarantees the feasibility of 

constrained inputs and output variables, while it controls the set of self-optimizing controlled 
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This zone control MPC approach will detect when new constraints become active, 

because it will not be possible to maintain the self-optimizing controlled variables at their 

setpoints without one of the zone constraints becoming active. However when a disturbance 

causes a constraint to become inactive between RTO executions, this will not be detected by the 

zone control MPC. The reason for this is that the controlled variable c=Hy was designed for the 

active set determined by the previous RTO execution; it does not contain any information about 

how the cost is affected when a disturbance causes one of the constraints to become inactive. In 

this case the old active set will be controlled until a new H matrix is obtained at the  next RTO 

run. 

 
Modified dynamic model 

 
The formulation of MPC with zone control and SOC targets considers a linear dynamic 

model with un  inputs, xn  states, and yn outputs. 
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The model (3) is rearranged in an incremental form in order to eliminate the output offset 

as described in [25], 
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which we write in compact form as 

)()(
)()()1(

kxMky
kuEkxDkx

=

Δ+=+
 (5) 

 
here ∈)(ky  ℝ yn is the vector of measured output variables (including the constrained and 

unconstrained measured variables) and ∈)(kx ℝ ux nn + . The dynamic model in (5) is the basis of 

a new dynamic model with two output vectors, namely, a vector of artificial SOC variables 

∈)(kc  ℝ cn  and a vector of constrained variables ∈)(kr  ℝ rn : 



 
14

)()(
)()(

)()()1(

kxMWkr
kxMHkc

kuEkxDkx

=

=

Δ+=+

 (6)1 

 

The vector of artificial SOC variables )(kc  is selected from )(ky  using the map H

(matrix of measurements combination obtained by the null space method), while )(kr is the 

vector of constrained variables (e.g. product composition) selected using the matrix W, 

comprised of zeros and ones. After that, the dynamic model used here is simplified to: 

)()(
)()(

)()()1(

kxVkr
kxUkc

kuEkxDkx

=

=

Δ+=+

 (7) 

 
here U=HM and V=WM. 

Both vectors of predicted outputs, ∈)(kc  ℝ ).( pnc  and ∈)(kr  ℝ ).( pnr , the controlled and 

constrained variables respectively, are extended over p intervals, and the input movements are 

extended over m intervals, i.e., ∈Δ ku  ℝ ).( mnu  (vector of input movements starting in k), 

according to (8) and (9); Using the matrices ΤΩΘΨ and,,  are defined in equations (A1) 

and (A2) of Appendix A, we write the controlled variables over the horizon as 

( ) ( ) kc k x k u=Ψ +ΘΔ  (8) 
 

kukxkr ΔΤ+Ω= )()(  (9) 
 

We assume that the input values are constant after m, i.e. 

)(...,,0,0)()((...)1()( mpiimkumpmkumkumku −==++Δ⇒−++==++=+ . 

The reason we distinguish between the controlled outputs c and the constrained outputs r is 

because this makes it possible to immediately assign different weightings to them in the MPC 

controller. 

 

                                                             
1 This model may be generated by the RTO at each sampling time, while respecting the current active constraints. As 
none of the constraints will be relaxed between the RTO runs, this model is well suited for use in the MPC layer. 
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Zone constraints 

 
Using the vector of constrained predicted variables )(kr , it is possible to determine a set 

of inequality constraints that implement the zone control strategy shown in Fig.3. Equation (10) 

describes this set of inequality constraints. 

)(;)( maxmin kxbubkxu kk Ω−≤ΔΤ−Ω≤ΔΤ−  (10) 
 

Furthermore, the input (manipulated) variables should also be constrained due to physical 

limits imposed by the plant equipment, for instance, maximum or minimum flow rate for a 

particular stream. The nominal values of the input variables, with respect to the input 

increments, are given by (11) and the set of their inequality constraints are given by (12). 
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By grouping all the inequality constraints ((10) and (12)) and including l1 penalty 

variables to create soft constraints (and thus avoid infeasibilities in the optimization step of the 

control problem) the set of inequality constraints in (13) and (14) is obtained, which implements 

the zone control policy (see Fig.3). 
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here s are the penalty variables, the superscripts O  and I indicate constrained outputs and 

input variables respectively, and the subscripts U  and L  indicate upper and lower bounds. 

These l1 penalties (soft constraints) are included to promote numerical robustness of the 

resulting MPC controller.  If a solution to the hard constrained problem exists then, for a 

sufficiently large value of M, the solutions of the hard and soft constrained problems are 

identical.  

 
Target control 
 
 
MPC setpoint control (see Fig.3) is implemented using a classic quadratic control objective 

function with a finite prediction horizon of p intervals, m input movements, and using the 

vector of predicted artificial SOC variables )(kc : 

 

k
T
k
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where 

T

p

TspTspsp ccc











= %&%'( ... is the self-optimizing control variables setpoint vector. As noted in 

[26] the matrices Q and R can be determined from Hessian information from the RTO problem.  
 

Here we choose 











= %&%'(

p

QQdiagQ ...  as a diagonal weighting matrix on the differences between 

the controlled variables and their setpoints and 











= %&%'(

m

RRdiagR ...  as a diagonal weighting 

matrix on the input movements.  
 

Equation (15) is written in terms of the input movements by substituting (8) into (15). 

This leads to the control objective function in terms of kuΔ in (16) and its quadratic form in 

(17). 
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where: 
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))(())(( spTsp ckxQckxa −Ψ−Ψ=  
 
 
MPC with zone control and artificial SOC variables targets 
 

Now, it is necessary to combine the setpoint and zone control approaches into the same 

objective function. For this reason, the set of penalty variables is included into (17) as an l1 

penalty function, leading to (18). 
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where M is a sufficiently large diagonal weighting matrix to make sure that the input 

movements will maintain the feasibility of the constrained variables. It is important to note that 

the input constraints are frequently modeled as hard constraints, because they represent physical 

limits. In the present work they are formulated as soft constraints with l1 penalty functions for 

the sake of simplicity and numerical robustness. This was confirmed in the numerical results 

below, where we never experienced violation of input constraints. 

 Finally, the control problem is defined by (19) subject to the set of inequality constraints 

from (14). 
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The above formulation is carried out 

sections. 

 
4. Case Study 1: Ammonia production

 
The MPC with zone control and

implemented in a case study of ammonia production, defined in 

this process, the feed stream (composed 

mixed with the recycle stream to generate stream S2. Then, this mixture reacts at

to produce ammonia, which is cooled to

components (H2 and N2). The recycle stream 

and stream S6 that is compressed and mixed with the feed stream

Figure 4. Schematic representation of a
 

The ammonia production process is modeled a

balances and equilibrium equations, simulated in the software AMPL

given in Appendix B). Equation (20

objective function composed by the production cost

(ammonia stream, S4).  

min 4

:
266 288 [ ]
0 6 3.5 [ / ]

opt
feed feed recy recy cool cool NH NHu

flash

Cost P W P W P W P S

subject to Steady State Model
T K

S mol time

= + + −

≤ ≤

≤ ≤

 

is carried out on two nonlinear case studies presented in the 

1: Ammonia production 

zone control and SOC targets developed in the previous section is 

ammonia production, defined in [21], and presented in Fig

d stream (composed of hydrogen H2 and nitrogen N2) is compressed and 

to generate stream S2. Then, this mixture reacts at pressure

is cooled to temperature Tflash and then separated from the

The recycle stream (S5) is split, generating stream S7 that is purged

and mixed with the feed stream (S1). 

 
Schematic representation of ammonia production process  

The ammonia production process is modeled at steady state by a set of mass and energy 

, simulated in the software AMPL® (the complete model is 

20) describes the optimization problem with the economic 

objective function composed by the production costs (compressors and cooling work) and profit 

3 3min 4

266 288 [ ]
0 6 3.5 [ / ]

feed feed recy recy cool cool NH NHCost P W P W P W P S

subject to Steady State Model
T K

S mol time

= + + −

≤ ≤

≤ ≤

 (20

in the next 

developed in the previous section is 

presented in Fig.4. In 

compressed and 

pressure Preac 

separated from the light 

purged 

set of mass and energy 

(the complete model is 

economic 

(compressors and cooling work) and profit 

20) 
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where u=[Preac, Tflash, sf] is the vector of decision variables (reactor pressure, flash temperature 

and split fraction); Wfeed, Wrecy and Wcool are respectively the work performed by the feed 

compressor, recycle compressor and cooler; S4NH3 is the molar flow rate of ammonia in the 

product stream; P are the prices given in Table B2. The operational regions of this process are 

defined by a set of inequality constraints in flash temperature (Tflash) and recycle molar flow rate 

(S6). 

 Two disturbances are considered in the present analysis, d1 in the feed flow rate and d2 

in the feed composition. These disturbances can be mathematically represented by (21). Fig.5 

depicts the process profit function with respect to the disturbances and Fig.6 shows the active 

set map for the operating space, including the minimum cooler temperature (Tflash) and the 

maximum flow rate S6 and split fraction (sf). 

[mol/time]

2
S1

2

3

S1= 5.1+d1
0.8 +d2 H

x = (1- 0.8) - d2 N
0 NH

→ 
  → 

→  

 (21) 

  

 
Figure 5. Profit of ammonia plant with respect to disturbances (This surface would be the cost 

if there were no active set changes) 
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Figure 6. Active set map for the disturbance region, ammonia production case study. Each 
color denotes a region where the active set does not change. The variable names within the 

regions denote the constraints that are active 
 
 

4.1. Steady state analysis 
 

Three steady state cases are carried out to compare the economic performance of different 

MPC approaches under presence of disturbances. Case A simulates the “classical” control 

approach, where three process variables, flash temperature (Tfash) reactor pressure (Preac) and 

recycle flow rate (S6), are controlled variables. Case B applies the control of three SOC 

variables computed as the linear combination of 6 measurements y=[S2H2, S2N2, S6, Preac, Tflash, 

sf]T. In this case, zone control of the constrained variables (molar flow rate, S6) is not 

considered. Case C simulates our new MPC with zone control and SOC targets; in this case, the 

same artificial SOC variables are controlled as in Case B. However, the zone constraints are 

enforced to respect the upper bounds on S6 stream. 

These cases are conducted by the solution of the optimization problem in (22) (which 

corresponds to the steady state solution for a nonlinear model predictive controller), for a given 

disturbance value, :02.0202.0,00.1100.1 ≤≤−≤≤− dd  

 

( ) ( ) ( )
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][288266
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Model StateSteady :

332211min
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+++=
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KT

SPWPWPWPCost
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ccccccObj
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NHNHcoolcoolrecyrecyfeedfeed

spspsp

u

 (22) 



where c are the controlled variables defined in Table 1 and spc are their setpoint values 

computed at the nominal point ( 01=d  and 02 =d ). The sensitivity information required for 

the null space matrix, F, is also computed at this point, by solving problem (20), nested within 

finite difference perturbations. Additionally, Case C, considers the constraint in (23):  

]/[5.36 timemolS ≤  (23) 
 
The performance of the three Cases is compared through the loss function, computed by 

the difference between the cost (negative of profit) achieved by the solution of the optimization 

problem in (22) ( expCost ) and the optimum cost ( optCost , solution of (20)). The results can be 

observed in Fig.7, which shows the loss profile with respect to the disturbances for each Case.  

Table 1. Set of controlled variables for each Case (AV: 
artificial variable) 

Case c1 c2 c3 
A Preac Tflash S6 
B AV AV AV 
C AV AV AV 

 

A 

 

B 

 
C 

 
Figure 7. Steady state analysis results: (A) “classic” MPC, (B) MPC with artificial SOC variables and (C) 

MPC with zone control and SOC targets 
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The results observed in Fig.7 show that the classical MPC approach (Case A) obtained 

the worst steady state performance with maximum profit loss value of approximately 10 

percent. In comparison, the control of SOC variables (Cases B and C) presented only 1 percent 

of loss in the worst case. It is important to notice the difference between the performances of 

Cases B and C. As long as Case B does not consider the constraint satisfaction of all process 

variables, this case obtained a negative loss region where constraint (23) is violated (it 

represents a better economic performance, but for an infeasible process). On the other hand, 

Case C enforces constraint (23), since the controlled variable S6 in handled in the zone control 

approach. For this reason, Case C does not present the same behavior (negative loss region) 

observed in Case B.  

 
 
 
 

5. Case Study 2: BTX separation 
 
 

In this section, the novel MPC with zone control and SOC targets is implemented in the 

second case study, a BTX (Benzene, Toluene and p-Xylene) separation by a multi-column 

distillation process, is described in [27] and depicted in Fig.8. In addition to providing a steady 

state analysis, we also demonstrate the dynamic performance of our suggested method.  

A BTX mixture feeds the first column, where benzene is removed from the top flow rate. 

The mixture, rich in Toluene and p-Xylene, feeds the second column where Toluene is removed 

in the top flow rate and Xylene from the bottom. 



Figure 8. BTX process
 
The columns are modeled as a 

volatility and vapor flow rate, through all 

weir formula. Both columns have 41 theoretical equilibrium stages

condenser and the partial reboiler, and

bottom to the top. More details about this model, as well as the model built in AMPL

found in [27]. 

In the first column, seven states are considered as measured variables, including 

distillate Benzene composition Xb , 

the stripping section. The second column has 

and p-Xylene molar compositions (

column. All of these states comprise the vector of measure

It is assumed that the molar holdups in the condenser drums and reboilers are controlled 

by the distillate and bottom flow rates, respectively. Thus, the problem has four 

variables, which are chosen as u =

problem given by (24). 

405.22
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BTX process schematic representation 

a sequence of ideal equilibrium stages, with constant relative 

volatility and vapor flow rate, through all the stages. The liquid flow rate is given by the Francis 

weir formula. Both columns have 41 theoretical equilibrium stages, including the total 

partial reboiler, and the feed trays correspond to stage 21, counting from 

top. More details about this model, as well as the model built in AMPL® can be 

states are considered as measured variables, including 

, 3 stage temperatures in the rectification section and 3

stripping section. The second column has eight measured variables, including the Toluene 

Xylene molar compositions ( Xt  and Xx ), and equivalent stage temperatures of first 

se the vector of measured variables, ( )y k  in (5). 

It is assumed that the molar holdups in the condenser drums and reboilers are controlled 

rates, respectively. Thus, the problem has four manipulated 

[ ]2,2,1,1 VBLTVBLT= , and the economic optimiza

min]/[405
min]/[080

221)21(

kmol
kmol

BpDpDpVBVB XTB −−−+

 (2

with constant relative 

Francis 

, including the total 

from the 

can be 

states are considered as measured variables, including the 

rectification section and 3 in 

Toluene 

stage temperatures of first 

It is assumed that the molar holdups in the condenser drums and reboilers are controlled 

manipulated 

the economic optimization 

(24) 



where D and B are the respective distillate and bottom flow rates, F is the Feed flow rate, and 

Fp , Vp , Bp , Tp and Xp  are respectively the prices of feed, vapor, benzene, toluene and xylene 

streams. Relevant model parameters are given in Table 2. 

Table 2. Parameters values for BTX process model 

Feed F  
 

[kmol/min] 

Liquid 
fraction qF  

Vapor price 

Vp  
[$/kmol] 

Feed price 

Fp  
[$/kmol] 

Benzene 
price Bp  
[$/kmol] 

Toluene 
price Tp  
[$/kmol] 

p-Xylene 
price Xp  
[$/kmol] 

1.41 1.00 0.035 1.00 1.00 3.00 2.00 
 

The two disturbances acting on the system are the molar fraction of benzene and toluene 

in the feed stream, which can be described by (25).  

F
tol

F
ben

F
xyl

F
tol

F
ben

zzz

dz

dz

−−=

+=

+=

1
220.0
140.0

 (25) 

 
Fig.9 depicts the cost profile with respect to the disturbances %1, %2 ∈ *+0.015, 0.0450. 

The active set map for this region is shown in Fig.10, which presents four different active sets, 

including the minimum toluene product concentration Xt , and the maximum boil up rates for 

the reboilers 1VB and 2VB . 

 
Figure 9. Cost profile with respect to disturbances of BTX process (this surface shows how the cost 

would change if there were no active set changes) 
 

 

Nominal point 
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Figure 10. Active set map of BTX process (The variables in each colored region denote the constraints 

that are active) 
 

 
5.1 Steady state analysis 

 
 

In this section, three steady state cases are carried out to compare the economic 

performance of different MPC approaches, as performed in the ammonia production case study 

(see section 4.1). Once more Case A simulates the classical MPC approach, where the three 

product concentrations and one tray temperature in the first column (TC1_10) are controlled 

variables. Case B applies the control of four SOC variables computed as the linear combination 

of 12 measured tray temperatures defined in section 5. In this case zone control of the 

constrained variables (products concentration) is not considered. Case C represents the new 

MPC with zone control and SOC targets developed in the present work, controlling the same 

artificial SOC variables as Case B. However, the zone constraints are enforced to respect the 

lower bounds on product concentrations, simulating the zone control approach. 

Mathematically, the cases are conducted by the solution of the optimization problem in 

(26) (again, this problem corresponds to the steady state solution obtained with a nonlinear 

model predictive controller), for a given disturbance value 045.01015.0 ≤≤− d , 

][ 045.02015.0 fracmold ≤≤−  

( ) ( ) ( ) ( )2 2 2 2

exp

min 1 1 2 2 3 3 4 4

subject  to: Steady State Model
Cost ( 1 2) 1 2 2

1 4.080 [kmol/min]
2 2.405 [kmol/min]

sp sp sp sp

u

F V B T X

Obj c c c c c c c c

p F p VB VB p D p D p B
VB
VB

= − + − + − + −

= + + − − −

≤

≤

 (26) 



 
where c  are the controlled variables summarized in Table 3 and spc are their setpoint values 

computed at the nominal point ( 01=d  and 02 =d ). As carried out in the first case study, the 

sensitivity information required for the null space matrix, F, is computed at nominal point, by 

solving problem (24), nested within finite difference perturbations. Additionally, Case C, 

considers the constraints in (27).  

Table 3. Set of controlled variables for each Case, BTX case study(AV: 
Artificial variable computed by the null space method) 

Case c1 c2 c3 c4 
A Xb TC1_10 Xt Xx 
B AV* AV AV AV 
C AV AV AV AV 

 

95.0
95.0
95.0

≥

≥

≥

Xx
Xt
Xb

 (27) 

 
Fig.11 presents the profit loss function with respect to the disturbances, computed by the 

difference between cost achieved by the solution of the optimization problem in (26) ( expCost ) 

and the optimum cost ( optCost ) from the solution of (24). 

 

 

 

 

 

A 

 

B 

 
C 



 
Figure 11. Steady state analysis results: (A) “classic” MPC, (B) MPC with artificial SOC variables and (C) 

MPC with zone control and SOC targets (red marks are the nominal point). BTX case study 
 

The results show that the loss function is significantly influenced by the choice of the 

control structure (see Fig.11). Note that Case A, the “classical” control approach, has the worst 

performance regarding this set of disturbances, yielding lower values of profit loss close to the 

nominal point, while the largest part of its area presents losses greater than 0.005 $/min with a 

maximum of 0.01173 $/min. The behavior of the classical MPC approach can be compared to 

the illustrative example given in the second paragraph of section 3, where suboptimal operation 

is expected after a determined disturbance, at least until the RTO module updates the setpoint 

values. 

On the other hand, Case B simulates the control of the artificial SOC variables without 

enforcing the product constraints. This case shows a loss close to zero around the nominal point 

and negative loss in the remaining area. This behavior is explained by violation of the product 

concentration constraints. In other words, in the presence of the analyzed disturbances, control 

of these setpoints without a policy of constraint satisfaction (zone control) leads to an increased 

profit because the product stream does not satisfy specifications. (Here the toluene 

concentration is less than 95% at top of the second column). This was also discussed in the first 

paragraph of section 3. However, such performance is not feasible, as it violates the constraints 

on the products, which cannot be sold anymore at the desired price. 
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Finally, Case C shows the best performance among the analyzed approaches, with a flat 

loss profile surface close to zero, and maximum loss value of 0.00076 $/min. In this case, the 

constraints in (27) enforce the minimum product concentration values, at the expense of 

yielding offsets in the controlled variables, as expected in the development of this new method. 

 
5.2. Dynamic analysis 

 
 

The BTX plant described above is now modeled dynamically in MATLAB® and 

simulated as a system of 246 nonlinear ordinary differential equations, to represent the process. 

The MPC controller uses linear models identified by transfer functions in step response cases at 

the nominal point, and then, converted to a state-space model. The “classical” MPC is 

implemented in the case study through the MATLAB® MPC Toolbox 4.1.2, using the controlled 

variables defined in Case A of section 5.1. On the other hand, the MPC with zone control and 

SOC target (Case C) is applied by solving the optimization problem defined in (18) using the 

interior-point algorithm implemented in the MATLAB® function “quadprog”. Nonlinear 

dynamic simulations were performed for Cases A and C. Case B was not considered further, 

because product specifications were already violated at steady state.  

The dynamic cases comprise the simulation of both MPC approaches (Cases A and C) 

starting from the nominal optimal operating point. At time zero, the RTO layer computes the 

optimum economic setpoints and the sensitivity analysis (optimal sensitivity matrix F ), and the 

controlled variable c=Hy. At time 8 min, a disturbance is introduced ( 04.01 −=d ) and the MPC 

drives the process towards a new operational steady state point. Finally, at time 50 min the RTO 

layer updates the setpoint values to the actual economical optimum. Fig.12 depicts the profit 

obtained by approaches A, C and the optimum steady-state condition in these settings. 
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Figure 12. Comparison of the profit obtained by each MPC approach  

  
Note in Fig. 12 that MPC with zone control and SOC targets (Case C) has better 

economic performance compared to conventional MPC (Case A). After introducing the 

disturbance, our new MPC approach settles to the economic optimum, whereas the classical 

approach maintains the process at a suboptimal operating point. At 50 minutes, when a new 

RTO cycle is performed, we observe a system upset with the classical approach, in order to 

drive the process to the optimum economic setpoint. Since Case C already operates at the 

optimum setpoint, this upset does not appear in the implementation of zone control MPC. 

 
Figure 13. Constrained variable profiles  

 

Fig.13 shows the concentration profile of each product stream. It can be observed that, 

after the disturbance, the benzene concentration starts to decrease for both cases; however, only 

Case A yields an out of specification stream of benzene. Observing the concentration profile of 
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the toluene stream, we observe better performance of the zone control policy, which obtain out 

of specification products over a shorter period of time. The constraint violation comes from the 

implementation as soft constraints. No constraint violation occurs for the (inactive) constraint 

on xylene.  

However, when the RTO re-optimizes with constant disturbance, we see that Case A 

purifies more than required at time 50 until it reaches the new optimal steady-state, while Case 

C minimizes the “product give-away”. With Case C, concentrations move toward their targets 

faster. In particular, the product stream has a minimum toluene purity of 92.2%, compared to 

86.6 % with the classical approach.  

 

 
Figure 14. Manipulated variables 

 
Finally, manipulated variable profiles are depicted in Figure 14. In this case, we also observe 

that the MPC with zone control and SOC targets yields smaller control actions than the classical 

approach, which may be assigned to the control of the SOC variables. This is mainly observed 

in the manipulated variable behavior of the second column. Another important consideration is 

the ability of the new approach to stabilize the system after the disturbance, which is not 

observed in the response of the classical approach. 

6. Conclusions 
 

This study presents a new RTO algorithm with zone control and SOC variable targets. 

The novel approach is demonstrated on two case studies: a plant of ammonia production and a 
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detailed simulation of a multi-column distillation process. The results at steady state and 

dynamic operation show better economic performance of the new approach in comparison with 

classical RTO/MPC, and require less effort from the manipulated variables to keep the process 

under control. This characteristic improves process dynamics, since it requires less process 

change when the RTO re-optimizes. Moreover, the zone constraint policy outperforms the 

classical target approach regarding constraint satisfaction, showing faster responses to drive the 

concentration profile back to their zones or targets. These facts indicate that the integration of 

RTO and SOC can be a good solution to the problem of low frequency updates in RTO. 

Moreover, the zone control policy presented in this work is an important step towards handling 

the problem of active set changes observed in the SOC methodology. Although constraints that 

become inactive are not relaxed in between RTO executions, the results presented in this paper 

show that our SOC-based MPC approach is able to do what was proposed, which is to decrease 

the profit loss between two RTO performances. 

For future work we plan to improve our MPC approach by using additional sensitivity 

information to relax constraints that become inactive in between RTO runs. Moreover, we will 

consider improved methodologies to select the matrix H , such as the “exact local method” [11], 

that can take measurement noise into account. . Finally, another interesting development is to 

offer an objective procedure to find the weighting matrix Q that guarantees the existence of a 

more consistent MPC scheme, as in Zanon et al. [26].  
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Appendix A 

 

Equations A1 and A2 describe the computation of the output predicted vectors with p  

predicted intervals and m  control actions, where c  is the predicted vector of artificial SOC 

variables and r  is the vector of constrained output variables. Matrices U, V, D and E are given 

in (7). 
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(A2) 

where ∈Ψ ℝ )().( uxc nnpn +× , ∈Θ ℝ uc npn ×).( , ∈Ω ℝ )().( uxr nnpn +× and ∈Τ ℝ uc npn ×).(  
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Appendix B 
 

The ammonia production case study is based on conversion of hydrogen and nitrogen in 

ammonia by the stoichiometric equation given in (B1). This process is composed by 8 

equipments, which are modeled as a set of mass, energy and equilibrium equations, as follows: 

322 23 NHNH ⇔+  (B2) 
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where S is the molar flow rate for the respective stream (e.g. stream 1, 2 and 6); x is the vector 

of molar fractions of the respective stream, sorted by H2, N2 and NH3. 
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The reactor is modeled as an equilibrium reactor and its output stream S3 is calculated by the 

extent reaction ( ξ ). E is a vector of stoichiometric coefficients [ ]T2,1,3 −− . eqK is the 

equilibrium constant given in Table B1 and reacP is the reactor pressure in bar. 
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The constants used to compute the K-values ( 2Hk , 2Nk and 3NHk ) are displayed in Table B1, and 

the vapor fraction vf is calculated by the Rachford-Rice equation. 
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sf is the splitter fraction used as manipulated variable in Case A of section 4.1. 
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feedW is the compressor work used in the feed stream, fcη is the compressor efficiency, R is the 

gas constant and T0 and P0 are the initial conditions of feed stream (see Table B1) 
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recyW is the compressor work used in the recycle stream S6, rcη  is the compressor efficiency 

and PΔ  is the system pressure drop. 
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coolW  is the cooler work spent in the system, coolη is the cooler efficiency, iCp are the heat 

capacity of each component. The present cooler model considers only the energy used to bring 

the temperature down to 288K, for higher temperatures the cooler work is considered zero.  

 
Table B1. Constant values 

Parameter Value Unit 

eqK  6.36e-5  
0

2HH  210688  

2HH  -656  
0

2NH  110816  

2NH  -342  
A 4.4854  
B 926.132  
C -32.98  

2HCp  28.82 J/mol.K 

2NCp  29.13 J/mol.K 

3NHCp  35.06 J/mol.K 

0T  298.15 K 

rcη  1  

fcη  1  

coolη  1  

0P  50 Bar 
PΔ  15 Bar 

 
 

Table B2. Costs for ammonia production case study 
Parameter Value Unit 

feedP  0.5 

$/time recyP  10 

coolP  1.3 

3NHP  1e4 

 
 


