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Abstract
We apply a recently developed approach for optimizing heat exchanger networks with stream
splits to the case study of a preheating train of the crude oil unit at the Mongstad Refinery
in Norway. To maximize heat transfer, we adjust the split such that the "Jäschke Tempera-
tures" assume equal values for each branch. For a branch with one heat exchanger, the Jäschke
Temperature is calculated as TJ =

(T−T0)
2

Th−T0
, where T is the temperature of the split stream at the

heat exchanger exit, and Th and T0 are inlet temperatures of the hot and cold stream, respec-
tively. Controlling the Jäschke Temperatures to equal values gives near-optimal operation
despite varying flow rates, stream temperatures, and heat transfer coefficients. We fitted a
model to plant data obtained from the refinery, and consider two cases with decentralized PI
control, and one case where the Jäschke Temperatures are controlled by a model predictive
controller. Our paper demonstrates that controlling the Jäschke Temperatures of each branch
to equal values is a simple alternative to online real-time optimization methods. Moreover, it
is significantly cheaper to implement as an online optimizer, and it is easier to maintain.

Keywords: Heat exchanger networks, Self-optimizing control, Real-time optimization, Jäschke
Temperature

1. Introduction
Energy costs contribute a large portion of the total operating costs in a refinery, and limited
global resources and strong competition are forcing plant owners and operators to find ways of
operating their plants close to the optimum. Often, as in the case presented here, optimizing the
heat exchanger network of the preheating train of a crude oil unit not only makes the process
more energy efficient, but also allows for an increased throughput, which directly translates
to higher revenues.
For optimizing operation of such a process, there are two common approaches. In the first
one, online optimization (Marlin and Hrymak, 1997), a model is repeatedly optimized online
during plant operation, and the computed optimal inputs are implemented in the plant. Here
the plant measurements are used to update model parameters, and are not directly used for
control purposes. With the recent rise in computing power, this method has become more
and more attractive, and is used increasingly in the process industries. However, it is still an
expensive method because of the high costs of developing and maintaining a good process
model.
A different approach is based on using a model off-line to find a good set of controlled vari-
ables, which when held constant at their setpoints, indirectly leads to near-optimal operation
in spite of varying disturbances. This approach is followed e.g. in self-optimizing control
(Skogestad, 2000), or when tracking the necessary conditions for optimality (Srinivasan et al.,
2003). Previously, there existed only methods for systematically finding linear combinations
of measurements as self-optimizing controlled variables (e.g. Alstad et al. (2009)). However,
recently there has been some activity in finding controlled variables which are polynomial
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Figure 1. Schematic view of the preheating system of the Mongstad refinery

functions of measurements (Jäschke and Skogestad, 2012a). The polynomial structure adds
more flexibility to optimally handle nonlinear plants. This approach has been successfully
applied to heat exchanger networks with parallel flow paths, where the objective is to adjust
the split such that the total heat transfer is maximized. It was found that under the assumption
of the arithmetic mean temperature driving force, the "Jäschke Temperatures" of all branches
must be equal under optimal operation. For a heat exchanger network with a cold feed at
temperature T0, which is split into two parallel branches with one heat exchanger each, the
Jäschke Temperature TJ of a branch is defined as

TJ =
(T −T0)

2

(Th −T0)
, (1)

where T is the temperature of the cold stream after the exchanger, and Th denotes inlet the
temperature of the hot stream. The optimal control policy is thus to control the difference
of the Jäschke Temperatures in all lines to zero. Although the Jäschke Temperatures were
derived using the arithmetic mean temperature driving force, they have been found to give
good performance when used on systems with a logarithmic mean temperature difference as
driving force (Jäschke and Skogestad, 2014). The approach has been submitted for a patent
(Jäschke and Skogestad, 2012b), and the objective of this paper is to present some results for
an industrial size case study.

2. Process Description and Modelling
Weapply the Jäschke Temperature approach to the preheating train of amodel of theMongstad
refinery in Norway, Figure 1. Here a cold feed stream is split into parallel branches, which are
heated using the hot product streams from the crude oil unit. Depending on the specifications,
the product flow rates and temperatures from the crude unit will vary, and the optimization
objective is to optimally adjust the split such that amaximum amount of heat is recovered. This
minimizes the heat (and the fuel) required in the heater. Moreover, since the heater used to be
the bottleneck of the process, optimizing the transferred heat directly translates into increased
throughput and revenues. The hot and the cold path of the heat exchangers in the preheating
train are modelled as a series of 10 ideally mixed tanks, which are exchanging heat with each
other. This results in an approximation of the logarithmic mean temperature difference. No
phase change takes place in the heat exchangers, and the heat transfer properties were fitted
to data obtained from the Mongstad refinery. The heat capacities of the streams were fitted to
temperature data from the plant. We assume that all branches have the same pressure drop,
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and that the flow Fi through the branch i is proportional to the valve opening zi, such that
Fi =

zi
zA+zB+zC+zD+zE+zF

F0 with zi ∈ [0, 1] for i ∈ {A,B,C,D,E,F}. A detailed description of
the model is given in Leruth (2012).

3. Controlled variables for parallel heat exchanger systems
Consider the part of the preheating train shown on the right side of Figure 1. The optimization
objective is to distribute the feed F0 between the lines A−F in such a way that the total heat
transfer is maximized, i.e. the optimization problem can be written as

maxP = ∑
i=A,...,F

Qi subject to ∑
i=A,...,F

Fi = F0, (2)

where Qi denotes the heat transferred in branch i (e.g QB = QB1 +QB2), and Fi denotes the
flow through the branch. Note that maximizing P is equivalent to maximizing Tend . For such
a system of parallel heat exchangers, the optimality condition can be expressed in terms of the
marginal costs ∂Qi

∂Fi
(e.g. Downs and Skogestad (2011)):

∂QA

∂FA
= · · ·= ∂Qi

∂Fi
= · · ·= ∂QF

∂FF
. (3)

If the marginal costs ∂Qi
∂Fi

could be measured, then one could easily adjust the split such that
the marginal costs are equal for all branches. However, in practice the marginal costs are
not measured, as they are functions of unmeasured disturbances and parameters, such as heat
capacities, stream temperatures and heat transfer properties UA. Instead of estimating all
unknown parameters to be able to evaluate the marginal costs online, Jäschke and Skogestad
(2014) have derived a simple approximation of the marginal costs in terms of temperatures
only.
To simplify notation, we define the "shifted temperature" ∆T , where the ∆-operator denotes a
shift in the reference temperature to the feed stream temperature T0. For example, the shifted
temperature of the exit temperature of stream A is ∆TA = TA −T0. The shifted temperatures
of the other streams are calculated similarly. Using the shifted temperatures, the marginal
costs are approximated by the Jäschke Temperature, which is defined for a line with N heat
exchangers with N hot streams as

TJ =
N

∑
j=1

a j, (4)

where the contributions corresponding to the individual heat exchangers j = 1 . . .N are calcu-
lated as

a j =
(∆Tj −∆Tj−1)(∆Tj +∆Tj−1 −a j−1)

∆Th j −∆Tj−1
for j ≥ 1 with a0 = 0, and ∆T0 = 0. (5)

In the simple case of only one heat exchanger per line, as for line A in Figure 1, this formula
reduces to

TJ,A =
(TA1 −T0)

2

Th,A1 −T0
=

∆T 2
A1

∆Th,A1
. (6)

The configuration on branch B and C, where there are two heat exchangers which are con-
nected in counter-current configuration, can be considered as one large heat exchanger. There-
fore, the Jäschke Temperatures for branch B is calculated as TJ,B = ∆TB2

∆Th,B2
, and the Jäschke
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Table 1. Steady state simulation results

Outlet temperature Optimized Equal TJ
Branch A 228.45 ◦C 222.98 ◦C
Branch B 211.78 ◦C 214.69 ◦C
Branch C 217.49 ◦C 208.49 ◦C
Branch D 201.44 ◦C 202.41 ◦C
Branch E 200.39 ◦C 206.03 ◦C
Branch F 203.55 ◦C 202.93 ◦C
Total network Tend 207.79 ◦C 207.61 ◦C

Temperature for branchC is calculated in the same way. When two heat exchangers on a line
are connected to different hot streams, as in line D, the Jäschke Temperature becomes

TJ,D =
∆TD1

∆Th,D1
+

(∆TD2 −∆TD,1)(∆T2 +∆TD1 − ∆TD1
∆Th,D1

)

∆Th,D2 −∆TD1
, (7)

and the Jäschke Temperature for line F is calculated the same way.
Surprisingly, as shown by Jäschke and Skogestad (2014), the Jäschke Temperatures corre-
spond to the exact marginal costs, when the arithmetic mean temperature is assumed as tem-
perature driving force in the heat exchangers. However, if the arithmetic mean temperature
assumption does not hold, the expressions can be used as approximations of the marginal
costs. The resulting near-optimal control policy is then to control the Jäschke Temperatures
of all branches to equal values.

4. Results

4.1. Steady state simulation

In Table 1, we compare the optimized steady state operation point with the results obtained
from our method. Controlling the Jäschke Temperatures to equal values gives slightly differ-
ent end temperatures for the different branches, but we observe that the finally obtained end
temperature after merging the branches again is very similar to the optimized end tempera-
ture. This indicates that the overall heat transfer in the different branches is almost identical
to the optimized case. Because the Jäschke Temperatures are derived based on the arithmetic
mean temperature assumption, our approach does not give the exact optimum. However, the
performance is still very good. The reason for this is that the optimum in such a system is
very flat, so that the stream split ratios can be off the optimal value, while still resulting in
very close to optimal performance.

4.2. Dynamic simulations

To test the dynamic performance of our approach on the heat exchanger network, we consider
three scenarios. In the first two scenarios we use a decentralized control structure, and in the
third scenario we use model predictive control to control the Jäschke Temperatures to equal
values. The temperature sensor dynamics are modelled as first order dynamics with a time
constant of 5 seconds and a delay of 1 second.
In all three cases we use the difference between the Jäschke Temperature of branches A−E
and branch F , i.e. ci = TJ,i −TJ,F for i = A,B,C,D,E, as controlled variables. The reason all
controlled variables are taken relative to TJF is that branch F has the largest heat capacity, and
thus we expect this to mitigate interactions when controlling the system.
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4.2.1. Scenario 1 and 2: Decentralized control

The Jäschke Temperatures contain temperature measurements of inlet and outlet streams of
the heat exchangers. A temperature change in an inlet stream, e.g. T0, will have a direct effect
on the value of the Jäschke Temperature. The effect of the exit temperature, however, will be
on a slower time-scale, and therefore there will be competing dynamic effects in the distur-
bance response of the controlled variables. In Scenario 1wewill use the Jäschke Temperatures
directly as controlled variables, while in Scenario 2, to mitigate undesired dynamic lead-lag
effects on the response of the controlled variables, we add first order filters to the inlet temper-
ature measurements. This ensures that all variables in the Jäschke Temperatures change at a
similar rate, and avoids direct feed-forward of temperature disturbances from the feed streams
to the controlled variables. Overall we expect this to results in smoother operation.

4.2.2. Scenario 3: Model predictive control (MPC)

Since the system is interactive, we also try using model predictive control to control the
Jäschke Temperatures to equal values. The MPC was implemented using the Matlab™ and
the model predictive control toolbox (Bemporad et al., 2012). We used a sample time of 60
seconds, which corresponds to the residence time in the smallest heat exchanger, and the pre-
diction horizon was set to 10. The control horizon was set to 1 sample time, which is quite
typical for many industrial MPC implementations and results in little computation time. Note
that the MPC does not work on filtered incoming temperature measurements, because we
expect the MPC to handle the lead-lag effects.

4.2.3. Results

All three approaches keep the controlled variables at their setpoints, and the performance
looks quite similar. In the top of Figure 2 we have plotted the end temperature (objective
function to maximize). The steady state value is very close (<0.5 K) to the optimal value for
the disturbances:

• At 5000 seconds step in feed temp (+10 ◦C)
• At 6000 seconds step in feed flowrate (-10 %)
• At 7000 seconds step in hot stream inlet temperature branch C (-10 ◦C)
• At 8000 seconds step in hot stream flow rate on branch E (-10 %)

All three control structures give excellent performance, as can be seen from the temperature
profiles of the end temperature in Figure 2. For comparing the input usage, we show the flow
rates to lineD and F . Here we see that the unfiltered decentralized approach and theMPC give
a more aggressive control action, while the filtered decentralized approach gives a smother,
slower performance. The difference is, however, not reflected in the end temperature. From
this point of view, it seems that the filtered decentralized control structure works best, because
it does not require as much input usage as the other approaches. However, de-tuning the MPC
controller may also result in smoother control action.

5. Conclusions

We have applied the Jäschke Temperature approach to a large heat exchanger network for
preheating the feed stream of a crude oil unit. This resulted in a very simple control structure,
which gave very close to optimal performance. The main advantage of our approach is that it
requires no optimization at all. Neither off-line, to find the optimal nominal split, nor on-line,
to re-optimize when disturbances occur.
Although the Jäschke Temperatures were derived using the arithmetic mean temperature, it is
found that controlling them to equal values also gives good performance when this assumption
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Figure 2. Comparison of control strategies. Top: Final outlet temperature Tend , Bottom: Flow rate
through branches F and E

is not satisfied, and the logarithmic mean temperature is the driving force (or some approx-
imation, as is the case in this work). The optima of these kind of systems are typically very
flat, so if the split is not 100 % correct, the loss is still very small.
We applied a filter to mitigate the effects on different time scales. This resulted in an over-
all smoother control action. Note that the controllers need not be tuned aggressively, since
because the goal is to optimize the energy consumption over a larger time-scale. From our
simulations, it seems that using MPC and a decentralized control scheme give a practically
identical performance in terms of the objective function (end temperature).
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