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Abstract

For heat exchanger networks with stream splits, we present a simple way of
controlling the split ratio. We introduce the ”Jäschke Temperature”, which

for a branch with one exchanger is defined as TJ = (T−T0)2

Th−T0
, where T0 and

T are the inlet and outlet temperatures of the split stream (usually cold),
and Th is the inlet temperature of the other stream (usually hot). Assuming
the heat transfer driving force is given by the arithmetic mean temperature
difference, the Jäschke Temperatures of all branches must be equal to achieve
maximum heat transfer. The optimal controlled variable is the difference
between the Jäschke Temperatures of each branch, which should be controlled
to zero. Heat capacity or heat transfer parameters are not needed, and
no optimization is required to find the optimal setpoints for the controlled
variables. Most importantly, our approach gives near-optimal operation for
systems with logarithmic mean temperature difference as driving force.

Keywords: Heat exchanger networks, Parallel systems, Self-optimizing
control, Optimal operation

1. Introduction

Global climate challenges and competition require efficient energy usage,
and this typically implies re-using energy as much as possible. In the chemical
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and process industries, large amounts of energy can be saved by heat recovery
in heat exchanger networks, which transfer energy in form of heat from a set
of hot streams to a set of cold streams. By optimizing layout and operation of
these heat exchanger networks, the overall consumption of natural resources
for heating and cooling can be reduced considerably. In addition, this often
results in significantly reduced operating costs.

The potential of heat exchanger networks for saving energy and costs
has led to a large body of research, and most of the literature falls into one
of two categories. The first category deals with the design and synthesis
of heat exchanger networks (see e.g. Linnhoff & Flower (1978); Linnhoff &
Hindmarsh (1983); Saboo & Morari (1984); Saboo et al. (1985); D.Colberg &
Morari (1990); Yee & Grossmann (1990); Gundersen et al. (1997); Furman &
Sahinidis (2002); Laukkanen et al. (2010)). Most literature contributions be-
long to this category, where some likely conditions and scenarios are assumed,
and the task is to find the optimal type, size, and structure of interconnec-
tions of the heat exchangers. Generally this results in large mixed integer
optimization problems, and much of the literature addresses the issue of find-
ing optimal solutions in an efficient way. Once the network structure and the
size of the heat exchangers are decided, they either cannot be changed at all
at a later point in time, or only at a high cost. The design step is therefore
very important for the efficiency of the network.

The second category, where this work is placed in, deals with optimal op-
eration of heat exchanger networks (Aguilera &Marchetti, 1998; Glemmestad
et al., 1999; Rodera et al., 2003; Lersbamrungsuk et al., 2008). This cate-
gory is complementary to the first one, as a good design does not imply good
operation in terms of the benefits being actually achieved. In particular,
finding optimal process operation strategies is important, because the condi-
tions in the real plant generally differ from those assumed during the design
stage. Even if the actual operating conditions are the same as assumed during
plant design, Jensen & Skogestad (2008) showed that because of simplifying
assumptions during design, like fixing the minimum temperature difference
∆Tmin to 10 K, the optimal design point is often not the same as the optimal
operating point. The contributions from this second category study how the
available degrees of freedom, such as valves, bypasses and utility heaters, can
be used to optimally match the real operating conditions and constraints.
Although there has been some research activity in this area, there is still a
need for simple methods to optimize operation of heat exchanger networks.
The objective of this paper is therefore to provide an approach which leads
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to near-optimal operation of certain heat exchanger networks.
When implementing optimal operation in a process, such as heat ex-

changer networks, there are two fundamental model-based approaches which
can be taken: Online optimization and offline optimization. In online opti-
mization (Grötschel et al., 2001), the model is used to formulate an optimiza-
tion problem, which is repeatedly solved online in a fast optimization soft-
ware. The optimal input values obtained from the software are then applied
to the plant. In this approach, the plant measurements are primarily used
for adjusting model parameters, such that the model and the plant match.
This approach may be implemented using a steady state model (Marlin &
Hrymak, 1997; Lid et al., 2001), or alternatively a dynamic model (Grötschel
et al., 2001). Implementing online optimization is relatively expensive due
to the high costs of obtaining and maintaining a good process model, which
can be optimized in real-time. However, if a good model is available, this
approach can yield results which are very close to the true optimum. Due
to the high costs, it is mainly implemented in cases where the immediate
economic benefits are very high, such as refineries.

The alternative offline optimization approach exploits the structure of
the optimal solution. This results in simple operating schemes which do
not require online solution of optimization problems. The basic idea was
first conceived by Morari et al. (1980), who write that ”we want to find
a function c of the process variables [...] which when held constant, leads
automatically to the optimal adjustment of the manipulated variables, and
with it, the optimal operating conditions.” This idea has been followed in
the paradigm of self-optimizing control, where such variables are found in
a systematic manner, and in NCO-tracking, where these variables are the
necessary optimality conditions (NCO) (Mathisen et al., 1992; Skogestad,
2000; Srinivasan & Bonvin, 2004; Lersbamrungsuk et al., 2008; Jäschke &
Skogestad, 2011, 2012a). Although typically some degree of sub-optimality
will have to be tolerated, these approaches are attractive in practice, because
they are simple and easy to implement.

Considering the structure of the optimal solution, the steady state optimal
operating point of heat exchanger networks without stream splits and with
only single bypasses and utilities as manipulated variables, is characterized
by being at constraints (Aguilera & Marchetti, 1998; Lersbamrungsuk et al.,
2008), and can be described by a linear programming problem. In this case
all degrees of freedom are used to specify target temperatures or are kept at
constraints (e.g. bypass valves are used to control a target temperature, or are
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Figure 1: Simple heat exchanger network with one split. The boxed variables are needed
for obtaining the Jäschke Temperatures.

either fully open or fully closed). The problem of optimal operation is then
reduced to finding and tracking the set of active constraints (Lersbamrungsuk
et al., 2008), which often can be done without online optimization.

In this paper we study heat exchanger networks with stream splits, where
the steady state optimal operating point is generally unconstrained. A simple
example for such a system is shown in Figure 1, where a cold stream F0 is split
into two branches, which each are heated individually by hot streams. The
operational objective is to maximize the total heat transfer, or equivalently
to maximize the temperature after mixing, Tend. Here, the split fraction
must be continuously adapted to match varying operating conditions such as
changing inlet temperatures (T0, Th1,1, Th1,2), flow rates (F0, Fh1,1, Fh1,2), and
heat transfer properties (UA1,1, UA1,2). In practice, these cases are either
handled by an online optimization approach (Lid et al., 2001), when the
potential savings are very high, or simply operated in an open-loop fashion,
where the split ratio is set to some constant. Other ad-hoc solutions include
isothermal mixing and controlling some outlet temperatures to a setpoint.
These solutions are suboptimal.

The contribution of this paper is to present a simple method for optimiz-
ing operation of heat exchanger networks with stream splits. For each branch
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we define a “Jäschke Temperature”, and near-optimal operation is achieved
by adjusting the split between the branches in such a way that the Jäschke
Temperatures of all branches are equal. The results have been submitted
for patenting (Jäschke & Skogestad, 2012c). Nevertheless, the derivation is
of interest for the scientific community and deserves the separate discussion
provided in this paper. Our paper also fits nicely into this Morari special is-
sue, because of his early important work on heat exchanger networks (Saboo
& Morari, 1984) and optimal operation (Morari et al., 1980).

To obtain our results, we follow the general approach described by Jäschke
& Skogestad (2012b): We set up a simple model, formulate the optimality
conditions, and then eliminate the unmeasured variables from the optimality
conditions. The obtained expression is a function of measurements only, and
controlling it is equivalent to controlling the optimality conditions.

Note that the results in this paper also are applicable when a hot stream is
split into parallel streams which are cooled down individually. To simplify the
presentation, however, we present only the case, where the parallel streams
are heated.

This paper is organized as follows: In Section 2 we provide relevant back-
ground material on optimality conditions for parallel systems, and Section 3
describes the network topology and heat exchanger model used in this work.
The main results are presented in Section 4, and Section 5 contains some case
studies to demonstrate the applicability of our results. Finally, the paper is
closed with a discussion and conclusions in Sections 6 and 7.

2. Optimality conditions for parallel systems

Let us start by considering a smooth general optimization problem. After
the active constraints are satisfied (e.g. by control) we can describe optimal
operation as an unconstrained optimization problem,

min
u

J(u). (1)

Here u ∈ R
nu denotes the unconstrained degrees of freedom. To fully specify

operation, we need as many controlled variables c as there are degrees of
freedom u, nc = nu.

Consider now a system with the topology given in Figure 2, with N

parallel streams Fj which are branched off a given common feed stream F0.
The total operating cost J of the system is assumed to be the sum of the
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Figure 2: Parallel units connected to a common stream. Each unit j has an associated
load-dependent operating cost Jj(Fj).
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individual scalar costs Jj from each line j,

J =

N
∑

j=1

Jj(Fj), (2)

and the operational objective is to distribute the streams Fj such that the
total operating cost J is minimized. Since all streams Fj are coming from
one overall feed stream F0, conservation of mass requires a common coupling
constraint,

F0 −
N
∑

j=1

Fj = 0. (3)

Because of this coupling constraint, only N − 1 streams can be adjusted
independently. The N -th flow rate is given by the mass balance, FN =
F0 −

∑N−1
j=1 Fj .

Now let
u = [F1, F2, . . . , FN−1]

T

denote the degrees of freedom. Adjusting one flow to decrease the cost in
one branch will eventually cause the cost of another branch to become un-
acceptably high. Therefore, this class of systems exhibits an unconstrained
optimum, and under a suitable second order condition, the ideal controlled
variable is the gradient, which must be controlled to zero for optimality,
(Halvorsen & Skogestad, 1997; Bonvin et al., 2001)

c = Ju =
∂J

∂u
= 0. (4)

The result summarized in the following theorem is an important compo-
nent for obtaining simple controlled variables for parallel systems.

Theorem 1 (e.g. Downs & Skogestad (2011)). For a parallel system as in
Figure 2, the optimality condition can be written as

∂J1

∂F1
=

∂J2

∂F2
= . . .

∂Jj

∂Fj

= . . .
∂JN

∂FN

, (5)
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which leads to the optimal controlled variable

c = Ju =























∂J1
∂F1

− ∂JN
∂FN

∂J2
∂F2

− ∂JN
∂FN

...
∂Jj
∂Fj

− ∂JN
∂FN

...
∂JN−1

∂FN−1
− ∂JN

∂FN























, (6)

which must be controlled to zero.

Proof. Assume the N − 1 degrees of freedom are chosen as the flows in
branches 1 to N − 1. Then a flow change in any branch j = 1 . . .N − 1
is compensated by a change of flow in branch N , so we have

δFN = −δFj for j 6= N. (7)

The change δJ in the cost for a variation in δFj is

δJ

δFj

=
δ(J1 + J2 + · · ·+ Jj + JN)

δFj

=
δ(Jj + JN)

δFj

,

using (7), this becomes
∂J

∂Fj

=
∂Jj

∂Fj

− ∂JN

∂FN

. (8)

The fact that this is required to hold for all degrees of freedom j = 1 . . .N−1,
leads to (5), and the optimal controlled variable (6) follows trivially.

Theorem 1 states that the marginal costs
∂Jj
∂Fj

must be equal for all lines.

Each marginal cost is associated with its own line j, and contains only vari-
ables from line j. This structure can be exploited for breaking down the large
problem into smaller problems, where unknown variables can be eliminated
from the gradient expression. Moreover, since the optimality condition can
be written as a pair-wise condition (6), we can without loss of generality,
consider a system with only two branches.
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Figure 3: Detail of a heat exchanger network with N lines and with Mj heat exchangers
on line j. The boxed temperatures are needed for obtaining the Jäschke Temperatures.

3. Parallel heat exchanger systems

In this section we present the heat exchanger network model, together
with the main assumptions used for deriving our results. Moreover, we in-
troduce the cost function that we want to optimize.

3.1. Heat exchanger network model

We consider a heat exchanger network with N parallel lines. A line j is
assumed to have Mj heat exchangers, as illustrated in Figure 3. For heat
exchanger i on line j, Ti,j , Thi,j, T

out
hi,j denote the cold stream temperature

after heat exchanger, the hot inlet temperature, and the outlet temperature
of the hot stream, respectively. Before we proceed with the model equations,
we present some assumptions our model is based on.

Assumption 1 (Single phase). There is no phase change in the heat ex-
changers.

Assumption 2 (Constant heat capacity). The specific heat capacity cp of
the fluids is constant.

To simplify notation, we introduce the heat capacities w of the cold and

9



hot streams,

wj = Fjcp0

whi,j = Fhi,jcphi,j.

An energy balance around the hot and cold stream of heat exchanger i on
line j yields

Qi,j = wi(Ti,j − Ti−1,j) (9)

Qi,j = whi,j(Thi,j − T out
i−1,j). (10)

where Qi,j denotes the heat transferred in the heat exchanger i on line j.
The amount of transferred heat is given by

Qi,j = UAi,j∆TDi,j ,

where UAi,j denotes the product of heat transfer area and overall heat trans-
fer coefficient, and ∆TDi,j denotes the driving force. Typically, the driving
force is modeled as the logarithmic mean temperature

∆TDi,j = ∆Tlog,i,j =
(Thi,j − Ti,j)− (T out

hi,j − Ti−1,j)

log
Thi,j−Ti,j

T out
hi,j

−Ti−1,j

. (11)

When the heat capacity of the hot and the cold streams have similar mag-
nitude, the arithmetic mean temperature is a good approximation of the
logarithmic mean temperature

∆TAi,j =
(Thi,j − Ti,j) + (T out

hi,j − Ti−1,j)

2
≈ ∆Tlog,i,j. (12)

This approximation has an error of less than 1 % (Skogestad, 2008) when
the temperature difference between the streams on the two sides of the heat
exchanger are within ±40%, that is when

1√
2
≤

∆T
(1)
i,j

∆T
(2)
i,j

≤
√
2.

Here ∆T
(1)
i,j is the temperature difference between the hot and cold stream on

one side of the heat exchanger, and ∆T
(2)
i,j is the temperature difference on
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the other side1. To be able to derive simple results, we make the following
additional assumption:

Assumption 3 (Arithmetic mean temperature driving force). The driving
force for heat transfer is given by the arithmetic mean temperature difference.

The stream splitter is described by a simple mass balance,

w0 −
N
∑

j=1

wj = 0,

and the energy balance yields

T0,j = T0 for all j.

In the case of the cold streams being merged again after passing through
the heat exchangers, using the energy balance, the end temperature out of
the mixer can be calculated by the weighted sum of the temperatures of the
individual lines,

Tend =
1

w0

N
∑

j=1

wjTMj
.

3.2. Objective function

Our goal is to adjust the splits between the lines of the heat exchanger
network such that the operating cost J is minimized. In a general form we
may write the cost J as

J = −income + expenses.

We denote the price that has to be paid for transferring heat in heat ex-
changer i on line j as pcosti,j . Similarly, the price for the added value is denoted
previ,j . The cost thus becomes

J = −
N
∑

j=1

Mj
∑

i=1

previ,j Qi,j +

N
∑

j=1

Mj
∑

i=1

pcosti,j Qi,j = −
N
∑

j=1

Mj
∑

i=1

(previ,j − pcosti,j )Qi,j. (13)

1For example, for a counter current heat exchanger using the notation in Figure 3, we

have ∆T
(1)
i,j = T out

hi,j − Ti−1,j and ∆T
(2)
i,j = Thi,j − Ti,j .
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In practice, the prices previ,j will often be equal, previ,j = prev, while the prices
for using different hot streams pcosti,j may differ significantly. By defining a
new price pi,j = previ,j − pcosti,j we may simplify the cost function to

J = −
N
∑

j=1

Mj
∑

i=1

pi,jQi,j. (14)

When all prices for using the hot streams are equal, pcosti,j = pcost, and the
prices for the heated streams are equal, previ,j = prev, this is equivalent to
maximizing the total heat transfer. Furthermore, if the branches are merged
again, it corresponds to maximizing the end temperature Tend.

4. Controlled variables for heat exchanger networks with splits

When setting up the optimality conditions for a heat exchanger network,
the expressions will generally contain all variables. Some variables may be
easy to measure, such as temperatures, while others are more difficult to
measure or estimate, such as heat capacities and heat transfer coefficients.
Our goal is to find controlled variables, which are functions of measurements
that are easy to obtain, and are equivalent to controlling the gradient to zero.

We state the main results in this section, and present their derivation in
Appendix A. For convenience, we first introduce the shifted temperature θ,
which is formed by subtracting the feed temperature T0,

θ = T − T0. (15)

Theorem 2 (Maximize heat transfer). Under Assumptions 1-3, and equal
prices pi,j = 1 in the cost function (14), the marginal costs for each branch
j = 1 . . .N can be expressed as

∂J

∂wj

= TJ,j (16)

where TJ,j is the Jäschke Temperature on branch j, defined as

TJ,j =

Mj
∑

i=1

ai,j , (17)

with the parameter ai,j defined recursively as

ai,j =
(θi,j − θi−1,j) (θi,j + θi−1,j − ai−1,j)

θhi,j − θi−1,j
, a0,j = 0. (18)
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In Appendix A we provide a proof of Theorem 2 for Mj = 1 and Mj = 2.
Moreover, in Appendix A we prove the case Mj = 3 for heat exchangers
with constant hot stream temperatures (This corresponds to very large hot
stream heat capacities). For Mj ≥ 4 we conjecture that the Theorem is true.

Theorem 2 implies that the optimal split that maximizes the total heat
transfer can be obtained by simply controlling the Jäschke Temperatures in
all branches to equal values. Note that the Jäschke Temperature on branch
j only depends on the temperatures on this branch (θi,j), and the hot inlet
temperatures on this branch (θhi,j). In Figures 1 and 3 the temperatures
required to calculate the Jäschke Temperatures are highlighted in boxes. In
particular, we do not need to know the heat capacities or the flow rates of the
streams (F0, Fj, Fhi,j), nor do we require information about the heat transfer
properties UAi,j to calculate the Jäschke Temperatures.

Example 1 (Maximize heat transfer, M1 = M2 = 1). For the network
depicted in Figure 1, the controlled variable is

c = TJ,1 − TJ,2

=
θ21,1

θh1,1
−

θ21,2

θh1,2
.

Adjusting the split between the branches such that c = 0 results in optimal
operation when the arithmetic mean temperature difference assumption is
satisfied. Moreover, keeping c at zero is optimal in spite of varying operating
conditions, such as changing stream temperatures or changing heat transfer
properties due to fouling in the heat exchangers.

We can extend Theorem 2 to the case where the hot sources have differ-
ent prices pi,j, and where the objective is to minimize the economic cost of
operating the heat exchanger network.

Theorem 3. Under Assumptions 1-3 and an economic objective (14) with
arbitrary prices pi,j, the marginal costs for each branch j = 1 . . . N can be
expressed as

∂J

∂wj

= T e
J,j (19)

where the Economic Jäschke Temperature T e
J,j is defined as

T e
J,j =

Mj
∑

i=1

pi,jai,j (20)
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with the parameter ai,j defined as in Theorem 2.

Strictly speaking, Theorem 2 is a special case of Theorem 3. It is obtained
by setting all pi,j equal to 1. However, because of its practical importance,
we chose to write Theorem 2 as a separate theorem.

In Appendix A we provide a proof of Theorem 3 for Mj = 1 and Mj = 2.
There we also prove the case Mj = 3 for heat exchangers with constant
hot stream temperatures (This corresponds to very large hot stream heat
capacities). For Mj ≥ 4 we conjecture that the Theorem is true.

Example 2 (Minimizing economic cost, M1 = 1,M2 = 2). For a system
with 1 heat exchanger on the first line and 2 heat exchangers on the second
line, and with prices p1,1, p1,2 and p2,2 the controlled variable becomes

c = T e
J,1 − T e

J,2

= p1,1
θ21,1

θh1,1
−



p1,2
θ21,2

θh1,2
+ p2,2

(θ2,2 − θ1,2)
(

θ2,2 + θ1,2 −
θ21,2
θh1,2

)

θh2,2 − θ1,2



 .
(21)

Note that when there is no heat exchange in the second heat exchanger of line
2, i.e we have θ1,2 = θ2,2, Equation (21) reduces to the case where there there

is only one heat exchanger per line, and c becomes c = p1,1
θ21,1
θh1,1

− p1,2
θ21,2
θh1,2

.

Similarly, when there is no heat exchange in the first heat exchanger on line

2 (θ1,2 = 0), the expression simplifies to c = p1,1
θ21,1
θh1,1

− p2,2
θ22,2
θh2,2

.

5. Simulation case studies

In this section, we apply our approach to heat exchangers networks which
are modelled using the logarithmic mean temperature difference as driving
force for the heat transfer. Although the assumption of the arithmetic mean
temperature difference is no longer satisfied, the simulations show that our
approach yields good performance.

First we present two cases where the objective is simply to maximize
the total heat transfer. Then we show an example where the operating cost
is minimized when the hot stream prices differ. We compare the results
obtained from controlling the Jäschke Temperatures with the true optimum,
and we also also present results for the case when the end temperatures are
controlled to equal values (isothermal mixing).
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Table 1: Data for Case Study 1

Variable value unit Description

T0 60 ◦C Cold feed temperature
w0 100 kW/K Cold feed heat capacity
wh1,1 30 kW/K Hot stream 11 heat capacity
wh1,2 50 kW/K Hot stream 12 heat capacity
Th1,1 120 ◦C Hot stream 11 temperature
Th1,2 220 ◦C Hot stream 12 temperature
UA1,1 50 ◦C Heat exchanger 11 area× overall heat transfer coefficient
UA1,2 80 ◦C Heat exchanger 12 area× overall heat transfer coefficient

5.1. Case Study 1: One heat exchanger per branch

We consider a simple case with one heat exchanger per line, where the
streams are merged after being heated, Figure 1. Instead of manipulating
the flows directly, we select the split

u =
F1

F0

=
w1

w0

as manipulated variable. We assume that the prices are equal on both lines,
p1,1 = p1,2, so the objective is to maximize the end temperature Tend. The
stream parameters are given in Table 1.

Table 2 shows the end temperature Tend for the true optimum (maxi-
mally achievable end temperature), the end temperature from controlling
the Jäschke Temperatures to equal values, and the end temperature obtained
from isothermal mixing, which is obtained from controlling T1,1 = T1,2. The
Jäschke Temperature approach gives an end temperature which is very close
to optimal, while isothermal mixing results in a loss of almost 5◦C.

Figure 4 shows how well the arithmetic mean temperature approximates
the logarithmic mean temperature in the exchangers. Further, we included
the bounds where the approximation of the logarithmic mean temperature is
less than 1%. At the optimum the approximation error of heat exchanger 2
is larger than 1%. This is the reason why the Jäschke Temperature approach
deviates slightly from the optimal split. However, due to the flatness of the
unconstrained optimum, our approach still gives a close to optimal Tend
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Table 2: Results for Case Study 1

Optimized Equal Jäschke Temp. Isothermal mixing

End Temp 124.8917◦C 124.8045◦C 119.9388◦C
Split u = F1

F0
0.2704 0.2361 0.0600

Split, u
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Figure 4: Case Study 1: Error between the logarithmic mean temperature difference in the
heat exchangers and the arithmetic mean temperature as a function of the split u = F1

F0

.
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Figure 5: Case Study 1: End temperature and controlled variable c = TJ,1 − TJ,2.

In Figure 5 we plotted the split ratio against the final temperature Tend

and included the difference between Jäschke Temperatures of the two lines,

c =
θ21,1
θh1,1

− θ21,2
θh1,2

. We see that there is only one point where c = 0, i.e. TJ,1 =

TJ,2, and that c is a monotone function of the input u. The monotonicity
around the optimal point c = 0 is important as it ensures controllability.

5.2. Case Study 2: Two exchangers on first branch, one exchanger on second
branch

Next, we give an example of a system with 2 heat exchangers in series
on the first line, and one heat exchanger on the second line. Here too, the
objective is to maximize the total heat transfer and to maximize Tend. The
stream data are listed in Table 3, and the simulation results are summarized
in Table 4, where the optimal end temperature is presented together with
results that are obtained when using the our new approach and when im-
plementing isothermal mixing. The difference between the optimal Tend and
the Tend using the Jäschke Temperatures is very small, while the isothermal
mixing strategy again results in a higher loss.
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Table 3: Data for Case Study 2

Variable Value Unit Description

T0 60 ◦C Feed temperature
w0 100 kW/K Feed heat capacity
wh1,1 50 kW/K Hot stream 11 heat capacity
wh2,1 30 kW/K Hot stream 21 heat capacity
wh1,2 40 kW/K Hot stream 12 heat capacity
Th1,1 80 ◦C Hot stream 11 inlet temperature
Th2,1 140 ◦C Hot stream 21 inlet temperature
Th1,2 220 ◦C Hot stream 12 inlet temperature
UA1,1 80 kW/K HX11 area × heat transf. coeff.
UA2,1 50 kW/K HX21 area × heat transf. coeff.
UA1,2 65 kW/K HX12 area × heat transf. coeff.

Table 4: Results for Case Study 2

Optimized Equal Jäschke Temp. Isothermal mixing

End Temp. 122.7726◦C 122.7549◦C 120.8782◦C
Split u = F1

F0
0.4326 0.4147 0.2559
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Figure 6: Case Study 2: Error between the logarithmic mean temperature difference in the
heat exchangers and the arithmetic mean temperature as a function of the split u = F1

F0

.

Figure 6 shows the approximation errors in the three heat exchangers as a
function of the split u. Here, too, we find that even though the approximation
error is about 23% for the exchanger 11 and larger than 2% for the other
heat exchangers, the Jäschke Temperature approach gives good results.

In Figure 7 we plotted the cost function versus split ratio together with
the controlled variable c = TJ,1 − TJ,2. We observe that here too, we the
controlled variable is zero very close to the optimum, and crosses zero only
once.

5.3. Case Study 3: One heat exchanger per branch – different prices

We consider the same heat exchanger network as in Case Study 1, but
now with an economic objective involving different prices associated with
heat transfer from the two heat exchangers. The stream temperatures and
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Figure 7: Case Study 2: End temperature and controlled variable c = TJ,1 − TJ,2.

flow data are the same as before, given in Table 1. The economic cost is then

J = (pcost1,1 − prev1,1 )Q1,1 + (pcost1,2 − prev1,2 )Q1,2. (22)

Assuming that prev1,1 = prev1,2 = 0.3 ct
kJ
, and pcost1,1 = 0.1 ct

kJ
, and pcost1,2 = 0.2 ct

kJ
, the

simplified cost (14) becomes

J = −0.2
ct

kJ
Q1,1 − 0.1

ct

kJ
Q1,2, (23)

and this cost function encourages to prefer using heat exchanger 11 to heat
exchanger 12. This will not result in the maximally possible end temperature,
but it will optimize the process economics. Table 5 lists the optimal operating
cost together with the cost from our approach and the isothermal mixing
approach. The optimal cost, and the cost found by our approach are very
close. As expected isothermal mixing gives the highest cost. This is further
illustrated in Figure 8, where the profit and the controlled variables are shown
for all possible splits u. As above, the controlled variable is zero only once,
and very close to the optimal split.
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Table 5: Results for Case Study 3

Optimized Equal Jäschke Temp Isothermal mixing

Operating cost ($/s) -7.6256 -7.6250 -6.3536
Split u = F1

F0
0.3452 0.3364 0.0600
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6. Discussion

6.1. Relation to other work

An interesting interpretation of the Jäschke Temperatures can be given
in terms of the heat exchanger efficiency as used in the NTU method (Mills,
1995). Consider the case of a network with one heat exchanger per branch,
as in Figure 1. Using the heat exchanger efficiency on the cold side εc, the
cold outlet temperature on branch j can be calculated by

T1,j = εcTh1,j + (1− εc)T0, (24)

and solving for εc yields

εc =
T1,j − T0

Th1,j − T0
. (25)

On the other hand, the Jäschke Temperature for this branch can be expressed
using εc as

TJ,j =
(T1,j − T0)

2

Th1,j − T0
= εc(T1,j − T0). (26)

This gives rise to a nice interpretation of our work: The Jäschke Tempera-
tures for this case may be considered “corrected” or “weighted” efficiencies,
where the NTU-efficiency is weighted by the actual temperature rise T1,j−T0,
and optimal operation is achieved when all branches are operated with the
same weighted efficiency.

In case of more than one heat exchanger per line the Jäschke Temper-
atures are calculated according to (17-18). Defining the efficiency of heat
exchanger i on line j as

εci,j =
θi,j − θi−1,j

θhi,j − θi−1,j
, (27)

and the weighting as
(θi,j + θi−1,j − ai−1,j) , (28)

the components of the Jäschke Temperature can then be written as

ai,j = εci,j (θi,j + θi−1,j − ai−1,j) . (29)

Thus, the Jäschke Temperature of a line may be considered as the weighted
sum of the efficiencies of the heat exchangers on that line.
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=
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Figure 9: Alternative topologies with corresponding Jäschke Temperature.

6.2. Flow configurations and network topologies

6.2.1. Heat exchanger flow configuration

The assumption of the arithmetic mean temperature difference does not
imply anything on the flow configuration within the heat exchangers. How-
ever, the assumption will generally be better satisfied in heat exchangers with
counter-current flows than in co-current flow heat exchangers, because the
temperature profiles in the hot and the cold medium are closer to parallel.

6.2.2. Alternative network topologies

Although the results in this paper were derived for a standard heat ex-
changer configuration, as shown in Figure 1 and 3, the results are more widely
applicable than it may seem at first sight, because they can be applied to
related, equivalent topologies. In our approach, the heat capacities w, the
heat transfer properties UA, and the outlet temperatures of the hot streams
can be considered as disturbances, which have been eliminated from the op-
timality conditions. It is therefore possible to use our controlled variables for
systems, which can be modeled as standard systems, by adjusting the heat
transfer area and/or the heat capacities. For example, the system in Fig-
ure 9a may be modelled as a single counter-current heat exchanger, and the
Jäschke Temperature can be calculated accordingly. Similarly, when more
than two heat exchangers on a branch are connected to a single hot stream,
they may be modelled as a single heat exchanger. Also, the configuration in
Figure 9b can be modelled as a single heat exchanger, because the effect of
the reduced flow in the second heat exchanger on the hot path is equivalent
to the effect of a reduced overall heat transfer coefficient. Of course, it is
possible to combine all the above configurations, such that beside the exam-
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T0

Th0

T1

T2

T out
h1 T out

h2

Tend
u

v

Figure 10: Configuration where the hot and the cold stream are split, the degrees of
freedom are the split fractions u and v.

ples given above, all parallel flow configurations which can be modelled as
one or more heat exchangers on a line, may be operated close to optimal by
our approach.

Another interesting special case is the case where an exchanger is split
into two, such that both, the hot and the cold stream are split, see Figure 10.
Here the hot stream temperatures are identical, so requiring equal Jäschke

Temperatures for the cold split
θ21
θh0

=
θ22
θh0

is equivalent to requiring T1 = T2.
Similarly, for the hot stream split, requiring equal Jäschke Temperatures
(T out

h1 −Th0)
2

T0−Th0
=

(T out
h2 −Th0)

2

T0−Th0
is equivalent to T out

h1 = T out
h2 . This is indeed the

optimal solution.
Our controlled variable may also be be used when the flow thorough one

or more branches is not available as a degree of freedom. An example for
this case is given in Figure 11, where there is a temperature constraint on
the hot outflow of the first branch. In this case, the fraction through the first
branch u1 is not available as a degree of freedom for optimization, as it must
be used to maintain the exit temperature of the hot stream. However, the
second degree of freedom u2 can be used control the difference between the
Jäschke Temperatures in the second and third branch. This maximizes the
heat transfer in the exchangers on these branches (and Tend).
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c = TJ,2 − TJ,3
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Figure 11: Control structure where one degree of freedom is used to control another
variable.

6.3. Phase change in heat exchangers

A heat exchanger with condensing steam on the hot side (constant hot
side temperature) may be modelled as a single phase heat exchanger with a
very large hot heat capacity (whi,j → ∞). As long as the arithmetic mean
temperature driving force assumption is satisfied, controlling the Jäschke
Temperatures of all branches to equal values results in optimal operation,
regardless of the heat capacities in the hot and cold streams. Therefore
one may also use the Jäschke Temperature approach for controlling heat
exchanger networks with condensing steam as a heat source. However, in
these cases the arithmetic mean temperature difference assumption may be
violated severely in real heat exchangers, which may or may not impact the
performance (in Figure 6 we see that a large approximation error does not
necessarily imply poor performance).

6.4. General elimination

At first sight it may be surprising that it is possible to obtain controlled
variables, which do not contain any heat capacities or heat transfer proper-
ties. Alstad & Skogestad (2007) stated that this requires that the number
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of independent measurements is greater or equal to the sum of the number
of degrees of freedom and the disturbances, ny ≥ nu + nd. However, this re-
quirement may be conservative sometimes, as we show in the simple following
toy example. Consider the cost

min J =
1

2
(u− d)2,

where u is the degree of freedom and d is an unmeasured disturbance param-
eter. The optimal controlled variable is the gradient,

c = Ju = (u− d), (30)

and the minimum number of measurements is nu = 1. To need only a single
measurement, we must measure the gradient itself, y = Ju = (u − d), or
some locally monotone scalar valued function of it.2 However, if the gradient
is not measured directly, we need two independent measurements, one for
eliminating u, and one for eliminating d from the gradient expression (30).

Now consider another toy example, where the cost function is

J̃ =
1

2
(u− 1)2 + d2. (31)

Here, the gradient J̃u = u − 1 contains only one variable, and only one
measurement is required. That is, we can measure u and set u = 1.

If however, new variables (disturbances) are present in the measurement
equations, then additional measurements are required. Consider again (31).
If the only measurement is y1 = G1u + G1dd, then it cannot be used to
eliminate u, because a new variable d is introduced. In this case, a second
measurement y2 = G2u + G2dd necessary to eliminate d from the measure-
ment equation for y1, such that d = 1

G2d
(y2 − G2u). Inserting into the first

measurement equation gives y1 = G1u+G1d
1

G2d
(y2−G2u). Thus, the optimal

controlled variable J̃u = u − 1 can be expressed using the measurements as

c = J̃u = u− 1 =
y1−

G1d
G2d

y2

G1−
G1d
G2s

G2

− 1.

The minimum number of measurements depends thus on the process
structure, and for finding a controlled variable which is equivalent to con-
trolling the gradient, the minimum number of measurements required is nu

(when the gradient is measured) and at most nu + nd.

2The monotonicity around its optimal value is necessary for controllability.
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6.5. Strengths and limits of our approach

The big advantage of our method is that it is very simple, and still gives
close to optimal performance. Neither flow rates nor heat capacities need
to be measured. The main underlying assumptions in the derivation of the
Jäschke Temperatures are the arithmetic mean temperature difference as
driving force for the heat transfer, and constant specific heat capacity.

Even when the arithmetic mean temperature difference assumption is vi-
olated, we have shown that our controlled variables give good performance.
However, for very poorly designed heat exchanger networks, which are op-
erated with very unequal heat capacities on the hot and the cold side, the
performance can deteriorate. For very extreme cases, that is when one of the
hot streams has a much higher heat capacity than the cold feed stream, and
a much lower temperature than the other hot streams, the approximation
by the arithmetic temperature difference may become very poor, and it may
not be possible to control the differences between the Jäschke Temperatures
to zero. However, when such a case is implemented using PI controllers with
anti-windup, the controller will attempt to control the difference to zero, and
this will result in fully opening the dominating branch and closing others.
This will not be optimal, but the loss will be relatively small, because most of
the heat is transfered in the dominating branch, and the other branches con-
tribute only little to the total transferred heat. If truly optimal performance
is required for such extreme cases, a different approach has to be chosen,
which essentially is based on a more accurate model. Such a method will
typically require more effort in implementing and maintaining.

In well designed real heat exchanger networks, however, the hot and the
cold heat capacities will be similar, and this will make the approximation
error of the arithmetic mean temperature difference small. Another factor
which mitigates the effect of the approximation error is that the objective
function in such systems tends to be very flat near the optimum, such that
a split which is only close to optimal will give a good performance. This flat
nature of the optimum will generally also give near-optimal operation when
the heat capacities are temperature dependent.

One of the limitations of this method is that it requires the marginal costs
to be decoupled, i.e. it is not possible to have crossovers between the lines.
If there are crossovers, it is not possible to find optimality conditions of the
form c = c1 − c2, where cj contains only variables from branch j, and we
must use other approaches, such as described in e.g. Alstad et al. (2009).
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6.6. Practical implementation issues

6.6.1. Handling singularities

The formulas for the Jäschke Temperatures derived in this paper con-
tain temperature differences in the denominators, θhi,j − θi−1,j which under
practical operation may cross zero and become negative. When this temper-
ature difference becomes negative, the cold stream is cooled down (rather
than heated) in the particular heat exchanger. This results in a negative
contribution to the Jäschke Temperature.

When the temperatures of the hot inlet stream and the cold inlet stream
of a heat exchanger are equal, θhi,j = θi−1,j , there is no heat transfer in
that particular heat exchanger. Operation at such this point is unlikely in
practice, as this is a zero-measure set. However during transients this may
well happen, and then the Jäschke Temperatures become singular, which can
result in unpredictable controller behavior.

To avoid this undesirable behavior, there are two possible approaches.
The first one is to implement the controlled variable denominator-free by
multiplying the controlled variable with the greatest common denominator.
For a system with one heat exchanger per line, as in Example 1, the controlled
variable becomes

c = θ21,1θh1,2 − θ21,2θh1,1.

In this case the controlled variable never becomes singular. Topologies with
more than one heat exchanger on a line can be treated similarly.

An alternative approach is to use a piecewise defined Jäschke Tempera-
tures to patch the singular point. Here, we define the variable ai,j in (18)
as

aij =

{

(θi,j−θi−1,j)[θi,j+θi−1,j−ai−1,j ]

θhi,j−θi−1,j
for |θhi,j − θi−1,j | > ǫ

0 for |θhi,j − θi−1,j | ≤ ǫ

where ǫ is a small tunable parameter, e.g. ǫ = 10−3.

6.6.2. Controlling the Jäschke Temperatures

In Section 2 we have shown that a system with N parallel lines has N−1
degrees of freedom. To fully specify the system, we need to control N − 1
controlled variables such that all the Jäschke Temperatures are equal. The
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simplest way to achieve this is to select the controlled variables as

c1 = JT,1 − JT,N

c2 = JT,2 − JT,N

...

cN−1 = JT,N−1 − JT,N

(32)

We recommend to number the streams j = 1, . . . , N such that stream N has
the largest heat capacity, because the Jäschke Temperature of the largest
stream will not vary very much compared to the Jäschke Temperatures of the
other streams. Alternatively, one could use the mean Jäschke Temperature
over all branches as a reference and control the variables

cj = JT,j −
1

N

N
∑

k=1

JT,k. (33)

The controlled variables may either be controlled by decentralized con-
trollers such as PID controllers, or by a centralized controllers such as model
predictive controllers. In both cases, the controller may act directly on valves
or pumps, or give setpoint values to flow controllers in the branches.

When controlling differences between Jäschke Temperatures, it is impor-
tant to note that disturbances in the incoming temperatures T0 and Thi,j have
an immediate effect on the controlled variables and can lead to an undesir-
able response. This may be mitigated by filtering the incoming temperatures
such that all responses are on a similar time-scale.

Of the N degrees of freedom in such a parallel system, only N − 1 are
independent. The N -th degree of freedom cannot be used to optimize the
split. However, it can be used to minimize the pressure drop over the system
(Leruth, 2012).

7. Conclusions and future work

We have presented an approach for optimizing the split between the lines
of a parallel heat exchanger system. Although the Jäschke Temperatures are
developed for the arithmetic temperature difference, they give good results
for the realistic case with logarithmic temperature difference. In particu-
lar, our approach gives good performance for well-designed heat exchangers,
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where the heat capacities on the hot and the cold side are approximately the
same.

For the case with 1-3 heat exchangers per line, we have proven under
the assumption of the arithmetic mean temperature difference as driving
force for the heat transfer, that the Jäschke Temperatures are equal to the
marginal costs. The more general case with more than 3 heat exchangers is
conjectured.

We would like to mention again that the Jäschke Temperatures can be
used also in the case where the hot stream is split into parallel streams, which
are cooled down.

Controlling the Jäschke Temperatures for optimizing the split has an
additional practical advantage. If one of the flows Fi is set to manual (or
is used to control some thing else) the rest of the control structure remains
unaffected.

A limitation is that we cannot handle systems with crossovers, because
the optimality conditions are no longer decoupled. Future work will consider
possibilities to handle coupled optimality conditions, and to integrate our
approach into a larger setting, where not only the heat transferred in the
heat exchangers is maximized, but rather the economics of the whole plant.
Another direction for future work is to investigate possible connections to
established methods for heat exchanger network design, such as pinch anal-
ysis.
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Appendix A. Proofs and derivations

In this section we show how we obtained the results presented this pa-
per. The procedure is based on Jäschke & Skogestad (2012b), where we use
a model to formulate the optimality conditions, and then use the model to
eliminate unmeasured variables from the optimality conditions. We present
only the proof for the economic case (Theorem 3), because the case of max-
imizing heat transfer (Theorem 2) is obtained as a special case by setting
pi,j = 1 for all i, j.
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For Theorem 3, we present in this section:

• an analytical proof derived in equations for Mj = 1,

• an algebraic proof using maple for Mj = 2

• an algebraic proof using maple, and in addition assuming infinite heat
capacity on the hot side (corresponds to condensing steam on the hot
side) for Mj = 3.

The case Mj > 3 is conjectured.

Appendix A.1. Analytical proof of Theorem 3 for Mj = 1

An example of this case is shown in Figure 1. In this section, for simplic-
ity of notation, since every line contains only one heat exchanger, we omit
the index i denoting the heat exchanger, such that e.g. Ti,2 is denoted T2.
Expressed in shifted temperatures θ, the energy balance (9)-(10) around the
heat exchanger on line j becomes

Qj = wjθj (A.1)

Qj = whj(θhj − θouthj ) (A.2)

Combining (A.1) and (A.2), and solving for θouthj yields

θouthj =
whjθhj − wjθj

whj

. (A.3)

Under Assumption 3 (arithmetic mean temperature difference), the trans-
fered heat is

Qj =
UAj

2

(

θhj − θj + θouthj

)

. (A.4)

Equating with (A.1) we have

UAj

2

(

θhj − θj + θouthj

)

= wjθj ,

and inserting (A.3) yields

UAj

2

(

θhj − θj +
whjθhj − wjθj

whj

)

= wjθj .
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Upon solving for θj , we obtain

θj =
θhj

1− wj

(

1
whj

+ 2
UAj

) . (A.5)

This expression for θi can be used in the objective function. For a system
with N lines, we have

J =

N
∑

j=1

Ji = −
N
∑

j=1

pjQj = −
N
∑

j=1

pjwjθj .

And the corresponding marginal cost for each branch is

∂J

∂wj

= pj
∂Qj

∂wj

= pj
∂

∂wj

wjθj

= pj
∂

∂wj





wjθhj

1− wj

(

1
whj

+ 2
UAj

)





= pj

θhj

(

1− wj

(

1
whj

+ 2
UAj

))

+ wjθhj

(

1
whj

+ 2
UAj

)

(

1− wj

(

1
whn

+ 2
UAj

))2

= pj
θhj

(

1− wj

(

1
whj

+ 2
UAj

))2 . (A.6)

By noting that (A.5) implies

θj

θhj
=

1

1− wj

(

1
whj

+ 2
UAj

)

we can write (A.6) as
∂Jj

∂wj

= pj
θ2j

θhj
, (A.7)

which completes the proof for Mj = 1.
The Jäschke Temperatures for the caseMj = 1 were originally found using

the approach described in Jäschke & Skogestad (2012b), where a computer
algebra program is used to perform the elimination. This computer algebra
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approach is also used to prove the case Mj = 2 and Mj = 3 in the next
section. The analytical proof presented above was only found afterwards,
after the structure of the Jäschke Temperatures was known.

Note that the arithmetic mean temperature difference assumption made
it possible to eliminate the heat capacity wj and the heat transfer properties
UAj in such a simple manner.

Appendix A.2. Proof of Theorem 3 for Mj = 2

The situation becomes more complicated when there are more than one
heat exchangers on a line, because the marginal cost contains variables from
all heat exchangers on this line, and represents the accumulated effect of a
change in the flow rate. For proving Theorem 3 for Mj > 1, we applied the
method described in Jäschke & Skogestad (2012b), which is based on three
main steps:

1. Model the system and formulate the optimality conditions.

2. Calculate the reduced gradient Ju.

3. Symbolically eliminate unmeasured parameters and states from the re-
duced gradient Ju using the sparse resultant (Cox et al., 2005).

We consider a heat exchanger network with 2 branches j = 1, 2 (Figure
A.12), which was modelled in Step 1. Here M1 = 2 and M2 = 1. The fact
that M2 = 1 implies no limitation on the generality of the proof, since the
marginal costs for each line are independent of each other, see Theorem 1.

The cost function for this case is

J = −(p1,1Q1,1 + p2,1Q2,1 + p1,2Q1,2),

and the reduced gradient in Step 2 was calculated in Maple(TM)3. It con-
tains the temperatures, flow rates and heat transfer variables from all heat
exchangers. Finally the elimination of UAij and the heat capacities wj, whi,j

from the reduced gradient in Step 3 was performed using the Maple package
multires (Busé & Mourrain, 2003).

The procedure above leads to a large algebraic expression c, which is zero
whenever the gradient is zero (c = 0 ⇔ Ju = 0). Collecting the coefficients

3Maple is a trademark of Waterloo Maple Inc.
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Figure A.12: Heat exchanger network with two heat exchangers on the first line and one
exchanger on the second line.

of the prices p1,1, p2,1, and p1,2 leads to

c =

(−θ21,1θ2,1θh2,1 + θ31,1θ2,1 + θ21,1θh2,1θh3,1 − θ31,1θh3,1

θh1,1(−θ2,1θh2,1 + θh2,1θh3,1 + θ1,1θ2,1 − θ1,1θh3,1)

)

p1,1

+









θ21,1θ2,1θh1,1 + θ21,1θ
2
2,1 − θ31,1θ2,1 − θ21,1θ2,1θh3,1 + θ31,1θh3,1
− θ21,1θh1,1θh3,1 − θ32,1θh1,1 + θ22,1θh1,1θh3,1

θh1,1(−θ2,1θh2,1 + θh2,1θh3,1 + θ1,1θ2,1 − θ1,1θh3,1)









p2,1

−
(

θ21,2

θh1,2

)

p1,2.

(A.8)

Already now we see Economic Jäschke Temperature for the second branch

with only one heat exchanger, T e
J,2 = p1,2

θ21,2
θh1,2

in the last line. The two

terms corresponding to p1,1 and p2,1 correspond to the Economic Jäschke
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Temperature of the first line. The coefficient of p1,1 can be written as

a1,1 =
−θ21,1θ2,1θh2,1 + θ31,1θ2,1 + θ21,1θh2,1θh3,1 − θ31,1θh3,1

θh1,1(−θ2,1θh2,1 + θh2,1θh3,1 + θ1,1θ2,1 − θ1,1θh3,1)

=
θ21,1 (θh21 − θ1,1) (θh3,1 − θ2,1)

θh1,1 (θh21 − θ1,1) (θh3,1 − θ2,1)

=
θ21,1

θh1,1
,

(A.9)

and the coefficient of p21 can be written as

a2,1 =

θ21,1θ2,1θh1,1 + θ21,1θ
2
2,1 − θ31,1θ2,1 − θ21,1θ2,1θh3,1 + θ31,1θh3,1
− θ21,1θh1,1θh3,1 − θ32,1θh1,1 + θ22,1θh1,1θh3,1

θh1,1 (θh2,1 − θ1,1) (θh3,1 − θ2,1)

=
(θh3,1 − θ2,1)

[

θh1,1(θ
2
2,1 − θ21,1)− θ21,1(θ2,1 − θ1,1)

]

θh1,1 (θh2,1 − θ1,1) (θh3,1 − θ2,1)

=
θ22,1 − θ21,1 −

θ21,1
θh1,1

(θ2,1 − θ1,1)

θh2,1 − θ1,1

=
(θ2,1 − θ1,1)

(

θ2,1 + θ1,1 −
θ21,1
θh1,1

)

θh2,1 − θ1,1

=
(θ2,1 − θ1,1) (θ2,1 + θ1,1 − a1,1)

θh2,1 − θ1,1
.

(A.10)

Thus, the Economic Jäschke Temperature for a line j with Mj = 2 heat
exchangers becomes

T e
J,j = p1,j

θ21,j

θh1,j

+ p2,j
(θ2,j − θ1,j)(θ2,j + θ1,j −

θ21,j
θh1,j

)

θh2,j − θ1,j
.

(A.11)

This is exactly the structure proposed in Theorem 2 and 3, which completes
the proof for Mj = 2.
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T0

w0

Th1,1 Th2,1 Th3,1

Th1,2

T1,1 T2,1 T3,1

T1,2

T out
h1,1 T out

h2,1 T out
h3,1

T out
h1,2

Figure A.13: Heat exchanger network with 3 heat exchangers on the first line and one
exchanger on the second line.

Appendix A.3. Proof of Theorem 3 for Mj = 3

To derive the Economic Jäschke Temperature for Mj = 3, we consider
the system shown in Figure A.13, where the objective is to minimize the cost

J = −(p1,1Q1,1 + p2,1Q2,1 + p3,1Q3,1 + p1,2Q1,2).

The symbolic elimination using the sparse resultant is computationally very
expensive, and for this case with M1 = 3, M2 = 1, it was not possible to
perform the symbolic elimination using Maple and multires due to memory
limitations.

However, since controlling the Jäschke Temperatures to equal values gives
optimal operation independent of the magnitude of the heat capacity, we
may hypothetically let the hot heat capacity go to infinity (or to a very large
value). This will cause the hot inlet temperature and the hot outlet temper-
ature to be equal, θhi,j = θouthi,j , while the form of the Jäschke Temperatures
are not affected4.

Therefore, to reduce the number of variables in the symbolic elimination,
the case with M1 = 3 was modelled with constant hot stream temperatures,
(this corresponds to a very large (infinite) heat capacity of the hot streams,

4This can also be seen in the derivation of the Jäschke Temperatures for the case of one
heat exchanger per line in Appendix A.1 by setting Th,j = T out

hj and letting whj → ∞.
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or condensing steam), and the same procedure as in the previous section was
applied5.

Now it is possible to obtain perform the symbolic elimination results for
the case with Mj = 3, which leads to a large algebraic expression c, which
is zero whenever the gradient is zero (c = 0 ⇔ Ju = 0). Collecting the
coefficients of the prices p1,1 and p2,1 gives the same expressions as given in
Equations (A.9) and (A.10) in Appendix A.2. The coefficient of the price
p3,1 is

a3,1 =

−θ21,1θ2,1θh1,1 + θ21,1θ2,1θh2,1 + θ21,1θ3,1θh1,1 − θ21,1θ3,1θh2,1
− θ21,1θ

2
2,1 + θ23,1θh1,1θh2,1 + θ1,1θ

2
2,1θh1,1 − θ22,1θh1,1θh2,1

− θ1,1θ
2
3,1θh1,1 + θ21,1θ2,1θ3,1 − θ22,1θ3,1θh1,1 + θ32,1θh1,1

θh1,1(−θ2,1θh2,1 + θh2,1θh3,1 + θ1,1θ2,1 − θ1,1θh3,1)

=

(θ3,1 − θ2,1)



θ3,1 + θ2,1 −
(θ2,1−θ1,1)

(

θ2,1+θ1,1−
θ21,1
θh1,1

)

θh2,1−θ1,1





θh3,1 − θ2,1

=
(θ3,1 − θ2,1) (θ3,1 + θ2,1 − a2,1)

θh3,1 − θ2,1
.

(A.12)

Just as in the case with Mj = 2, the term involving the price for the single

heat exchanger on the second line is T e
J,2 = p1,2

θ21,2
θh1,2

.

The Economic Jäschke Temperature for a general line j with Mj = 3 heat
exchangers thus becomes

T e
J,j = p1,j

θ21,j

θh1,j

+ p2,j
(θ2,j − θ1,j)(θ2,j + θ1,j −

θ21,j
θh1,j

)

θh2,j − θ1,j

+ p3,j
(θ3,j − θ2,j)(θ3,j + θ2,j −

(θ2,j−θ1,j)(θ2,j+θ1,j−
θ21,j
θh1,j

)

θh2,j−θ1,j
)

θh3,j − θ2,j
.

(A.13)

5The decision to assume a constant hot stream temperature and whi,j → ∞ means that
the variables T out

h1,1, T
out
h2,1, T

out
h3,1, T

out
h1,2, wh1,1, wh2,1, wh3,1, wh1,2 do not need to be eliminated.

37



Although this expression was derived under the assumption of a constant hot
stream temperature Thi,j = T out

hi,j, we conjecture that it is true for the case
with a finite heat capacity (non-constant hot streams).

Appendix A.4. Conjecture for the general case (M ≥ 4)

Unfortunately it was computationally not feasible to perform the elimina-
tion for the case with Mj > 3. From the recurring pattern, that coefficients
of the previous prices appear in a fixed structure in the coefficients of the
next price, we conjecture the general formula for the case with more than
three heat exchangers on a line as:

T e
J,j =

Mj
∑

i=1

pi,jai,j (A.14)

where the ai,j is defined as

ai,j =
(θi,j − θi−1,j) [θi,j + θi−1,j − ai−1,j]

θhi,j − θi−1,j
(A.15)

and
a0,j = 0. (A.16)

Appendix B. Numerical validation of the case with more than 3
exchangers on a line (M1 = 4,M2 = 1)

In this section we give some numerical evidence that the general formula
for the Jäschke Temperature is true for Mj > 3. We expect that the results
when controlling the Jäschke Temperatures to equal values, will be the same
as when we optimize a model which uses the arithmetic mean temperature
as driving force. This will be the case when, as we conjecture, the controlled
variable is equivalent to the gradient.

Consider the heat exchanger network given in Figure B.14, with the cor-
responding stream and price data given in Table B.6. The controlled variable

38



T0

w0

Tend

Th1,1 Th2,1 Th3,1 Th4,1

Th1,2

T1,1 T2,1 T3,1 T4,1

T1,2

T out
h1,1 T out

h2,1 T out
h3,1 T out

h4,1

T out
h1,2

Figure B.14: Heat exchanger network with M1 = 4 and M2 = 1.

is

c = p1,1
θ21,1

θh1,1
+ p2,1

(θ2,1 − θ1,1)(θ2,1 + θ1,1 −
θ21,1
θh1,1

)

θh2,1 − θ1,1

+ p3,1
(θ3,1 − θ2,1)(θ3,1 + θ2,1 −

(θ2,1−θ1,1)(θ2,1+θ1,1−
θ21,1
θh1,1

)

θh2,1−θ1,1
)

θh3,1 − θ2,1

+ p4,1
(θ4,1 − θ3,1)(θ4,1 + θ3,1 −

(θ3,1−θ2,1)(θ3,1+θ2,1−
(θ2,1−θ1,1)(θ2,1+θ1,1−

θ21,1
θh1,1

)

θh2,1−θ1,1
)

θh3,1−θ2,1
)

θh4,1 − θ3,1

− p1,2
θ21,2

θh1,2
.

(B.1)

The values from optimizing the split with fmincon (Matlab) and from using
our approach are compared in Table B.7. The cost function for the optimized
case and the case using the Jäschke Temperature approach give the same
values of the cost function. However, the end temperatures are not exactly
the same. The reasons for this discrepancy are the flatness of the optimum
and numerical round-off errors, which occur due to the temperature difference
terms in the controlled variable. In conclusion, the numerical results for this
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Table B.6: Stream and price data for validation case study, M1 = 4,M2 = 1

Variable Value Unit Description

w0 100 kW/◦C Heat capacity cold stream
wh1,1 50 kW/◦C Heat capacity hot stream 11
wh2,1 30 kW/◦C Heat capacity hot stream 21
wh3,1 15 kW/◦C Heat capacity hot stream 31
wh4,1 25 kW/◦C Heat capacity hot stream 41
wh1,2 70 kW/◦C Heat capacity hot stream 12
T0 130 ◦C Cold stream temperature
Th1,1 190 ◦C Hot stream 11 temperature
Th2,1 203 ◦C Hot stream 21 temperature
Th3,1 220 ◦C Hot stream 31 temperature
Th4,1 235 ◦C Hot stream 41 temperature
Th1,2 225 ◦C Hot stream 12 temperature
UA1,1 5 kW/◦C Heat transfer coefficient times area of Exchanger 11
UA2,1 7 kW/◦C Heat transfer coefficient times area of Exchanger 21
UA3,1 10 kW/◦C Heat transfer coefficient times area of Exchanger 31
UA4,1 12 kW/◦C Heat transfer coefficient times area of Exchanger 41
UA1,2 11 kW/◦C Heat transfer coefficient times area of Exchanger 12
p1,1 1 USD/kW Price for using heat from stream 11
p2,1 1.2 USD/kW Price for using heat from stream 21
p3,1 1.3 USD/kW Price for using heat from stream 31
p4,1 1.5 USD/kW Price for using heat from stream 41
p1,2 1.5 USD/kW Price for using heat from stream 12

Table B.7: Results for validation case study, M1 = 4,M2 = 1

Optimized Equal Jäschke Temp.

Cost J -3.9388 -3.9388
End Temp. Tend 158.7738 158.7741
Split u = F1

F0
0.7141 0.7152
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case study strongly suggest that the conjecture is true.
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