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Abstract: In the process industry it is often not known how well a process is operated, and
without a good model it is difficult to tell if operation can be further improved. We present a
data-based method for finding a combination of measurements which can be used for obtaining
an estimate of how well the process is operated, and which can be used in feedback as a controlled
variable. To find the variable combination, we use past measurement data and fit a quadratic
cost function to the data. Using the parameters of this cost function, we then calculate a linear
combination of measurements, which when held constant, gives near-optimal operation. Unlike
previously published methods for finding self-optimizing controlled variables, this method relies
only on past plant measurements and a few plant experiments to obtain the process gain. It
does not require a model which is optimized off-line to find the controlled variable.

Keywords: Process Optimization, Control, Partial least squares, Empirical modelling,
Self-optimizing control

1. INTRODUCTION

Rising competition in a global market, environmental chal-
lenges and governmental regulations make it increasingly
necessary to operate chemical plants close to optimality. At
the same time one is often faced with not knowing exactly
how well or poorly the plant is operated in practice, and
which options that may exist to systematically improve op-
eration. If a suitable first principle plant model is available,
it may be used online for monitoring the performance, or
for real-time optimization (RTO). In RTO a mathematical
optimization problem is solved to find the optimal operat-
ing parameters for the process [Marlin and Hrymak, 1997].
Here the plant measurements are primarily used to update
the model parameters in the online optimization problem.

Alternatively, the model may be used offline to develop
a suitable control strategy, which results in an acceptable
loss, a “self-optimizing” control structure. According to
Skogestad [2000], “Self-optimizing control is when we can
achieve an acceptable loss with constant setpoint values for
the controlled variables (without the need to re-optimize
when disturbances occur)”. Another closely related con-
cept is NCO tracking [Srinivasan et al., 2003], where the
necessary conditions for optimality (NCO) are selected as
the controlled variables. Usually the controlled variables in
these offline approaches are found by optimizing a suitable
process model.

Often a good first principle model is not available because
it is prohibitively expensive to develop and maintain a
model which accurately reflects the process. One class of
approaches which does not require a model, is extremum
seeking control [Krstic and Wang, 2000], where the pro-
cess is persistently excited in order to obtain gradient

⋆ This work was supported by the Norwegian Research Council

information. However, for many practical process applica-
tions, persistent excitations are undesirable. An attractive
alternative is to use empirical data-based models, such
as regression models and partial least squares models. In
virtually all chemical plants, data is collected almost con-
tinuously, and using this data to model and subsequently
optimize the process seems very attractive. It can lead to
significant operational savings, while requiring a relatively
limited effort to develop and maintain the models. Not
surprisingly, there is a large body of general literature
on empirical and data based modelling, see e.g. Box and
Draper [1987], Esbensen [2004], and it is widely used in
industry.

In the context of process control, data-based approaches
have often been used for soft-sensing applications (e.g.
Lin et al. [2007]), where available measurements are used
to estimate an unmeasured variable. In view of online
process optimization, there have been many suggestions
over the years, including evolutionary operation (EVOP)
[Box, 1957], dating back to the 1950s, and in more recent
years McGregor and coworkers [Yacoub and MacGregor,
2004].

In the context of using offline process optimization to find
simple operational policies, there has been much less ac-
tivity. Data-based methods have been developed and used
by Jäschke and Skogestad [2011b] and Skogestad et al.
[2011], where it is assumed that optimal data is available,
and it is used to find optimal controlled variables. Ye
et al. [2013] have also used regression methods to find
controlled variables. However, they rely on a process model
to generate the data, and they assume that disturbance
measurements are available for the regression.

The contribution of this paper is to show how non-optimal
open-loop plant measurement data can be used to 1)
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Fig. 1. Idea of self-optimizing control: By controlling c =
Hy at a constant setpoint, the process is kept close to
optimal in presence of varying disturbances d.

obtain a quadratic model of the cost function, and 2) find
simple self-optimizing controlled variables, which when
controlled at constant setpoints, keep the process close to
the optimum.

The paper is structured as follows. In the next section,
we present some related background from self-optimizing
control. Section 3 describes how these results can be
used to obtain self-optimizing controlled variables from
operating data. In Section 4 we apply our approach to
a case study of a CSTR and present some simulation
results. Finally, in Section 5 we discuss the results and
draw conclusions.

2. SELF-OPTIMIZING CONTROL

In this section, we briefly give some relevant background
on self-optimizing control. The general idea is to find
variables which, when controlled at a constant setpoint,
result in near-optimal operation with acceptable loss [Sko-
gestad, 2000]. A possible implementation scheme of a self-
optimizing control structure is given in Fig. 1. The idea is
that near-optimal operation is achieved by controlling the
controlled variables c = Hy at constant setpoints.

We assume that the problem of optimally operating a
process at steady state (or a sequence of steady states as d
varies) can be formulated as a mathematical optimization
problem,

min
u,x

J̄(u, x, d) s.t.

{
h(u, x, d) = 0
g(u, x, d) ≤ 0

(1)

where the variables u, x, and d denote the degrees of
freedom, the state variables, and the disturbances, respec-
tively. The scalar function J̄ denotes the cost function,
h : Rnu × R

nx × R
nd 7→ R

nx the model equations, and
g : Rnu × R

nx × R
nd 7→ R

ng denotes the operational and
safety constraints.

In addition, we assume that we have a plant measurement
model

y = fy(u, x, d), (2)

where y is the ny-dimensional vector of measurements, and
fy is the function mapping the variables u, x and d to onto
the measurement space.

The following policy for implementing optimal operation
is suggested [Skogestad, 2000]:

(a) Control the active constraints at their optimal values.

(b) Control “self-optimizing” variables for the remaining
unconstrained degrees of freedom.

When the active constraints are controlled, they may
formally be eliminated together with the states x from
the optimization problem (1). This enables us to re-
write the problem for part (b) as an unconstrained lower-
dimensional optimization problem,

min
u

J(u, d). (3)

Around the nominal operating point [u∗T , d∗T ], we ap-
proximate the cost function using a second-order Taylor
expansion, where ∆u = u− u∗ and ∆d = d− d∗:

J ≈ J∗ + [ J∗
u J∗

d ]

[
∆u
∆d

]

+
1

2

[

∆uT ∆dT
]
[
J∗
uu J∗

ud

J∗
du J∗

dd

] [
∆u
∆d

] (4)

where J∗
u = ∂J

∂u

∣
∣
∗
, J∗

d = ∂J
∂d

∣
∣
∗
, and J∗

uu = ∂2J
∂u2

∣
∣
∣
∗
, J∗

ud =

J∗
du

T = ∂J2

∂u∂d

∣
∣
∣
∗
and J∗

dd = ∂2J
∂d2

∣
∣
∣
∗
are the first and second

derivatives, evaluated at the nominal point.

Under optimal nominal operation, we have that J∗
u = 0.

Under the same assumptions used to obtain Eq. (4), the
gradient can be approximated around the optimal nominal
point (J∗

u = 0) as

Ju = J∗
u

︸︷︷︸

=0

+ [ J∗
uu J∗

ud ]

[
∆u
∆d

]

. (5)

For optimal operation, the first-order optimality condi-
tions require that the gradient is zero, i.e

Ju = [ J∗
uu J∗

ud ]

[
∆u
∆d

]

= 0. (6)

If we could measure or evaluate the gradient, it would
be the ideal self-optimizing controlled variable. Unfortu-
nately, this is not the case in practice. Although the cost is
measured, we cannot simply fit a response surface to it, be-
cause it depends on the disturbance variables d, which can
be neither measured nor manipulated. Instead, we propose
to approximate the gradient in terms of measurements y
only, and use this as a self-optimizing variable [Jäschke
and Skogestad, 2011a].

To express the gradient (6) in terms of the plant measure-
ments, we linearize the measurement model (2) around the
nominal operating point, and upon eliminating the state
variables, we obtain

y = Gy∆u+Gy
d∆d = G̃y

[
∆u
∆d

]

. (7)

If there is a sufficient number of measurements available 1 ,
i.e. ny ≥ nu + nd, we can use the measurement model (7)
to eliminate the unknowns u and d from the gradient, and
thus obtain a controlled variable which is equivalent to the
gradient. Inverting (7), and inserting into (5) yields

Ju = [ J∗
uu J∗

ud ]
[

G̃y
]†

∆y, (8)

where (·)† denotes the pseudo-inverse. Defining

1 The degrees of freedom u are generally also included in the
measurement vector y.
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H = [ J∗
uu J∗

ud ]
[

G̃y
]†

(9)

we have that the desired self-optimizing controlled variable
is

∆c = H∆y. (10)

Controlling ∆c = c − c∗ to zero gives optimal operation.
This is equivalent to the “null-space method” [Alstad and
Skogestad, 2007] 2 .

The derivation of H does not take measurement noise
into account and assumes that there are sufficiently many
independent measurements such that G̃y can be inverted.
If the measurement noise is large, or if there are too few
measurements, it will not be possible to make the gradient
close to zero, and there will be an additional loss. These
cases are treated in Alstad et al. [2009]. In this paper, we
assume that the measurement noise is negligible, and that
there are enough independent measurements such that G̃y

can be inverted.

3. OBTAINING H FROM OPERATIONAL DATA

In the previous section, we have shown how a locally
optimal controlled variable combination ∆c = H∆y, with
H given in (9), can be obtained from a linear process model
(7) and a quadratic approximation of the cost function
(4). However, this assumes that we know Juu, Jud and

G̃y, which may be difficult to obtain in practice. Here,
we show how the H-matrix in (9) can be obtained from
historical process operation data. The idea is to express
the cost function in terms of the measurements y, and
to use available measurement data to estimate the cost
parameters.

3.1 Fundamental relationships

To obtain the desired controlled variable combination, we
first express the quadratic cost function (4) in terms of the

measurements. Solving (7) for [ ∆u ∆d ]
T

and inserting
into the cost function (4) gives

J = J∗ + [ J∗
u J∗

d ]
[

G̃y
]†

︸ ︷︷ ︸

J∗

y

∆y

+
1

2
∆yT

[

G̃y
]†T

[
J∗
uu J∗

ud

J∗
du J∗

dd

] [

G̃y
]†

︸ ︷︷ ︸

J∗

yy

∆y

= J∗ + J∗
y∆y +

1

2
yTJ∗

yy∆y.

(11)

Inspecting the term J∗
yy closer, we see that H from (9) is

contained in it:

2 Note that the self-optimizing control paradigm is fundamentally
different from the alternative “neighbouring extremal control” ap-
proach (see e.g. Gros et al. [2009]), because the goal in self-optimizing
control is to find a variable offline, which is held constant online. The
term “neighbouring extremal”, however, typically refers to schemes,
where the gradient is estimated online in the controller. Neverthe-
less, at the basis of both approaches lies the first-order optimality
condition Ju = 0.

J∗
yy =

[

G̃y
†
]T

[

[ J∗
uu J∗

ud ] G̃
y
†

[ J∗
du J∗

dd ] G̃
y
†

]

=
[

G̃y
†
]T

[
H

[ J∗
du J∗

dd ] G̃
y
†

] (12)

Since ny ≥ nu + nd, we have that G̃y
T
G̃y†T = I, so the

upper nu rows of G̃y
T
J∗
yy are exactly the H-matrix given

in equation (9),

G̃y
T
J∗
yy =

[
H

[ J∗
du J∗

dd ] G̃
y
†

]

. (13)

For control purposes we are primarily interested in H,
so we do not need all elements in G̃y, but only the first
part, Gy. Thus, we obtain H by premultiplying J∗

yy with
[
Gy 0ny×nd

]T
, which yields

[
Gy 0ny×nd

]T
J∗
yy =

[
H

0nd×ny

]

. (14)

In summary, given J∗
yy and the gain matrix Gy, we can

easily calculate the optimal measurement combination H,
and use it to control the process.

Remark 1. To find controlled variables without a rigorous
model, it is an advantage that only Gy = ∂y

∂u
is required

(instead of the full matrix G̃y = [Gy Gy
d]), because Gy

can be easily found using a few plant experiments. On the
other hand, obtaining Gy

d = ∂y
∂d

from plant experiments
is difficult, because it is not possible to manipulate the
disturbance d.

3.2 Obtaining Gy

One approach to obtain the measurement gain matrix
Gy = ∂y

∂u
= [g(1), . . . , g(nu)], is to perform step changes in

the inputs ui and record the changes in the outputs y. The
rows i = 1..nu of the gain matrix can then be calculated
by

g(i) =
(
ypert − y∗

)
/
(
upert
i − u∗

i

)
,

where the subscript i of the input u denotes the i-th
input, and the superscript pert denotes the perturbed
value. For better accuracy, one may perform several plant
experiments of this kind and use the average value of the
gain.

3.3 Obtaining Jyy

Gathering the data. Before we proceed to gather data to
find J∗

yy, we make some assumptions:

(1) The data is collected while the process is operating
in open loop.

(2) The number of independent measurements is greater
or equal to the number of independent inputs and
disturbances 3 , ny ≥ nu + nd.

(3) Active constraints are controlled and not changing 4 .
(4) Important disturbance changes are present in the

data 5 .
3 This can be tricky, because one might not know what unmeasured
disturbances may affect the plant.
4 The active constraints can often be identified by physical insight,
without need of a model
5 If the data is taken from a sufficiently long period, it is reasonable
to assume that all relevant disturbances are present in the data.
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(5) The data is collected when the plant is at steady state.
(6) The process data is sampled in a region close to the

optimum, where the cost can be approximated by a
quadratic cost function.

We collect all the “raw” measurement data in the matrix
Yraw,

Yraw =
[

y(1) . . . y(i) . . . y(N)
]
,

where the superscript (i) denotes the sample number.

Preparing the data. Before using using the data further,
it should be centered by subtracting the mean, and scaled
such that the variance of the measurements is equal. Note
that the data now is in form of deviation variables.

In order to obtain a quadratic model, we need to take
also the product of measurements into account. This is
done by augmenting the data by all second order terms,
such that each column of the data matrix Y contains
data corresponding to (where the ∆ for marking deviation
variables has been omitted):

yaug =
[
y1..yny

y21 y1y2 · · · y1yny
y2y2 y2y3 . . . yn−1yn y2n

]T
.

In addition, we assume that the cost function can be
measured at each sample time, and we collect all cost data
into a separate 6 vector:

Jm =
[

J (1) . . . J (i) . . . J (N)
]T

Partial least squares regression If the measurements y
were independent variables, we could simply use regression
to fit the measurements y to the quadratic cost function in
order to find J∗, J∗

y and J∗
yy. Unfortunately, the measure-

ments will generally not be independent, and simply fitting
a cost function to y-data will result in an ill-posed opti-
mization problem, and give very poor results. To obtain a
sufficiently good estimate of the cost function parameters,
we use a “partial least squares” (PLS) method [Esbensen,
2004]. This method enables us to handle collinearity and
linear dependence in the data well, and can be used to find
a model which describes the cost function well.

The basic idea of PLS is to find a linear transformation
which explains the variation in the prediction variables
(in our system: Y ) as well as the variation in the response
variables (in our case Jm). The PLS algorithm projects
the Y and Jm data onto a lower dimensional space, which
still captures all the essential correlations:

Y T = TPT + E1

Jm = UQT + E2

(15)

The matrices T, P, U and Q are chosen such that the co-
variance between the data Y T and Jm is maximized, and
E1, E2 are the residuals. Based on this decomposition, a
regression factor β is determined, which predicts J as a
function of yaug. After applying the PLS algorithm, which
is implemented e.g. in Matlab, the prediction of the cost
can be calculated as

J = [1 yTaug]β, (16)

where the vector β is obtained from the PLS algorithm.
We do not present further details of PLS here, instead we
6 Note that the measurements of the cost function must not be
included in the data matrix Y , because this would cause the model
to use Jm to predict the cost, and we would not obtain a quadratic
model

F
CA,in

CB,in

Ti

T
CA

CB

Fig. 2. Simple CSTR

refer to the literature, see e.g. Esbensen [2004], where the
procedure is described in detail.

Since yaug contains all the products of the measurements
with each other, we can simply re-arrange Eq. (16) into
the form of Eq. (11). For example, in the case of 2
measurements, the augmented measurement vector is

yaug =
[
y1 y2 y21 y1y2 y22

]T
,

and Eq. (16) becomes

J = β0 + y1β1 + y2β2 + y21β3 + y1y2β4 + y22β5

This can be re-written as the quadratic form given in
Eq. (11),

J = β0 + [ β1 β2 ]

[
y1
y2

]

+
1

2
[ y1 y2 ]

[
2β3 β4

β4 2β5

] [
y1
y2

]

,

(17)
and comparing the coefficients in (17) with (11), we see
that

J∗ = β0, J∗
y = [ β1 β2 ] , J∗

yy =

[
2β3 β4

β4 2β5

]

.

Thus we have obtained all parameters of the quadratic cost
function (11), which are required for calculating H.

4. EXOTHERMIC CSTR CASE STUDY

4.1 Process description

To demonstrate our approach, we consider a simple CSTR
studied by Economou and Morari [1986], Kariwala [2007],
Jäschke and Skogestad [2011a,b]. A schematic diagram of
the process is given in Fig. 2, where also the main variables
are introduced. The feed stream containing mainly compo-
nent A enters the reactor, where an equilibrium reaction

A ⇋ B

takes place. The reactor effluent contains a mixture of A
and B with the same concentrations as in the tank. The
manipulated variable is the feed temperature Ti, which
can be adjusted to minimize the operating costs, which
are calculated as the cost for heating the feed minus the
income generated by selling the product B,

J = −
(
pBcB − (pTi

Ti)
2
)
.

From the mass and energy balances we obtain the following
dynamic system:

dCA

dt
=

1

τ
(CA,in − CA)− r (18)

dCB

dt
=

1

τ
(CB,in − CB) + r (19)

dT

dt
=

1

τ
(Ti − T ) + 5r, (20)
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Table 1. CSTR parameters

Symbol Parameter description Value

pB Price for product cB 2.009 $l/mol
pTi

Price for heating feed 1.657e−3$/K
τ Time constant 1 min
C∗

A,in
Nominal feed concentration A 1 mol/l

C∗

B,in
Nominal feed concentration B 0 mol/l

T ∗

i
Nominal input value 424.303 K

where the variables CA and CB denote the concentrations
of component A and B, respectively, in the reactor. The
temperature in the reactor is denoted by T , and the feed
temperature is denoted by Ti. The feed concentrations of
the two components are denoted by the variables CA,in

and CB,in. Finally, the reaction rate r is calculated as

r = 5000e−
10000

1987

1

T CA − 106e−
15000

1987

1

T CB . (21)

The values of the price parameters, the time constant τ
and the nominal process values are given in Table 1. We
assume that the process has four measurements, which are

y = [CA, CB , T, Ti ]
T
, (22)

and two unmeasured disturbances, namely the feed con-
centrations:

d = [CA,in, CB,in ]
T
. (23)

The exact values of the disturbances are not known under
operation, but we assume that it is known that CA,in =

0.5mol
l − 1.5mol

l , and CB,in = 0mol
l − 0.5mol

l .

This process has an unconstrained optimum, because
increasing the feed temperature will lead to increased
production of CB , which contributes to lowering the cost.
At the same time a higher feed temperature contributes to
increasing the cost function due to the price for heating.
Therefore, the optimum occur at some optimal trade-off
point. The minimally required number of measurements
for this process is nu+nd = 1+2 = 3, so there are enough
measurements to apply our approach.

4.2 Simulations and Results

To generate the measurement data we run the CSTR in
open loop with random inputs Ti in the range of 420-430
K, and disturbances in the ranges given above. We added
some measurement noise to the data to make the case
study more realistic. The measurement noise on the con-
centrations is uniformly distributed with within ±0.01mol

l ,
and the noise for the temperature measurements varies
uniformly between ±0.5K.

A total of 1000 samples was taken. The first 500 samples
were used to calibrate the model, and the rest were used
to validate the model. Based on inspection of the residuals
for the two data sets, it was found that a PLS model with
10 components reproduced both data sets reasonably well.

The gain matrix Gy was obtained by step testing as

Gy = [−0.0012, 0.0012, 1.0057, 1.0 ]
T
, (24)

and the data for our cost function obtained with the PLS
regression is

Table 2. Loss comparison without noise

Controlled variable Average loss Worst case loss

Hmin loss 0.0132 0.0632
Hdata 0.0260 0.1131

Table 3. Loss comparison with noise

Controlled variable Average loss Worst case loss

Hmin loss 0.0133 0.0632
Hdata 0.0267 0.1193

J∗ = 0.0022

J∗
y = [−0.2070 −5.4507 0.0089 −0.0028 ]

J∗
yy =






−0.0783 −0.2955 −0.0083 −0.0164
−0.2955 0.4341 0.0135 0.0035
−0.0083 0.0135 0.0017 −0.0001
−0.0164 0.0035 −0.0001 −0.0016




 .

(25)

Applying our data based procedure from Section 3, we
obtain the H-matrix as

Hdata = [ 0.3205 −0.2245 −0.0206 0.0219 ] . (26)

We compare the performance of the process when con-
trolling ∆c = H∆y with the truly optimal operation for
1000 random disturbances for the cases with and without
measurement noise. For comparison, we have also simu-
lated the CSTR with the controlled variable combination
obtained from the model based “minimum loss method”
Alstad et al. [2009]

Hmin,loss = [ 0.3205 −0.2691 −0.0001 −0.0022 ] . (27)

The average loss and the maximum loss for the simulations
without measurement noise are given in Table 2. We
observe that the loss when using the data method is about
twice as large as the loss when using the exact local
method. However, the actual value of the cost function
is around 0.8, so the relative loss is still quite small.

Although the method is not designed to handle noise,
we have also tried the method on the case study with
measurement noise included. The results for the same data
points (but this time with measurement noise), are given
in Table 3. Here the trend is similar to the noise-free case,
but the absolute values are a little bit larger.

5. DISCUSSION AND CONCLUSION

We presented a method for finding a self-optimizing con-
trolled variable combination. The approach does not re-
quire a model or disturbance measurements, and the con-
trolled variable is an estimate of the gradient.

If disturbances were measurable, surface response methods
[Box and Draper, 1987] could have be used for optimiza-
tion. However, in practice the disturbances are generally
not measurable online. An alternative approach, which
estimates the gradient online, is extremum seeking [Krstic
and Wang, 2000]. However, this approach requires excita-
tion of the process, which often is undesirable.

As expected, the model based “minimum loss method”
gave better results than our data-based method. However,
when there is no model available this alternative does not
exist, and our approach can be used to obtain at least
some approximation of the optimal H. The loss values for
the simulation case with noise and the case without noise
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have been shown to be very similar, so we conclude that
our method can handle measurement noise to some degree.
Larger noise will affect our method in two ways: 1) it will
deteriorate the estimation of the quadratic cost function
(although this effect may partially be eliminated when
using PLS), and 2) it will enter online when controlling
c = H∆y (this effect may be handled in analogy to Alstad
et al. [2009]. However a detailed study of the effect of noise
is outside the scope of this paper.

The combination matrix H can be used for feedback
control, as we have done in our case study, but it may also
be used for monitoring purposes. In this case, the process
operators simply monitor magnitude of the elements in
∆c = H∆y, and use it as an indication of optimality.

The approach in this paper is local, because it is based
on linearization around the optimal point and the data
model cannot be extrapolated outside the data range.
However, since the data is from plant measurements, it can
be verified how well the model matches the plant. If the
disturbances become too large for the linearized model to
be valid, it becomes necessary to use a different approach,
most likely based on a first principles model. However, a
model based approach will not be able to capture unmod-
elled disturbances either, unless is is somehow corrected
by measurements.

Two topics have not been discussed in detail this paper:
1.) the question of how many components to use in the
PLS model, and 2) how many data points are required to
obtain a good model of the cost function. For topic 1), we
have divided the available data in two sets, and used one
data set as a validation set. The number of components has
been chosen such that the norm of the difference between
the predictions and the actual value of the cost function
for the validation data set was minimized. Generally, the
number of components required will depend on the process
(the directionality of the measurements) and disturbance
directions. Concerning topic 2), the number of data points
required depends on the number of disturbances and
the directions in the disturbances. In principle, we need
the disturbances (which are the predictors in the PLS
regression) to be sufficiently excited so that we can obtain
an estimate of their effect on the cost function, and that
the effect of noise is averaged out. We did not attempt to
find the minimum number of data points (samples). This
is left for future work. Other directions for future work
include testing the approach on a larger case study, and
systematically studying how measurement noise affects the
method.
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