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Abstract: A systematic plantwide control design procedure was proposed in [Skogestad, 2000].
The main goal of this procedure is, to design an optimal control structure for a complete
chemical plant based on steady state plant economics, also known as economic plantwide control.
In this work, we automated a key step of this procedure, which is the selection of controlled
variables, based on quantitative local methods. We applied the economic plantwide control
design procedure to a typical chemical plant process, which consists of a reactor, a separator
and a recycle stream with purge. We evaluated the economic performance of the designed
control structures for various disturbances and found that, although the automatic selection
of the controlled variables was based on local methods, the control structures performed quite

well, even for large disturbances.

Keywords: Economic plantwide control, Exact local method, Nullspace method,
self-optimizing control, control structure selection

1. INTRODUCTION

Production plants today are facing difficult challenges im-
posed by the modern globalized markets. Global compe-
tition demands cheaper and more flexible production, in
order to retain profitability and competitiveness. Most of
the industrial process control strategies are designed to
work at some nominal operating conditions, and usually,
are not designed to optimally handle frequent (daily or
weekly) changes in market conditions and prices, and thus,
to retain an optimal economic operation. Engell [2007]
states that, in order to minimize the operation cost, in a
such demanding environment of frequent market condition
changes, a new look on integration of process control and
process operations is needed. In the same paper, Engell
provides a review of state of the art in integrated process
optimization and control of continuous processes. The two
state of the art approaches for implementing an optimal
plant operation presented in detail are: the self-optimizing
control [Skogestad, 2000] and direct online optimizing con-
trol [Marlin and Hrymak, 1997].

For the direct online optimizing control the main idea is,
to calculate the optimal input trajectory over some con-
trol horizon by optimizing a rigorous nonlinear dynamic
model of a plant over some prediction horizon. For self-
optimizing control the idea is to turn the optimization
into a setpoint control problem and the trick to do that
is to find some self-optimizing variables to control. These
“magic” variables are defined by Skogestad [2004b] as: the
controlled variables, that, when kept constant at nominal

* This work was supported by the Norwegian Research Council.
Corresponding author: Sigurd Skogestad skoge@.ntnu.no

Copyright © 2013 IFAC

optimal values, using the available degrees of freedom,
indirectly result in a close-to-optimal operation despite the
occurrence of disturbances.

Since the direct online optimization approach guaranties a
near-optimal operation, it has gain a lot of attention from
process industry, but has failed to be adapted widely by
the industry, because it is too complicated and expensive
in many cases. Downs and Skogestad [2011] mention that
the usual industrial practice is to focus on unit operation
control, mainly because this is a simple strategy that is
easily understood by the operators and engineers. Thus
a plantwide control design procedure has to have three
essential characteristics in order to be applied by the
process industry engineers: (1) it has to be simple (without
the need for complex control technology, like real-time
optimization), (2) it has to be able to achieve near-optimal
operation, and (3) it should not “require the care and
feeding of experts”.

The economic plantwide control design procedure, as de-
scribed in Skogestad [2012], can be used to design control
structures that have the first two of the key characteristic
mentioned above and the third characteristic could be
realized by automating this procedure. The hierarchical
decomposition of the economic plantwide control design
into a stepwise top-down and bottom up procedures could
provide the basic framework for automating the entire
design procedure, which is the ulterior goal behind the
work presented in this paper. A key step in automating
the entire procedure is to automate the selection of the
controlled variables for the economic layer. Our main
focus here, is to show that this can done by selecting
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Fig. 1. Feedback implementation of optimal operation with
separate layers for optimization (RTO) and control.
[Alstad et al., 2009]

self-optimizing controlled variables based the quantitative
local methods described in [Alstad et al., 2009].

In this work we apply the economic plantwide control
design procedure to a typical chemical plant, emphasizing
the automatic selection of the self-optimizing control struc-
ture, using quantitative local methods. We evaluate the
economic performance of the selected control structures
and compare them against a simple strategy of keeping the
unused degrees of freedom at their nominal optimal values.
As a typical chemical plant, we consider a process, which
consists of a reactor, a separator and a recycle stream with
purge.

This paper is structured as follows: Section 2 presents
a brief summary of the top-down part of the economic
plantwide control design procedure. In Section 3, we
present a mathematical formulation of optimal operation
and the main ideas behind the derivation of Nullspace
method and the Exact local method. We describe the
reactor-separator-recycle (RSR) process model and the
software used for this work in Section 4. A step by step
application of the top-down part of the economic plantwide
control procedure for the RSR process with emphasis on
the automatic selection of self-optimizing CVs is presented
in Section 5, and in Section 6 we evaluate the economic
performance of these self-optimizing control structures,
discuss the results and conclude the paper.

2. ECONOMIC PLANTWIDE CONTROL DESIGN
PROCEDURE

This section presents brief summary of the top-down part
of the economic plantwide control design procedure as
described in Skogestad [2004a] and Skogestad [2012]. The
nomenclature for the inputs, disturbances, measurements
and noise, used in this section, is depicted in Fig. 1.

Step 1: Define the operational objectives (eco-
nomics) and constraints.

First, operational objectives are defined as a scalar cost
function J and the operational constraints are identified
and formulated.

Step 2: Determine the steady-state optimal opera-
tion
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In this step, first an operational mode has to be chosen
before proceeding with the analysis:

e Mode 1: Given throughput (maximize the efficiency).
This mode corresponds to some tradeoff between
valuable product recovery and minimal energy usage.

e Mode 2: Maximum throughput (maximize the pro-
duction). When the product prices are high compared
to energy and raw product prices it is optimal to
increase the production to maximum.

(a) Identify the steady state degrees of freedom

Identify all the dynamic DOFs up. They corre-
spond to the actual manipulated variables. Then, ex-
clude all the DOFs, that either don’t have any effect
on the cost function J or are used to control outputs
that have no effect on the cost. The remaining DOF's
are the steady state DOFs ugg.
Identify the important disturbances and their
expected range

Here, the important disturbances are identified. The
“importance” of a disturbance is proportional to the
sensitivity of the cost function to that disturbance.
Typically the important disturbances are: the feed
flows, feed composition and back-off from constraints.
Identify the active constraints regions

Here, the active constraints regions for the expected
disturbance range are identified. A straightforward
approach, for mapping these regions, is to optimize the
process over a fine grid of points in the disturbance
space, thus determining which constraints are active
at every point. A more resourceful approach, which
tracks the active constraint boundaries is reported by
Jacobsen and Skogestad [2011].

Step 3: Select primary (economic) controlled vari-
ables.

Every steady state DOF identified in the step 2(a) needs
to be paired with a primary controlled variable.

First, pair them with the active constraints, which can be
considered as the obvious self-optimizing variables, since
keeping them at the nominal optimal values, results in an
optimal operation. The active constraints could be inputs
u or outputs y. While, the implementation for the active
inputs constraints is trivial (e.g. valve fully open or closed),
for output constraints that can not be violated, special
care, in terms of safety margins (back-off), is required.

Then, select self-optimizing controlled variables for the
remaining DOFs . The main steps involving the selection
of those variables are:

(a) Identify the candidate measurements

Identify all the candidate measurements y and esti-
mate the expected static measurement error n¥. The
measurements should include the inputs too u(e.g. the
flow rates measurements).
Select the primary (economic) controlled vari-
ables (CVs) for the remaining DOFs

As primary CVs ¢ we may select a single or combi-
nation of measurements, based on the structure of the
H matrix, that is: ¢ = H y. The selection is based
on:
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(I) Qualitative approach (based on the following
Skogestad’s heuristic rules)
(1) The optimal value of a CV should be insen-
sitive to disturbances.
(2) The CV should be easy to measure and
control.
(3) The CV should be sensitive to manipulated
variable (MV) variations.
(4) For cases with two or more CVs, they
should be not closely correlated.
(IT) Quantitative approach
(1) Brute force approach
Grid the expected disturbance space and
evaluate the cost function J at each point of
the grid, including estimated measurement
noise, while keeping a subset (of n,, size) of
candidate CVs set at their nominal values.
Choose for pairing the subset of CVs that
gives the lowest cost.
Local approaches
Local approaches are based on the Tay-
lor series expansion of the cost function
around the optimal nominal point. These
are: the Maximum gain rule [Skogestad and
Postlethwaite, 2005], the Nullspace method
and the Exact local method [Alstad et al.,
2009].
The last two local methods are described in
the section 3.

Step 4: Select the location of throughput manipu-
lator (TPM)

The TPM or the process “gas pedal” is usually a flow in the
process that is set. There are two key concerns regarding
the location of the TPM:

(a) Economics
The location of the TPM is going to affect how
tight some active constraints can be controlled, thus
affecting the economic loss.
(b) Structure of the regulatory control system
The location of the TPM has a significant impact on
the regulatory control structure, because of the radia-
tion rule [Price and Georgakis, 1993], which links the
top-down and the bottom-up parts of this procedure.

We do not consider the bottom-up part of these procedure,
because it is out of the scope of this paper. We refer the
reader to [Skogestad, 2012].

3. LOCAL QUANTITATIVE METHODS

Here, we focus on step 3(b) of the procedure described
in the previous section. We present the mathematical
formulation of the optimal operation and the lay down the
ideas behind the two local methods, the Nullspace method
and the Exact local method. The work presented here is
follows [Alstad et al., 2009], unless otherwise stated. The
nomenclature used in this section, if not explicitly defined,
is depicted in the Fig. 1.

Optimal operation of the plant, with respect to the steady
state DOFs u, can be defined as:
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J(u,d)

where: the c¢;(u,d) are the operational constraints. We
assume that the u here includes only the remaining steady
state DOFs and that the d includes the parameter varia-
tions too.

minimize
v (1)

subject to

For a given d, the solution of the problem 1 gives the opti-
mal value for the cost function J°P*(d) , the optimal input
values u°Pt(d) and the optimal output values y°P¢(d).

We define the loss as the difference between the cost using
non optimal inputs u and the optimal cost J°P(d):

L = J(u,d) — JP(d) 2)

The linearized (local) model in terms of deviation variables
is formulated as:

(3)
(4)

We define the s,caled disturbances d’ and scaled measure-
ments noise nY as:

Ay =GYAu + GYAd
Ac= HGYAu+ HGYAd

Ad = WaAd' (5)
nY = Woun? (6)
The self-optimizing control can be described, in terms of
the variables defined in this section, as the selection of
optimal H in ¢ = H y, such that, if ¢ kept at its nominal

optimal values ¢s (constant set point policy), it results in
minimal or acceptable loss [Yelchuru and Skogestad, 2011].

Nullspace method

The derivation of this method is quite straightforward,
details can be found in [Alstad et al., 2009]. Assuming
that there is no measurement noise nY = 0, an optimal
combination of measurements can be formulated as:

Ac = HAy"

Ay°Pt can be written as:

(7)

Ay = FAd (8)

Combining the equations(7) and (8) results:
Ac? = HFAd 9)
where: F = Q%Zt = —(GYJ t Jua — GY) is the optimal

sensitivity matrix. For practical purposes its easier to
calculate the F' by reoptimizing non-linear steady state
plant model for small disturbance variations.

An optimal operation based on constant set policy means
Ac°Pt = 0 for any Ad # 0.

Theorem 1. (Nullspace method). [Alstad et al., 2009] If
the number of measurements n, is equal or larger than
the number of inputs n, plus the number of disturbances
ng, that is ny, > n, +ng and F is evaluated with constant
active constraint set, then it is possible to select the matrix
H as a basis for the null space of F, H € N(FT), such
that, HF =0

Which means that any H such that, HF = 0 results in
an optimal operation.
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FEzact local method

To minimize the average and the worst case loss for the ex-
pected noise and disturbances, Alstad et al. [2009] formu-
lated the the problem for finding an optimal measurement
combination as follows:

ghaHGH T HY|  (0)
where: Y = [FW4W,], the % denotes 2-norm for the

worst case scenario and Frobenius norm for minimizing
the average loss.

H = argmin
H

In the same paper the analytical solution for Frobenius
norm case of the problem (10) is derived:

HT = (YYD 'qv(a¥T(yYT)tgqy)~'Jl2 (11)
Kariwala et al. [2008] showed that the H obtained for
Frobenius norm is in some sense super optimal. It min-
imizes both worst case loss and the average case loss.
Yelchuru and Skogestad [2011] based on the analytical
solution (11) derived and proved the following theorem:

Theorem 2. (Simplified analytical solution). [Yelchuru and
Skogestad, 2011] Another analytical solution to problem in
(10) is

H" =(yYY")~'a¥Q
where: @ is any non-singular matrix of n. X n.

(12)

This method is recommended when the measurment noise
is not negligible.

4. PROCESS DESCRIPTION

In this section we describe the details of the reactor-
separator-recycle process used as a case study in this work.

4.1 Process model description

A model of a generic chemical plant, which consists of a
reactor, a separator and a recycle stream with purge, is
used as a case study. The specific process was chosen be-
cause it incorporates the basic structure of many chemical
plants and because it has been studied extensively in the
process control literature [Larsson et al., 2003],[Jacobsen
and Skogestad, 2011],[Wu and Yu, 1996]. In this work,
we used the same process parameters and reaction set as
[Jacobsen and Skogestad, 2011], so the reader can refer to
that paper for any details omitted here. The process flow
diagram is illustrated in Fig. 2.

A fresh feed Fy of raw product A and recycle stream R
are fed into a continuously stirred tank reactor (CSTR).
Two parallel reactions take place in the CSTR:

A— B (13a)
A—2C (13b)
where: B is the desired product and C a byproduct. The

reaction rates are modelled as first-order kinetics. The
reaction rate model is given by:

o
r; = A; exp <RQT1)

where: I, ; is the activation energy, R is the gas constant
and T is the temperature. The reaction parameters are
given in Table 1.

(14)
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Table 1. Reaction kinetics parameters

Reaction,  Reaction rate constant, Activation energy,
) A;, [unitsil} Ea i, [J/mol]

A—B 1x10° 6 x 10*

A—2C 5 x 10° 8 x 10*

Fig. 2. Process flow diagram for the reactor-separator-
recycle process

Table 2. Distillation column parameters

Parameter  Value ‘ Parameter Value
QAC 0.70 number of stages 30
apc 0.60 feed stage location 15

The effluent F' of the reactor is sent to the distillation
column, where the product B is separated as a bottom
product and the unreacted A and C are distilled. Part of
the distillate D is removed as P purge, while the rest of it
R is recycled back to the CSTR.

The column model used here is an ideal multicompo-
nent model based on the ”Column A” in [Skogestad and
Postlethwaite, 2005]. Some of the column parameters are
given in Table 2.

4.2 Process optimization and simulation

For this investigation we developed a steady state MAT-
LAB model and a dynamic SIMULINK model of the
described above process. For the optimization needs
the builtin MATLAB® non-linear optimization function
(fmincon) was used. For simulation purposes we used
SIMULINK® with odel5s solver.

5. CASE STUDY

This section presents the implementation of the top-down
part of the economic plantwide control design procedure
as described in [Skogestad, 2004a] and [Skogestad, 2012].
The nomenclature used in this section is depicted in Fig.
2.
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Step 1: Define the operational objectives (eco-
nomics) and constraints.

Cost function: The cost function for this process is
defined as follows:

J=prFo+pvV —ppP—ppB
where: Fy is the reactor feed flow rate, V is the column
boilup, B is the bottom product flow rate and P is the

purge flow rate. The pg, pyv, pp and pp are their respective
prices.

Operational constraints: The operational constraints
are the following: the product specifications and equip-
ment limitations.

TB,B S 0.9 TR S 390 [K]
Mp < 11000 [mol] V' < 30 [mol/q]
R > 0 [mol/s] P > () [mol/g]

where: zp, p is the composition of B in the bottom product
stream B, T’ is the reactor temperature, My is the reactor
holdup, R recycle stream, P purge stream.

Step 2: Determine the steady-state optimal opera-
tion

For this process we assumed that the feed is given, thus
the operational mode is Mode 1: Given throughput.

(a) Identify the optimization degrees of freedom
analysis
Dynamic degrees freedom:
up = [La‘/aD7B7F7R7TR]
Steady state degrees freedom:
uss = [La ‘/a F7 R7 TR]

D and B are used to control the levels Mp and Mp
respectively, which have no steady state effect on the
cost but have to be controlled in order to stabilize the
plant.
Identify the important disturbances and their
expected range

We consider as main disturbance for this case the
feed flow, Fjy and the energy price, py fluctuations:

d= [F07 pV}

Identify the active constraints regions

To map the active constraints regions the distur-
bance space was gridded into 200 x 200 points and

for each point optimal solution was found. The active
constraints regions are illustrated in Fig. 3.

Step 3: Select primary (economic) controlled vari-
ables.

We assume that the process operates in the first region (I).
The nominal operational point is:
FO,nom =0.8 [km()l/s], PV.nom = 0.06 [$/mol]

We choose the following pairings (Input, Output) for the
active constraints based on Skogestad’s rule [Skogestad,
2012] 7 pair close”.

(V,xpp) (S, Tg) (F,Mgr) (R, Closedvalve)
The control structure of the selected pairings are depicted
in Fig 2.

(a) Identify the candidate measurements
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Fig. 3. Active constraints regions for the reactor-separator-
recycle process

We assume that the following measurements are
available and estimate their expected noise magni-
tudes:

column and reactor temperatures (noise +1 [K])

T1,T5,Ty, T13, 117, To1, Tos, T30, TR,
the input flows (noise £10%)
La‘/aDaBaFaFOaP
reactor level(noise 100 [mol])
Mg
compositions (noise £0.01)
TB,D;TB,B;TB,F-
Select the primary controlled variables for the
remaining DOF's

After pairing the active constraints and levels, only
one steady-state DOF is available, and that is the
reflux flow, L. We select a self-optimizing controlled
variable to pair with L, based on the two quantitative
methods, described in section 3 .

First, we calculate the optimal sensitivities F by
perturbing the disturbances and re-optimizing the
process for the perturbed values:

Ayopt
Ad
Then, we calculate the gain matrix GY by perturbing

the inputs and then simulating the process until it
reaches the new steady state:
_ Ay
- Au
To select an H ,based on the Nullspace method, we
select a basis from the left null space of FT.
For the selection of H based on the Exact local
method we use the equation (12), where we set Q = I.
The selection of the self-optimizing control structure

for any nominal point has been automated based on
the procedure described in this step.

F =

GY

Step 4: Select the location of throughput manipu-
lator

For a given feed the TPM is already set by the feed flow
F. The level control is selected to be in the direction of
the flow downstream of the location of the feed. For more
details we refer the reader to [Aske and Skogestad, 2009]
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Fig. 4. Evaluation of the performance of different control
structures for various disturbance

6. RESULTS AND CONCLUSIONS

Here we evaluate the economic performance of the self-
optimizing control structure against the simplest strategy,
that is, to keep the unconstrained degree of freedom L
at its nominal optimal value. We disturb the process and
evaluate the relative loss Lpg; for various disturbances.
Where the Lg.; is defined as follows:

J(u,d) — JP(d)
Jort(d)

The economic performances of all the control structures

for different disturbance values are depicted in Fig. 4.

Lpe = (15)

First, we evaluate the relative loss for feed flow changes Fj
for the control structures with and without measurement
noise(see Fig. 4(a)). Then, we evaluate the relative loss
for simultaneous py and Fj changes for the same control
structures (see Fig. 4(b)).

It is clear that keeping the selected self-optimizing con-
trolled variable constant outperforms keeping the L con-
stant in both of the cases. Therefore the systematic se-
lection of the controlled variables based on exact local
methods could be considered as a successful approach to
automate this essential step of the economic plantwide
control procedure
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The automation of the economic plantwide design proce-
dure, especially the integration of the automatic design in
the major process simulators, could potentially improve
the optimality of the production plants on a global scale,
thus having a large effect on the production costs and
environmental footprint.

REFERENCES
Vidar Alstad, Sigurd Skogestad, and Eduardo S. Hori.

Optimal measurement combinations as controlled vari-
ables. Journal of Process Control, 19(1):138-148, Jan-
uary 2009. ISSN 09591524.

Elvira Marie B. Aske and Sigurd Skogestad. Consistent
Inventory Control. Industrial & Engineering Chemistry
Research, 48(24):10892-10902, December 2009. ISSN
0888-5885.

James J. Downs and Sigurd Skogestad. An industrial
and academic perspective on plantwide control. Annual
Reviews in Control, 35(1):99-110, April 2011. ISSN
13675788.

Sebastian Engell. Feedback control for optimal process
operation. Journal of Process Control, 17(3):203-219,
March 2007. ISSN 09591524.

Magnus G. Jacobsen and Sigurd Skogestad. Active Con-
straint Regions for Optimal Operation of Chemical Pro-
cesses. Industrial & Engineering Chemistry Research, 50
(19):11226-11236, October 2011. ISSN 0888-5885.

Vinay Kariwala, Yi Cao, and S. Janardhanan. Local Self-
Optimizing Control with Average Loss Minimization.
Industrial & Engineering Chemistry Research, 47(4):
1150-1158, February 2008. ISSN 0888-5885.

T E Marlin and A N Hrymak. Real-time operations
optimization of continuous processes. CPC, 1997.

Randel M. Price and Christos Georgakis. Plantwide reg-
ulatory control design procedure using a tiered frame-
work. Industrial & Engineering Chemistry Research, 32
(11):2693-2705, November 1993. ISSN 0888-5885.

Sigurd Skogestad. Plantwide control: the search for the
self-optimizing control structure. Journal of Process
Control, October 2000. ISSN 09591524.

Sigurd Skogestad. Control structure design for complete
chemical plants. Computers & Chemical Engineering,
January 2004a. ISSN 00981354.

Sigurd Skogestad. Near-optimal operation by self-
optimizing control: from process control to marathon
running and business systems. Computers & Chemical
Engineering, December 2004b. ISSN 00981354.

Sigurd Skogestad. Economic Plantwide Control. In
Plantwide Control, pages 229-251. John Wiley & Sons,
Ltd, 2012.

Sigurd Skogestad and Ian Postlethwaite.
able Feedback Control: Analysis and Design.
Interscience, 2005. ISBN 0470011688.

Kwo-Liang Wu and Cheng-Ching Yu. Reactor/separator
processes with recyclel. Candidate control structure for
operability. Computers & Chemical Engineering, 20
(11):1291-1316, January 1996. ISSN 00981354.

Ramprasad Yelchuru and Sigurd Skogestad. Optimal Con-
trolled Variable Selection with Structural Constraints
Using MIQP Formulations? In IFAC Congress, Milano,
Ttaly, 2011.

Multivari-
Wiley-



