
Johannes Jäschke

Invariants for Optimal Operation
of Process Systems

Doctoral thesis
for the degree of philosophiae doctor

Trondheim, June 2011

Norwegian University of Science and Technology
The Faculty of Natural Sciences and Technology
Department of Chemical Engineering



2

NTNU

Norwegian University of Science and Technology

Doctoral thesis
for the degree of philosophiae doctor

The Faculty of Natural Sciences and Technology
Department of Chemical Engineering

c© 2011 Johannes Jäschke.

ISBN 978-82-471-2909-8 (printed version)
ISBN 978-82-471-2910-4 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2011:180

Printed by NTNU-trykk



To

Benedikt,

your footprints are in my heart.

And to

Samuel & Susanne



ii



Abstract
State of the art strategies to achieve optimal process operation typically employ a hierar-
chical control structure, where different tasks are designated to different control layers.
In the simplest case there is an optimization and a control layer. The optimization layer
computes the optimal setpoints for the controlled variables, which are then implemented
by the control layer. While the control layer is designed to keep the controlled variables at
given setpoints, the optimization layer changes these setpoints to adapt operation optimally
to varying conditions. For simple implementation, we want to change the setpoints only
occasionally while still obtaining acceptable performance under varying disturbances.

The focus of this thesis is to study how to find good controlledvariables, whose op-
timal value is invariant or near invariant to disturbances.These invariants are calledself-
optimizingvariables, and keeping them constant will result in an acceptable, or in the ideal
case, zero loss from optimality.

In the first part of this thesis, we consider controlled variables, which are linear com-
binations of measurements. The loss is used as the criterionfor selecting the best set of
controlled variables. Applying the inverse Choleski factor of the Hessian with respect to
the inputs as a weighting factor, we derive a first order accurate expression of the loss in
terms of the weighted square norm of the gradient of the optimization problem.

Next, we present a method for finding controlled variables byanalyzing past optimal
measurement data. Selecting combinations of measurementswhich correspond to direc-
tions of small singular values in the data, leads to controlled variables which mimic the
original disturbance rejection.

Furthermore, the relationship between self-optimizing control and necessary condi-
tions of optimality (NCO) tracking1 is studied. We find the methods to be complementary,
and propose to apply NCO tracking in the optimization layer,and self-optimizing control
in the control layer. This will reject expected disturbances by self-optimizing control on
a fast time scale, while unexpected disturbances are rejected by the setpoint updates from
NCO tracking.

In the second part of the thesis, we extend the concept of self-optimizing control
to polynomial systems with constraints. By virtue of the sparse resultant, we use the
model equations to eliminate the unknown variables from theoptimality conditions. This
yields invariants which are polynomials in the measurements; controlling these invariants
is equivalent to controlling the optimality conditions.

This procedure is not limited to steady state optimization,and therefore, we demon-
strate that it can be used for finding invariants for polynomial input affine optimal control
problems. Manipulating the inputs to control the invariantto zero gives optimal operation.

1François, G., Srinivasan, B., Bonvin, D. 2005. “Use of measurements for enforcing the neces-
sary conditions of optimality in presence of constraints and uncertainty”. Journal of Process Control
15 (6). 701-712
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Chapter 1

Introduction

Und jedem Anfang wohnt ein
Zauber inne,
Der uns beschützt und der uns hilft
zu leben.

H. Hesse

1.1 Motivation

Rising competition in a global market makes it increasinglynecessary to operate
chemical plants at a greater profit. At the same time, environmental and safety
regulations become stricter. To remain competitive in the face of these challenges
requires improvements in the process design and strategieswhich help to maximize
the profit for existing processes.

This work is concerned with optimal operation of process systems, where the
design is assumed to be given. Although the profits from meliorating process
operation might seem small compared to the total income, theaccumulated effect
over time is often significant for success on the market.

A common strategy for obtaining higher profits is to raise thedegree of au-
tomation in a plant by using automatic controllers. These controllers are used to
control process variables to their setpoints, which are given by operators or have
been obtained by some optimization routine. Depending on the operating con-
ditions and the control structure, these setpoints may haveto be adjusted to the
current operating conditions, such that the income generated by the plant, is max-
imized.

In practice, however, one wants to avoid changing the setpoints for the con-
trolled variables frequently, to keep operation simple while still achieving optimal
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or near optimal operation.
A successful method for achieving near-optimal operation is self-optimizing

control [Skogestad, 2000]. This term refers to finding controlled variables which
remain constant at optimal operation, and which can be easily controlled using a
simple feedback structure. An example for self-optimizingcontrol is controlling
the temperature in a kitchen oven at a given temperature. Baking your favourite
cake in the oven at the given temperature gives good results,even for different
ovens and if the kitchen temperature varies because a windowhas been opened. A
different (non self-optimizing) strategy would be to directly control the heat input
to the oven. Due to changing heat loss, the optimal value of this variable will not
be constant with changing kitchen temperatures, or for different ovens. In addition,
the second strategy is more difficult to implement, and requires knowledge about
the kitchen temperature, the heat loss from the oven, and theheat capacity of the
cake.

In other cases, the best strategy is to control some combination of measure-
ments to a given constant setpoint, for example controllingthe flow ratio of two
streams entering a reactor, or the air/fuel ratio into a combustion engine.

Controlled measurement combinations, whose optimal values are invariant to
disturbances, are the leitmotif in this thesis. We show how this concept can be
derived, how data can be used for finding controlled variables, how using invariants
and other methods interact, and we explore new ways for finding these invariants.

In the last decade, there has been much work on finding self-optimizing con-
trolled variables, which are linear combinations of measurements. However, re-
stricting controlled variables to be linear combinations of measurements can give
unacceptable performance, if the process behaviour is nonlinear. In these cases it
is desirable to allow nonlinear combinations of measurements, too. Thus, the main
contribution of this thesis is the extension of the null-space method [Alstad and
Skogestad, 2007], which gives a linear combination of measurements for an un-
constrained problem to systems which are constrained and which can be described
by polynomial or rational equations (Chapter 7). This extension to polynomial
systems makes it possible to apply it to certain dynamic systems (Chapter 8).

1.2 Thesis overview

After an introduction to different methods for achieving optimal operation, the first
part of this thesis (Chapters 2 – 5) deals with controlled variables, which are linear
combinations of measurements. The second part (Chapters 6 –8) describes how
polynomial invariants can be found for systems which are modelled by rational
or polynomial equations. Except for Chapter 8, all this thesis is concerned with
finding controlled variables which optimize plant performance at steady state.
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Part I Preliminaries and linear invariants for optimal oper ation

• Chapter 2 gives a short introduction to optimal operation strategies for chem-
ical plants. Some important strategies are briefly mentioned, and the thesis
is placed in a wider context.

• Chapter 3 points out the connection between the loss from optimality used
in linear self-optimizing control, and the gradient of the underlying opti-
mization problem. In particular, the loss is shown to be a weighted norm
of the gradient. We show that weighting is important when comparing dif-
ferent control structures, because using the unweighted gradient norm as a
criterion may be misleading.

• Chapter 4 presents a method for finding linear invariant variable combina-
tions in the case where a model is not available. Optimal operation data is
analyzed for finding invariant variable combinations whichcan be used for
control.

• Chapter 5 shows how self-optimizing control and NCO1 tracking [François
et al., 2005] can be placed in the general concept of an hierarchical real-
time optimization control structure. We show that the approaches can be
considered complementary, with NCO tracking updating the setpoints for
the self-optimizing controlled variables.

Part II Polynomial invariants for optimal operation

• Chapter 6 presents some very basic theory polynomial systems. We intro-
duce some concepts to prepare the reader for the following chapters.

• Chapter 7 extends the theory of the null-space method [Alstad and Skoges-
tad, 2007] to systems of polynomial equations with constraints. The idea
is to formulate the optimality conditions, and then eliminate all unknown
(unmeasured) variables from this expression.

• Chapter 8 demonstrates that the results from the previous chapter can be
used to find invariants for a dynamic optimization.

• Chapter 9 gives our conclusions and suggestions for furtherwork.

1NCO refers to “necessary conditions of optimality”
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Appendix

• Appendix A contains a case study of a waste incineration plant. It is in-
cluded here, because it nicely illustrates the concept of self-optimizing con-
trol in an industrial case study, and it shows how optimal operation can be
implemented in a simple manner.

In the author’s opinion, the Chapters 5, 7 and 8 are the most important contribu-
tions of this PhD work.
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1.3 Publications

During my PhD work I have generated the following publications:

1.3.1 Publications contained in this thesis

• Chapter 3

– Johannes Jäschke and Sigurd Skogestad “Optimal Operation by Con-
trolling the Gradient to Zero” Accepted for publication at the 18th
World Congress of the International Federation of Automatic Control
(IFAC), 2011, Milano.

• Chapter 4

– Johannes Jäschke and Sigurd Skogestad “Controlled Variables from
Optimal Operation Data” Accepted for publication at the 21st Euro-
pean Symposium on Computer-Aided Process Engineering, ESCAPE
2011, Porto Carras.

• Chapter 5

– Johannes Jäschke and Sigurd Skogestad “Self-optimizing Control and
NCO tracking in the Context of Real-time Optimization” Submitted to
Journal of Process Control.

• Chapter 7

– Johannes Jäschke and Sigurd Skogestad “Self-Optimizing Control us-
ing Nonlinear Variable Combinations as Controlled Variables” Sub-
mitted to Journal of Process control.

• Chapter 8

– Johannes Jäschke, Miroslav Fikar and Sigurd Skogestad “Self-optimizing
Invariants in Dynamic Optimization” Submitted to 50th IEEECon-
ference on Decision and Control and European Control Conference,
CDC-ECC 2011, Orlando.

• Appendix A

– Johannes Jäschke, Helge Smedsrud, Sigurd Skogestad, Henrik Manum,
“Optimal Operation of a Waste incineration Plant for District Heating”
Proc. American Control Conference, St. Louis, USA, June 2009, 665-
670.
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1.3.2 Other publications as first author

2011

• Johannes Jäschke, Sigurd Skogestad “Measurement Polynomials as Con-
trolled Variables” Book Chapter in: M. Huba, S. Skogestad, M. Fikar, M.
Hovd, T. A. Johansen, B. Rohal’-Ilkiv (Editors) “Selected Topics on Con-
strained and Nonlinear Control”, Textbook. ISBN: 978-80-968627-4-0.

• Johannes Jäschke, Sigurd Skogestad “Measurement Polynomials as Con-
trolled Variables -Excercises” Book Chapter in: M. Huba, S.Skogestad, M.
Fikar, M. Hovd, T. A. Johansen, B. Rohal’-Ilkiv (Editors) “Selected Topics
on Constrained and Nonlinear Control”, Workbook. ISBN: 978-80-968627-
3-3.

2010

• Johannes Jäschke, Sigurd Skogestad, “Self-optimizing control and NCO
tracking in the Context of Real-time optimization” Keynotelecture, 8th In-
ternational Symposium on Dynamics and Control of Process Systems, Proc.
DYCOPS 9 Leuven, Belgium, July 2010.

• Johannes Jäschke, Sigurd Skogestad “The Null Space Method for Finding
Patterns from Optimal Data” 21st Norwegian Symposium on Chemometrics,
March 2010 Sundvolden.

2009

• Johannes Jäschke, Sigurd Skogestad “Optimally Invariant Variable Combi-
nations for Nonlinear Systems” Proc. ADCHEM, Istambul, Turkey, July
2009, 551-556.

• Johannes Jäschke Sigurd Skogestad, “Nonlinear Measurement Combina-
tions for Optimal Operation” Nordic Process Control Workshop 2009 Pors-
grunn, Norway.

2008

• Johannes Jäschke, Sridhar Narasimhan, Sigurd Skogestad, “Explicit real-
time optimization”, AIChE Annual Meeting, paper 471a, Philadelphia, USA,
Nov. 2008.
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1.3.3 Co-authored publications

• Sigurd Skogestad, Ramprasad Yelchuru, Johannes Jäschke “Optimal use
of Measurements for Control, Optimization and Estimation using the Loss
Method: Summary of Existing Results and Some New” Book Chapter in:
M. Huba, S. Skogestad, M. Fikar, M. Hovd, T. A. Johansen, B. Rohal’-Ilkiv
(Editors) “Selected Topics on Constrained and Nonlinear Control”, Work-
book. ISBN: 978-80-968627-3-3.

• Henrik Manum, Sigurd Skogestad, Johannes Jäschke “Convex initialization
of the H2 -optimal static output feedback problem” Proc. American Control
Conference, St. Louis, USA, June 2009, 1724-1729.
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Part I

Preliminaries and linear
invariants for optimal operation





Chapter 2

Optimal operation of chemical
plants

The fashion of the world is to avoid
cost. . .

W. Shakespeare

This chapter provides a short overview of different approaches to obtain opti-
mal process operation. Some concepts will be revisited later in this thesis, however,
it was decided to include them here to give an overview of how optimal operation
can be implemented in chemical plants, and to present the larger setting in which
this thesis is placed.

2.1 Optimal operation of process systems

Control means influencing an object to behave in a desired way[Findeisen et al.,
1980], and in this thesis we desire to influence process plants such that the plant
performance is optimized. Optimal plant performance here means to manipulate
the available plant inputs in such a way that a scalar cost function is minimized
(or equivalently, that the profit is maximized). This costJdynamic is expressed as
[Findeisen et al., 1980]

Jdynamic=
1

t f − t0

∫ t f

t0
j(t)dt, (2.1)

Here t0 and t f denote the starting and the final time of the operation periodof
interest, andj(t) denotes the time varying integral cost. During operation, certain
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safety and environmental constraints have to be satisfied:

h(t) ≤ 0. (2.2)

An example forJdynamiccould be the accumulated expenses for fuel or emissions
over a year; and examples for operational constraints include the maximum tem-
perature in a reactor or the minimum and maximum allowable level in a storage
tank.

In practice, many plants are operating close to a steady state operating point
for most of the time. In these cases, (2.1) can be approximated sufficiently well by
introducing a quasi steady state assumption and using the inputs to optimize the
steady state cost (rate),

J = j. (2.3)

The type of plants, which are optimized in industry varies. Starting from
small specialty chemical reactors, where one e. g. wants to avoid expensive off-
spec product, the applications range to large-scale applications as optimizing the
performance of complete large-scale plants, such as refineries. Thus, the number
of measurements and inputs can vary significantly. A complete chemical plant may
have hundreds to thousands of controlled variables [Harriset al., 1999; Trenchard
and Boder, 2005], which have to be controlled by equally manyinputs. In addition,
there will be many variables which are not controlled, but which are measured and
monitored for safety and environmental reasons.

The plant profitJ is to be optimized not only at some design conditions, but
also during different kinds of external disturbances whichaffect the plant. Gen-
erally, some disturbances will change slowly, or between long time intervals. Ap-
plying a quasi steady state assumption, these disturbancescan be considered as
constant. Examples for this kind of disturbances may include changes in the pro-
duction rate, or the temperature of sea water which is used for cooling in a process.

Other disturbances will be changing at a higher frequency, and a steady state
assumption would not be valid for these disturbances. To reject these disturbances
truly optimally, one would need to solve a dynamic optimization problem. How-
ever, in many practical applications the disturbances can be rejected well with PI
feedback control to keep the important process variables constant in spite of these
disturbances. An example is the temperature of the cooling water for a cooling
reactor. In this case, the coolant flow rate can be adjusted such that the reac-
tor temperature stays at the steady state optimal value. However, in general, the
question of whether a disturbance can be considered as constant (steady state) is
dependent on the particular plant, and on the engineer’s requirement to optimality.

In order to minimize the operating cost (2.1) or (2.3) for a complex system
like a chemical plant in spite of disturbances, a common approach is to decompose
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Control
Layers

Regulatory
control

(seconds)

control
Supervisory

Scheduling (weeks)

(minutes)

Local optimization (hours)

Site−wide optimization (days)

Figure 2.1: Hierarchical control structure [Skogestad, 2000a]

the system into subsystems, which are easier to manage, and can be considered
individually. In terms of achieving optimal operation for achemical plant, a hier-
archical decomposition of the control structure is suggested, Figure 2.1 [Findeisen
et al., 1980; Skogestad, 2000a], where one control layer receives control signals
from the layer above, and passes new control signals to the layer below. The
scheduling layer operates in the time scale of several weeks, and is based on the
economic strategy of the company. Usually, this layer is notautomated. The re-
sulting strategy and operational targets are passed to the site-wide optimization
layer, which may be automated, often using steady state models and numerical
optimization. The control signals from the site-wide optimization layer are sent to
the local optimization layer, which may also be automated. This layer operates in
a timescale of hours.

Finally, the setpoints from the local optimization layer are passed to the control
layer, which can be further subdivided vertically into the supervisory layer and the
regulatory layer. The supervisory layer performs on a slower time scale, while the
regulatory layer rejects the influence of disturbances on a fast time scale.
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As with any abstraction, the concept of hierarchical layersdoes not reflect all
issues which are present in a chemical plant. For example thetime scale separation
will not always be sharply defined. Depending on the particular plant in consider-
ation and the degree of optimization of the process, not all layers are present in the
control structure. However, elements of the layer concept will be found in most
chemical plants, and for practical purposes, the layer model helps to organize the
complex problem of operating the plant optimally.

For obtaining optimal operation in terms of the cost (2.1), obviously all layers
have to act in concert. E.g. it does not help to have a perfectly working regulatory
layer when the scheduling layer has forgotten to order the raw products. To achieve
optimal plant operation, several approaches have been proposed in literature. In
the next section we present some important concepts and relate them to the control
layers in Figure 2.1.

2.2 Model based approaches

To optimize the plant performance, the real-world problem of optimizing (2.1) or
(2.3) is typically translated into a mathematical optimization problem. Depending
on whether a dynamic problem or a steady state problem is solved, we have two
cases.

2.2.1 Dynamic real-time optimization (Dynamic RTO)

The in some sense simplest approach is to lump all the layers into a big, combined
layer and simultaneously optimize this layer using a dynamic model to find the
optimal input trajectories. The optimization problem is typically in a form similar
to this,

min
u(t)

J : =
1

t f − t0

∫ t f

t0
j(u(t),x(t),d(t),p(t), t)dt

s.t.

ẋ(t) = g(u(t),x(t),d(t), t)

h(x(t),u(t),d(t)) ≤ 0

T(x(t f ))≤ 0

x(0) = x0,

(2.4)

whereu(t) is thenu-dimensional vector of inputs,x(t) the nx-dimensional state
vector with given initial valuex0, d(t) thend-dimensional disturbance vector, and
p(t) denotes known parameters concerning the prices of the products.
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Figure 2.2: Dynamic RTO scheme.d(t): external disturbance,p(t): prices,u(t):
input,y(t): measurements.

The function j is the integral cost term of the scalar cost functionJ, g is the
right-hand side of the differential equation system which defines the state evolu-
tion, h denotes the operating constraints, andT the terminal constraints on the
states.

Because the model generally does not describe the plant perfectly, and because
the future evolution of the disturbance is seldom known, theoptimization problem
(2.4) is usually solved repeatedly at given sample times, and the input trajectory is
updated accordingly, Figure 2.2. The plant measurementsy are primarily used to
update the model and model parameters. This monolithic approach is referred to
as dynamic real-time optimization [Allgöwer and Zheng, 2000; Diehl et al., 2002;
Grötschel et al., 2001; Engell, 2007], and it requires an accurate model, which is
capable of describing every layer of Figure 2.1 in detail.

In dynamic real-time optimization there is no distinction between optimiza-
tion and control. Thus, the time scale separation from Figure 2.1 is effectively
undone. If the model was perfect, this approach would lead tothe true optimum.
Because of this potential, dynamic real-time optimizationhas gained much interest
in academia, but it is not used so frequently in practice, because of several reasons.
First, obtaining an accurate dynamic model for a complete chemical plant is often
prohibitively expensive.

Second, solving the dynamic optimization problem arising from a complete
plant in real-time is still challenging with today’s computing power.

Third, since optimization and control are not distinguishable, a failure in the
optimization routine will result in arbitrary inputs to theplant. Vice versa, a small
failure, such as unmodelled stiction in a valve can lead to unforeseen upsetting of
otherwise unrelated parts of the plant. Moreover, noise andplant-model mismatch
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may make operation infeasible.
Fourth, it is very difficult to include unforeseen operator interaction in the

routine. If e.g. an operator sets a valve in manual mode, it isno longer available for
the optimizer. It is almost impossible to include all possibilities when designing
the dynamic real-time optimizer for an industrial plant.

Fifth, the optimality and feasibility of dynamic real-timeoptimization in prac-
tical applications depends critically on obtaining good state and parameter esti-
mates for the model. As the estimation problem is equally complex as the dynamic
optimization problem, this concept is not widely used in industry.

However, if the model is accurate and the optimization problem can be solved
in real-time, the concept of optimizing the whole plant simultaneously will be
optimal. Despite the challenges listed above, dynamic real-time optimization has
been reported on industrial cases [Qin and Badgwell, 2000; Foss and Schei, 2007].
Mostly it is used for optimizing processes of inherently dynamic nature, such as
batch processes and grade transitions. With ever growing computing power and
modelling knowhow it will certainly continue to spread in industry.

2.2.2 Conventional real-time optimization (RTO)

Since many continuous processes make most profit at steady state, the largest sav-
ings can be made by optimizing the steady state performance of the plant. Opti-
mizing only the steady state of the process, instead of including all dynamics into
the optimization problem, allows us to consider the optimization problem and the
control problem separately. This is done in conventional orsteady state real-time
optimization (RTO), where the steady state optimization problem is solved on a
time scale which is larger than the plant settling time.

Of course, a chemical plant is never truly at steady state, but in many cases,
disturbances can be rejected such that important variablesremain almost constant
at their optimal values. This is the ultimate reason for the existence of process
control.

Assuming quasi steady state in all variables, the optimization problem typi-
cally looks like

min
cs

J(u,x,d,p)

subject to

g(u,x,d) = 0

u = f (cs,x,d)

h(u,x,d)≤ 0,

(2.5)

wherecs is the setpoint for the controlled variables, and the variables u ∈ R
nu ,

x ∈ R
nx , d ∈ R

nd , p ∈ R
np are the quasi steady state input, state, disturbance and
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Figure 2.3: Conventional RTO scheme.d: external disturbance,p: prices,u:
input,y: measurements.

price vectors, respectively.J denotes the scalar cost function to be minimized,g
the model equations, andh the operational constraints. The functionf describes
the closed loop steady state relationship between the controlled variables and the
inputs.

The conventional RTO scheme is illustrated in Figure 2.3. Using the price
parameters (from the scheduling layer above), the new setpoints for the controlled
layer are calculated once or twice a day and passed on to the control layer below
which controls the controlled variables to the given setpoints.

Note that in practice all variables in Figure 2.3 are time varying. However,
the real-time optimizer computes new setpoints only at discrete sample times, and
optimal operation will only be achieved when the plant has settled down close to
steady state, and the quasi steady state assumption is valid.

Implementing conventional RTO is easier to realize in industrial practice, be-
cause it is generally easier to obtain a good steady state model than building an
exact dynamic model, which describes the process sufficiently well at all frequen-
cies. In addition, it is numerically easier to solve large steady state optimization
problems than large dynamic optimization problems. However, it should be noted
that solving large nonlinear steady state optimization problems is still far from
easy, and can be prohibitive for implementing RTO in some processes.

As in dynamic real-time optimization, when using conventional real-time opti-
mization, a major challenge is to obtain good parameter and state estimates for the
model. Since a steady state model is used for optimization, it is necessary to assure
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that the plant has settled down sufficiently before updatingthe model parameters
and calculating the new inputs. The task of identifying steady state and reconciling
the data with the model is not easy, and still a subject of ongoing research [Lid and
Skogestad, 2008; Martinez et al., 2010].

When using RTO, some loss for the non steady state periods is accepted, but
it is traded for the additional freedom of being able to design the control layer in-
dependently. Hence, we can for example select pairings which give good dynamic
performance, and we can assign different controllers for different tasks. Thus, it is
possible to design a simple and robust control structure in the control layer, while
still achieving optimal operation at steady state. The additional savings which
could be obtained using dynamic real-time optimization often do not justify the
increased effort of installing and maintaining the dynamicreal-time system.

2.3 Control structure design – self-optimizing control

A question which remains unsolved in this layer system (Figures 2.1 and 2.3) is:
Which variables should be passed on from one layer to the next? Since e.g. the
optimization layer operates on a slow time scale where the setpoints are changed
only once or twice a day, disturbances which occur between the updates are not re-
jected optimally before the next update. Moreover, disturbances may change their
values more frequently than the optimization layer updatesthe setpoints. Depend-
ing on the choice of the controlled variables, this may have asevere impact on the
overall profitability of the plant. The question of which variables to control has
been raised by Foss [1973], in his “Critique of chemical process control theory”:

Which variables should be measured, which inputs should be manip-
ulated, and what links should be made between these two sets?This
problem is considered by many to be the most important problem en-
countered by designers of chemical process control systems. [Foss,
1973]

Since then many authors have been working on finding the best control struc-
ture [Morari et al., 1980; Morari, 1982; Skogestad, 2000a; Narraway and Perkins,
1994; Halvorsen et al., 2003; Skogestad, 2004; Cao, 2005; Kariwala and Cao,
2009], and also this thesis is a contribution to this research field.

To keep the time scale separation, it is desirable to find controlled variables
which remain at a constant value whenever the system is operated optimally. These
variables are called self-optimizing variables. Skogestad [2000a] writes:

Self-optimizing control is when we can achieve an acceptable loss
with constant setpoint values for the controlled variables(without the
need to reoptimize when disturbances occur).
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The idea is to keep the overall optimization problem in mind when designing the
control structure in each layer, such that information about optimal operation is
contained in the controlled variablesc. By controlling c to its optimal setpoint,
the loss which comes from the time scale separation is minimized, because small
disturbances are rejected locally on the fast time scale by the control layer. It is
no longer necessary to wait for the RTO layer to compute new optimal setpoints,
because the optimal setpoints do not change with varying disturbances. Therefore
the self-optimizing variables have been referred to as the “missing link between
steady state optimization and control” Skogestad [2000b].

For many processes, operation can be improved significantlyby automatically
rejecting the disturbances in the control layer, and not having to wait for the next
RTO setpoint update.

In Chapter 3 we show that self-optimizing control variablescan be considered
as local approximations of the gradient of the economic optimization problem. If
they are controlled to zero, the system is operated optimally. Hence, a good choice
of controlled variables can disburden the real-time optimizer in the sense that the
optimization problem has to be solved less frequently, while still giving good per-
formance. In some cases, the real-time optimizer may even become superfluous.
We discuss the combination of self-optimizing control and an optimization layer
in Chapter 5.

2.3.1 Previous work on self-optimizing control

In this section we give a brief overview of previous work in self-optimizing control.
Since this thesis is a collection of papers, we believe, thatit will make it easier for
the reader to see the novel developments in the subsequent chapters.

For a more detailed treatment and a complete derivation of the methods below,
we refer to Halvorsen et al. [2003]; Alstad and Skogestad [2007]; Alstad et al.
[2009]. The goal is to find controlled variables, whose steady-state optimal value
is constant in spite of disturbances. We assume that quasi steady state optimal
operation corresponds to the solution of

min
u

J(u,x,d,p)

subject to

g(u,x,d) = 0

h(u.x,d)≤ 0,

(2.6)

where the variables are defined as in the conventional RTO problem (2.5). After
satisfying all the active constraints, the remaining unconstrained problem can be
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approximated around the nominal optimal point as

min
u

J(u,d) =
[

uT dT
]
[

Juu Jud

Jdu Jdd

][
u
d

]

. (2.7)

Hereu ∈ R
nu andd ∈ R

nd are the unconstrained inputs and the disturbance vec-
tor, respectively, andJuu, Jud, Jdu, Jdd are matrices of appropriate dimensions.
Furthermore we require thatJuu > 0. We assume that we have a linear plant model

y = Gyu+Gy
dd, (2.8)

wherey ∈ R
ny are the measurements, andGy andGy

d are matrices of appropri-
ate sizes, which denote the steady state gain from the input and the disturbances,
respectively, to the measurements.

In addition, we assume additive noise on the measurements which is given by
theny-dimensional vectorny. Thus, the measured value of the plant output is

ym = y+ny. (2.9)

It is assumed, that all uncertainty is captured in the vectors d andny.
Using the measurements, we want to select controlled variables of the form

c= Hym (2.10)

which give good steady state performance. In the case of no measurement noise,
ny = 0 , we simply write the controlled variable as

c= Hy. (2.11)

The criterion for evaluating the controlled variables is the economic loss in
terms of the cost function.

L = J(u,d)−Jopt(d) (2.12)

We do not write the loss as a function of the control structure, but as a function of
the actual steady state inputs, which may be generated by either a control structure
or an open loop policy.

There are two subproblems, which can be addressed in the framework of self-
optimizing control. Assuming a setD of possible disturbancesd, we can:

1. Determine aH which minimizes the worst case (or average) lossL for all
d ∈ D .

2. Given different control structures (given byH1,H2, . . . ) select theH i which
for all d ∈ D gives the best performance in terms of the lossL.
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Minimum singular value rule

The minimum singular value rule is a criterion for the selection of controlled vari-
ables, which is based on the scaled steady state input-output gain. We just give
the result here, for details and the derivation, we refer to Halvorsen et al. [2003];
Skogestad and Postlethwaite [1996]. Assuming that we have different candidates
(that is givenH i) for controlled variables

ci = H iym

= H i(y+ny)

= H iGy
︸ ︷︷ ︸

=Gi

u+H iG
y
d

︸ ︷︷ ︸

=Gd,i

d+Hny

= Giu+Gd,id+Hny.

(2.13)

• Each candidate controlled variableci is scaled such that the sum of the op-
timal range and the implementation error is unity. Alternatively, we could
scale the candidate variablesci such that

∣
∣
∣

∣
∣
∣ci(d)′−copt

i
′∣∣
∣

∣
∣
∣
2
≤ 1 for d ∈ D . (2.14)

• Each input vector elementu j is scaled such that a unit change in each input
has the same effect on the cost functionJ.

The scaled candidate then is

c′i = G′
iu

′+G′
d,id+en, (2.15)

whereen is the term caused by the noiseny. The minimum singular value rule sug-
gests to select the controlled variableci which maximizes the minimum singular
value ofG′

i ,
maxσ(G′

i). (2.16)

For most practical applications, this rule gives good results. However, since
it is based on the assumption thatJuu is orthogonal, it can yield poor results in
ill-conditioned cases, see Halvorsen et al. [2003]. The minimum singular value
method has been applied to many case studies, e. g. Govatsmark [2003], Skogestad
[2000a], and references therein.

Exact local method

The exact local method [Halvorsen et al., 2003; Alstad et al., 2009] is a method for
evaluating the loss caused by a given control policy. It is based on a Taylor approx-
imation of the cost function. First, the measurement noise and the disturbances are



24 Optimal operation of chemical plants

scaled by diagonal scaling matricesWd andWn of appropriate sizes such that

d = Wdd′ (2.17)

ny = Wnyny′, (2.18)

and ∣
∣
∣
∣

∣
∣
∣
∣

[
d′

ny′

]∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1. (2.19)

The lossL associated with a given control structureH can be written as

L =
1
2
||z||22 (2.20)

where
z= Mdd′+Mnyny′ (2.21)

and

Md = −Juu
1/2(HGy)−1HFWd (2.22)

Mny = −Juu
−1/2(HGy)−1HWny . (2.23)

HereF is the optimal sensitivity matrix, which is defined as

F =
∂yopt

∂d
. (2.24)

By reopimizing a process model for different disturbance values and using finite
differencesF can be estimated. Alternatively, it can be calculated from the lin-
earized model using

F = Gy
d −GyJuu

−1Jud. (2.25)

Introducing
M = [Md Mny ], (2.26)

we can write

z= M
[

d′

ny′

]

, (2.27)

and the worst case loss is given by

Lwc =
1
2

max


d′

ny′



≤1

||z||22

=
1
2

σ̄(M)2.

(2.28)

This loss can be used to rank different candidates for controlled variables. Alterna-
tively, as we show in the next section, the loss expression may be used to determine
a combination of measurements which minimizes the worst case lossLwc.
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Minimum loss method

The optimal linear combination of measurementsc= Hym can be found by mini-
mizing the worst case loss (2.28):

H = argmin
H

σ̄(M) (2.29)

However, this is not an easy problem, because (2.29) is a nonconvex optimization
problem. Introducing

F̃ = [FWd Wny ] , (2.30)

Alstad et al. [2009] present a method, which solves (2.29) bytransforming it into
a convex optimization problem. In particular, they show that

H = arg

(

min
H

σ̄(HF̃) s.t. HGy = Q
)

, (2.31)

whereQ ∈ R
nu×nu is any nonsingular matrix, solves (2.29). Kariwala et al. [2008]

have shown that

min
H

∣
∣
∣
∣HF̃

∣
∣
∣
∣
F

s.t.

HGy = Q

(2.32)

gives solution, which minimizes both, the average and the worst case loss. Here
||·||F denotes the Frobenius norm. We refer to Kariwala et al. [2008] and Alstad
et al. [2009] for a deeper discussion on the choice of the normand more details.

Null space method

The null-space method is a special case of the minimum loss method, where there
is no noise in the measurements,ny = 0. Then (2.26) simplifies to

M = Md. (2.33)

In addition, we must have
ny ≥ nd +nu. (2.34)

That is, we have at least one independent measurement for each unknown variable1

In this case we have
F̃ = FWd, (2.35)

1As a starting point,u is considered an unknown variable. Ifu, or elements inu are measured
(known), they are included in the measurement vectory. Thus they appear on both sides of the
inequality, and (2.34) can be restated to read that we need atleast as many measurements as unknown
variables.
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and it is always possible to find a nontrivialH such thatHF = 0. We simply select
H in the left null-space ofF. Then we see from (2.22) that

Md = 0, (2.36)

and the loss̄σ(M) is zero. As we have assumed zero noise,ny = 0, the null-space
method rejects disturbances perfectly, but does not take into account the effect of
measurement noiseny.

Some personal comments on the previous work

The starting point in the research of self-optimizing control is the desire to find
a control structure which minimizes the cost (or equivalently the lossL from op-
timality). It was soon discovered that minimizing the norm of the gradient was
not equal to minimizing the loss, therefore the gradient norm was not considered
a good criterion and the research focus moved away from the gradient as a cri-
terion. However, the author suspected that there was some connection between
minimizing the gradient and the loss. In Chapter 3 this connection is explored,
and it is shown that the loss can be expressed as the norm of theweighted gradient,
whereJuu

−1/2 is the weighting factor. Naturally, when the loss is zero, the gradient
must be zero, too. Therefore, the controlled variable obtained from the null-space
method can be considered as the gradient, where we have eliminated all unmea-
sured variables by using the measurement model. Obviously,for this elimination,
we need at least as many measurement equations as we have unknowns. This is
reflected in the condition for the number of measurementsny ≥ nd +nu.

Using tools from polynomial elimination theory, this concept could be ex-
tended systematically to polynomial systems in Chapter 7, and to dynamic opti-
mization problems which are described by polynomial equations (Chapter 8).

Originally, the optimal sensitivity matrixF had to be estimated using a process
model and re-optimization, or by evaluating (2.25). Since this requires a good
process model, this is often difficult. In Chapter 4 we show how plant data can be
used to obtain an estimate ofF.

2.4 Uncertainty in model based approaches

Whenever a model is used for describing and optimizing a process, there will be
some uncertainty in the model which leads to a discrepancy between the model and
the reality. The uncertainty can be classified into different types, which usually all
are present to some extent. This uncertainty will cause plant-model mismatch.

The first type is parametric uncertainty, which occurs when the model is cor-
rect, but some parameters are not known. Consider for example the heatQ̇ which
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is removed from a stream,
Q̇= ṁcp∆T, (2.37)

whereṁ, cp, ∆T denotes the mass flow, the specific heat capacity, and the temper-
ature difference between inlet and outlet, respectively. An example for parametric
uncertainty (a disturbance) is a varyingcp value. Differentcp values will lead to
different amounts of removed heatQ̇.

Another example for a parametric uncertainty could be an unmeasured state.
Even though the model describes the state correctly, its value is not known, and
any expression containing it cannot be evaluated.

Parametric uncertainty can often be handled by using other measurements to
infer the unmeasured quantity. This thesis contributes to the problem of handling
parametric uncertainty, by showing how uncertain variables can be eliminated us-
ing a process model.

A second type of uncertainty is structural model mismatch. This means that
the model equations do not describe the process correctly. For example, a reaction
rate r may have been modelled to follow a first order lawr = kc, wherek is a
constant andc is a concentration. In the real process, however, the reaction may
follow a second order law,r = kc2, or some more complicated kinetics. This kind
of uncertainty tends to have a more severe impact on nonlinear models.

Many different strategies have been developed to handle plant-model mis-
match. Maybe the simplest way to handle this kind of uncertainty is to simply add
a bias term to the model, and to adapt the term such that the model describes the
reality better. For a more advanced treatment of this subject we refer to Marchetti
et al. [2010] and references herein. Other references on this subject are Forbes
et al. [1994]; Forbes and Marlin [1996]; Zhang and Forbes [2000]; Chachuat et al.
[2009].

In many cases the effect of the uncertainty on the plant profitis significant; in
other cases the effect is negligible. This depends very muchon the combination of
plant, model, the particular uncertainty and the how the model is used.

2.5 Other related concepts

We briefly discuss some other optimization concepts in this section, and set them
into the context to this work.

2.5.1 Model predictive control

In model predictive control [García et al., 1989; Mayne et al., 2000; Maciejowski,
2002; Rawlings and Mayne, 2009], the controlled variables are controlled to their
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setpoints by using an input trajectory which has been obtained by solving an opti-
mization problem online.

The term “model predictive controller” is generally used for controllers, where
the input trajectories have been obtained by solving a quadratic program (QP);
that is, the objective function is quadratic and the processmodel is linear. If a
nonlinear model is used, it is referred to as “nonlinear model predictive control” or
NMPC. The only difference between NMPC and dynamic real-time optimization
(Section 2.2.1) is that in the former the objective is to control a set of variables to
their setpoints, while in the latter the objective is to minimize a cost function of
economic nature.

The concept of using a model for calculating the optimal input trajectories was
first reported by Richalet et al. [1978], and has gained much attention in the control
community since then. A nice survey about industrial use of model predictive
control is given in Qin and Badgwell [2003].

Due to the task of tracking setpoints, model predictive controllers are used
in the control layer of Figure 2.1. The question about which variables to use as
controlled variables, still remains open and needs to be answered.

2.5.2 NCO-tracking

Necessary conditions of optimality (NCO) tracking is the idea to control the neces-
sary conditions of optimality [Srinivasan et al., 2003; Kadam et al., 2007; François
et al., 2005]. Although the NCO could be controlled by some continuous con-
troller, such as a PI controller if they were available as online measurements, the
publications concerning steady state optimization (e.g. [François et al., 2005; Gros
et al., 2009]) have been applying iterative input updates, which are shown to con-
verge to the optimal steady state operating point.

As in numerical optimization, also in real plants, obtaining the gradients effi-
ciently is a challenge, because the gradients (and hence theNCO) cannot usually
be measured directly. Therefore they must be estimated or approximated some-
how. A comparison of methods for obtaining the gradients is given in Mansour
and Ellis [2003]. More on NCO tracking and how it can be used together with
self-optimizing control is found in Chapter 5.

NCO tracking is very close to self-optimizing control, since the necessary con-
ditions of optimality for steady state optimization have a constant optimal setpoint.
In fact, the NCO are the ideal self-optimizing variables; unfortunately they are of-
ten difficult to measure.

2.5.3 Experimental methods

Box [1957] proposed a procedure which is based on carefully designed experi-
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ments, and measurements of the objective function. The experiments are designed
such that gradient information of the profit is estimated. Using this gradient infor-
mation, new experiments are performed. This is continued until the optimum has
been reached (the gradient is zero). However, this approachrequires the objective
function to be measurable, and if the disturbances change, the whole procedure
has to be repeated. If the disturbance changes with a higher frequency than the
experimental procedure, the gradient information is confounded with the distur-
bance, and does not give correct information about the profitsurface. However,
for systems with (constant) parametric uncertainties, this method may be applied
successfully. Since the number of degrees of freedom (the variables which can
be manipulated to optimize the process) has to be small for the problem to be
tractable, this method can only be applied for small systems. More on this kind of
methods can be found in e.g. Hunter [1960]; Carpenter and Sweeny [1965]; Box
and Draper [1987], and Box and Draper [1998].

2.5.4 Extremum seeking control

An approach which automatically drives the process to the optimum is “Extremum
seeking control”, where the inputs are excited to obtain gradient information and
this information is used to move the system to the optimum. This approach is
based on measurement of the objective function, or on knowledge about how the
objective function depends on the states and the disturbances [Guay and Zhang,
2003]. A nice introduction to this method is given in Ariyur and Krstic [2003].

This method could be used in the optimization layer, however, due to the re-
quired excitation signal, the process is constantly disturbed. This is generally in
conflict with the desire to keep the process at the steady state optimal operating
point, and it might cause problems in other down stream processes.

2.6 Conclusion

We have briefly presented some concepts for achieving optimal operation in a
chemical plant, and have outlined some strategies for achieving optimal operation
in continuous plants.

One concept is to use dynamic real time optimization, and to solve a dynamic
optimization problem for the optimal inputs. This approachis the simplest in con-
cept, however in practice it is the most difficult to realize due to the complexity of
real industrial plants. In particular, problems arise because of modelling, numeri-
cal, and practical issues. Therefore it is not very commonlyused in industry.

The second approach is to decompose the control system vertically based on
the different timescales the layers operate in. This decomposition approach makes
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it possible to consider one layer at a time and to engineer andoptimize the layers
separately. It facilitates handling the complexity, because instead of considering
the whole control structure, we consider one layer at a time.Thus it adds clarity
about what is happening in the process, and the reduced complexity makes it easier
to include possible faults and eventualities in the layer design.

The layers communicate downwards via the setpoints of the controlled vari-
ables, and upwards via the measurements. By selecting self-optimizing controlled
variables, we guarantee that the control layers act in accord to minimize the oper-
ational cost. This will improve plant performance, while atthe same time keep-
ing the control structure simple and manageable. In some cases, when good self-
optimizing controlled variables are used, an RTO layer may even become unnec-
essary.
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Chapter 3

Optimal operation by controlling
the gradient to zero

If you cry ’forward’, you must
without fail make plain in what
direction to go.

A. Chekhov

From an optimization point of view, the gradient is the key variable
which gives information about the optimality of a process. In this pa-
per we present how the gradient is related to the loss from optimality,
and show how determining a good set of controlled variables can be
considered asweightedapproximation of the gradient. We show that
even if there are setpoint changes for the controlled variables, this can
still be considered as approximating the gradient.

Based on the paper accepted for publication at the IFAC WorldCongress 2011,
Milano.

3.1 Introduction

The overall objective of process operation is to minimize the costJ (or equivalently
to maximize the profitP=−J) subject to given constraints. However, when using
control, the objective is to keep selected controlled variables c at their optimal
setpoints,

c(y) = cs. (3.1)

With respect to these two goals, Morari et al. [1980] stated
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Figure 3.1: Cost and gradients for different disturbancesd

“. . . our main objective is to translate the economic objectives into pro-
cess control objectives. In other words we want to find a function c of
the process variables [. . . ] which when held constant leads automati-
cally to the optimal adjustment of the manipulated variables, and with
it, the optimal operating conditions.”

However, they do not give a systematic method for finding the controlled vari-
ables, nor do they mention that for the unconstrained case, the obvious approach
to get consistency between economic and process control objectives is to select the
gradient as the controlled variable. That is, to select

c= Ju(u,d), (3.2)

and keep the setpoint constant at zero,cs= 0. Hereu are the unconstrained degrees
of freedom,d are unmeasured disturbances, andJu(u,d) = ∂J(u,d)/∂u is the
gradient. Irrespective of the disturbance, the optimal value of Ju is zero, (Figure
3.1). This was proposed by Halvorsen and Skogestad [1997a],who write that the
ideal controlled variable would be

c= c1Ju +c0, (3.3)

wherec0 and c1 are constants. The idea has also been proposed by Halvorsen
and Skogestad [1997b, 1999]; Bonvin et al. [2001]; Cao [2003, 2005]; Srinivasan
et al. [2008], and intuitively it seems to be an excellent idea. The elements of the
gradient change sign when moving from one side of the optimumto another side
(Figure 3.2), thus, it is well suited for feedback control.
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Figure 3.2: Cost and gradient values

However, in practice, we rarely have a measurement of the gradient and it is
often not clearly defined what it means to control the gradient to zero. The gradient
is a vector, and in many practical cases is not possible to control all elements
exactly to zero. What should we do in these cases? A first attempt to answer
this question will be to find a control structure, which minimizes the norm of the
gradient. This is a good start; however, it is important to keep in mind that our
ultimate goal is to minimize the costJ, so this original criterion has to be applied
to evaluate the possible control structures.

The starting point is to write the controlled variables as a function of measure-
mentsym,

c= Hym, (3.4)

which is controlled to zero,c = Hym = 0. Here,c ∈ R
nc, andH ∈ R

nc×ny . For
the system to be fully specified, we need as many controlled variables as we have
inputsu, that isnc = nu.

Since the gradient is optimally at zero, we can considerc = Hym as an ap-
proximation of the gradient. If the approximation is exact,Hym = Ju then we will
have optimal operation wheneverc= 0, provided convexity. If it is not possible to
control the gradient (because of e.g. unmeasured disturbances, noise and missing
measurements), there will be some loss associated to the chosen control structure.
To evaluate the performance of the chosen control policy, weuse the original cost
function and define the loss from optimality

L = J(u,d)−J(uopt(d),d). (3.5)
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Note that the loss is deliberately not expressed as a function of the control structure.
This is because we want to be able to use the loss to evaluate open-loop strategies,
too. If we want to evaluate the loss for a particular control structure, we insert the
u which corresponds to the applied control structure. For more details on the loss,
and its calculation, we refer to Halvorsen et al. [2003].

Considering the problem of selecting the best control structures, there are two
important questions, which we would like to address in this paper:

Q1. Does aH which minimizes||Ju(Hym = 0)||2 also minimizeL(Hym = 0)?

Q2. If not, is the difference significant?

In terms ofQ1. we show in Theorem 1 that minimizing the norm of the gradient is
not quite the same as minimizing the lossL.

In terms ofQ2. we show that it is important in the case, when we have struc-
tural constraints onH. That is, we have control structures involving different mea-
surements.

Another contribution of this paper is an extremely simple derivation of the null
space method [Alstad and Skogestad, 2007].

Furthermore, we show we show how setpoint changes of the controlled vari-
ables can be seen in the context of minimizing the loss or approximating the gra-
dient.

This paper is structured such that the next section presentsour main result, a
derivation of the expression for the economic loss based on the gradient. In Section
3.3 we describe how this interpretation is connected to existing methods, and its
importance. Section 3.4 discusses how the case of varying setpoints can be treated
in this framework. After presenting a distillation case study in Section 3.5, we
close the paper with a discussion and conclusions.

3.2 Derivation of the loss expression using the gradient

3.2.1 Preliminaries

Consider the feedback system in Figure 3.3, where the variables c andcs denote
thenc-dimensional vector valued controlled variable and its setpoint, respectively,
and where the variablesny ∈ R

ny ,nc ∈ R
nc denote the noise and the steady state

control error, respectively. The noisy measurements are denotedym ∈ R
ny

, and
we assume that the controllers have integral action so that there is no steady state
error,nc = 0; then at steady statecs = c.

After all active constraints are satisfied (controlled), the remaining uncon-
strained problem can be approximated by a quadratic problemin the neighborhood
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Figure 3.3: Control structure (with integral action,cs = c at steady state,nc = 0),
(Adapted from [Alstad et al., 2009])

of the optimal point,

min
u

1
2

[
uT dT

]
[

Juu Jud

Jdu Jdd

][
u
d

]

. (3.6)

Hereu ∈ R
nu , d ∈ R

nd , andJuu, Jud, Jdu, Jdd are matrices of appropriate sizes.
In addition, we assume thatJuu > 0. For small deviations around the nominal
optimum, the plant can be described by the linear model

y = Gyu+Gy
dd

= G̃y
[

u
d

]

,
(3.7)

whereGy ∈R
ny×nu andGy

d ∈R
ny×nd are the steady state gain matrices fromu and

d to the outputsy. Our goal is to find controlled variables of the form

c= Hym

= H(y+ny)
(3.8)

whereH ∈ R
nc×ny , which, when controlled to zero, yield optimal or near optimal

operation.

3.2.2 Approximating the gradient

The gradient of the approximated problem (3.6) is

Ju(u,d) =
[

Juu Jud
]
[

u
d

]

= Juuu+Judd. (3.9)
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Assuming that (3.6) matches the real plant, the necessary condition for optimality
is

Ju(u,d) =
[

Juu Jud
]
[

u
d

]

= 0. (3.10)

As mentioned above, the ideal controlled variable is the gradient, c = Ju(u,d).
When it is known exactly, using it as a controlled variable isthe best choice and
works fine. In practice, however, the gradient must be estimated somehow using
measurement information. Then the controlled variable becomes

c= Ĵu. (3.11)

Obtaining the gradient estimatêJu can be done in several ways, such as e.g. black
box modelling or estimating the gradient using statisticalmethods. In the case of
zero-mean noise, the effects may cancel out, but if there is aconstant non-zero
offset, the noise can deteriorate performance severely, thus we have to include the
noise in the analysis, too.

A first approach would be to find a controlled variablec= Hym which mini-
mizes the worst case gradient norm, e.g. to selectH as

H = arg

(

min
H

max
d

||Ju −Hym||2
)

. (3.12)

In the non-ideal case, whenHym 6= Ju, controlling Hym to zero will result in a
gradient which has nonzero elements, and therefore has nonzero norm,

||Ju(Hym = 0)||2 6= 0. (3.13)

The norm of the gradient may seem a good criterion to evaluatesuboptimality;
however it does not truly reflect the performance in terms of the original cost func-
tion. To quantify the suboptimality, we consider the lossL, which is defined as the
difference between the actual cost and the optimal cost for agiven disturbanced,

L = J(u,d)−J(uopt(d),d). (3.14)

Note that we are considering the loss with respect to the truly optimal instead of
the cost. The loss has the properties of a weighted norm.

Theorem 1. The local economic loss can be expressed to first order in terms of
the current gradient value as

L =
1
2

∣
∣
∣

∣
∣
∣Juu

−1/2Ju

∣
∣
∣

∣
∣
∣

2

2
. (3.15)
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Figure 3.4: LossL imposed by non-optimal operation

Proof. From Halvorsen et al. [2003] it is known that the loss can be written as

L =
1
2
(u−uopt(d))TJuu(u−uopt(d)). (3.16)

SolvingJu = 0 (3.10) foruopt(d) = −Juu
−1Judd, and inserting into (3.16) yields

(note thatJuu is symmetric):

L =
1
2
(u+Juu

−1Judd)TJuu(u+Juu
−1Judd)

=
1
2
(uT +dTJud

TJuu
−T)Juu(u+Juu

−1Judd)

=
1
2
(uTJuu

T +dTJud
T)Juu

−1(Juuu+Judd)

=
1
2

JT
u Juu

−1Ju

=
1
2

∣
∣
∣

∣
∣
∣Juu

−1/2Ju

∣
∣
∣

∣
∣
∣

2

2
.

(3.17)

At the optimum,uopt, the gradientJu = 0, and the lossL = 0. Around the
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optimumJu 6= 0, the lossL is equal to the norm the weighted gradient, where the
weight factor isJuu

−1/2, Figure 3.4.

Remark 1 (Effect of constraints). The above analysis is locally valid for a system
where all active constraints are known and have been satisfied, g(u,d) = 0. If an
active constraint is not satisfied exactly, g(u,d) = ε , then the effect on the objective
function will be given by the corresponding Lagrangian multiplier [Nocedal and
Wright, 2006]

λ = ∂J/∂ε . (3.18)

A perturbation of the constraintsε has therefore a first order effect on the cost
function, while from(3.15), a small change in Ju has a second order effect on the
cost. From an economic point of view, tight control of the active constraints will
generally be more important than tight control of the unconstrained variablec.

3.3 Minimizing the gradient vs. minimizing the loss

Theorem 1 shows that a controlled variable which minimizes||Ju||2, does not nec-
essarily minimize the lossL. One case, whereJuu

−1/2 has no effect is, when it

is orthogonal,Juu
−1/2 = Juu

−1/2T
, or scalar. In the next sections, we examine in

which further cases anH which minimizes||Ju||2 is the same that minimizes the
lossL.

3.3.1 Enough measurements, no noise, full H: same H

If it is possible to have zero loss (no noise and sufficient measurements), optimal
operation corresponds toJu = 0. Then,Juu

−1/2 has no effect. Assume thaty
contains all available information, then we require that

Ju = Hy. (3.19)

Theorem 2(Null space method, no noise). Given a linear model as in(3.7), with
a sufficient number of independent measurements (ny ≥ nu + nd) and no noise
(ny = 0), selecting

H =
[

Juu Jud
][

G̃y]−1
, (3.20)

and controllingHy = 0 gives zero loss from optimal operation. Here,G̃y is the
gain matrix of any subset of nu+nd measurements.

Proof. The gradient from (3.9) is

Ju =
[

Juu Jud
]
[

u
d

]

. (3.21)
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We want to eliminate the variables[u, d]T using the available measurements,

y = G̃y
[

u
d

]

. (3.22)

Solving for [uT, dT]T,
[

u
d

]

=
[
G̃y

]−1
y, (3.23)

and inserting into (3.21) gives:

Ju =
[

Juu Jud
][

G̃y]−1
y

= Hy.
(3.24)

Controllingc= Hy = 0 results in zero loss.

• This is a new derivation of the null space method reported in [Alstad and
Skogestad, 2007]. It shows that the optimal controlled variable found by
self-optimizing control is identical to the gradient,

c= Ju = Hy. (3.25)

3.3.2 Enough measurements, noise, full H: same H

The case of finding a controlled variable combination, whichminimizes the loss
in presence of sufficient (noisy) measurements and a fullH matrix is addressed in
the “exact local method” Alstad et al. [2009]. First, we scale the disturbances and
the noise, such that

d = Wdd′, (3.26)

and
ny = Wnyny′, (3.27)

where ∣
∣
∣
∣

∣
∣
∣
∣

[
d′

ny′

]∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1 (3.28)

andWd andWny are diagonal scaling matrices of appropriate sizes. Then we:

1. ExpressL as a function ofH, d andny (assumingc= H(y+ny) = 0).

2. Then find an expression for the worst-case lossL(H) (worst-case w.r.t.d and
ny); which is the maximum singular valuēσ(M). Here

M = Juu
1/2(HGy)−1HF̃ (3.29)
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and
F̃ = [FWd Wny ], (3.30)

where

F =
∂yopt

∂d
(3.31)

is the optimal measurement sensitivity matrix, see Halvorsen et al. [2003].
(Kariwala et al. [2008] have shown that the average loss is given by||M ||F ,
where||·||F denotes the Frobenius norm).

3. Find a convex problem formulation for findingH (see Alstad et al. [2009]).

The convex problem for finding anH which minimizes the average and worst case
loss for a given set of disturbances is [Alstad et al., 2009]

min
H

||H[FWd Wny ]||F
subject toHGy = Q,

(3.32)

whereQ is any non-singularnu ×nu matrix, andF as defined in (3.31). Here, too,
Juu is not needed for fining the best measurement combination. However, if we
want to know the actual worst case or average loss, we needJuu

1/2 in (3.29).

• In the case of no structural constraints onH, it is found thatJuu is not needed
for finding the best measurement combinationH. That is, a controlled vari-

able which minimizes||Ju||2 minimizes also the lossL = 1
2

∣
∣
∣

∣
∣
∣Juu

−1/2Ju

∣
∣
∣

∣
∣
∣

2

2
.

3.3.3 Structural constraints on H: not the same H

In the above cases, we used all measurementsy to generate the controlled vari-
ables as linear combinations of all measurements. In practice however, there are
often structural constraints on the controlled variables.Examples for structural
constraints include controlling single measurements, or using only two measure-
ments from the rectifier section and two measurements from the stripping section
of a distillation column. When we have to decide between two or more controlled
structures, the norm of the gradient (if it is nonzero) does no longer give accu-
rate information about what controlled variable is best. Tobe able to make a
good decision in these cases, we need to consider norm of the weighted gradient

L = 1
2

∣
∣
∣

∣
∣
∣Juu

−1/2Ju

∣
∣
∣

∣
∣
∣

2

2
.

As an example, consider a process with

Juu =

[
244 222
222 202

]

andJud =

[
10
10

]

, (3.33)
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and assume that

G̃y =







1 0.275 10
2.78 2 10

5 −4.913 10
2.1826 2 0






. (3.34)

Assume further that we have the choice between using

H1 =

[
1 0 0 0
0 1 0 0

]

(3.35)

and

H2 =

[
0 0 1 0
0 0 0 1

]

. (3.36)

This gives the controlled variables

c1 =

[
1 0.275

2.78 2

]

u+

[
10
10

]

d (3.37)

and

c2 =

[
5 −4.9130

2.1826 2

]

u+

[
10
0

]

d. (3.38)

For a disturbanced= 1 the resulting inputs are found by settingc1 = 0 andc2 = 0,
and solving foru. Inserting them into the gradient expression

Ju =
[

Juu Jud
]
[

u
d

]

, (3.39)

gives

Ju(H1y = 0) =

[
1
1

]

(3.40)

and

Ju(H2y = 0) =

[
−1
1

]

. (3.41)

The norm of the gradient is in both cases

||Ju(c1 = 0)||2 = ||Ju(c2 = 0)||2 =
√

2, (3.42)

which indicates that the two controlled variables give equivalent performance.
However, if we consider the loss imposed by the two differentcontrol structures,
we have that

L(c1) =
1
2

∣
∣
∣

∣
∣
∣Juu

−1/2Ju(c1)
∣
∣
∣

∣
∣
∣

2

2
= 0.25 (3.43)

and

L(c2) =
1
2

∣
∣
∣

∣
∣
∣Juu

−1/2Ju(c2)
∣
∣
∣

∣
∣
∣

2

2
= 111.25. (3.44)
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Figure 3.5: Feedback control structure with setpoint calculation (with integral ac-
tion, nc = 0)

• When we want to compare sets of controlled variables with each other, we
need to examine the loss, as the gradient does not give sufficient information.

• When searching for the best linear combination for a given set of measure-
ments, it is sufficient to consider the gradient.

3.4 Varying setpoints for the controlled variables

Many processes are operated such that the setpoints of the controlled variables
are changed, when for example product pricesp and specifications change, Figure
3.5. To handle this in the framework above, we consider the reason for the setpoint
change as ameasured disturbance. The relationship between the measurements
ym and the controlled variables is

c= Hym, (3.45)

and the relationship between the setpoint change and the pricesp is

cs = Hsp. (3.46)

We defineJu = c−cs,

Ju = Hym−Hsp =
[

H −Hs
]
[

ym

p

]

= Haugyaug.

(3.47)
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The gain matrices are augmented according to

Gy
aug=

[
Gy

ny×nu

0np×nu,

]

, Gy
aug,d =

[
Gy 0np×np

0np×nd Inp×np

]

, (3.48)

and the scaling matrices according to

Wd,aug=

[

Wd 0nd×np

0np×nd Wpnp×np

]

, (3.49)

Wn,aug=

[

Wn 0ny×np

0np×ny Wnpnp×np

]

. (3.50)

Here,Wp andWnp are diagonal matrices with the expected price variations and
uncertainties, respectively. If the prices are known exactly, Wnp,aug = 0. The
sensitivity matrixFaug may be found by re-optimization or by evaluating

Faug= Gy
aug,d −Gy

augJuu
−1Jud,aug, (3.51)

[Alstad and Skogestad, 2007], whereJudaug is calculated by including the pricep
as an additional disturbance. After the problem has been formulated, the optimal
Haug which minimizes the loss, is found by solving

min
Haug

||Haug[FaugWd,aug Wn,aug]||F

subject toHaugGy = Q.
(3.52)

De-partitioningHaug = [H −Hs], the controlled variables and the setpoint up-
dates are

c= Hym (3.53)

and
cs = Hsp. (3.54)

3.5 Distillation case study

3.5.1 Problem description and setup

A binary distillation column is used to demonstrate the results. The column model
is taken from Skogestad [1997]. It is controlled in the LV configuration and has 41
stages, Figure 3.6. We assume that the temperatures on stage9, 16, 24, and 33 are
measured and that they can be used for control, i.e.y = [T9, T16, T24, T33]

T. The
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Figure 3.6: Distillation column

temperatures are calculated as a linear function of the liquid composition for the
respective stagesi,

Ti = 10(1−xi). (3.55)

This corresponds to a pure product boiling point differenceof 10◦C. In order to
be able to sell the top product, a purity of 99% is required forthe distillateD.
This is considered an active constraint, and is controlled to its setpoint using the
liquid reflux L. The remaining degree of freedomu (the boil-upV) can be used to
maximize the profit which is the same as minimizing the difference between the
costs for the feed and evaporation, and the profit from selling the purified products:

J =−(pDD+ pBB− pVV − pFF). (3.56)

Assuming the price for the feed is equal to the price of the bottom product,pF =
pB, and introducing the overall mass balance, the cost function can be simplified
to

J = pV

(
pF − pD

pV
D+V

)

= pV(p
′D+V). (3.57)
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The only parameter which affects the location of the minimumis the relative price
difference of the feed and the distillate,

p′ =
(pF − pD)

pV
, (3.58)

and we assumep′ =−64 currency units.
As disturbances, we consider the flow rateF, compositionzand liquid fraction

q of the feed. These disturbances are detectable through the measurement model
in deviation variables:

y = Gyu+Gy
dd. (3.59)

In addition, we assume that the product prices change and areknown. We use
the prices to update the setpoint ofc. The self-optimizing controlled variable is
selected as a linear combination of the four tray measurements. The augmented
gain matrices and the augmented optimal sensitivity matrixare

Gy
aug=









1.71
3.22
1.36
0.20
0.00









, Gy
d,aug=









−8.14 −3.67 −1.50 0
−12.28 −11.09 −2.75 0
−4.36 −9.81 −1.44 0
−0.65 −1.45 −0.21 0

0.00 0.00 0.00 1









, (3.60)

Faug=









−2.63 −2.37 −0.49 −0.0055
−1.90 −8.65 −0.84 −0.0103

0.02 −8.78 −0.64 −0.0044
0.01 −1.30 −0.09 −0.0007
0.00 0.00 0.00 1.0000









. (3.61)

The weighting matrixWn,aug is chosen such that all temperature measurements
have an uncertainty of 0.5◦C, and the price uncertainty is zero. The expected
variation in the disturbances is captured in

Wd,aug= diag([0.1, 0.1, 0.1, 6.4]), (3.62)

which corresponds to 10% variation in every disturbance variable. The corre-
sponding second derivatives are

Juu = 4.85

Judaug= [−15.64, −3.68,−2.87, 0.02].
(3.63)

This gives a controlled variable combinationc= Hy with

H = [0.23, 0.69, −0.28, −0.04], (3.64)
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Figure 3.7: Disturbance trajectories

and the setpoint is updated usingcs = Hsp′ with

Hs = 0.0071. (3.65)

The first order loss from optimality estimate is calculated according toL=
∣
∣
∣

∣
∣
∣Juu

−1/2Ju

∣
∣
∣

∣
∣
∣

2

2
,

or alternatively according to Halvorsen et al. [2003] as
∣
∣
∣

∣
∣
∣Juu

1/2(HaugGy
aug)

−1Haug[FaugWd,augWn,aug]
∣
∣
∣

∣
∣
∣

2

2
, (3.66)

and equals 1.4869 currency units.

3.5.2 Simulations

We consider disturbances in the flow rate,∆F = 10%, the feed concentration,
∆z= 10%, the feed liquid fraction,∆q= −10%, and the price,∆p′ = 10%. The
disturbance scenario is given in Figure 3.7, and the resulting profit is plotted to-
gether with the inputs in Figure 3.8.

In Figure 3.9, the controlled variables are given together with their setpoints.
The self-optimizing controlled variable is nicely controlled back to the setpoint af-
ter a disturbance enters the process. As long as the prices are constant, the setpoint
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Figure 3.9: Controlled variables: Self-optimizing controlled variable and top com-
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is zero. When the price ratiop′ changes, the setpoint is adapted to a new value.
The top composition is controlled well at its specification,as can be noted from
the plotting scale.

3.6 Discussion and conclusions

We have given a first order approximation of the loss as the weighted norm of
the gradient, and we have shown that if all measurements are used, the weighting
is not required to find the bestH. However, when selecting between different
sets of controlled variables, we need to consider the weighted gradient, because
neglecting the weighting can be seriously misleading. The previously published
“exact local method” indicates how close the norm of the weighted gradient is to
zero when a particular set of controlled variablesc= Hym is used.

The key points are to weight the gradient when approximatingit and include
noise in the analysis. Otherwise we may approximate the gradient well while still
suffering from unnecessary economic loss. The controlled variables obtained by
this method have robustness against measurement noise. However, the underlying
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linear model and the cost function parameters are assumed tobe locally exact, that
is all the uncertainty is assumed to be taken care of in the measurement noise and
disturbances.

Our analysis is based on the assumption that the active constraints do not to
change. If the active constraints change, it is necessary toadjust the control struc-
ture to satisfy the new active set. However, if there are unconstrained degrees of
freedom in the new active set, the above analysis can be reapplied.

The second part of this paper dealt with disturbances which do not enter through
the model. By considering them as additional measurements,this can be formu-
lated in terms of minimizing the weighted gradient, and the techniques from self-
optimizing control can be used to update the setpoints to ensure optimal operation
for all considered process and price disturbances.
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Chapter 4

Controlled variables from
optimal operation data

Causa latet, vis est notissima

Ovid

In this paper we show how optimal operation data and conceptsfrom
self-optimizing control can be used for finding controlled variables
which give optimal operation for the disturbances includedin the data
set. The method extracts the operation strategy which is hidden in
the optimal data and may help analyze and improve operation in the
common case where it is difficult or very expensive to obtain agood
model.

Based on the published paper from the ESCAPE-21 Proceedings, Porto Carras,
2011

4.1 Introduction

For many processes, obtaining a good mathematical process model is important
for successful operation. However, obtaining a good model is often inhibited by
several factors, such as a tight budget and limited knowledge or time. Thus, ob-
taining a good process model and keeping the model up to date is one of the major
bottlenecks for the application of advanced process control in industrial applica-
tions [Dochain et al., 2008]. It is therefore desirable to minimize the modelling
effort, while still achieving good process performance. Inthis work we present a
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method for finding controlled variables, which is based on readily available logged
process data. This data is used to find self-optimizing controlled variables whose
optimal setpoint does not change with varying disturbances[Skogestad, 2000].

4.2 Motivation and problem formulation

An example for a system which is hard to model is a marathon runner. However,
it is easy to collect data from runners, such as e.g. heart rate, stride frequency,
temperature, blood oxygen content and breathing frequency. The data from the
best runs of the runners subject to expected disturbances such as hilly terrain and
wind is collected in an optimal data matrixY. This data is used to determine a
linear combination of measurements, which is (almost) constant for all the best
runs. By running such as to keep this linear combination of variables at their
optimal values, an optimal running strategy can be implemented. A single variable,
which may give quite good performance, would be the heart rate. By running in
such a way that the heart rate is constant at some optimal value, the running speed
will automatically adjust to the disturbances (e.g. wind orchanging slopes).

Similarly, in a process plant, some operators may be able to operate the pro-
cess more profitably than others. Analyzing the "optimal operation data" of these
operators can reveal linear combinations of variables, which other operators can
use as guidance when operating the plant. Alternatively, these variables can be
used for feedback control.

We assume that optimal operation corresponds to minimizinga costJ, and that
the optimization problem can be approximated in deviation variables around the
optimal point as

min
u

J(u,d) =
[

uT dT
]
[

Juu Jud

Jdu Jdd

][
u
d

]

, (4.1)

whereu ∈ R
nu and,d ∈ R

nd are the inputs and the disturbances, respectively. In
addition we require thatJuu is positive definite. For each degree of freedomu we
search for a controlled variablec which is a linear combination of measurements
ym,

c= Hym. (4.2)

Hereym is defined as the sum of the “actual” measurement valuesy and the mea-
surement noiseny,

ym = y+ny. (4.3)

If the controlled variablesc give acceptable performance when controlled at
constant setpoints, they are called self-optimizing. Thisterm was coined by Sko-
gestad [2000], who writes:
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Self-optimizing control is when we can achieve an acceptable loss
with constant setpoint values for the controlled variables(without the
need to reoptimize when disturbances occur).

The loss is defined asL = J(u,d)− J(uopt,d), whereu is the input generated by
the current operating policy, for example adjustingu such thatc = Hym is kept
constant.

4.3 Data method

The new method for finding these measurement combinations isdirectly inspired
by the null-space method [Alstad and Skogestad, 2007] whichwe present in the
following.

4.3.1 Null space method

This method is based on the quadratic approximation of the cost function (1). In
addition it is assumed that a linear noise free measurement model (ny = 0) is avail-
able, soym = y = Gyu+Gy

dd. Here,y ∈ R
ny is the vector of linear independent

measurements andGy,Gy
d are the gain matrices of the system.

Theorem 3 (Null space method). Given a sufficient number of noise-free linear
independent measurements, ny ≥ nu +nd, selectH such thatHF = 0, where

F =
∂yopt

∂d

is the optimal sensitivity matrix. Then controllingc = Hy to zero gives optimal
operation with zero loss.

Proof. Close todnom, by definition ofF we haveyopt(d)− yopt(dnom) = F(d−
dnom). The optimal change in the controlled variables is:copt(d)− copt(dnom) =
HF(d−dnom). SinceH is selected such thatHF = 0 optimal variationcopt−copt

nom

is zero , too. Hence, controllingc= Hy to zero leads to optimal operation.

The optimal sensitivity matrixF is usually obtained numerically, by optimiz-
ing a model or by linearizing at the nominal point, and evaluating F = Gy

d −
GyJuu

−1Jud [Alstad and Skogestad, 2007].
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4.3.2 Using optimal operation data

In the case where we do not have an explicit model, we will not know the optimal
sensitivity matrixF = ∂yopt/∂d. Now let us assume that we have “optimal” data
for y for various disturbances collected in the data matrix

Y =
[
y1(d1), . . . ,yi(di), . . . ,ynsample(dnsample)

]
, (4.4)

where we have collected all measurements vectorsyi for different samplesi, such
thatnu+nd ≤ nsample, and we assume that all variables are deviation variables from
the nominal point. Note that the disturbancesdi for the different sample times are
not known. In this case we can use following result:

Theorem 4 (Optimal data method - No noise). Given a sufficient number of in-
dependent measurements, ny ≥ nu +nd, and optimal measurement dataY, where
each independent disturbanced is rejected at least once in the dataY. Then the
optimal measurement combination can be determined by selecting H such that
HY = 0.

Proof. Using the definition of the optimal measurement matrixF, we can write the
optimal variation in the measurements as

yopt(d) = Fd. (4.5)

Since every data pointyi in Y corresponds to a linear combination of “basis” dis-
turbances,

di = α1










d1

0
0
...
0










+α2










0
d2

0
...
0










. . .+ . . .+αnd










0
0
...
0

dnd










, (4.6)

and we know that the data inY is optimal, each column inY can be considered as
a linear combination of columns inF. Then we have

yopt
i (di) = Fdi = F
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0










+α2










0
d2

0
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+ . . .+αnd










0
0
...
0

dnd



















. (4.7)

Therefore, we have
HF = 0⇔ HY = 0. (4.8)
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Figure 4.1: CSTR

In practice, the data matrixY will not be consistent such that a null space
HY = 0 exists, either because of too many disturbances, or more likely because
of measurement noise. One approach to handle this is to do a singular value de-
compositionY = UΣVT, and select the transpose of thenu columns inU which
correspond to the smallest singular values inΣ. This is equivalent to approximating
Y by the closest matrix with ranknu.

More generally, the minimum loss method (exact local method) of Alstad et al.
[2009] may be used, to handle cases with measurement noise, but this requires that
we also have some “non-optimal” data:

Theorem 5(Optimal data method with noise). Given noisy optimal measurement
dataY and given “nonoptimal” data for the effect of the inputs (degrees of free-
dom)u on the measurementsY, so∆y = Gy∆u, the optimal measurement combi-
nation can be determined by finding theH which minimizes||(HGy)−1HY ||F .

Proof. Given in Alstad et al. [2009]

Note that we wantHGy to be large, that is we want to use “sensitive” measure-
ments. With large sensitivities and little measurement noise, the contribution from
the termHGy is small, and then Theorem 4 is sufficient.

The obtainedH matrix may also give valuable insight into the operation policy.
After scaling and centering of the data, the elements in the left singular vector of
Y can be used to analyze the operation strategy. We will demonstrate this in an
example from economics below.

4.4 Case studies

4.4.1 Optimal operation of a chemical reactor (use of Theorem 4)

We consider a CSTR with a reactionA⇋ B, Figure 4.1 [Alstad, 2005]. The feed
contains mainly componentA, and the objective is to maximize the profit, which is
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calculated as the difference between the income from selling the productB and the
cost for heating the feed:P= pBCB− pcoolT2

i . Here,Ti feed temperature which can
be manipulated to optimize the performance. All model parameters and equations
can be found in Alstad [2005].

The feed concentrations are the main disturbances; and the concentrations and
the reactor temperature are measured, soy = [CA,CB, T]. The optimal operation
data is obtained by applying the NCO tracking procedure as described in François
et al. [2005] in combination with finite difference gradientestimates, where the
input is perturbed to obtain a gradient estimate, and based on this estimate, it is
adjusted to iteratively force the gradient to zero. The optimal data is gathered in
sample times of 10 minutes, and collected into the data matrix Y. A singular value
decompositionY = UΣVT gives (σ1,σ2,σ3) = (86.5, 4.8, 0.28). Since there is
one input,Ti , we select the column inU corresponding toσ3 = 0.28. This gives a
controlled variable

c= Hy (4.9)

with
H = [−0.77 0.63 0.005]. (4.10)

In Figure 4.2 the simulated disturbance scenario is given and Figure 4.3 shows
the input usage when applying NCO tracking (to generate the optimal data) and
when using a PI controller to control

c= Hy =−0.77CA+0.63CB+0.005T (4.11)

to zero. Due to the continuous feedback control, controlling c= Hy gives much
smoother input action than we have in the “optimal” data. Comparing the final
profit in Figure 4.4, shows that controlling the invariant gives practically the same
performance as re-optimization the system using input updates from NCO track-
ing.

4.4.2 Economy example (use of Theorem 4)

We consider economic indicators from 1991 to 2006 for France, Germany, Italy,
Norway, UK, and USA. The data is taken from the websites1: www.unece.org,
www.imf.org, www.oecd.org The “measurements”y = [y1, . . . ,y6]

T for
each country are interest rate (y1), unemployment (y2), the industrial production
index (IPI,y3), the consumer price index (CPI,y4), tax revenue (% of GDP,y5) and
exchange rate to SDR (special drawing rights, a “lumped” currency derived from
the Yen, US Dollars, British Pounds and Euros,y6). The GDP growth, Figure 4.5,
is the criterion for optimality. The measurements of year prior to the three years

1Accessed in March 2010
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Figure 4.6: Magnitude of elements inH

with highest GDP growth are used forY. This results in

H = [ - 0.67 - 0.02 0.22 0.62 0.32 0.10]. (4.12)

The magnitude of the elements inH is visualized in Figure 4.6. The most influ-
ential factors are the interest rate (-0.67) and the inflation rate (0.62). This is not
unexpected, because the interest rate is used as a handle to control inflation. Of
course the economics of countries is too complex to be described accurately by
our selected variables, but we have shown that applying our method to economic
data can reveal some of the operation strategy behind the data.

4.5 Discussion and conclusion

The proposed “null space data method” picks out the weak directions in the data
Y, whereas other “chemometric” regression methods concentrate on the strong
directions in the data [Martens and Naes, 1992]. An important reason for this is
that we assume that the data is optimal, and we look for hiddencombinations in this
data that characterize the optimum. On the other hand, in regression methods one
looks for relationships between variablesX andY. To show that the methods are
different, assume our data contains two data sets,Y = [Y1 , X]T and we want to find
how the relationship betweenY1 andX. We assume that dim(Y1) = dim(u) = nu.
From our method, the problem becomes minH

∥
∥
[
H[Y1 X]T

]∥
∥

F .
Here,H is not unique, so we have that ifH is an optimal solution, so isDH,

whereD is an invertible matrix [Alstad et al., 2009]. This degree offreedom
may be used to setH = [I H x], whereI denotes the identity matrix. Then we
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optimize the problem minHx ||Y +HxX||F , and obtain the least squares solution
Hx =−YX†. Thus our method is equivalent to the normal regression methods for
problems where the norm of||HY ||F is small, such that the contribution from the
term(HGy)−1 can be neglected, that is, for the noise free case.

However, a significant difference to standard regression methods in the case
when we simply minimize‖HY‖F , is that we do not distinguish betweenY1 and
X data and try to find a relationship between these, but insteadfocus on finding
invariant variable combinationsc= Hy = Hyy1+Hxx= 0.

Our method has the advantage that it only uses data and does not rely on a
model. Thus it is applicable to systems where it is very expensive or impossible to
obtain an accurate model. Not even the cost function has to beknown as long as
the data is optimal. However, it is important that the data isconsistent in the sense
that the data gives the correct optimal sensitivityF = ∂yopt/∂d and contains little
measurement noise.

The main drawback is that we rely on optimal data, and performance cannot
be improved beyond the learning data. However, one could obtain the optimal
data using some expensive method, and then analyze it to find acheap method
which gives similar performance, as is done in the CSTR example above. Other
applications could be to find the “secret” of good operators or the “control strategy”
of a marathon runner or of some economy.
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Chapter 5

NCO tracking and
self-optimizing control in the
context of real-time optimization

“Pooh always liked a little
something at eleven o’clock in the
morning, and he was very glad to
see Rabbit getting out the plates
and mugs; and when Rabbit said,
”Honey or condensed milk with
your bread? “ he was so excited
that he said, ”Both, “ and then, so
as not to seem greedy, he added,
”But don’t bother about the bread,
please. “

A. A. Milne

This paper reviews the role of self-optimizing control (SOC) and nec-
essary conditions of optimality tracking (NCO tracking) aspresented
by François et al. [2005]. We show that self-optimizing control is not
an alternative to NCO tracking for steady state optimization, but is
to be seen as complementary. In self-optimizing control, offline cal-
culations are used to determine controlled variables (CVs), which by
use of a lower layer feedback controller, indirectly keep the process
close to the optimum when a disturbance enters the process. Prefer-
ably, the setpoints are kept constant, but they may be adjusted by some
optimization layer. Good CVs reduce the need for frequent setpoint
changes. When selecting self-optimizing CVs, a set of disturbances
must be assumed, as unexpected disturbances are not rejected in SOC.
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On the other hand, the presented NCO tracking procedure adapts the
inputs at given sample times without a model or any assumptions on
the set of disturbances. However, disturbances with high frequencies
or which do not lead to a steady state are not rejected. By using NCO
tracking in the optimization layer and SOC in the lower control layer,
we demonstrate that the methods complement each other, withSOC
giving fast optimal correction for expected disturbances,while other
disturbances are compensated by the model free NCO trackingproce-
dure on a slower time scale.

Submitted to Journal of Process control. Based on the Keynote lecture at
DYCOPS 2010, Leuven

5.1 Introduction

Most processes in industrial practice are operated in such away that the operators
set the setpoints for PID controllers to keep the controlledvariables (CVs) at the
desired setpoint. Which measurements are chosen as CVs is mostly decided based
on process knowledge and best practices. However, due to stronger competition
and environmental regulations, it has become increasinglyimportant to operate the
processes close to optimality. In many cases, steady state operation accounts for
the largest part of the operating cost, and significant economical improvements can
be achieved by operating the plant optimally at steady state.

Depending on how this is realized, the methods for achievingoptimal process
operation generally may be categorized into one of the following three categories:

• Model used online (e.g. Real-time optimization (RTO))

• Model used offline (e.g. self-optimizing control (SOC))

• Explicit Model not used (e.g. NCO tracking)

In all cases, measurements are collected online, with the aim of driving the pro-
cess towards optimality. In the first approach, online optimization, measurements
from the process are used together with a mathematical modelto determine the
optimal setpoints by solving an optimization problem online [Marlin and Hrymak,
1997].

In the offline approach, expensive online computations are avoided, and opti-
mal operation is achieved by designing a “smart” control structure. This controlled
variable (CV) selection procedures objective is to transform the economic objec-
tives into control objectives [Morari et al., 1980]. A process model is used to
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support decision making in control structure design, but itwill not be used online.
Self-optimizing control [Skogestad, 2000] belongs into this category.

A third strategy avoids using an explicit process model, butuses measurements
in order to obtain gradient information about the process. This information is used
to update the inputs in order to obtain optimal operation. Necessary conditions of
optimality tracking (NCO tracking) [François et al., 2005]and extremum seeking
control [Krstic and Wang, 2000] represent this category. This idea is relatively old
[Draper and Li, 1951], but has recently gained increased attention.

These approaches to achieve steady state optimal operationhave been devel-
oped by research groups with different backgrounds for different kind of problems.
The authors feel that there has been some confusion about theuse, interplay, ap-
plicability and practicability of some of the concepts.

Our paper is structured as follows: The next two sections briefly describe the
ideas from self-optimizing control and NCO tracking. In particular, this work
focuses on the null space method as described in Alstad and Skogestad [2007],
which uses a model offline, and the model free NCO tracking procedure for steady
state optimization as described by François et al. [2005].

In Section 5.4 we describe the framework in which we place thetwo methods
and consider the properties of the two approaches. Based on this discussion, we
consider the methods ascomplementaryand propose to use them together. The
ideas are illustrated by simulation results for a dynamic CSTR in Section 5.5,
followed by a discussion in Section 5.6, and conclusions, Section 5.7.

5.2 Self-optimizing control

In virtually all practical cases, plant operation is subject to operational and safety
constraints, and the problem of achieving steady state optimal operation can be
formulated as

min
u

J(u,x,d) s.t.

{
plant: g(u,x,d) = 0
constraints:h(u,x,d)≤ 0,

(5.1)

whereu∈R
nu denotes the vector of adjustable input variables (e.g. a valve opening

or a pump speed),x ∈ R
nx denotes the states, andd ∈ R

nd denotes the vector of
unknown disturbances and parameters. The vector valued functionsg andh denote
the model equations and the operational constraints, respectively.

In practice, not all constraints are active during optimal operation of the plant
and some constraints will remain inactive. In terms of plantsafety and economy it
is often significantly more important to satisfy the active constraints than to handle
the unconstrained degrees of freedom optimally. Therefore, the first step when de-
signing the control structure is to determine the active constraints, and to control
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Figure 5.1: Block diagram SOC

them using some kind of (feedback) controller. After all active constraints have
been implemented, problem (5.1) can be re-written as an unconstrained optimiza-
tion problem,

min
u

J(u,d), (5.2)

where, by abuse of notation,u now denotes the remaining unconstrained degrees
of freedom.

The term self-optimizing control refers to the procedure ofselecting the con-
trolled variables, which are controlled by some feedback controller (Figure 5.1).
The focus is set on selecting the best controlled variablesc = Hym such that the
operating costJ(u,d) is minimized. Hereym denotes the vector of measurements,
andH is a selection or combination matrix. The criterion for evaluating different
candidates for controlled variables is the loss from optimality

L = J(u,d)−J(uopt(d),d), (5.3)

which is imposed by the disturbanced, and the selected control structure which
determines howu is adjusted. Using the lossL, Skogestad [2000] defined:

Self-optimizing control is when we can achieve an acceptable loss
with constant setpoint values for the controlled variables(without the
need to re-optimize when disturbances occur).
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The ideal self-optimizing variable candidate for this kindof controlled vari-
able would be the gradientc = Ju(u,d) = ∂J

∂u , which should be zero for optimal
operation under all disturbances.

This was already formulated in Halvorsen and Skogestad [1997], where it is
written:

. . . Thus the search is now reduced to find some measurement func-
tion h(u,d) with these required properties. An example of this kind
of ideal measurement function is in fact the gradient of the criterion
function.

This idea has been also mentioned in Halvorsen and Skogestad[1999], where
the authors write of the gradient as a controlled variable. It satisfies the conditions
of not being at a constraint, while the optimal value does notvary with changing
disturbances. Controlling invariants, in particular the gradient of a process, has
been proposed by other authors, too, see e.g. Bonvin et al. [2001] and Cao [2005].

However, in most cases, the gradient cannot be measured, forexample, because
it is a function of the unknown disturbancesd. The definition of self-optimizing
control [Skogestad, 2000] includes the special case of gradient control, while leav-
ing room for “suboptimal cases” in which the gradient cannotbe determined ex-
actly from measurements. In some cases it might be desirableto control only
single measurements, or to exclude a set of measurements. Then the gradient will
not be zero and the lossL provides an objective selection criterion. In other words,
a self-optimizing control structure may be considered the best possible (in terms
of the lossL) approximation to the unmeasured gradientJu using the available
measurements.

Several methods for finding self-optimizing variables havebeen reported in
the literature [Halvorsen et al., 2003; Alstad and Skogestad, 2007; Kariwala et al.,
2008; Alstad et al., 2009]. All these methods are based on a approximating the
optimization problem (5.2) by a quadratic optimization problem

min
u
[uT dT]

[
Juu Jud

Jdu Jdd

][
u
d

]

, (5.4)

and by using a linear measurement model

y = Gyu+Gy
dd. (5.5)

The goal is to find a matrixH such that the controlled variablec is

c= Hym, (5.6)

where the measured quantities are defined as

ym = y+ny (5.7)
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with the measurement noiseny. Without measurement noise,ny = 0, we have that
ym = y; thus we write the controlled variable

c= Hy. (5.8)

It is assumed that the inputsu are adjusted by a feedback controller to keepc at
its setpointcs. If the controller has integral action, thenc= cs at steady state. In
the case of single measurements, each row ofH contains only one entry, whereas
if combinations of measurements are allowed,H will be a full matrix.

5.2.1 Self-optimizing control using the null space method

In the following we describe the null space method [Alstad and Skogestad, 2007]
for determining a controlled variable, which is a combination of measurements.
We present a reformulation of the null space theorem [Alstadet al., 2009].

Theorem 6. Given a sufficient number of measurements (ny ≥ nu + nd) and no
measurement noiseny = 0, selectH in the null space of the optimal sensitivity
matrix F,

HF = 0, (5.9)

where

F =
∂yopt

∂d
. (5.10)

Controlling c= Hy to zero yields locally zero loss from optimal operation.

To obtain the optimal sensitivity matrixF there are several possibilities. It can
be obtained numerically by re-optimization of a process model, or calculated using

F =−GyJuu
−1Jud +Gy

d, (5.11)

whereJud = ∂ 2J/(∂u∂d) andJuu = ∂ 2J/∂u2, and we use the linearized process
model (5.5). Alternatively, one could run experiments, or use optimal measure-
ment data as shown in Chapter 4.

We sketch a proof: In the neighborhood of the nominal pointdnom the optimal
change in the measurements can be expressed using (5.10) as

yopt(d)−yopt(dnom) = F(d−dnom). (5.12)

The optimal variation in the controlled variablesc then becomes

copt(d)−copt(dnom) = HF(d−dnom), (5.13)

and sinceH is chosen in left null space ofF, we havecopt(d) = copt(dnom) for any
disturbanced, and thus we do not need to change the setpoint forc= Hy.
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In Appendix 5.A we show that choosingH in the left null space ofF is in
indeed identical to selectingc= Ju, whereJu = ∂J/∂u is the gradient of (5.4).

However, when the measurements are corrupted by biased noise ny, the null
space method will not give the best possible solution. To findthe best controlled
variable with biased process noise on the measurements, we refer to Alstad et al.
[2009].

5.3 NCO tracking

Necessary conditions of optimality (NCO) tracking is a general framework that
turns a (dynamic or static) optimization problem into a control problem. It uses
the fact that at the optimal operating point, the first order necessary optimality
conditions must hold. Basically, the necessary conditionsof optimality are the
controlled variables. This general concept has been applied both to dynamic op-
timization problems (e.g. Srinivasan et al. [2003a,b],Bonvin et al. [2005]; Kadam
et al. [2007]), and static optimization (e.g. François et al. [2005]; Srinivasan et al.
[2008]; Gros et al. [2009]).

For steady state optimization, the Karush, Kuhn Tucker conditions [Bazaraa
et al., 2006] represent the optimality conditions. If the sensitivities are available
as online measurements (or estimates), they may be controlled by using a contin-
uous feedback controller, such as a PI controller. Alternatively, the inputs may
be updated iteratively until the NCO are satisfied. To the authors’ knowledge, all
publications on static optimization using NCO tracking have been applying dis-
crete input updates for iteratively approaching the steadystate optimal input value
which satisfies the NCO (at least for the unconstrained part of the NCO).

5.3.1 NCO tracking procedure as described by François et al.[2005]

In this paper we will be referring to NCO tracking as described in François et al.
[2005]. This is a truly measurement based optimization method, which does not
rely on any process model. Instead of controlling “normal” measurementsy, the
gradient is measured (or estimated), and used as a controlled variable. When a
disturbance enters the process, the NCO tracking control scheme adapts the inputs
iteratively such that the NCO are satisfied after some iterations. The block diagram
is given in Figure 5.2.

We do not present the general NCO tracking procedure (with constraints) here,
but we rather give a derivation of the special case without constraints, i.e. only the
sensitivity seeking directions, as applied in e. g. Srinivasan et al. [2008]. Then the
optimization problem in consideration is

min
u

J(u,d), (5.14)
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whereu andd are defined as above. Omitting to write the explicit dependence on
d, the first order necessary condition for optimality is:

Ju(u) =
∂J(u)

∂u
= 0. (5.15)

To achieve optimal operation, we update the inputu at each sample timek using
the update equation

uk+1 = uk+∆u, (5.16)

until (5.15) is satisfied. To obtain the update term∆u, we linearize (5.15) around
the current operating pointuk,

Ju(uk+∆u) = Ju(uk)+Juu(uk)∆u. (5.17)

Since we want the update∆u to force the sensitivity to zero, we set the left
hand side of (5.17) to zero and solve for∆u [François et al., 2005].

∆u =−Juu
−1(uk)Ju(uk) (5.18)

This Newton update step is exact for a quadratic approximation of the system
(5.14), in the sense that the NCO (5.15) are satisfied after one iteration. In prac-
tice we do not apply the full update step∆u, because this may lead to feasibility
and convergence problems as the process can move outside theregion where the
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quadratic approximation is valid. To avoid this, the updateterm ∆u is multiplied
by some tuning parameterβ ∈ [01], such thatuk+1 = uk+β∆u.

To evaluate (5.18) we need the derivativeJu(uk) for a given inputuk. In this
work it is chosen to make a small perturbation in the input andto run the pro-
cess for a given time to estimate the gradient by finite differences. The magnitude
of the perturbation is desired to be small in order not to upset the process exces-
sively. At the same time it has to be larger than the process noise to yield sufficient
information about the descent direction.

Since the HessianJuu(uk) is difficult to obtain, it is often determined once
at the nominal operating point. Alternatively, as we chooseto do in this work,
an approximation of the inverse of the Hessian can be obtained by a BFGS update
scheme. The NCO tracking algorithm is summarized in Figure 5.3. This procedure

Run plant to steady state

Measure the gradient
(e. g. perturbu, run plant to steady state, ob-

tain gradientJu(uk) by finite differences)

Estimate inverse of the Hessian
Juu

−1(uk) using a BFGS update

Update input:
∆u = −Juu

−1(uk)Ju(uk)
uk+1 = uk + β∆u

Figure 5.3: Simple NCO tracking procedure

is analog to a Newton(like) method in optimization. In the analogy, the steady state
operating periods correspond to function evaluations in the newton procedure, and
the solution is found when the NCO hold.

Just like any (quasi) Newton method, NCO tracking depends crucially on the
availability of good gradient estimates. Beside estimating the gradients using in-
put perturbations and finite differences, there exist othermethods, which do not
require frequent perturbations. In Roberts [2000], past inputs are used in Broy-
den’s formula to obtain the gradients. Other methods which do not rely on in-
put perturbations are described in Brdyś and Tajewski [1994] and Gao and Engell
[2005]. However, in this work, the authors choose to use finite differences because
of its simplicity. Avoiding input perturbations for gradient estimation will result
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in less nervous process operation, however, inputs will still be updated iteratively,
but only at given sample times.

Remark 2 (Recent advances in NCO tracking). The gradient does not have to be
obtained using finite differences. Any other method to measure or estimate the
gradient is possible. The gradient may for example be estimated by a model, as is
done in the null space method. Recently, the idea of NCO tracking has been ex-
tended to the case where the gradient estimate is based on output feedback. Gros
and coworkers, Gros et al. [2009] use a linear measurement model to eliminate
the disturbance from the gradient expression. Their results are based on the same
idea as the null space method, which uses a measurement modelto eliminate un-
known disturbances and internal states from the gradient expression. However,
Gros et al. [2009] goes one step further and determines the actual change in the
inputs. This step is omitted in the self-optimizing controlstructure design context,
because the focus is set on finding good controlled variables, and the generation
of the corresponding inputs,u, is left to the feedback controller.

The authors of Gros et al. [2009] consider zero mean noise, and show that if
the model is invertible and the number of unknowns (nd) is lesser than or equal
to the number of measurements (ny), the inputs can be updated to converge to the
optimum.

In the case of biased noise, neither the null space method northe NCO tracking
modifications introduced by Gros et al. [2009] will give the best achievable opera-
tion. In this case it is necessary to use other methods which find a trade-off between
the loss caused by the disturbance and the loss caused by the measurement offset.
A method applicable in this case is the “minimum loss method”[Alstad et al.,
2009].

5.4 Self-optimizing control and NCO tracking in relation
to each other

In order to suggest how to combine self-optimizing control as described in Alstad
and Skogestad [2007] and NCO tracking as in [François et al.,2005], we first
consider how a chemical plant is usually operated today.

5.4.1 Time scale separation of the overall control system

The control structure of a complete chemical plant can be decomposed vertically
into different layers, which operate on different time scales, [Findeisen et al., 1980;
Skogestad, 2004]. Each control layer implements the setpoints which are given
from the layer above, Figure 5.4.
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The top layer consists of planning and scheduling. This includes management
decisions on e.g. the product specifications, and on profit and safety parameters,
such as utility prices and constraints. Usually this layer has a time scale of weeks
or days, strongly depending on the type of process and the production scale.

The optimization layer is located below the planning and scheduling layer and
implements the goals given from the planning and schedulinglayer. In most plants
this is done by operators, but in recent years, online optimization (RTO) has been
increasingly used to find good setpoints for the controlled variables of the lower
layers. However, this can become complicated as it involvesseveral difficult steps
such as steady state detection, data estimation and reconciliation and solving a
large nonlinear optimization problem. Once the optimization problem has been
solved successfully or the operators have decided to changethe setpoints, the new
setpoints are passed on to the control layer and implemented. It is typical for this
layer that the setpoints are updated at discrete time instances with update intervals
in the time scale of several hours.

The control layer below the optimization layer generally consists of PID con-
trollers or model predictive controllers (MPC), which act directly on the plant in-
putsu. This layer has a time scale ranging from fractions of seconds up to minutes
and to a few hours. Finally, the plant layer contains the actual plant, but usually
with some stabilizing (regulatory) control loops.

When a disturbance enters the system, the control layer willtry to keep the
setpoints of the controlled variables to their original setpoints. After the plant has
settled down and (suboptimal) steady state has been reached(and detected), the
operator may adjust the setpoints based on experience, or the real-time optimizer
may re-calculate the setpoints. Then the setpoints of the controlled variables are
ramped to their new values, and the plant has to settle down again. The long time
delay between start of the disturbance and reaching the finaloptimized operation
point is one of the challenges for the optimization layer. Inparticular if RTO is
used, it is not possible to counteract disturbances which occur on a fast time scale
[Engell, 2007]. This limits successful RTO applications for cases with sporadic
disturbances, which, after a short transition period, leadto a new steady state,
e.g. step changes in the plant throughput or the like. Disturbances occurring on a
faster time scale cannot be detected and rejected in RTO implemented as described
above.

Using a dynamic model in the real-time optimization with an economic objec-
tive function would allow setpoint changes without having to wait for steady state.
However, practical obstacles have prevented the dynamic RTO (DRTO) from be-
coming a standard tool in process industries. The main problems arise from the
reliability of the information used in the DRTO, because good models are difficult
to obtain and maintain with justifiable efforts. In addition, the state estimation
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causes additional challenges. Even if a good model and states are available in the
DRTO, the dynamic optimization problem itself is difficult to solve.

5.4.2 Properties of self-optimizing control and NCO tracking

Both methods, NCO tracking and self-optimizing control pursue the same goal,
namely minimization of the operating cost. The main differences between Alstad
and Skogestad [2007] and unconstrained NCO tracking as in François et al. [2005]
are that in François et al. [2005] the gradient is “measured”, and the inputs are
updated iteratively, while in Alstad et al. [2009], a model is used to predict the
gradient from outputs, and a continuous PI controller is used to manipulate the
corresponding inputs.

In self-optimizing control, we focus on finding controlled variables which do
not need frequent updates, such as the gradient, for example. However, since the
gradient is usually not available as a measurement, self-optimizing control does not
in general aim for controlling the gradient of the plant to zero, but to find controlled
variables, which give acceptable operation. The self-optimizing variables are kept
at their setpoints by feedback controllers, so there is no need for solving for the
optimal inputs explicitly.

In summary, we may say that the NCO tracking procedure by François et al.
[2005] measures the gradient, and works as a controller which calculates the re-
quired (steady state) input change∆u directly. In self-optimizing control [Alstad
and Skogestad, 2007], we are not interested in the inputs, asthey are taken care of
by the controllers. We are rather interested in finding the right controlled variable
c= Hy, which when kept constant, leads to the correct input actionu.

In Table 5.1 we have listed the main differences between the null space method
and NCO tracking.

5.4.3 Using self-optimizing control and NCO tracking together

The previous observations lead us to consider self-optimizing control and NCO
tracking as described by François et al. [2005] (or RTO) ascomplementary, and use
them together. The NCO tracking fits better into the optimization layer and is thus
an alternative to model based real-time optimization (RTO), while self-optimizing
control should be used in the lower layer and follow the setpoints coming from the
NCO tracking layer, as shown in Figure 5.5.

It may be argued that if NCO tracking or an RTO system is installed, there
is no need to select a self-optimizing control structure because the setpoints are
updated by the optimization layer. However, this combination of an RTO layer
(or NCO tracking) and self-optimizing control avoids the shortcomings of conven-
tional RTO:
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Table 5.1: Summary of properties

Null space method NCO tracking
[Alstad and Skogestad, 2007] [François et al., 2005]

Procedure for findingc= Hy Controlled variable:c= Ju

Ju not measured Ju measured
Set of importantd assumed a priori No assumptions on disturbances

F = ∂yopt

∂d obtained from model No model needed
Near-optimal for expected disturbances Optimal for unexpected disturbance
Linearized at nom. point Linearization point moves
Fast (feedback) Slow (acts only at sample times)

Optimization
NCO tracking

as RTO

PID/MPC
controller

Plant

csetpoint

u
SOC

c= Hym

ym

c

disturbanced

Figure 5.5: Relation between NCO tracking and self-optimizing control
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1. The use of self-optimizing controlled variables enablesa faster optimal re-
action to expected (main) disturbances, not only at sample times.

2. The RTO has to change the setpoints less frequently.

Infrequent RTO updates result in fewer complex operations such as steady state de-
tection, data reconciliation, and solving the resulting nonlinear optimization prob-
lems. At the same time, the self-optimizing control structure can benefit signif-
icantly from an RTO system or NCO tracking controller on top of it. One rea-
son is that the null space method is based on a model and expected disturbances,
whereas NCO tracking can also handle unknown disturbances.Another reason is
that if a disturbance moves the process far from the linearization point, the local
model approximation in the null space method may be poor. Therefore, the self-
optimizing control structure cannot reject unexpected disturbances or disturbances
which move the process far away from the linearization point. They have to be
counteracted by re-optimization of the system.

In summary, it is recommended to always use a self-optimizing control layer
underneath the optimization layer instead of directly computing the plant input
u. This rejects expected disturbances on a fast timescale, while the unexpected
disturbances are rejected by the NCO tracking/RTO layer updates. Applying self-
optimizing control is thus an intelligent way to implement the control layer below
the RTO layer.

Remark 3. Even though we here have used the flavor of NCO tracking by François
et al. [2005], our conclusion may be generalized further to combine a model based
method in a lower control layer, which can act swiftly to compensate for expected
disturbances; and to use a model free method on top reduce theeffect of model
mismatch and to reject unexpected disturbances by adjusting the setpoints of the
lower layer on a slower time scale. Thus, also methods such ase.g. extremum
seeking [Ariyur and Krstic, 2003] could be used in the upper layer.

5.5 Case study

5.5.1 Model

To illustrate the ideas above, we present simulation results for a dynamic CSTR
with a feed streamF containing mainly the componentA, and a reversible chemical
reactionA⇋ B, see Figure 5.6. The process model is taken from Economou and
Morari [1986], and the dynamics of the system are described by following set of
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F
CA,in
CB,in
Ti

CA
CB

T

Figure 5.6: Schematic diagram of a CSTR

equations,

dCA

dt
=

1
τ
(CA,in −CA)− r, (5.19)

dCB

dt
=

1
τ
(CB,in −CB)+ r, (5.20)

dT
dt

=
1
τ
(Ti −T)+

−∆Hrx

ρcp
r, (5.21)

whereCA, CB, T, andTi denote the concentrations of componentsA andB, the
reactor temperature and the feed inlet temperature, respectively. Further,τ is the
residence time,ρ is the density,cp is the heat capacity, and−∆Hrx is the reaction
enthalpy. The reaction rater is defined by

r = k1CA−k2CB (5.22)

where
k1 = A1e

−E1
RT and k2 = A2e

−E2
RT , (5.23)

andA1 andA2 are the Arrhenius factors for the reaction constantsk1 andk2.
This process has one manipulated input (u), the inlet temperatureTi. The ex-

pected disturbancesd1 andd2 enter the process as variations in the feed concentra-
tionsCA,in andCB,in, and the measured variables are

y1 =CA,

y2 =CB,

y3 = T.

(5.24)

The objective is to maximize the profit function, which is thedifference between
the income from selling the productB and the cost for heating the feed (Alstad
[2005]):

P= [pCBCB− (pTi Ti)
2], (5.25)
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Table 5.2: Objective function parameters

Parameter Value

pCB 2.009
pTi 1.657·10−3
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Figure 5.7: Disturbance trajectoriesCA,in,Cb,in

HerepCB is the price of the desired productB and pTi is the cost for heating. The
parameter values are given in Table 5.2, and the nominal operation values for all
variables are listed in Table 5.3.

5.5.2 Simulations

First, we control the process for the expected disturbancesusing direct NCO track-
ing [François et al., 2005]. Next, we use a self-optimizing controlled variable
c= Hym, obtained the null space method and compare the results withdirect NCO
tracking. After comparing both control structures for an unexpected disturbance,
we finally combine the methods as shown in Figure 5.5.

The expected disturbance scenario is given in Figure 5.7. After 500 minutes at
the nominal value, the concentrationCA,in (d1) varies sinusoidal before returning
to its nominal value. Then ramp disturbances inCA,in are introduced, followed by
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Table 5.3: Nominal values for the CSTR model

Variable Value Unit Description

Ti 424.20 K Feed temperature (inputu)
CA 0.4978 mol/l ConcentrationA in product (y1)
CB 0.5022 mol/l ConcentrationB in product (y2)
T 426.71 K Reactor temperature (y3)
CA,in 1.000 mol/l ConcentrationA in feed, (d1)
CB,in 0.000 mol/l ConcentrationB in feed, (d2)
F 1.000 holdup min−1 Flow rate
A1 5000 s−1 Arrhenius factor 1
A2 1·106 s−1 Arrhenius factor 2
cp 1000 calkg−1K−1 Heat capacity
E1 10000 cal mol−1 Activation energy 1
E2 15000 cal mol−1 Activation energy 2 (d3)
R 1.987 cal mol−1K−1 Ideal gas constant
−∆Hrx 5000 cal mol−1 Heat of reaction
ρ 1.000 kg/l Density
τ 1.000 min Residence time
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Figure 5.8: NCO tracking, concentrations and temperature

large step disturbances. At 4000 minutes, the concentration CB,in (d2) makes a step
change of 0.2 mol/l. The non-steady state periods (sinusoidand ramp) are included
to test how the controller behaves in these cases. Note that strictly speaking, the
gradient is not defined when the process is not at steady state.

Direct NCO tracking

To obtain the gradient information, the inputTi is perturbed with a step of 1 K.
Starting with a positive value, the sign is altered every fourth NCO iteration.
Changing the sign of the perturbation was found to give better overall performance
of the NCO procedure. No steady state detection is implemented in the NCO track-
ing procedure. Instead, a step test is used to determine the approximate time for
the system to settle down to a new steady state. At the nominalpoint, the system
has a time constant of less than two minutes for an input step of ∆Ti = 5 K. To
let the system settle down far from the nominal point, where the system dynamics
are different, a sample time of 10 minutes is chosen for the direct NCO tracking
procedure. The step size parameterβ is set to 0.4.

Figure 5.8 shows the concentration and temperature trajectories for the NCO
tracking procedure. The control strategy enables acceptable control. It is further-
more found that the step disturbances are very well handled.Since the method
assumes steady state after 10 minutes, and uses the results at each sample time for
calculating the input update, it has difficulties handling sinusoidal and ramp dis-
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turbances which do not lead to a steady state. However, the controller manages to
keep the system stable during these periods. The performance of the NCO tracking
algorithm is very sensitive to the tuning parameterβ , the sample time, and timing
and kind of disturbance, and of course the perturbation for estimating the gradient.

Self-optimizing control using the null space method

Next, the process is controlled using the null space method from Section 5.2. Since
we have one input and 2 disturbances to compensate for, we need three measure-
ments for the invariant variable combination, soy= [ CA CB T ]T. We optimize
the steady state system at the nominal operating point and then introduce small
perturbations in the disturbance variablesd = [CA,inCB,in]

T. After re-optimizing
we calculate

F =
∂yopt

∂d
=





−0.4862 −0.3223
−0.5138 −0.6777
−9.9043 40.5807



 . (5.26)

Then with H = [ −0.7688 0.6394 0.0046 ] we have thatHF = 0. Using a
PI controller, the self-optimizing variablec = Hym = −0.7688CA + 0.6394CB +
0.0046T is controlled at a constant setpoint (zero if we use the deviation from
nominal steady state). The concentration and temperature trajectories with self-
optimizing control are plotted in Figure 5.9. Compared withthe concentrations
and temperature using NCO tracking, the trajectories are much smoother.

Comparing inputs and profit for NCO tracking and self-optimi zing control

As may be seen from the trajectories for NCO tracking and self-optimizing control,
the input usage for the two cases is quite different, Figure 5.10. While the NCO
tracking procedure needs large input variations to estimate the gradient and to
iteratively update the input, the input usage of the self-optimizing control structure
is very moderate and smooth. Especially during the non-steady state disturbances,
the NCO tracking changes the input excessively.

Comparing the profits, Figure 5.11 shows that both systems are very similar
in the steady state periods, but for disturbances where no steady state is reached
within one sample time, NCO tracking is not performing as well as the self-
optimizing control policy using the null space method.

Using NCO tracking as RTO and self-optimizing control in thelower layer

If it can be guaranteed that the disturbances in the feed concentration are the only
ones entering the process, then using only self-optimizingcontrol is sufficient, and
an RTO layer is not necessary. However, the situation changes for disturbances
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Figure 5.9: SOC, concentrations and temperature
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Figure 5.10: Input usage for SOC and NCO tracking
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Figure 5.11: Profit for SOC and NCO tracking

not anticipated in the control structure design. Consider apositive step change
in the activation energyE2 (d3) of 3% at time 3100 min. This disturbance re-
duces the reaction rate for the reverse reaction, especially at higher temperatures.
Comparing the profits using the two control structures, Figure 5.12, shows that the
self-optimizing control system cannot make use of the improved conditions caused
by the unexpected disturbance.

Adapting the self-optimizing control setpoints using RTO or NCO tracking
can solve this problem, and at the same time reduce RTO or NCO tracking sample
time. In Figure 5.13 the instantaneous profit for direct NCO tracking [François
et al., 2005] (sample time: 10 min) and the combined system with a sample time
of 25 min is shown. The combined system operates smoother than the pure NCO
tracking system while giving similar performance in terms of the profit. However,
considering the input usage, Figure 5.14, we find that the combination of self-
optimizing control and NCO tracking gives a substantially smoother input action
than direct NCO tracking. Using online RTO, the performancecould be improved
even further because the setpoints would move directly to the optimal values in-
stead of iteratively approaching them. However, unmodelled (unexpected) distur-
bances are not rejected in online RTO either.
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Figure 5.12: Profit, for NCO tracking and for SOC with unexpected disturbance
(d3) at 3100 min
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Figure 5.13: Profit for combined SOC/NCO tracking (25 min sample time) and
direct NCO tracking (10 min sample time)
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Figure 5.14: Input, combined NCO/SOC and direct NCO tracking

5.6 Discussion

There has been some confusion about the relationship between the “self-optimizing”
control approach of Skogestad and coworkers and the NCO tracking approach of
Bonvin and coworkers. The reason for the confusion is that both approaches seek
to optimize operation and make the gradient zero (Ju = 0), but there are significant
differences:

In self-optimizing control, offline calculations are used to obtain good con-
trolled variables, typically as linear combination of the measurements,c = Hym,
wherec may be considered an approximation of the weighted gradient. It is criti-
cal to have a model of the expected disturbances when obtaining c. One does not
compute the optimal inputs explicitly; they are generated by a feedback controller
to makec= Hym = cs (constant).

In the NCO tracking procedure by François et al. [2005] one aims at obtaining
the optimal inputsu that drive the measured or estimated gradient to zero. It is not
necessary to know the disturbances in advance, and no model is needed.

As shown in this paper, the two methods may be successfully combined by
controlling the self-optimizing variablesc in the lower layer, and letting NCO
tracking adjust the setpoints,c= copt based on online estimates of the gradient.

It was not easy to make the NCO tracking work in spite of the fact that we
assumed no measurement noise. This could be partly attributed to the fact that
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we used a simple finite difference procedure to obtain the gradients, without, for
example, steady state detection. The NCO tracking parameters (perturbation mag-
nitude, step sizeβ , sample time) which converge to the optimum, were found by
trial and error. Parameters which perform well for one disturbance may give poor
performance for a different disturbance. Non-steady stateperiods make it espe-
cially difficult to find parameters which optimize the cost with acceptable input
usage.

The NCO tracking procedure hinges on good gradient estimates, and using fi-
nite differences for estimating the gradient gives poor NCOtracking updates, even
with the assumptions of perfect measurements without noise, and perfect knowl-
edge of the profit value. More advanced gradient estimation techniques and in-
put adaptation methods may give better overall performance, especially in terms
of input usage, because poor update steps caused by wrong gradient estimates
would be avoided. In this work, we chose to apply the simple finite difference
method, because our purpose is to demonstrate that the basicconcepts of mea-
surement based optimization techniques, such as NCO tracking, and the model
based self-optimizing control concepts are complementary. Whatever technique
for calculating the gradient and the NCO tracking updates isused, combining the
two methods helps to overcome their limitations. An interesting task for future
research might be to study the combination of self-optimizing control with a more
advanced update/gradient estimation method and a more realistic case with non-
zero mean random measurement noise.

5.7 Conclusion

The different characteristics of the two methods studied inthis paper suggest to
consider them as complementary, not competing. NCO tracking is most suit-
able for use in the optimization layer, as an alternative to online RTO, while self-
optimizing control is used for selecting CVs in the control layer.

Since almost every RTO system has a dynamic control system inthe layer
below, using a self-optimizing control structure in the lower layer improves per-
formance and can significantly reduce need for RTO updates. For NCO tracking as
implemented in this paper, this means fewer perturbations for gradient estimation.
For an online RTO, this means more time for complex, time intensive, computa-
tions, with few compromises on performance.

The matlab simulation files are available on the home page of S. Skoges-
tad,http://www.nt.ntnu.no/users/skoge, or as supplementary mate-
rial from the journal.



96 NCO tracking and SOC in the context of RTO

5.A Relationship between the gradient and the null space
method

Consider the unconstrained optimization problem

min
u

J(u,d) = min
u

[uT dT ]

[
Juu Jud

Jdu Jdd

][
u
d

]

. (5.27)

Differentiating the costJ with respect tou gives

Ju =
[

Juu Jud
]
[

u
d

]

. (5.28)

The linear model (5.5) can be rewritten as

y = G̃y
[

u
d

]

. (5.29)

If we assume that we have a sufficient number of measurements,ny = nu+nd, then
the model may be inverted, and substitution into (5.28) gives

Ju =
[

Juu Jud
]
[G̃y]−1y. (5.30)

At the optimum, we haveJu = 0, or equivalentlyc= Hy = 0, where

H = [Juu Jud][G̃y]−1. (5.31)

This is the same expression forH as derived in Alstad et al. [2009]. And indeed, if
we evaluateHF usingF in (5.11), we getHF = 0. This follows sinceF in (5.11)
may be rewritten as

F = G̃
[
−Juu

−1Jud

I

]

. (5.32)

Also note that the lossL and gradient are related by

L =
1
2

JuJuu
−1Ju, (5.33)

soJu = 0 is equivalent toL = 0. In summary, we see that the null space method is
identical to controlling the gradient,Ju = 0.
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Part II

Polynomial invariants for optimal
operation





Chapter 6

Some background on polynomials

Happiness is ideal, it is the work of
the imagination

A. Lord Tennyson

This chapter gives some background on polynomials, algebraic geom-
etry and elimination theory. The purpose of this chapter is to introduce
the reader to some important concepts, which are used in later chap-
ters.

6.1 Polynomial methods in control

Polynomials have always been an integral part of control theory and are closely
linked to linear algebra (e.g. the characteristic polynomial of a matrix). Because
polynomials have many nice properties (e.g. a polynomial multiplied by a poly-
nomial is a polynomial), there exists a strong theoretical basis for working with
polynomials. With the availability of computers, more complex symbolic opera-
tions became possible, and in the last 5-6 decades many constructive methods for
handling and manipulating systems of polynomial equationshave been developed.
The best-known example maybe is the Gröbner basis [Buchberger, 1965], which
can be thought of as a generalization of the Gaussian elimination procedure for
polynomial equations.

Some important newer concepts include several improvements on the Gröb-
ner basis calculations and the development of border bases [Kehrein and Kreuzer,
2006]. Border bases are a generalization of Gröbner bases which are numerically
more stable and robust to numerical calculations. Another new development is the
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theory of sparse resultants, which generalize the classical resultants for homoge-
neous systems of polynomials to inhomogeneous systems [Pedersen and Sturm-
fels, 1993; Gelfand et al., 1994; Canny, 1990].

With increasing computational power, the algebraic techniques for manipu-
lating polynomial systems have become interesting for other fields of research
than pure algebraic geometry. Some examples are robot motion planning [Canny,
1988], automatic theorem proving [Chou, 1988] and cryptography [Ars et al.,
2004]. Algebraic methods have also been used in the control community, e.g. for
proving stability [Forsman, 1991b,a], or for calculating switching surfaces [Walther
et al., 2001; Bistak, 2010]. Other applications have been tosolve the parametric
optimization problem which arises in nonlinear model predictive control [Fotiou
et al., 2006].

A slightly different direction of research has been concerned with positive
polynomials, in particular systems of polynomials, which can be written as sum of
squares [Henrion and Garulli, 2005]. It has been found many problems involving
sum of squares polynomials can be solved using linear matrixinequalities [Parrilo,
2000; Parrilo and Lall, 2003]. Handling sum of squares polynomials in the linear
matrix inequality framework is computationally easier than other exact symbolic
calculations. Polynomials, which are not sum of squares, may be relaxed, so that
they can be written as sum of squares polynomials, [Parrilo,2000]. This is espe-
cially useful for finding bounds on difficult optimization problems. Henrion and
Garulli [2005] provide a nice overview of the applications of positive polynomials
in a control context.

6.2 Some basic concepts from algebraic geometry

In this section we briefly present some basic details about polynomials and alge-
braic geometry. It is not meant to be an exhaustive treatmentof the topic. For this,
we refer to Cox et al. [1992, 2005]. The reader familiar with basic algebraic ge-
ometry may skip this chapter and continue directly with the application in Chapter
7.

If not marked otherwise, the presentations and examples in this chapter are
taken or adapted from Cox et al. [1992]. Let us define the vector x as

x = [x1, . . . ,xn]
T . (6.1)

Definition 1. A monomial in x1, . . . ,xn is a product of the form

xα1
1 ·xα2

2 · · ·xαn
n , (6.2)

where all exponentsα1, . . . ,αn are non-negative integers.
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We use the short hand notation

xα = xα1
1 ·xα2

2 · · ·xαn
n . (6.3)

Let k be a field, for examplek= R, or k=C.

Definition 2. A polynomial f in x1, . . . ,xn with coefficient in k is a finite linear
combination (with coefficients in k) of monomials. We write

f = ∑
α

aα xα , aα ∈ k, (6.4)

where the sum is over a finite number of n-tuplesα = (α1, . . . ,αn).

The set of all polynomials with variablesx and coefficients ink is denotedk[x].
We call k[x] a polynomial ring, andaα is called the coefficient of the monomial
xα . There are many other fields thank = C or k = R, but we will consider only
cases where the coefficients are inR, and solutions can be inC. That is thek= C

covers all our requirements.

Definition 3. Let k be a field (for exampleR or C), and let f1, . . . , fs be polynomi-
als in k[x] = k[x1, . . . ,xn]. Then we set

V( f1, . . . , fs) = {(a1, . . . ,an) ∈ kn : fi(a1, . . . ,an) = 0 ∀1≤ i ≤ s} . (6.5)

The setV( f1, . . . , fs) is called theaffine variety defined by f1, . . . , fs.

Thus, the affine variety is the set ofx ∈ kn for which we have

f1(x) = 0

f2(x) = 0
...

fs(x) = 0.

(6.6)

E.g. the variety of the polynomial

f = x2+y2−1 (6.7)

is the unit circle inR2, and is an example for a one-dimensional variety (because
it is a one-dimensional curve).

Instead of working with the set of polynomials directly, it is often useful to
work with the ideal which is generated by the polynomials.

Definition 4. A subset I⊂ k[x] is an ideal if it satisfies
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i. 0∈ I.

ii. If f ,g∈ I, then f+g∈ I.

iii. If f ∈ I and h∈ k[x], then h f∈ I.

Theorem 7. Let f1, . . . , fs be polynomials in k[x]. Then the set

〈 f1, . . . , fs〉=
{

s

∑
i=1

hi fi : h1, . . . ,hs ∈ k[x]

}

(6.8)

is an ideal. We call〈 f1, . . . , fs〉 the ideal generated by f1, . . . , fs.

Proof. See Cox et al. [1992]

For example if we have two polynomialsf1, f2 ∈ C[x1,x2], the ideal generated
by these two polynomial is

〈 f1, f2〉= {h1 f1+h2 f2} (6.9)

for anyh1,h2 ∈ C[x1,x2]. Now, if we consider the varietyV( f1, f2), that is the set
of all x1,x2, where we have

f1(x1,x2) = f2(x1,x2) = 0, (6.10)

then we see that all polynomials in the ideal

〈 f1, f2〉=






h1(x1,x2) f1(x1,x2)

︸ ︷︷ ︸

=0

+h2(x1,x2) f2(x1,x2)
︸ ︷︷ ︸

=0






(6.11)

will vanish. Therefore, the ideal is also said to consist of all the “polynomial
consequences” of the generating polynomials. Even though the ideal contains in-
finitely many polynomials, it can be shown [Cox et al., 1992],that all ideals can be
generated by a finite number of polynomials. This is known as the Hilbert Basis
Theorem. The set of generating polynomials of an ideal is notunique, that means
that a certain affine variety can be represented by differentsets of equations.

There is an analogy with linear algebra. The ideal has similar properties to a
subspace, as both are closed under addition and multiplication. In linear algebra,
we multiply with scalars, while the ideal is multiplied by polynomials. The anal-
ogy continues in that the subspace is spanned by a set of basisvectors, and the
ideal is generated by a set of basis polynomials.
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Figure 6.1: The varietiesV( f1) andV( f2). The intersection points yieldV( f1, f1)
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Example 1. Consider the two polynomials

f1 = xy−1

f2 = x2+y2−2.
(6.12)

The variety of the ideal generated by these two polynomials is the intersection
of the individual varieties. This is illustrated in Figure 6.1. The variety of these
polynomials is the same as the variety given by

f̃1 = y4−2y2+1= (y2−1)2

f̃2 = x+y3−2y.
(6.13)

These two sets of polynomials generate the same ideal, and the variety isV( f1, f2)=
V( f̃1, f̃2) = {(1,1),(−1,−1)}.

Example 1 demonstrates nicely that the same variety, in thiscase the two points
(1,1) and(−1,−1), can be represented by completely different equations. Note,
that we have eliminated the variablex from the first equation. This property will
be used in the next chapter, where we want to find a special representation, which
does not contain a certain set of variables, while not changing the solution (variety)
of the equations.

In linear algebra, the same subspace can be defined by many different basis
vectors. Analogue to the linear algebra case, the same ideal(or variety) can be
defined by many different basis polynomials.

The theory of algebraic geometry is much richer than we can present here. For
more details, we refer the reader to Cox et al. [1992] and Cox et al. [2005]. We
will now rather introduce a tool which will be used in the nextchapters.

6.3 The sparse resultant

We will only present some basic concepts in this section. Fora more detailed
exposure, we refer to Cox et al. [2005].

The resultant of an overconstrained polynomial system characterizes
the existence of common roots as a condition on the input coefficients.
[. . . ] Since it eliminates the input variables, it is also known as the
eliminant [Emiris and Mourrain, 1999].

In the rest of this section, we will restrict all the elementsin x ∈ C
n to be

nonzero. We define
C
∗ = C\0, (6.14)
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and we consider only solutions of polynomials which are in the set(C∗)n. The van-
ishing of the sparse resultant is the necessary and sufficient condition for common
rootsx ∈ (C∗)nd [Cox et al., 2005].

Remark 4. The set(C∗)n is an example of a toric variety [Cox, 2003]. The con-
dition that all elements inx have to be nonzero, makes it possible to allow Laurent
polynomials (that is we allow the polynomials to have negative integer exponents)
in the ringC[x,x−1]. In this notationx−1 = [x−1

1 , . . . ,x−1
n ]T .

Using the shorthand notation introduced above, we write a system of polyno-
mials as

fi =
mi

∑
j=1

ai, j xαi, j for i = 1, . . . ,n. (6.15)

Without loss of generality we assumeai, j 6= 0. For a given polynomialfi =
∑mi

j=1 ai, jxαi, j we collect the exponent vectors to form the set

Ei = {αi,1, . . . ,αi,mi} . (6.16)

This setEi is called thesupportof the polynomial fi . If the supports of alli are
the same, the system is called unmixed. Otherwise the systemis called a mixed
system.

Definition 5. The Newton polytope of fi is the convex hull ofEi . We write

Qi = conv(Ei)⊂ R
n. (6.17)

Without loss of generality, we assume that the lattice spanned by the supports
Ei is n-dimensional, and it can be identified withZn [Sturmfels, 1994]

Definition 6. We define the Minkowski sum of to polytopes A and B

A+B= {α +β α ∈ A,β ∈ B} . (6.18)

We denote then-dimensional volume of a polytope Vol(A), and define the
mixed volume of polytopesQ1 . . .Qm as follows:

Definition 7. The mixed volume of polytopes Q1, . . . ,Qm, M (Q1, . . . ,Qm) can be
calculated as

M (Q1, . . . ,Qm) =
1
m!

m

∑
k=1

(−1)m−k ∑
1≤i1≤···≤ik≤,m

M (Qi1 + · · ·+Qik). (6.19)
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We refer to Cox et al. [2005]; Gelfand et al. [1994] for proofsand details for
the calculation of the mixed volume. In the case of 2-dimensional polytopes, there
is a simple formula to calculate the mixed volume:

M (Q1,Q2) = area(Q1+Q2)−area(Q1)−area(Q2). (6.20)

Theorem 8(Pedersen and Sturmfels [1993]). The sparse resultant is well defined,
separately homogeneous in its coefficients of each fi and the degree in these coef-
ficients equals the mixed volume of the other n Newton polytopes.

The sparse resultant is calculated by formulating a specially designed coef-
ficient matrix M , and calculating its determinant. Describing how to construct
matrices which can be used to extract the sparse resultant isout of the scope of this
work. For this, we refer to Canny [1990]; Gelfand et al. [1994]; Sturmfels [2002];
Emiris and Mourrain [1999] and Cox et al. [2005].

Most available methods construct matricesM , of which the determinants do
not give the sparse resultant directly, but a polynomial multiple of the resultant.
Then the sparse resultant can be calculated as the greatest common divisor of
det(M) and all fi , with i = 1,2, ...,n+1. Alternatively, the determinant ofM can
be factorized, and the resultant can be found by examining the using the degree
values of the coefficients from Theorem 8.

Example 2. Consider the system of 3 polynomials in two unknowns x1,x2,

f1 = a1,1+a1,2x1+a1,3x2

f2 = a2,1+a2,2x1+a2,3x2
2

f3 = a3,1x1+a3,2d2
1 +a3,3d1x2.

(6.21)

This is a mixed system of polynomials with 3 equations in 2 variables. For generic
coefficients ai, j the system is overdetermined and does not have a solution (in
(C∗)2). The necessary and sufficient condition for(6.21) to have a common so-
lution is that the sparse resultant is zero

R( f1, f2, f3) = 0.

The three polynomials have the supports

E1 = {(0,0),(1,0),(0,1)} (6.22)

E2 = {(0,0),(1,0),(0,2)} (6.23)

E3 = {(1,0),(2,0),(1,1)} . (6.24)
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The Newton polytopes Q1,Q2,Q3 are triangles with the volumes (areas)

area(Q1) = 1/2, (6.25)

area(Q2) = 1, (6.26)

area(Q3) = 1/2. (6.27)

The mixed volume is calculated according to(6.20), so using the volumes of the
Minkowski sums

area(Q1+Q2) = 7/2, (6.28)

area(Q1+Q3) = 2, (6.29)

area(Q2+Q3) = 7/2, (6.30)

we obtain

M (Q1,Q2) = 2, (6.31)

M (Q2,Q3) = 2, (6.32)

M (Q1,Q3) = 1, (6.33)

for our example.
From Theorem 8 we know that the sparse resultant is of degree 2in a1,i and a3,i ,

and it is of degree 1 in a2,i . Using the softwaremultires1[Busé and Mourrain,
2003] to construct the coefficient matrixM , and calculating its determinant in
maple, yields

det(M) = a3,1(−a2,2a3,1+a3,2a2,1)
{

a2,1a2
1,3a2

3,2−2a2,1a1,3a3,3a1,2a3,2

+a2,1a2
3,3a2

1,2+a2,3a2
1,1a2

3,2+a3,2a1,3a1,1a3,3a2,2−2a3,2a2,3a3,1a1,1a1,2

− a3,2a2
1,3a3,1a2,2−a2

3,3a1,1a1,2a2,2+a1,3a3,1a3,3a1,2a2,2+a2,3a2
3,1a2

1,2

}
.

(6.34)

Examining the degrees of the determinant reveals that the last term in curly brack-
ets is the sparse resultant, so if and only if the coefficientsci, j cause the last term
to vanish, then the system(6.21)has a solution(x1,x2) in (C∗)2.

6.4 Some practical considerations for working with poly-
nomials

Even though the next chapters deal with “ideal” systems, that is systems without
measurement noise or model mismatch, we would like mention that we must be
careful when these assumptions are not satisfied. We presentsome practical prob-
lems which may occur when dealing with multivariate polynomials.

1Available on: http://www-sop.inria.fr/galaad/software/multires/
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6.4.1 Ill conditioning

Polynomial equations can be very ill conditioned. By ill-conditioned, we mean
that a small change in one of the coefficients can have a large effect on the number
and the quality of the solutions. We demonstrate this by considering the famous
“Wilkinson polynomial” Wilkinson [1984] Consider for example the polynomial

f = (x−1)(x−2) . . . (x−20). (6.35)

This polynomial has 20 real roots, the natural numbers from 1to 20. However,
perturbing the coefficient ofx19 (which is 210) by 2−23 ≈ 10−7 results in a large
change of the zeros. The perturbed polynomial has 5 complex zeros, and a real
zero at≈ 20.847., and the roots at 18 and 19 merge into a double root at≈ 18.62.

It generally cannot be seen directly from the polynomials, how sensitive the
roots are with respect to perturbations in the coefficients.This has to be kept in
mind when working with polynomials.

To see another issue that can arise when working with polynomials consider

f (x,y) = 25x3−20x+1−y. (6.36)

A part of the varietyV( f (x,y)) of this polynomial is shown in Figure 6.2. Whenx
is in the interval[−1,1], the absolute value ofy is lower than 10. However, when
x = 2 we havef (x = 2) = 161, andf (x = 3) = 616. At values ofx ≈ 10, they
takes values about 2.5 ·104. This shows in a simple example that relatively small
changes in one variable (x) can cause other variables to vary over several orders of
magnitude.

6.4.2 Size of polynomials

A partially related issue which arises with symbolic computation with polynomials
is that the expressions can become very large, and can include very high exponents
(which in turn makes the problem more difficult to handle numerically). However,
as we have seen in Example 1, the same solution set can be defined by completely
different equations, and some representations will be smaller and better behaving
than others.

6.4.3 Desired properties for Polynomials

From a practical perspective, we would like the polynomialsto satisfy the follow-
ing requirements.

1. The representation should be “simple”, in the sense that the polynomials
have
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Figure 6.2: Variety of the polynomialf (x,y) = 25x3−20x+1−y

(a) few terms and

(b) low degree in the variables.

2. The polynomial expression should be robust with respect to perturbations in
the coefficients.

3. The all variables should have approximately the same variability in the re-
gion of interest.

These requirements are partly related to each other. Polynomials of high degree
will generally behave more sensitive to changes in the variables than polynomials
of low degree. Therefore it is advisable to find and use representations of low
degree.

However, it lies in the nature of polynomials that they can bevery difficult
to handle in a numerical context. Some of the issues may be resolved by scaling
the variables properly, or finding a polynomial representation which is robust to
numerical errors. However, in general, one must be aware of these potential pitfalls
when working with polynomials in practical applications.
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Chapter 7

Measurement polynomials as
controlled variables

The purpose of computing is
insight, not numbers.

R.W. Hamming

We present a method for finding controlled variables, which are poly-
nomial combinations of measurements. Controlling these measure-
ment combinations gives optimal operation. Our work extends the
concept of self-optimizing control to processes describedby polyno-
mial equations. Using the first-order necessary optimalityconditions,
invariant variable combinations are determined for the unconstrained
degrees of freedom. Any unknown internal variables (states) and dis-
turbances are eliminated to obtain new invariant variable combina-
tions containing only known variables (measurements). If the dis-
turbance causes the active constraints to change, the invariants may
be used to identify, and switch to the right region. This makes the
method applicable over a wide disturbance range with changing ac-
tive sets. The procedure is applied to two case studies of continuous
stirred tank reactors.

Submitted to Journal of Process Control
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7.1 Introduction

For continuous processes, which are operated in steady state most of the time, an
established method to achieve optimal operation in spite ofvarying disturbances
is real-time optimization (RTO) [Marlin and Hrymak, 1997].The real-time opti-
mizer generally uses a nonlinear steady state model, which is updated at intervals
based on measurements. This updated model is used to on-linerecompute optimal
setpoints for the controlled variables in the control layerbelow. This concept has
gained acceptance in industry and is increasingly used for improving plant perfor-
mance. However, installing an RTO system and maintaining itgenerally entails
large costs.

A second approach to optimizing plant performance is to use aprocess model
off-line to find a self-optimizing control structure. The basic concept of self-
optimizing control was conceived by Morari et al. [1980], who write that we “want
to find a functionc of the process variables which when held constant leads au-
tomatically to the optimal adjustments of the manipulated variables”, but they did
not provide any method for identifying this function. The idea is to use this func-
tion as a controlled variable and keep it at a constant setpoint by simple control
structures, e.g. PID controllers, or by more complex model predictive controllers
(MPC). Using this kind of controlled variables disburdens the real-time optimizer,
or may even make it unnecessary [Jäschke and Skogestad, 2010].

The term “self-optimizing control” was defined in the context of controlled
variable selection with the purpose of describing the practical goal of finding
“smart” controlled variablesc. Skogestad [2000] writes:

Self-optimizing control is achieved if a constant setpointpolicy re-
sults in an acceptable lossL (without the need to re-optimize when
disturbances occur).

Many industrial processes are operated using self-optimizing control, although
it is not always called that. For example, optimally active constraints may be
viewed as self-optimizing variables, e.g., maximum cooling of an air stream be-
fore entering a compressor. However, the more difficult problem is to identify
self-optimizing control variables associated with unconstrained degrees of free-
dom. In most cases, engineering insight and experience leads to the choice of
self-optimizing controlled variables, and the optimization problem is not formu-
lated explicitly. An example for the unconstrained case is controlling the air/fuel
ratio entering a combustion engine at a constant value.

It has been noted previously [Halvorsen and Skogestad, 1997; Cao, 2003;
Halvorsen et al., 2003; François et al., 2005; Chachuat et al., 2009], that the gra-
dient of the cost function with respect to the degrees of freedom u would be the
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ideal controlled variable,c= Ju. However, the gradientJu is usually not directly
measurable, and analytical expressions for the gradient generally contain variables
which are unmeasured (unknown disturbances). Therefore, the methods in self-
optimizing control theory can be thought of as an approximation (in some “best”
way) of the gradient using a measurement model.

Use of self-optimizing controlled variables enables us to separate the two prob-
lems of optimizing the system and designing the controller.Thus, in a first step the
controlled variables are determined based on the steady state first order optimality
conditions, and in a second step a suitable controller is designed. In most cases,
a simple PI controller will be sufficient, but also more advanced controllers can
be used to control the self-optimizing variable. The advantage of this separation
is that it makes it possible to focus completely on steady state optimal behavior
when designing the control structure, while all issues which arise when handling
dynamic systems are considered when designing the actual controllers.

In the last decade, several contributions have been made on the systematic
search of controlled variables which have self-optimizingproperties [Halvorsen
et al., 2003; Alstad and Skogestad, 2007; Kariwala et al., 2008; Alstad et al., 2009;
Heldt, 2009], but to the author’s knowledge, self-optimizing control has only been
considered for cases with linear measurement models and a quadratic cost func-
tion. This results in linear measurement combinationsc= Hy as controlled vari-
ables. In cases where a strong curvature is present at the optimum, the loss im-
posed by using linear measurement combinations may not be acceptable, and the
controlled variables are not self-optimizing.

The main contribution of this work is to extend the ideas of self-optimizing
control, in particular the concept of the null-space method[Alstad and Skogestad,
2007], to constrained systems described by multivariable polynomials. This results
in controlled variables which are polynomials in the measurements,c= c(y).

We further show that, under some assumptions, the controlled variables can
be used to determine when the steady state set of active constraints changes, and
which set it changes to. Also for changing active constraints, the separation of
the steady state optimization and the control problem applies. This means that all
dynamic problems which come with changing control structures can be considered
separately.

7.2 Overall procedure

The proposed procedure for achieving optimal operation is summarized in Figure
7.1. In steps 1 and 2 we formulate the optimization problem and determine regions
of constant active constraints, also called critical regions. This is done by offline
calculations, for example, by gridding the disturbance space with a sufficiently fine
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1. Formulate optimization problem

2. For the expected set of disturbances, find all regions withdifferent sets of
active constraintsAi

3. For each region of active constraintsAi

a Formulate optimality conditions

b Eliminate Lagrangian multipliersλ from optimality conditions to obtain
invariantsJz,red (reduced gradient)

c Obtain measurement invariantsc(y) by eliminating unknowns, such that

c(y) = 0⇐⇒ Jz,red = 0

4. In each regionAi , control the

a Active constraints

b Invariantsc(y)

Use controlled variables and measured constraints for changing regions

Figure 7.1: Procedure for finding nonlinear invariants as controlled variables

grid and optimizing the process for each grid point.

In step 3, for each critical region, (a) the optimality conditions are formulated,
and (b) the Lagrangian multipliers are eliminated. Then (c)the unknown variables,
i.e. the disturbances and the internal state variables are eliminated from the opti-
mality conditions to obtain an invariant variable combination c(y) which contains
only measured variables and known parameters. Optimal operation is achieved in
each critical region by controlling the active constraintsand the invariant measure-
ment combinations.

Finally, in step 4 we monitor the active constraints and the invariants of the
neighboring regions to determine when to switch to a new region.
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7.3 Optimal operation using the optimality conditions

7.3.1 Problem formulation

Optimal operation is defined as minimizing a scalar cost index J(u,x,d) subject to
satisfying the model equations,g= 0, and operational constraints,h≤ 0:

min
u,x

J(u,x,d) s.t

{
g(u,x,d) = 0
h(u,x,d) ≤ 0.

(7.1)

Hereu, x, d denote the manipulated input variables, the internal statevariables,
and the unmeasured disturbance variables, respectively. We assume that, in ad-
dition, we have measurementsy = y(u,x,d), which provide information about
internal states, inputs, and disturbances. To handle the measurements in a consis-
tent way when dealing with polynomials, we will write the measurement relations
implicitly, as

m(u,x,d,y) = 0, (7.2)

To simplify notation, we combine state and input variables in a vector

z=
[

u
x

]

. (7.3)

Problem (7.1) is the same problem as the one solved on-line atgiven sam-
ple times when using RTO. In this work, however, we do not wishto solve the
optimization problem on-line; instead, we analyze the problem using offline cal-
culations, in order to find good controlled variables which yield optimal operation
when controlled at their setpoints.

Optimality conditions

Let z∗ be a feasible point of the optimization problem (7.1), and assume that all
gradient vectors∇zgi(z∗,d) and∇zhi(z∗,d) associated withgi(z∗,d) = 0 and the
active constraints,hi(z∗,d) = 0, are linearly independent. Ifz∗ is locally optimal,
then there exist Lagrangian multiplier vectorsλ and ν , such that the following
conditions, known as the KKT conditions, are satisfied [Nocedal and Wright, 2006;
Bazaraa et al., 2006]1:

1We follow the notation of Bazaraa et al. [2006], where the gradient of a functionf : Rnz →R is

defined as∇z f =
[

∂ f
∂z1

, ∂ f
∂z2

, . . . , ∂ f
∂znz

]T
. Given a differentiable vector functiong : Rnz → Rng, where

g(z) = [g1(z),g2(z), . . . ,gng(z)]
T , the Jacobian in gradient notation∇zg(z) is given by thenz×ng

matrix∇zg=







[∇zg1]
T

...
[
∇zgng

]T







ng×nz

.



122 Measurement polynomials as controlled variables

∇zJ(z∗,d)+ [∇zg(z∗,d)]Tλ +[∇zh(z∗,d)]Tν = 0

g(z∗,d) = 0

h(z∗,d)≤ 0

[h(z∗,d)]Tν = 0

ν ≥ 0.

(7.4)

The condition that the Jacobian of the active constraints has independent rows (or
full rank) is called the linear independence constraint qualification (LICQ) and
guarantees that the Lagrangian multipliersλ and ν are uniquely defined at the
optimumz∗.

When optimizing nonlinear systems, such as polynomial systems, there are
several complications which may arise. The optimality conditions (7.4) will in
general not have a unique solution. There may be multiple maxima, minima and
saddle points, so finding the global minimum is not an easy task in itself. When
a solution to (7.4) is found, it has to be checked whether it indeed is the desired
solution (minimum). In addition, there may be solutions which are not physical
(complex). So before controllingc(y) to zero, it has to be assured that the process
actually is at the desired optimum.

These and other issues from nonlinear and polynomial optimization are not
addressed in this work. The focus of this paper is rather to present a method which
gives a controlled variablec(y) which is zero at all points that satisfy the KKT
conditions, and which is nonzero whenever the KKT conditions are not satisfied.

7.3.2 Partitioning into sets of active constraints

Generally, the set of inequality constraintshi(z,d) ≤ 0 that are active varies with
the value of the elements ind. The disturbance space can hence be partitioned into
regions which are characterized by their individual set of active constraints. These
regions will be called critical regions.

The concept of critical regions allows one to decompose the original optimiza-
tion problem (7.1) into a sequence of equality constrained optimization problems,
which are valid in the corresponding critical region. This idea is also applied in
multi-parametric programming [Pistikopoulos et al., 2007]. However, we do not
search for an explicit expression for the inputsu∗, as in multi-parametric program-
ming. We rather use each subproblem to find good controlled variablesc for the
corresponding critical region.

In order to obtain a fully specified system in each region,

1. the active constraints need to be controlled, and
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2. a controlled variable has to be controlled for each unconstrained degree of
freedom.

The number of unconstrained degrees of freedom,nc = nDOF is calculated accord-
ing to

nDOF = nz−ng−nh,active, (7.5)

wherenz, ng, nh,active denote the number of variablesz, the number of model equa-
tions, g, and the number of constraints fromh which are active (hi = 0). This
method will give the right amount of degrees of freedom for practically all sys-
tems encountered in reality.

Remark 5. When the optimization problem(7.1) is composed of polynomial equa-
tions, the critical regions are defined by semialgebraic sets inR

nu+nx+nd. A semi-
algebraic set is defined as the finite union of sets defined by a finite number of
polynomial equalities and inequalities,

g(x,u,d) = 0 (7.6)

and
h(x,u,d) ≤ 0, (7.7)

Where g and h are polynomials in the variablesx,u andd, with coefficients inR.
Loosely speaking, a semialgebraic set can be thought of a setdefined by a finite
number of polynomial inequalities. The interior of an ellipsoid, or the set of points
on a curve in theRn are examples of semialgebraic sets.

In the rest of the paper, by abuse of notation, all active constraintshi(z,d) = 0
are included in the equality constraint vectorg(z,d) = 0. Then in every critical
region, the optimization problem (7.1) can be written as

min
z

J(z,d)

s.t.

g(z,d) = 0.

(7.8)

The KKT first-order optimality conditions (7.4) simplify for problem (7.8) in
each critical region, to

∇zJ(z,d)+ [∇zg(z,d)]Tλ = 0,

g(z,d) = 0.
(7.9)

These expressions cannot be used for control, because they still contain unknown
variables,x (in z= [u,x]), d, andλ , which must be eliminated.
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7.3.3 Eliminating the Lagrangian multipliers λ

In every critical region, a control structure that gives optimal operation has to sat-
isfy (7.9). Recall that the LICQ is assumed to hold, i.e. at the optimum,∇zg(z,d)
has full row rank for every value ofd within the critical region.

Proposition 1. LetN(z,d)∈R
nz×(nz−ng) be a basis for the null space of∇zg(z,d).

Keeping the active constraints g(z,d) = 0, and the variable combination Jz,red =
[N(z,d)]T∇zJ(z,d) = 0 then results in optimal steady state operation.

Proof. SelectN(z,d) such that[N(z,d)]T [∇zg(z,d)]T = 0. Since the LICQ are
satisfied, the constraint Jacobian∇zg(z,d) has full row rank andN(z,d) is well
defined and does not change dimension within the region. The first equation in
(7.9) is premultiplied by[N(z,d)]T to get

[N(z,d)]T
(

∇zJ(z,d)+ [∇zg(z,d)]
T λ

)

= [N(z,d)]T∇zJ(z.d)+0λ

= [N(z,d)]T∇zJ(z,d).
(7.10)

SinceN(z,d) has full rank, we have that (7.9) are satisfied wheneverg(z,d) = 0
and[N(z,d)]T∇zJ(z,d) = 0.

We callJz,red = [N(z,d)]T∇zJ(z,d) the reduced gradient. By construction, the
reduced gradient hasnDOF = nz−ng elements. Keeping

Jz,red = [N(z,d)]T∇zJ(z,d) = 0 (7.11)

together with the active constraints,g(z,d) = 0, fully specifies the system at the op-
timum and is equivalent to controlling the first-order optimality conditions (7.9).
However,Jz,red cannot generally be used for control directly because it still de-
pends on the variablesd andx (x enters throughz = [u ,x]T), which are usually
unknown. Thus, we want to eliminate the unknown disturbances d and the internal
statesx from the expression (7.11).

The simplest approach is to solve the measurement equationsm(x,u,d,y) = 0
and the active constraintsg(z,d) = 0 for the unknownsd andx, and substitute the
solution intoJz,red. As we show, this is straightforward in case of linear equations,
but it becomes significantly more complicated when working with polynomials of
higher degree.

7.4 Elimination for linear quadratic systems

In this section we describe the basic concept of how the unknowns are eliminated
form Jz,red. This will lead to the linear zero loss method, or null-spacemethod
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Alstad and Skogestad [2007]). Our procedure is demonstrated step by step for
minimizing a quadratic cost function subject to linear constraints and a linear mea-
surement model. Solving the model and measurement equations for the unknowns
and substituting intoJz,red is avoided, as this is difficult to extend to the polynomial
case. Instead, we search for necessary and sufficient conditions which guarantee
that the measurement modelm(x,u,d,y) = 0, the active constraints and the model
g(z,d) = 0, and the reduced gradientJz,red = 0 are satisfied at the same time. We
require that the necessary and sufficient condition is a function of measurementsy
and known parameters, only.

The optimization problem we consider is

min
z

J(z,d) =
[

zT dT
]
[

Jzz Jzd

Jzd
T Jdd

][
z
d

]

s.t.

Az−b = 0,

(7.12)

and the linear measurement model is

m(z,d,y) = y− [Gy Gy
d]

[
z
d

]

= 0

= y− G̃y
[

z
d

]

= 0.

(7.13)

We consider[z,d]T as unknown and we assume that (7.12) has a solution,Jzz > 0,
andA has full rank. In addition, we assume that the measurements are linearly
independent, and̃Gy = [Gy Gy

d] invertible.
The null space of the constraint gradient,N, is a constant matrix which is in-

dependent ofz, such thatAN = 0. The first-order necessary optimality conditions
require that at the optimum

Jz,red = NT∇zJ(z,d) = NT [ Jzz Jzd
]
[

z
d

]

= 0. (7.14)

If the number of independent measurements (ny) is equal to the number of
unknown variables (nz+ nd), the measurement relations (7.13) can be solved for
the unknowns and substituted into the gradient expression (7.14) to obtain

c(y) = Jz,red = NT [ Jzz Jzd
][

G̃y
]−1

y. (7.15)

Controllingc(y) = and the active constraintsAz−b to zero, then results in optimal
operation.
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However, in the case of polynomial equations of higher degrees, it is gener-
ally not possible to solve for the unknown variables. Therefore, we consider the
problem from a slightly different perspective. Supposeny = nz+nd, then for any
disturbanced and feasiblez, the outputy is uniquely defined. Since the mapping
from [zd] to y is invertible, one can also say that for every output and disturbance
pair(y,d) there exist a uniquez, which satisfies the measurement equations (7.13).
However, an arbitrary feasiblez with its corresponding pair (y,d) will fail to satisfy
the first-order optimality condition (7.14). Moreover, since there is no requirement
on the rank ofJzd, the conditionJzz> 0 guarantees that only onez (or equivalently
one pair (y,d)) satisfies the first-order optimality conditions and that this pair (y,d)
corresponds to the unique minimizerz. This can be used for a more subtle elimi-
nation method which does not require solving the measurement relation (7.13) for
the unknown variables.

Consider the elements of the reduced gradient vector (7.14), one at a time,
together with all the measurement equations (7.13). Let thesuperscript(i) denote
the i-th row of a matrix or a vector. We write the reduced gradient (7.14) together
with the measurement equations (7.13) as a sequence of square linear systems

[
[NTJzz]

(i) [NTJzd]
(i) 0

Gy Gy
d y

]

︸ ︷︷ ︸

M (i)





z
d
−1



= 0. (7.16)

HereM (i), i = 1. . .nDOF are square matrices of size(ny+ 1). We want to find a
particular output combination which satisfies (7.16). A solution for [z, d]T exists
only if rank(M (i)) = ny = nz+nd.

The submatrix[Gy Gy
d y] already has rankny, irrespective of the value ofy (or

the control policy that generates the inputu which in turn generatesy). This fol-
lows because[Gy Gy

d y] has more columns than rows, and because rank([Gy Gy
d]) =

ny. Therefore, the condition for a common solution is:

det(M (i)) = 0 for all i = 1..nDOF . (7.17)

This condition guarantees that a common solution to (7.16) exists, so the elements
of the controlled variablec are selected asci = det(M (i)).

It remains to show that controlling the determinantsci = det(M (i)) gives the
inputs which lead to the optimum. Since the system is linear and the rank of the
measurement equations isny, there is a unique linear invertible mapping between
the measurementsy and the vector[z, d]T. Therefore every value ofy corresponds
uniquely to some value inz.

In the case with more measurements,ny > nz+nd, any subset ofnz+nd mea-
surements may be chosen such that rank([Gy Gy

d])=nz+nd.
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Remark 6. When there are no constraints, we have thatz = u, and this method
results in the null space method [Alstad and Skogestad, 2007]. In this case,N may
be set to any nonsingular matrix, for example the identity matrix N = I . Then we
have that

cNullspace= [Juu Jud][G̃y]−1y, (7.18)

as has been derived in Alstad et al. [2009].
The null space method was originally derived by Alstad and Skogestad [2007]

using the optimal sensitivity matrixF= ∂yopt

∂d . However, controllingc=Hy with H
selected such thatHF = 0, is indeed the same as controlling the gradient to zero.

Remark 7. Actually, in the linear case presented above, the constraints

Az−b = 0 (7.19)

can always be used to eliminate the variablesx. Then, for the remaining un-
constrained problem the condition isrank([Gy Gy

d]) = nu + nd, and we need
ny = nu +nd measurements

The next example is included to demonstrate that our “determinant method”
gives the same result as the previously published null-space method Alstad and
Skogestad [2007].

Example 3(Linear model and quadratic objective). Consider a system from Alstad
[2005]. The cost to minimize is

J = (u−d)2, (7.20)

and the measurement relations (model equations) are

y1 = Gy
1u+Gy

d,1d

y2 = Gy
2u+Gy

d,2d
(7.21)

where the variables u,d,y denote the input, the disturbance and the measurements,
respectively. The values of the gains are given in Table 7.1.We are searching for a
condition on y1 and y2 such that the optimality condition is satisfied. The gradient
is ∇uJ= 2(u−d) and Juu= 2, Jud =−2. It is easily verified that measurements are
linearly independent. This gives an equation system of 3 equations in 2 unknowns:

M





u
d
−1



= 0, (7.22)
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Table 7.1: Gain values for Example 3

Variable Value

Gy
1 0.9

Gy
d,1 0.1

Gy
2 0.5

Gy
d,2 -1.0

where

M =





Juu Jud 0
Gy

1 Gy
d,1 y1

Gy
2 Gy

d,2 y2



 . (7.23)

Equation(7.22)has a solution





u
d
−1



 if and only if

det(M) = 0. (7.24)

Therefore the necessary and sufficient condition for the existence of a nontriv-
ial solution is

det









Juu Jud 0
Gy

1 Gy
d,1 y1

Gy
2 Gy

d,2 y2







=−y1(JuuG
y
d,2−Gy

2Jud)+y2(JuuG
y
d,1−Gy

1Jud)

= 0.
(7.25)

On inserting the parameter values from Table 7.1, we obtain

c= det(M) = y1+2y2. (7.26)

Controlling c= y1 + 2y2 to zero therefore yields optimal operation. This is the
same variable combination as found by applying the null-space method in Alstad
[2005].

Even though obtaining the invariants via the determinant may seem cumber-
some, it eliminates the necessity of inverting the measurements and solving for the
unknowns. While this is of little advantage for systems of linear equations, the
concept can be extended to systems of polynomial equations which cannot easily
be solved for the right set of unknowns.
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7.5 Elimination for systems of polynomial equations

Let d̂ now denote the vector of all unmeasured (unknown) variables,

d̂ =

[
x
d

]

, (7.27)

not only including disturbancesd, but also unknown statesx, and lety include all
measurements and known inputs. Thus, every variable belongs either tod̂ or y,
and we write the optimality conditions as

Jz,red(y, d̂) = 0

g(y, d̂) = 0,
(7.28)

and the measurement relations as

m(y, d̂) = 0. (7.29)

Remark 8. Note that in the elimination step, we do not distinguish between in-
ternal states variablesx and external disturbancesd. All variables which are not
available as measurements (that is,d̂ = [x,d]T) have to be eliminated from the
optimality conditions.

For polynomial equations, eliminating the unknown variables fromJz,red is
not as straightforward as in the linear case, as we cannot just solve the measure-
ment equations for the unknowns and insert them in to the expression ofJz,red.
Even for the case of a univariable polynomial of degree 5 and higher, for example
d5− d+ 1 = 0, there exist no general analytic solution formulas, as wasproven
by Abel [1826]. Therefore we are interested in finding a way toeliminate the un-
known variablesd̂ from Jz,red(y, d̂) = 0 without solvingg andm for them first.
This is exactly what was done in Section 7.4, where we used thedeterminant of
a carefully constructed coefficient matrix, which characterizes the existence of a
common solution ind, to replaceJz,red. The determinant is a function of the known
variables only, that is, the measurementsy and the parameters̃Gy, Jzz andJzd.

The generalization of the determinant to systems of polynomial equations is
called resultant. According to Emiris and Mourrain [1999],

“the resultant of an overconstrained polynomial system characterizes
the existence of common roots as a condition on the input coeffi-
cients”.

To be more specific, we consider multivariate polynomialsf ∈ R[y, d̂], that is,
real polynomial functions with coefficients inR, and variablesy = [y1,y2, . . . ,yny]

andd̂ = [x,d] = [d̂1, d̂2, . . . , d̂nd̂
]. Given annd̂-tuple,

αi, j =
(
αi, j(1),αi, j (2), . . . ,αi, j (nd̂)

)
, (7.30)
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we use the shorthand notation

d̂αi, j = d̂
αi, j (1)
1 d̂

αi, j (2)
2 . . . d̂

αi, j (nd̂)
nd̂

. (7.31)

Then we can write a system ofn polynomials in compact form

fi(y, d̂) =
ki

∑
j=0

ai, j (y)d̂αi, j , i = 1..n, (7.32)

where the coefficientsai j (y) 6= 0 are polynomials inR[y], that is, polynomials iny
with coefficients inR.

We consider the functionsai, j(y) as polynomial coefficients, and̂d as vari-
ables. For every polynomialfi, we collect the exponent vectors in the setEi =
{αi,1, . . . ,αi,ki}. This set is called support of the polynomialfi .

The support of the polynomialf = d2
1 +d1d2−1, for example, is found to be

E = {(2,0),(1,1),(0,0)}. We denote asQi the convex hull of the support of a
polynomial,Qi = conv(Ei).

Further, we denote the set of complex numbers without zero asC
∗ (C∗ =C\0).

Next we present some basic concepts from algebraic geometrytaken from Cox
et al. [2005].

Definition 8 (Affine variety). Consider f1, . . . , fn polynomials inC[d̂1, . . . d̂nd̂
]. The

affine variety defined by f1, . . . , fn is the set

V( f1, · · · , fn) =
{
(d̂1, . . . , d̂nd̂

) ∈C
nd̂ : fi(d̂1, . . . d̂nd̂

) = 0 i = 1. . .n
}

(7.33)

Casually speaking, the variety is the set of all solutions inC
nd̂ .

Definition 9 (Zariski closure). Given a subset S⊂ C
m, there is a smallest affine

varietyS̄⊂ C
m containing S. We call̄S the Zariski closure of S.

Let L(Ei) be the set of all polynomials whose terms all have exponents in the
supportEi :

L(Ei) =
{

ai,1d̂αi1 + · · ·+ai,ki d̂
αiki : ai, j ∈ C

}
(7.34)

Then the coefficientsai, j of n polynomials define a point inCn×ki . Now let

Z(E1, . . .En)⊂ L(E1)×·· ·×L(En) (7.35)

be the Zariski closure of the set of all( f1, . . . fn) for which (7.32) has a solution in
(C∗)nd̂ (that is the Zariski closure of the points defined by all coefficientsai, j ∈ C

for which (7.32) has a solution). For an overdetermined system ofnd̂ +1 polyno-
mials innd̂ variables we have following result:



7.5. Elimination for systems of polynomial equations 131

Theorem 9(Sparse resultant [Gelfand et al., 1994; Cox et al., 2005]). Assume that
Qi = conv(Ei) is an nd̂-dimensional polytope for i= 1, . . . ,nd̂ + 1. Then there is
an irreducible polynomialR in the coefficients of the fi such that

( f1, . . . , fnd̂+1) ∈ Z(E1, . . . ,End̂+1
)⇐⇒ R( f1, . . . , fnd̂+1) = 0. (7.36)

In particular, if

f1(d1 . . .dnd̂
) = · · ·= fnd̂+1(d1 . . .dnd̂

) = 0 (7.37)

has a solution (̂d1, . . . , d̂nd̂
) in (C∗)nd̂ , then

R( f1, . . . , fnd̂+1) = 0. (7.38)

Remark 9. The requirement that Qi has to be n̂d-dimensional is no restriction and
can be relaxed, [Sturmfels, 1994]. However, for simplicity, we chose to present
this result here.

Depending on the allowed space for the roots, there are otherresultant types
(e.g. Bezout resultants and Dixon resultants for system of homogeneous polynomi-
als), with different algorithms to generate them. Generally they will be conditions
for roots in the projective space with homogeneous (or homogenized) polynomi-
als. For more details on different resultants, we refer to Gelfand et al. [1994];
Sturmfels [1994]; Cox et al. [2005]. An overview of different matrix constructions
in elimination theory is given in Emiris and Mourrain [1999].

We choose to use the sparse resultant, since most polynomialsystems encoun-
tered in practice are sparse in the supports. That means, forexample, a polynomial
of degree 5 in two variablesx,y will not contain all 21 possible combinations of
monomialsx5,y5,x4y,xy4, . . . ,x4,y4,x3y, . . . ,y,x,1. Just as in linear algebra, this
sparseness can be exploited for calculating the resultant.Another reason for us-
ing the sparse resultant is that it gives the necessary and sufficient conditions for
toric roots, that is, roots in(C∗)nd̂ , such that the input polynomials need not be
homogeneous (or homogenized), as in other resultants.

Finally, the sparse resultant enables us to work with Laurent polynomials, that
is, polynomials with positive and negative integer exponents.

Usually, resultant algorithms set up a matrix in the coefficients of the system.
The determinant of this matrix is then the resultant or a multiple of it. Generating
the coefficient matrices and their determinants efficientlyis a subject to ongoing
research, but there are some useful algorithms freely available. In this work, we
use the maple software packagemultires [Busé and Mourrain, 2003], which
can be downloaded from the internet2.

2 http://www-sop.inria.fr/galaad/logiciels/multires
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For more details on the theory of sparse resultants, we referto Gelfand et al.
[1994]; Emiris and Mourrain [1999]; Sturmfels [2002]; Dickenstein and Emiris
[2005].

7.5.1 Finding invariant controlled variables for polynomial systems

After introducing the concepts above, we are ready to apply them in the context
of controlled variable selection and self-optimizing control. As in the linear case
above, we assume that the active constraints and the model equations,g(y, d̂) = 0,
and the measurement relations,m(y, d̂) = 0, are satisfied.

Let J(i)z,red denote thei-th element in the reduced gradient expression. To ob-
tain thenc = nDOF controlled variables needed for the unconstrained degreesof
freedom we have:

Theorem 10(Nonlinear measurement combinations as controlled variables). Given
d̂∈ (R∗)nd̂ , and ny+ng = nd̂, independent relations g(y, d̂) =m(y, d̂) = 0 such that
the system

g(y, d̂) = 0

m(y, d̂) = 0
(7.39)

has finitely many solutions for̂d ∈ (C∗)nd̂ . LetR(J(i)z,red,g,m), i = 1. . .nc be the
sparse resultants of the nc polynomial systems composed of

J(i)z,red(y, d̂) = 0, g(y, d̂) = 0, m(y, d̂) = 0 i = 1· · ·nc, (7.40)

then controlling the active constraints, g(y, d̂) = 0, and ci = R(J(i)z,red,g,m) i =
1, . . . ,nc, yields optimal operation throughout the region.

Proof. The active constraints are controlled, thusg(y, d̂) = 0 andm(y, d̂) = 0 are
satisfied always, and there is no condition on the parametersfor this part of the
system.

The systemg(y, d̂) = 0,m(y, d̂) = 0 has only finitely many solutions for̂d,
so the set of possiblêd is fixed. Moreover, we know that a real solution to the
subsystemg(y,d) = m(y,d) = 0 exists, since it is the given disturbance.

From Theorem 9, the sparse resultant gives the necessary andsufficient con-
ditions for the existence of a solution for (7.40) ind ∈ (C∗)nd . Therefore, when-

everJ(i)z,red = 0, the resultant is zero (necessary condition). On the otherhand if
R(Jz,red,g,m) = 0 then the system (7.40) is satisfied (sufficient condition).

This holds for any solution̂d ∈ (C∗)nd̂ , and in particular the “actual” values
of d̂. Because there are as many resultants as unconstrained degrees of freedom,
controllingR(J(i)z,red,g,m) for i = 1, . . . ,nu satisfies the necessary conditions of op-
timality in the region.
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Remark 10. In cases where thêd /∈ (C∗)nd̂ , we may apply a variable transforma-
tion to formulate the problem such we getd̂ ∈ (C∗)nd̂ . For example a translation
d = d̃−1.

Remark 11. By partitioning the overall optimization problem into several regions
of active constraints, we assume that we have obtained well behaving systems for
each region. In particular it is assumed that there are no base points (values of
ai, j(y), where a polynomial in g or m vanishes for all values ofd̂).

Remark 12. In some cases, the matrix of coefficients may be singular, yielding
an identically zero determinant. These cases can be handledby a perturbation of
the system at that point. This is a standard method of handling degeneracies in
resultants Canny [1990]; Rojas [1999].

Example 4 (Elimination). Consider a system with one disturbance d, where we
want to minimize a cost J subject to one constraint. The reduced gradient is Jz,red =
NT∇zJ(y,d) = a1,1(y)+a1,2(y)d, and the constraint is

g(y,d) = a2,1(y)+a2,2(y)d+a2,3(y)d
2 = 0. (7.41)

All coefficients ai, j(y) are known functions of the measurements. At the optimum
we must have

Jz,red = a1,1(y)+a1,2(y)d = 0. (7.42)

For arbitrary coefficients a1,1,a1,2,a2,1,a2,2,a2,3, this system of univariate polyno-
mials in d does not have a common solution. However if the sparse resultant is
zero, then there exist a common solution d6= 0 for (7.41)-(7.42). In the case of
univariate polynomials, the sparse resultant coincides with the classical resultant,
which is the determinant of the Sylvester matrix [Cox et al.,1992], and the van-
ishing of the resultant is the necessary and sufficient condition for the existence of
a common root. We construct the Sylvester matrix

Syl=





a1,2(y) a1,1(y) 0
0 a1,2(y) a1,1(y)

a2,3(y) a2,2(y) a2,1(y)



 , (7.43)

and the resultant is (where we omit writing the dependence ony explicitly)

R (Jz,red,g(y,d)) = det(Syl) = a2
1,2a2,1−a1,2a1,1a2,2+a2,3a2

1,1. (7.44)

For a common root d∗ to exist, the polynomial in the coefficientsR(Jz,red,g(y,d))
must vanish. Since the constraints are satisfied, g(y,d) = 0 for any disturbance
d ∈ R, controlling the resultant to zero is the condition for the reduced gradient
Jz,red to become zero. So for any real d6= 0, the optimality conditions will be
satisfied, and operation will be optimal wheneverR(Jz,red,g(y,d)) = 0.
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cAF, cBF, cCF
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q
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Figure 7.2: Isothermal CSTR

7.6 Case study I

Consider a CSTR as in Figure 7.2, with a feed stream containing mainly compo-
nentA, and possibly also componentsB andC, and with two first order chemical
reactions,

A−→ B r1 = k1cA

B−→C r2 = k2cB.
(7.45)

ComponentB is the desired product, whileC is an undesired side product. We have
one manipulated variable, the feed streamu= q, which can be adjusted to achieve
profitable performance. We assume that productB can be sold very profitably, and
can be separated easily from the other components. The operational objective is
therefore to maximize the concentration of the desired product. Since the level in
the reactor is controlled at a constant value, this corresponds to maximizing the
total production ofB.

It is assumed that the unmeasured disturbances are the rate constantsk1 andk2.
This could be due to imperfect temperature control in the reactor, catalyst decay or
unknown reaction paths, which have been approximated by first order kinetics. In
addition we assume that the concentrationcB is too difficult (expensive) to measure
online.

Thus, we will have to eliminate two unknown disturbance variablesk1,k2, and
one unmeasured state variablecB. This gives

d̂ =





cB

k1

k2



 (7.46)
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Table 7.2: Unmeasured variablesd̂

Symbol Description

k1 Reaction constant for reaction 1
k2 Reaction constant for reaction 2
cB Concentration of desired product

Table 7.3: Known variables: Inputs, measurements and parameters

Symbol Description Type Value Unit

q Feed flow rate Known inputu varying m3/min
cA Outlet concentrationA Measurement ” kmol/m3

cC Outlet concentrationC ” ” kmol/m3

V Tank volume Known parameter given m3

cAF Feed concentrationA ” ” kmol/m3

cBF Feed concentrationB ” ” kmol/m3

cCF Feed concentrationC ” ” kmol/m3

The unmeasured variables are summarized in Table 7.2.

All measurements and known parameters are shown in Table 7.3. The task is
to find a controlled variable which can be controlled using the total flow rate, and
which maximizes the desired concentration.

Step 1: Formulate the optimization problem We collect the inputu= q, and
the statesx = [cA,cB,cC] into a vector

z= [q,cA,cB,cC]
T . (7.47)

Then the optimization problem is

min
z

J =−cB

s.t.

g(z) = 0,

(7.48)
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where the constraintsg(z) = 0 are the model equations which are derived from the
mass balances:

g1 = qcAF −qcA−k1cAV = 0

g2 = qcBF −qcB+k1cAV −k2cBV = 0

g3 = qcCF −qcC+k2cBV = 0.

(7.49)

Step 2: Find regions of active constraints In our example, there are no other
constraints as the model equations. Therefore we have only one region of active
constraints, which is defined by (7.49). Since we have four variables and three
constraints, the number of degrees of freedom is

nDOF = nz−ng = 4−3= 1, (7.50)

and thus the number of controlled variables isnc = nDOF = 1.

Step 3: Formulate optimality conditions Using z = [q,cA,cB,cC]
T, the first

order optimality conditions are

∇zJ(z)+ [∇zg(z)]Tλ = 0,

g(z) = 0.
(7.51)

Step 3a: Eliminate Lagrangian multipliers We calculate the null-space of the
constraint JacobianN = [n1,n2,n3,n4]

T with

n1 = −q(q+k2V)(q+k1V) (7.52)

n2 = −(q+k2V)q(cAF −cA) (7.53)

n3 = q(−k1VcAF +k1cAV −qcBF −cBFk1V +qcB+cBk1V) (7.54)

n4 = k1[(−cBF +cB−cAF +cA−cCF +cC)V
2k2+V(−qcCF +qcC)]

+(qcB−qcCF +qcC−qcBF)Vk2+q2(cC−cCF). (7.55)

Step 3b: Reduced gradient The reduced gradient for our system is defined as
Jz,red = [N(z)]T∇zJ(z) = 0. Using∇zJ(z) = [0, 0,−1, 0]T we have that

Jz,red =−n3

=−q(−k1VcAF +k1cAV −qcBF −cBFk1V +qcB+cBk1V).
(7.56)
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Step 3c: Eliminating unknownsk1,k2 and cB We have three model equations
g1 = g2 = g3 = 0, (7.49), and three unknownŝd = [cB,k1,k2]

T . Before we can
apply Theorem 10, we have to check the assumptions first:

1. Under normal operation (nonzero feed, etc.), when all other variables are
given, g1 = g2 = g3 = 0 has one solution fork1,k2,cB (finite number of
solutions).

2. Under normal operation we have thatk1 6= 0, k2 6= 0 andcB 6= 0. Therefore
we have thatd ∈ (C∗)3.

Since all requirements are fulfilled, we can use the resultant R(Jz,red,g1,g2,g3) as
controlled variable. We use softwaremultires Busé and Mourrain [2003] to
calculate the sparse resultant and obtain for the controlled variable

c= R(Jz,red,g1,g2,g3) = cAFcA+cAFcCF −cAFcC−c2
A. (7.57)

Here, we chose to eliminatek1, k2 andcB. However, depending on the choice of
eliminated variables, there exist many other expressions for the invariantc.

Step 4: Control the invariant Controlling the invariant such that

c= 0 (7.58)

yields optimal operation.

Remark 13. Note that the self-optimizing invariant(7.57) has become simpler
than the expression for the reduced gradient(7.56). Depending on the structure
of the equations, the resultant may become surprisingly simple, as in this case. In
other cases, it may become more complicated. In general it isdifficult to make
statements about the form of the invariant a-priori.

7.7 Changes in the active constraints.

In this section, we present a pragmatic approach for detecting when to change
the control structure, because of changes in the active set.This task is a research
field in itself and has received some attention in literature. Baotíc et al. [2008]
e. g. has worked on linear systems with quadratic objectives, and Woodward et al.
[2010] present an extremum seeking method, which can handlechanging active
constraints.

An exhaustive study on this topic is outside the scope of thispaper. However,
we would like to present a procedure, which may be used as starting point for a
more thorough investigation of this problem in future work.
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From a pure optimization perspective, there is no difference between a con-
straint and a controlled variablec(y), as the controlled variable may be simply
seen as an active constraint, and, similarly, an active constraint may be considered
a variable which is controlled at its constant setpoint. From this perspective, there
is no difference between an active constraint and the model equations, either.

However, from an implementation point of view, there are differences between
the model, the active constraints, and the controlled variablesc(y). First of all, the
active constraints and the controlled variablesc(y) = 0 are not satisfied automati-
cally, that is one must control them to their setpoints. Secondly, since their values
are known (or calculated using known measurements) they maybe used for detect-
ing when to switch control structures. The basic idea is to monitor the controlled
variables and the active constraints of all neighboring regions.

The main assumptions are that all the regions are adjacent, the disturbance
moves the system continuously from one region to another, and the system cannot
jump over regions. In addition, we assume that controllingc(y) = 0 is equivalent
to controlling the reduced gradient to zero, as shown in the Section 7.5. Starting in
the correct region, the control structure should be switched when:

1. (A new constraint becomes active) When a new constraint becomes active,
change the control structure to the corresponding region

2. (A constraint becomes inactive) As soon as the controlledvariablec in one of
the neighboring regions becomes zero (reaches its optimal setpoint), change
the control structure to the corresponding region.

Since our controlled variables are derived from the optimality conditions, this
method will give optimal operation (and switching), as longas the same optimality
conditions cannot be satisfied at two distinctd. This will hold if the optimization
problem is convex in the disturbance space of interest.

In addition, we have to assume that the regions of active constraints are ad-
jacent, and that a changing disturbance moves the system continuously from one
region into another. Although this is the case for many systems in practice, it has
to be confirmed that these requirements are satisfied for eachcase.

Similar to our approach, Woodward et al. [2010] present a method which de-
tects active set changes based on the optimality conditions. Therefore, their ap-
proach will be applicable in the same cases as our approach.

However, there are significant differences in the approaches. We separate the
steady state optimization problem and the dynamic control problem, by using self-
optimizing controlled variables. Once the steady state optimal regions of active
constraints are known, and control structures are set up foreach region, we start
with designing the dynamic controllers and an appropriate switching law, which
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can handle the dynamic system and avoids e.g. switching backand forth for high
frequency disturbances.

In contrast, Woodward et al. [2010] attempt to design an optimizing controller
which can handle all complications which come with dynamic systems.

However, the main focus of this work is to find steady state optimal controlled
variables and different regions where they should be used. The actual dynamic
implementation is a separate problem, which is not considered in depth here.

7.8 Case Study II

We consider an isothermal CSTR with two parallel reactions,as depicted in Fig-
ure 7.3, taken from Srinivasan et al. [2008]. The reactor is fed with two feed
streamsFA andFB which contain the reactantsA andB in the concentrationscA

andcB. In the main vessel, the two components react to the desired productC,
and the undesired side productD. The reactantsA andB are not consumed com-
pletely during the reaction, so the outflow contains all fourproducts. The CSTR
is operated isothermally, and we assume that perfect temperature control has been
implemented.

The productsC andD are formed by the reactions:

A + B
k1−→ C

2 B
k2−→ D.

(7.59)

We wish to maximize the amount of desired product(FA+FB)cC, weighted
by a yield factor(FA+FB)cC/(FAcA,in) [Srinivasan et al., 2008]. The amount of
heat to remove and the maximum flow rate are limited by the equipment, and
we formulate the mathematical optimization problem as follows [Srinivasan et al.,
2008]:

max
FA,FB

(FA+FB)cC

FAcAin

(FA+FB)cC (7.60)

subject to

FAcAin − (FA+FB)cA−k1cAcBV = 0

FBcBin − (FA+FB)cB−k1cAcBV −2k2c2
BV = 0

−(FA+FB)cC+k1cAcBV = 0

FA+FB ≤ Fmax

k1cAcBV(−∆H1)+2k2c2
BV(−∆H2)≤ qmax.

(7.61)

Here,k1 andk2 are the rate constants for the two reactions,(−∆H1) and(−∆H2)
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A

B

ABCD

Figure 7.3: CSTR with two reactions

Table 7.4: Overview of variables

Symbol Description Comment

FA Inflow streamA Measured input
FB Inflow streamB ”
F total flow Measured variable
q Heat produced ”
cB Concentration ofB ”
cA Concentration ofA Unmeasured state
cC Concentration ofC ”
k1 Rate constant reaction 1 Unmeasured disturbance

are the reaction enthalpies,qmax the maximum allowed heat,V the reactor volume,
andFmaxthe maximum total flow rate. The measured variables (y), the manipulated
variables (u), the disturbance variables (d), and the internal states (x) are given in
Table 7.4, and the parameter values of the system are listed in Table 7.5.

We write the combined vector of statesx = [cA, cB, cC] and manipulated vari-
ablesu = [FA, FB] as

z=
[

cA, cB, cC, FA, FB
]T

. (7.62)

7.8.1 Identifying operational regions

Next, the system is optimized off-line for the range of possible disturbancesd= k1.
This shows that the system can be partitioned into three adjacent critical regions,
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Table 7.5: Parameters

Symbol Unit Value

k1 l/(mol h) 0.3 - 1.5
k2 l/(mol h) 0.0014
(−∆H1) J/mol 7×104

(−∆H2) J/mol 5×104

cA,in mol/l 2
cB,in mol/l 1.5
V l 500
Fmax l/h 22
qmax kJ/h 1000

defined by their active constraints.
The critical regions are visualized in Figure 7.4, where thenormalized con-

straints are plotted over the disturbance range. In the firstregion, for disturbances
below aboutk1 = 0.65 l

molh, the flow constraint is the only active constraint. The
second critical region for values between aboutk1 = 0.65 l

molh andk1 = 0.8 l
molh is

characterized by two active constraints, i. e. both the flow constraint and the heat
constraint are active. Finally, in the third region, above about k1 = 0.8 l

molh only
the heat constraint remains.

7.8.2 Eliminating λ

In each critical region, the set of controlled variables contains the active constraints
(we know that they should be controlled at the optimum). Thisleaves the uncon-
strained degrees of freedom, which is the difference between the number of ma-
nipulated variables and the active constraints,nDOF = nz − ng. For each of the
unconstrained degrees of freedom one controlled variable is needed.

In the first critical region this givesnDOF,1 = 5−4= 1 unconstrained degrees of
freedom, so apart from the active constraint, which is the first controlled variable,
we need to control one more variable (invariant).

To obtain the reduced gradient, we calculate the null space of Jacobian of the
active setNT

z and multiply it with the gradient of the objective function∇zJ(z,d)
to obtainJz,red,1 = NT

z ∇zJ. Depending on the algorithm to compute the null space,
this may become a fractional expression, but since we want tocontrol the process
at the optimum, i. e. we controlJz,red,1 to zero, it is sufficient to consider only the
numerator ofJz,red,1. This is possible because a fraction vanishes if the numerator
is zero (provided the denominator is nonzero which is the case here because∇zg
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Figure 7.4: Optimal values of the constrained variables

has full rank). For the critical region 1, we obtain from (7.11) the reduced gradient

Jz,red,1 =−(FA+FB)
2cC

[
−3cCF2

BFA−3cCF2
AFB

−4cCcBF2
Ak2V −4cCk2V

2k1c2
BFA−cCF3

A

−cCF3
B −4cCk2V

2k1c2
BFB−cCcBF2

Ak1V

−4cCcBF2
Bk2V −cCcBF2

Bk1V −cCF2
AcAk1V

−cCF2
BcAk1V −8cCFAcBFBk2V

−2cCFAcBFBk1V −2cCFAFBcAk1V

+8FAk1V
2cA,ink2c2

B+2F2
Ak1VcBcA,in

+2FAk1VFBcBcA,in −2F2
Ak1VcB,incA

−2FAk1VFBcB,incA] ,

(7.63)

which should be controlled to zero. This expression may be simplified slightly,
since it is known that(FA+FB)

2cC 6= 0. It is therefore sufficient to control the
factor in square brackets in (7.63) to zero.

Similarly, in the second critical regionnDOF,2 = 5−5= 0, and here we simply
control the active constraints, keepingq atqmax andF atFmax.

In the third critical regionnDOF,3 = 5−4= 1, and we use one of the manipu-
lated variables to control the active constraint (q= qmax) while the other one is used
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to control the invariant measurement combinationJz,red,3, which is an expression
similar to (7.63).

7.8.3 Eliminating unknown variables

The reduced gradients for the first and the third critical region Jz,red,1 andJz,red,3

still contain unknown variables, namelyk1, cA and cC, and cannot be used for
feedback control directly.

To arrive at variable combinations which can be used for control, we include all
known variables intoy, and all unknown variables intôd, such that̂d= [k1, cA, cC].
Then we write the necessary conditions for optimality for each region as

Jz,red(y, d̂) = 0

g(y, d̂) = 0.
(7.64)

Considering the known variablesy as parameters of the system, we want to find
conditions on these parameters such that (7.64) is satisfied. The system hasnd̂ = 3
unknown variables,k1,cA andcC, of which we know that they are not zero. This
corresponds to solutions[k1,cA,cC]∈ (C∗)3. According to section 7.5 we have that
(7.64) is satisfied if and only if the sparse resultant is zero.

In critical region 1 and 3, the number of equationsneq = 5 (model equa-
tions+active constrains+invariant), and the number of unknownsnd̂ = 3. Hence
we have more equations than necessary. Since we assume no measurement noise,
all measurements are equally good, and we may select a subsetof nd̂+1 equations
from (7.64) to compute the sparse resultant for the subset ofequations. Obviously,
the reduced gradient must be contained in this set of equations. Alternatively, as
we do in the following, we can eliminate one more variable from the invariant.

For the first region, we use the sparse resultant of the systemconsisting of
the invariant (7.63), the model equations (the first three equality constraints in
(7.61)) and the first (active) inequality constraint in (7.61) to eliminatek1,cA,cC

andFB and to calculate the controlled variable combination. The computations
were performed using themultires software [Busé and Mourrain, 2003]. After
division by nonzero factors, the controlled variable for region 1 becomes

c1 =−c2
b,inF2

A −F2
AcA,incb,in +6FAcA,ink2c2

bV +2FAcA,inFmaxcb

−FAcA,inFmaxcb,in +F2
maxc

2
b+c2

b,inF2
max+4V2k2

2c4
b

−2cb,inF2
maxcb−4Vk2c2

bcb,inFmax+4Vk2c3
bFmax.

(7.65)

Note that this invariant for control has become simpler thanthe expression for
the reduced gradient (7.63).
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In the second critical region, control is simple; the two manipulated variables
are used to control the two active constraintsF = Fmax andq= qmax.

The third critical region is controlled similar to the first one. One input variable
is used to control the active constraint, and the second input is used to control the
resultant. The model equations (the first three equations together with the energy
constraint) in (7.61) and the reduced gradient are used to compute the resultant.
Thus the unknown variablesk1, cA, cC, andFB are eliminated from the reduced
gradient. The controlled variable for region 3 is

c3 =−4Vc2
Bk2∆H2FAcA,incB,inqmax∆H1+FAc2

B,inq2
max∆H1

+4V2c4
Bk2

2∆H2FAcA,incB,in∆H2
1 −4V2c4

Bk2
2∆H2

2FAcA,incB,in∆H1

−2Vc2
Bk2FAcA,incB,in∆H2

1qmax−4Vc2
Bk2∆H2FAc2

B,in∆H1qmax

−2Vc2
Bk2∆H2F2

AcA,inc2
B,in∆H2

1 +8Vc3
Bk2∆H2∆H1FAcA,inqmax

−8V2c4
Bk2

2∆H2cB,in∆H1qmax−12V2c4
Bk2

2FA∆H2
2c2

B,in∆H1

−8V2c5
Bk2

2∆H2FAcA,in∆H2
1 +8V2c5

Bk2
2∆H2

2∆H1FAcA,in

+8V2c5
Bk2

2FA∆H2
2cB,in∆H1−q3

maxcB,in +2cBq3
max

−∆H1cB,inFAcA,inq2
max+2cBFAcA,inq2

max∆H1+F2
AcA,inc2

B,in∆H2
1qmax

−2cBFAcB,inq2
max∆H1+8Vc3

Bk2∆H2q
2
max+8V2c5

Bk2
2∆H2

2qmax

+8V3c6
Bk3

2∆H3
2cB,in −2cBF2

AcA,incB,in∆H2
1qmax

−2Vc2
Bk2∆H1q2

maxcB,in −2Vc2
Bk2∆H2q

2
maxcB,in

+4V2c4
Bk2

2∆H2
2cB,inqmax−8V3c6

Bk3
2∆H2

2cB,in∆H1.

(7.66)

Due to the structure of the polynomials in region 3, here the invariant has
become more complicated after eliminating the unknown variables.

Although the expressions are quite complicated, they contain only known quan-
tities, and can be simply evaluated and used for control. Before actually using
the measurement combinations for control, they are scaled so that the order of
magnitude is similar. That is,c1 is scaled (divided) byFmax, andc2 is scaled by
∆H2

1∆H2FAFB.

7.8.4 Using measurement invariants for control and region identifica-
tion

Having established the controlled variables for the three critical regions, it remains
to determine when to switch between the regions. Starting inthe first critical re-
gion, the flow rate is controlled such thatFA+FB= Fmax, and the first measurement
combinationc1 is controlled to zero. As the value of the disturbancek1 rises, the re-
action rate increases as well as the required cooling to keepthe system isothermal,
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Figure 7.5: Optimal values of controlled variables

until maximum cooling is reached, Figure 7.5. When the constraint is reached, the
control structure is switched to the next critical region, where the inputs are used
to controlq= qmax andFA+FB = Fmax. While operating in the second region, the
controlled variables of the neighboring regions are monitored. As soon as one of
the variablesc1 or c3 reaches its optimal setpoint (i. e. 0) for its region the control
structure is changed accordingly. Specifically, whenk1 is further increased, such
that c3 = 0 is reached, we must keepFA+FB < Fmax such to maintain the value
c3 = 0.
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Table 7.6: Parameters for dynamic Simulation

Variable Value Unit Description

cp 4.0 kJ/kgK Heat capacity
ρ 1.0 kg/l Density

Tin,A 350 K Temperature of feedA
Tin,B 350 K Temperature of feedB

7.8.5 Implementation and dynamic simulations

We modify the model (7.61) to become a dynamic model,

ṅA = FAcAin −FoutcA−k1cAcBV

ṅB = FBcBin −FoutcB−k1cAcBV −2k2c2
BV

ṅC =−FoutcC+k1cAcBV

ṅD =−FoutcD +2k2c2
BV

Ḣ = FAcpρ(Tin,A−T)+FBcpρ(Tin,B−T)+k1cAcBV(−∆H1)+2k2c2
BV(−∆H2)−q

V̇ = FA+FB−Fout,

(7.67)

with ni as the number of moles of componenti = A,B,C,D, and the additional
parameters in Table 7.6, and with the enthalpyH.

Implementation of optimal operation is straightforward, as simple PI controller
can be used to control the invariants. In the steady state case, we have assumed
that we have ideal temperature and level control under operation. In practice, this
has to be achieved by control. Therefore we have included temperature and level
controllers in our dynamic simulations. Further, it is assumed that the temperature
should be 350 K under operation.

We present only simulations for regions 1 and 3, because since this involves
the polynomial invariants. In region 2, only the active constraints are controlled.

Control structure in region 1 All variables are controlled using simple PI con-
trollers. The control structure in region 1 is presented in Figure 7.6. The cooling
duty q is used to control the temperature, and the feed flowFB is used to control
the invariant. Further, we use the outflowFout to keep control the level, and the
feedFA to controlling the throughput toF = Fmax. In order not to violate the heat
constraintqmax, the controller output goes into saturation when the constraint is
reached.
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Figure 7.6: Variable pairings for Region 1

Control structure in region 3 All variables are controlled using PI controllers.
The pairing was selected as in Figure 7.7. Since it is optimalto keepq at qmax in
this region, it is set to this value in open loop. The feed flowFA is used to control
the invariant, and the feed flowFB is used to control the temperature. As in region
1, the outflowFout is used to stabilize the level of the reactor.

7.8.6 Simulation results

In Figure 7.8 we show the dynamic behavior of the system in regions 1 and 3.
The left column shows the response to a disturbance in regionone, and the right
column shown the response to a disturbance in region 3. Note the differences in the
magnitude of the disturbances in the first row. The controlled variables (constraints
and self-optimizing invariants have been plotted in red, and they are nicely kept at
their setpoints.

The simulations in both regions demonstrate nicely that it is possible to control
the obtained invariants using simple PI controllers.

7.9 Discussion

The presented method is based on the same idea as NCO tracking[François et al.,
2005]. However in contrast to François et al. [2005], where the optimality condi-
tions are solved for the optimizinginputs, this work focuses on finding the right
outputswhich express the optimality conditions. The problem of generating the
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Figure 7.7: Variable Pairings for Region 3

inputs which control the outputs to zero is dealt with separately. In most cases,
inputs are generated by feedback control, e.g. PI controllers.

The method was developed as an alternative derivation and a generalization of
the existing null space method [Alstad and Skogestad, 2007]for linear systems.

In the linear case, eliminating the constraints is straightforward, while this is
not trivial in the polynomial case. By premultiplying∇J by the null space of the
constraintsNT, we eliminate the Lagrangian multipliers from the equationset, and
obtain the reduced gradient for the nonlinear case.

The elimination of the Lagrangian multipliers could also been done simulta-
neously with the other unknown variables, using the resultant. Under the strict
complementarity condition (eitherλi = 0 or the constraint is active), the solutions
for λ lie in the toric variety, and therefore the sparse resultantgives necessary and
sufficient conditions on the known variables so that the KKT system has a solu-
tion. We chose to apply the two-step procedure in this work instead of eliminating
everything by using the resultant because this results in lower computational load
when computing the resultants.

As an alternative to calculating resultants, our initial approach was to attempt
to compute the controlled variable combinations by Gröbnerbases with an ap-
propriate elimination ordering [Cox et al., 1992]. We triedto find an appropri-
ate monomial ordering which eliminates the unknown variables, and then use a
polynomial from the elimination ideal as controlled variable. However, with the
Gröbner basis approach it is not straightforward to find an elimination order that
eliminates the unknown variables from the equation system while not yielding the
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Figure 7.8: Simulation in region 1 (left) and region 3 (right). Controlled variables
in each region (self-optimizing variable and active constraints) in red
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“trivial solution” (i. e. the invariant is always zero when the constraints are satis-
fied). Another disadvantage with the Gröbner basis approachis that the selected
invariant may give rise to additional “artificial solutions” which are not solutions
of the original optimality conditions.

A similar approach is to calculate a Göbner basis for the ideal generated by
the active constraintsg(y, d̂) and m(y, d̂) using some elimination ordering, and
to reduceNT∇zJ modulo the ideal. This avoids the trivial solution, however, the
problem of choosing a monomial ordering which eliminates all unknown variables,
remains.

Generally the Gröbner basis approach tends to give even morecomplicated
expressions than the sparse resultant approach presented here.

Since the sparse resultants can also give “large” expressions, our method is best
suited for small systems, with few constraints and equations. This is further em-
phasized by the fact that calculating the analytical determinant for large matrices
is computationally demanding and that the construction of the resultant matrices
is based on the computation of the mixed volume, which is a hard enumerative
problem [Cox et al., 2005]. However, large systems can oftenbe decomposed into
smaller subsystems which can be considered independently.Our method may be
applicable for such a subsystem.

If there are more polynomial equations than unknowns, the engineer must
choose which polynomials to use in the resultant calculations in addition to the
reduced gradient. From a purely mathematical view, this does not make any dif-
ference, as long as the set of model equations has finitely many solutions ford.
However the controlled variables will look quite differentfor different choices.
The best (in terms of simplicity) choice depends on the structure of the equations,
and is thus specific to the problem. However, as a general guideline, it would be
advisable to keep the degrees of the polynomials low in the unknown variables.
This leads to simpler resultants.

Although we can specify which variables to eliminate from the reduced gra-
dient, the variables which remain depend strongly on the structure of the model
equations and the eliminated variables. In some cases all information about the
optimum is contained in very few variables, in other cases many variables are
needed to specify the optimum.

The resultant method, as presented in this paper, does not take into account
measurement noise or model error. This is beyond the scope ofthis work. Our
goal was to extend the idea of the null-space method [Alstad and Skogestad, 2007],
and to demonstrate that the concept of finding variables which remain constant at
optimal operation is possible also for polynomial systems.

Since our approach is to separate the controlled variables selection procedure
and the controller design, it must be verified, that the measurement invariants are
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controllable using simple controllers. That is, we have to make sure that the con-
trolled variables actually crosses zero3. Proving this mathematically is not trivial
and a subject for further research. However, this problem isbeyond the scope of
this paper, since we are only interested in finding variableswhich contain only
known quantities, and which characterize the optimum. In all our experience so
far, the measurement invariants could be controlled by simple PI controllers.

Apart from handling noisy measurements, model mismatch andcontrollabil-
ity issues, a subject for future research is to find methods which reproduce not
all solutions of the optimality conditions, but only a certain set of interest. This
could be all the real solutions or solutions which reside in some further specified
semialgebraic set, so that stationary points which are saddle points or maxima are
excluded.

7.10 Conclusions

In this paper we have presented an approach to obtain optimalsteady state opera-
tion which does not require on-line calculations. We have shown that, after iden-
tifying the critical regions, there exist optimally invariant variable combinations
for each region. If there are enough measurement/model relations (ng+nm ≥ nd̂),
the unknown variables can be eliminated by measurements andsystem equations,
and the invariant combinations can be used for control usinga decentralized self-
optimizing control structure.

The dynamic simulations show that it is possible to control the invariants using
simple PI controllers.

Depending on the problem structure, the invariants may become more compli-
cated than the reduced gradient, as in region 3 of case study II, or much simpler,
as in case study I and region 1 of case study II. Due to the symbolic nature of
the calculations, this method is best suited for small systems. However, it is diffi-
cult to predict how the invariant will look like without analyzing the system more
thoroughly (that is considering the mixed volumes of the corresponding Newton
polytopes). Moreover, since the analysis is based on an exact model, it is difficult
to make a-priori statements about the robustness to noise and model error. It is
expected, that simple invariants of low degree will behave better than invariants
with of high degrees in the variables. Thus for example the invariant of case study
I can be expected to be relatively robust to measurement noise. However, this has
to be evaluated individually for each case.

3For example, this would not happen whenc = x2 and we have an input with gainx = Gu, in
this case the input has to move into different directions, depending on the value ofx. This would be
difficult to control in practice. However, this particular example cannot happen, becausec = x2 is
not irreducible.
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Further, we have shown that the measurement invariants can be used for de-
tecting changes in the active set and for finding the right region to switch to. The
active set changes are strictly speaking only valid for steady state operation. This
assumes that the disturbance changes occur on a frequency which is low enough
for the system to reach steady state. Faster disturbances have to be handled by the
dynamic controllers.

Using methods from elimination theory, we have shown that inprinciple, mea-
surement polynomials can be used as self-optimizing controlled variables to con-
trol the process optimally.
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Chapter 8

Invariants for dynamic systems

O heaven! were man but constant,
he were perfect.

W. Shakespeare

In optimal control the optimal input trajectories are oftensolved nu-
merically or analytically from the optimality conditions.This requires
that all variables which enter the optimality conditions are known or
measured. We use techniques from polynomial elimination theory
to eliminate variables which are not known from the optimality con-
ditions. The result is an expression of the optimality conditions in
known variables only, which can easily be evaluated and controlled
by feedback.

Submitted to the 50th IEEE Conference on Decision and Control and European
Control Conference, 2011, Orlando

8.1 Introduction

Dynamic optimization problems are ubiquitous in science and engineering. In pro-
cess control, they are found in the optimization of batch reactors or grade transi-
tions in continuous processes. Although many problems can be approximated well
by optimizing the behavior at steady state, other cases are inherently of dynamic
nature, and must be approached by dynamic optimization.

Most approaches in literature deal with optimization basedon a model. One
of the oldest approaches is to find the optimal input using thePontryagin mini-
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mum principle [Bryson and Ho, 1975]. This requires a simple model, and that all
parameters and variables are known (measured).

A second approach, which is very popular today and can handlemore complex
models, is nonlinear predictive control, or dynamic real-time optimization. Here,
we use measurements to update the process model parameters at given sample
times, and solve the optimization problem iteratively using the updated model in
order to obtain new input trajectories [Allgöwer and Zheng,2000; Grötschel et al.,
2001; Diehl et al., 2002; Schlegel et al., 2005].

A third approach, which may be placed in between the two previous, is to use
the model off-line and exploit the solution structure to findvariables, which give
optimal or near optimal operation, when kept at constant setpoints using a feedback
policy. This approach is followed in NCO tracking [Srinivasan et al., 2003] and
self-optimizing control [Skogestad, 2000].

Whenever using a model to find an optimal operation strategy,handling uncer-
tainty is a major challenge. Uncertainty may arise from different sources, such as
incomplete information (unmeasured states), parametric disturbances and model
structure error. To cope with uncertainties, there are several approaches:

1. Keep the unknown or varying parameters at some fixed value.In most cases
this will give poor performance, or even feasibility problems.

2. Estimate the unknown variables using some filter or movinghorizon estima-
tion [Kühl et al., 2011]. This approach is used frequently, however, it can be
difficult to obtain converging estimates for the unknowns within reasonable
time.

3. Use a robust control approach [Terwiesch et al., 1994]. Here we attempt to
find a control policy, which gives the best performance over arange of dis-
turbances. Generally it has to compromise performance to gain robustness.

4. Neighbouring extremal control [Bryson and Ho, 1975], where the original
optimization problem does not have to be re-solved completely. Instead,
an easier, linear problem is solved to find the required corrections to the
nominal input trajectory.

5. The approach presented in this paper, where we use model equations to elim-
inate the unknown or uncertain variables from the optimality conditions.

Our work contributes to handling parametric uncertainty for dynamic opti-
mization problems, which are given as polynomial equations. The main contri-
bution of this paper is to extend the ideas from steady state self-optimizing control
Skogestad [2000] to dynamic optimization problems which are described by poly-
nomial equations.
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Our method is in the same spirit as Srinivasan et al. [2003] and Alstad and
Skogestad [2007], where the controlled variables are the optimality conditions as-
sociated to the corresponding optimization problem. The idea is to formulate the
optimality conditions (Hu = 0) which include unknown parameters, and then use
tools from elimination theory [Emiris and Mourrain, 1999; Cox et al., 2005] for
eliminating the unknown parameters to find invariants of optimal control systems,
so that a feedback solution in known (measured) variables can be found.

Our approach consists of four steps: First, we formulate theoptimality condi-
tions. Second, we eliminate the adjoint variables from the optimality conditions,
and third, we use model equations to eliminate unmeasured states and parameters
from the optimality conditions to obtain optimally invariant variable combinations
in known variables only. Finally, we use feedback to controlthese variable combi-
nations.

This paper is structured as follows. In Section 8.2 we present the optimal con-
trol problem in consideration, and describe how to find combinations of variables
which remain constant under optimal control. That is, how the adjoint variables
can be eliminated from the optimality conditions. In Section 8.3, we introduce
some basic concepts from toric elimination theory, which wewill use for eliminat-
ing other unknown variables from the invariant. In Section 8.4, we show how to ap-
ply the results from elimination theory to eliminate unknown parameters from the
optimality conditions. Section 8.5 gives a case study of a fed batch reactor, where
we find controlled variables which do not contain unmeasuredvariables. Section
8.6 closes the paper with a short discussion and conclusion.

8.2 Optimal control

We assume that the dynamic optimization problem can be written in following
form:

min
u(t)

Φ(t f ) = J(x(t f )) (8.1)

s.t. ẋ = F(x(t))+G(x(t))u(t) (8.2)

x(0) = x0 (8.3)

u(t)≥ uL (8.4)

u(t)≤ uU . (8.5)

The scalar functionJ denotes the terminal cost, and the functionsu : [0, t f ]→ R
nu

andx : [0, t f ] → R
nx denote the input and state functions, respectively.F(x) is a

vector valued function of dimensionnx, andG(x) is a matrix of dimensionnx×nu.
The elements ofF(x) andG(x) are polynomials in the ringR[x], that is, every row
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in F(x) andG(x) contains polynomials in the variablesx and coefficients inR.
The variablesuL anduU denote the time invariant lower and upper bounds for the
inputsu. Note that the system is input affine and we have only input constraints.
All functions are assumed to be sufficiently smooth and differentiable.

8.2.1 First order optimality conditions

Assumption 1. The optimal control problem(8.1) – (8.5) is feasible and has a
unique solutionu∗(t).

We define the Hamiltonian

H(x(t),u(t),λ (t),µL(t),µU (t)) = λ T(F(x(t))+G(x(t))u(t))

+µLT
(uL −u(t))+µUT

(u(t)−uU),
(8.6)

whereλ , µL and µU are the adjoint variables corresponding to the model, the
lower and upper input constraints, respectively.

Theorem 11 (Pontryagin Minimum Principle [Geering, 2007; Bryson and Ho,
1975]). If the controlu is optimal, then there exist nontrivial vectors of adjoint
variablesλ and µ , such that the following conditions are satisfied (we omit to
write the explicit time dependency):

1.

ẋ =
∂H
∂λ

x(0) = x0

λ̇ T =−∂H
∂x

λ T(t f ) =
∂J

x(t f )

µLT
(uL −u) = 0

µU T
(u−uU) = 0

(8.7)

2. For all t ∈ [t0, t f ], the Hamiltonian has a global minimum with respect tou,
i.e.

H(xopt,uopt,λ opt,µLopt
,µU opt

)≤ H(xopt,u,λ opt,µopt,µLopt
,µU opt

)
(8.8)

for all uL ≤ u ≤ uU and t∈ [t0, t f ].

3. If the final time is free, we have the transversality condition

H(x(t f ),u(t f )
∗,λ (t f ),µL(t f ),µU(t f )) = 0. (8.9)
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8.2.2 Implementing the optimal solution

The solution of problem (8.1) – (8.5) generally consists of asequence of arcs
which are defined in certain intervals. We treat each arc of the optimal solution
separately. The arcs are defined by the active constraints, and are continuous and
differentiable within each interval [Bryson and Ho, 1975].We can distinguish two
types of arcs:

1. Constrained arcs (boundary arcs): One or more inputs are at a constraint.

2. Unconstrained arcs: The inputs are all unconstrained.

In the constrained arcs, implementation is easy; we simply keep the inputs
at the active constraint. If there are unconstrained degrees of freedom left, the
remaining problem can be reformulated as an unconstrained problem by redefining
the input set. Therefore, in the following, we consider onlythe case where no
constraint is active. To specify the optimal trajectory, weneed one controlled
variable for each unconstrained degree of freedom.

At the minimum of the Hamiltonian (8.8), we must have

Hu =
∂H
∂u

= 0. (8.10)

We simplify notation by considering one input at a time,

Hui =
∂H
∂ui

= 0, (8.11)

for all inputs i = 1, . . . ,nu. Unfortunately, we cannot controlHui to zero, because
it contains unknown adjoint variablesλ . To eliminate the adjoint variables, we
perform successive time differentiations.

Definition 10 (Lie bracket, [Marquez, 2003]). Given two vector fields f,g : Rn →
R

n. The Lie bracket[ f ,g] is the vector field defined by

[ f ,g] =
∂g
∂x

f − ∂ f
∂x

g. (8.12)

Recursive bracketing is defined as

adk
f g= [ f ,adk−1

f g], (8.13)

with ad0
f g= g.
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It can be shown [Srinivasan et al., 2003; Gros et al., 2009], that thek-th time
derivative ofHui can be written as

H(k)
ui =

d(k)Hui

dt(k)
= λ T

(

adk
F(x)Gi(x)

)

= λ TAi
k,

(8.14)

whereGi(x) denotes thei-th column inG(x). SinceHui = 0, is zero at all times,
its time derivatives must be zero at all times, too. Therefore, we can write the time
derivatives up top thenx −1-th derivative as

λ T [Ai
0,A

i
1,A

i
2, . . .A

i
nx−1

]
= λ TA i = 0, (8.15)

where all termsAi
0, Ai

1, Ai
2,. . . ,Ai

nx−1 are collected in the matrixA i. Equation 8.15
has a nontrivial solution forλ only if

det(A i) = 0. (8.16)

Therefore, controlling
ci = det(A i) (8.17)

to zero gives optimal operation. If we have several inputs, we may collect allci into
a vectorc= [c1, . . . ,ci , . . . ,cnu]

T . The vectorc will generally still contain unknown
variables, such as unmeasured states or unmeasured disturbancesd. Therefore
it cannot be evaluated online and used for control. However,after eliminating
unknown variables fromc, it can be used for control and the correct inputs can be
generated automatically by a P or PI feedback controller.

Since the optimal control system (8.1)–(8.5) is defined in polynomial equa-
tions, and all calculations above preserve the polynomial structure, we can use
results from elimination theory to eliminate unknowns in each ci = det(A i).

8.3 Toric elimination theory

We give a very short introduction to toric elimination theory, for more detailed
information we refer to Cox et al. [1992]; Gelfand et al. [1994]; Sturmfels [2002];
Cox et al. [2005]; Emiris [2005]. More specifically, we present the sparse resul-
tant from algebraic geometry Cox et al. [2005]; Emiris and Mourrain [1999] to
eliminate the unknowns. Casually speaking, the resultant is a condition for an
overdetermined system of polynomials to have a common root.

We consider a system ofn+1 polynomials,

f0 = · · ·= fn = 0, (8.18)
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in n variablesx = [x1, . . .xn]
T , and letC∗ denote the complex numbers without

zero,C∗ = C\0. Toric elimination theory considers solutions of the polynomials
(8.18) in(C∗)n. Since none of the variables is allowed to be zero, the theoryis valid
for Laurent polynomials inR[x,x−1,u,u−1], that is, polynomials with positive and
negative integer exponents.

Definition 11 (Monomial). We define a monomialxa as the power productxa =
xa1

1 xa2
2 . . .xan

n , where(a1,a2, . . . ,an) ∈ Z
n.

Definition 12 (Support). Let the supportEi = {ai,1, . . . ,ai,mi} denote the set of
exponent vectors corresponding to monomials in

fi =
mi

∑
j=1

ci, jxai, j , ci, j 6= 0. (8.19)

We denote asQi = conv(Ei) the convex hull of the support of the polynomial
fi.

Definition 13 (Affine variety). Consider f1, . . . , fm polynomials inC[x1, . . .xn].
The affine variety V( f1, .., fm) is defined by the set

V( f1, .., fm) = {(x1, ..,xn) ∈ C
s : fi(x1, ..,xn) = 0, i = 1. . .m} . (8.20)

Definition 14 (Zariski closure). Given a subset S⊂C
m, the smallest affine variety

containing S is called the Zariski closure of S and is denotedasS̄.

Let L(Ei) be the set of all polynomials that have exponents in the support Ei

L(Ei) =
{

ci,1xai,1 + · · ·+ci,mi x
ai,mi : ci, j ∈ C

∗} , (8.21)

Then the coefficients of a polynomial define a point inC
mi . Now let

Z(E0, . . . ,En)⊂ L(E0)×·· ·×L(En) (8.22)

be the Zariski closure of the set of all( f0, . . . fn), for which (8.19) has a solution in
(C∗)n. For an overdetermined system of polynomials we then have this result.

Theorem 12 (Sparse resultant,[Gelfand et al., 1994; Cox et al., 2005]). Assume
that Qi = conv(Ei) is a n dimensional polytope for i= 0, . . . ,n. Then there is an
irreducible polynomialR in the coefficients of the fi such that

( f0, .., fn) ∈ Z(E0, . . . ,En)⇔ R( f0, .. fn) = 0. (8.23)

In particular, if the system
f0 = f1 = · · ·= fn (8.24)
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has a solution(x1, . . . ,xn) ∈ (C∗)n, then

R( f1, . . . , fn) = 0. (8.25)

We callR the sparse resultant.

Remark 14. There exist more general versions of Theorem 12, which do notre-
quire the convex hull of the supports to be n-dimensional. [Sturmfels, 1994]. How-
ever, for simplicity we chose to present this simplified version here.

Example 5(One variable). Consider the system of two polynomials

f0 = a11+a12x

f1 = a21+a22x+a2,3x2.
(8.26)

The supports of this system areE0 = {(0),(1)}, andE1 = {(0),(1),(2)}. Clearly,
the convex hulls of the supports are the line segments[01] and [0,2], which have
dimension n= 1. For generic coefficients ai, j (8.26) is inconsistent and does not
have a solution inC∗. The sparse resultant for this system is calculated as the
determinant of the Sylvester matrix

R( f0, f1) = det









a12 a11 0
0 a12 a11

a23 a22 a21









= a2
12a21−a12a11a22+a23a

2
11.

(8.27)

Note that we have eliminated x from(8.26), and the statementR( f0, f1) = 0 is
identical to stating that there exist some x such that f0 = f1 = 0.

The calculation of the sparse resultant for multivariate polynomials is more
involved. An algorithm is given in Canny and Emiris [2000]. In this work, we use
the free softwaremultires [Busé and Mourrain, 2003] for the computations.
We will use Theorem 12 to eliminate unknown variables from the control invariant
from equation (8.16).

8.4 Using resultants in optimal control

After introducing the sparse resultant, we can apply it to our optimal control prob-
lem. Recall that generally the invariantsci = det(A i) contain unknown variables.
We collect all unknown (unmeasured) variables in a vectord, so we haveci = ci(d),
and we write the model equations in the form

m(d) = 0, (8.28)

where we have omitted to explicitly state the dependency on the known variables.
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Assumption 2. The model equations are polynomials in the polynomial ringR[d]

Assumption 3. The variety V(m(d)) is zero dimensional, that implies thatm(d)=
0 has a finite number of solutions ford.

Theorem 13 (Invariants for Control). If the number of unknown variables nd is
equal to the number of model equations nm, and Assumptions 2 and 3 hold, con-
trolling

R(ci ,m(d)) = 0 (8.29)

is equivalent to controlling(8.16).

Proof. By assumption, the model equationsm(d) = 0 have a finite number of
solutions.ci(d) = det(A i) is a polynomial in the variablesd whose coefficients are
functions ofu, and thus can be manipulated. Arbitrary input valuesu will cause
that ci(d) = 0 does not have any solution. The sparse resultantR(ci(d),m(d))
gives the necessary and sufficient condition for the combined system

m(d) = 0

ci(d) = 0
(8.30)

to have a solution in(C∗)nd . By Theorem 12, we have

ci = det(A i) = 0⇔ R(m,ci) = 0. (8.31)

Thus, we may use model equations to eliminate unknown variables fromci =
det(A i), to obtain an expression which contains only known variables. More im-
portantly, since the unknown variables are not contained inR(m,ci) we can con-
trol the resultant to zero by feedback control using online measurements.

Remark 15. Note that it is not necessary to be able to solve the model equations
m(d) = 0 uniquely ford. The only condition is that the model equations have a
finite number of solutions.

Remark 16. Since the unknown variablesd assume real values in the process, the
existence of complex solutions form(d) = 0 does not matter, because the Theorem
12 states that ci becomes zero whenever the resultant is zero.

8.5 Case study: Fed batch reactor

The model and the optimization problem for this case study istaken from Gros
et al. [2009]. Since controlling measured path constraintsis straightforward, we
present the unconstrained case where finding the controlledvariable combination
is more involved. Therefore we have selected the initial conditions as in Gros et al.
[2009], such that we have only one unconstrained arc.
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8.5.1 Model

We consider a fed batch reactor with two chemical reactions,

A+B−→C and 2B−→ D, (8.32)

whereC is the desired product andD is the undesired side product. The operational
objective is to maximize difference between the amount ofC and the amount ofD
at the final batch timet f .

We use a simple dynamic model,

ċA =−k1cAcB−cAu/V

ċB =−k1cAcB−2k2c2
B− (cB−cin

B )u/V

V̇ = u,

(8.33)

with the initial conditions:cA(0) = cA0, cB(0) = cB0, andV(0) =V0. Initially the
concentration of the products is zero,cC0 = cD0 = 0. All parameters and initial
conditions are given in Table 8.1.

From the mass balance, we have (cC0 = cD0 = 0)

cC(t) =
1
V
(cA0V0−cA(t)V) (8.34)

and

cD(t) =
1

2V

[(
cA+cin

B −cB
)
V −

(
cA0+cin

B −cB0
)
V0
]
. (8.35)

8.5.2 Optimal control problem

The optimization problem is the formulated as

min
u

J(t f ) s.t. ẋ = F(x)+G(x)u, (8.36)

where the objective is

J(t f ) = (cD(t f )−cC(t f ))V(t f ). (8.37)

Further, we have the state and input vectorsx = [cA, cB,V]T andu = u, and

F(x) =





−k1cAcB

−k1cAcB−2k2c2
B

0



 , G(x) =
1
V





−cA

cin
B −cB

V



 . (8.38)

The constraints for our system are

u≤ umax

umin ≤ u.
(8.39)
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Table 8.1: Parameters and initial conditions

Symbol Value Unit Description

k1 0.053 l/mol/min parameter
k2 0.128 l/mol/min ”
cin

B 5 mol/l ”
t f 250 min ”
umin 0 l/min input constraint
umax 0.001 l/min ”
cA0 0.72 mol/l initial condition
cB0 0.0614 mol/l ”
cC0 0.0 mol/l ”
cD0 0.0 mol/l ”
V0 1 l ”

8.5.3 Nominal optimal solution

Solving the system for the nominal conditions shows that none of the input con-
straints becomes active. The optimal trajectory is therefore a single interior arc.
The Hamiltonian is

H = λ1

(

−k1cAcB−
cAu
V

)

+λ2

(

−k1cAcB−2k2c2
B+

(cin
B −cB)u

V

)

+λ3u.

(8.40)

Proceeding as in Section 8.2 we getHu = λ TA0 = 0 with

A0 =
[

−cA
V

cin
B−cB

V 1
]T

. (8.41)

We continue with the first and second time derivativesλ TA1 = 0 andλ TA2 = 0.
Here,A1 = [a11a12, a13]

T with the elements

a11 =
1
V
[−k1cA(cB−cin

B )]

a12 =
−1
V

[
k1cA(cB−cin

B )+2k2cB(cB−2cin
B )

]

a13 = 0,

(8.42)
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Table 8.2: Simulation cases

Case 1 Case 2

Unmeasured state: cA cB

Unmeasured disturbance: none k1

andA2 = [a21, a22, a23]
T , with

a21 =
1

V2

[
cin

B k1cAV(k1cA+4k2cB)+2k1cA
(
cB−cin

B

)
u
]

a22 =
1

V2

[
cin

BV
(
4k1cAk2cB+8k2

2c2
B+k2

1c2
A

)

+2
(
cB−cin

B

)(
k1cA+2k2(cB−cin

B )u
)]

a23 = 0.

(8.43)

The determinant ofA = [A0, A1, A2] becomes zero when

c= 0, (8.44)

with

c= 4k2c2
Bcin

BV +2cBcin
B u−k1cAc2

BV +2k1cAcin
BVcB−2u(cin

B )
2. (8.45)

In optimal control literature [Bryson and Ho, 1975], this expression is solved for
u, and the input is implemented in the process. However, if there is unmodelled
uncertainty or dead time in the process, this might lead to instability. Moreover,
the coefficient ofu might be very small (or large) resulting in numerically ill condi-
tioned solution foru. In other cases, a relationship is found which does not contain
u at all, and (8.45) cannot be solved foru. Therefore, we will not solve for the
input, but rather use feedback-controller to controlc to zero.

8.5.4 Eliminating unknown variables

We consider two cases, where different variables are considered unknown and have
to be eliminated, Table 8.2.

Case 1: Unknown variables in algebraic equations

Let us first assume that the concentration of componentA is very difficult or ex-
pensive to measure, so in this case we have one unmeasured state, namelycA.
All other variables inc from (8.45) are known. However, the unmeasured state is
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present in the algebraic relationship (8.34). From this we obtain the measurement
polynomial

m1 =VcC(t)− (cA0V0−cA(t)V) = 0, (8.46)

and we calculate

R(c,m1) =−Vc2
Bk1cC+2VcBk1cin

B cC−4Vc2
Bk2cin

B −2cin
B ucB

+2cin
B

2
u−2cBk1cin

B cA0V0+c2
Bk1cA0V0.

(8.47)

R(c,m1) does not contain the unmeasured state, and controlling it tozero will by
Theorem 13 result in optimal operation.

Case 2: Unknown variables come from the differential equations

Now we assume that we have an unknown disturbancek1, and that the concentra-
tion cB is unmeasured. Since the reaction rate only enters through adifferential
equation, we need to eliminatek1 from c (8.45) using a differential equation, and
we need to use a change rate as a measured variable, too. However, if we have
a good measurement of a process variable and a good clock, then estimating the
time derivative is not difficult.

We assume that we can measure the concentrationcA together with an estimate
of its time derivative, ˙cA. If the measurement ofcA is good (little or no noise), then
we may use its past values to estimate its time derivative. Weassume that we
measure ˙cA continuously using finite differences,

ċA =
cA(t)−cA(t −1min)

1min
. (8.48)

This does not give the exact derivative, but the approximation is considered good
enough for our purposes.

To eliminate the unknownscB andk1 we use an additional mass balance for
componentB,

m2 =−cBV +cB0V0+cin
B (V −V0)−cCV −2cDV = 0, (8.49)

in combination with the implicit component balance forcB from (8.33),

m3 =−ċBV −k1cAcBV −2k2c2
BV − (cB−cin

B )u= 0, (8.50)

and we eliminate the unknowns by calculating the resultant with respect to the
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unknown variablesk1 andcB:

R(c,m2,m3) =

−16V2cAk2cin
B cD +V2cAċA+4V2k2cin

B cA
2+8V2cAk2cin

B
2

+VucA
2−16VcDk2cin

BV0cB0+16VcDk2cin
B

2
V0

+8VV0cB0k2cin
B

2−8VcAk2cin
B

2
V0+16VcA0V0k2cin

B cD

+8VcAk2cin
BV0cB0−8VcAcA0V0k2cin

B −8VcA0V0k2cin
B

2

−8V2
0 cB0k2cin

B
2
+4V2

0 c2
B0k2cin

B +2V0cB0cin
B u−cAV0cin

B u

+cAV0cB0u+16V2c2
Dk2cin

B −16V2cDk2cin
B

2−2VcAcDu

+VcAcin
B u−4VcDcin

B u−8Vcin
B

3
k2V0−VV0cin

B ċA+VV0cB0ċA

−VcA0V0ċA−cAcA0V0u−2cA0V0cin
B u+8cA0V

2
0 k2cin

B
2

+4c2
A0V

2
0 k2cin

B +4V2
0 cin

B
3
k2−2V0cin

B
2
u+4V2cin

B
3
k2

−V2cin
B ċA−2V2cDċA−8cA0V

2
0 k2cin

B cB0.

(8.51)

This expression does not contain any of the unknown variables, so it can be evalu-
ated online and controlled to zero using a P or PI controller.

8.5.5 Simulation Results

Nominal operation

The state and input trajectories for nominal optimal operation are given in Figure
8.1. These trajectories are generated by applying the optimal input. The final
optimal cost is value isJ = 0.2717.

Controlling the invariant

Case 1.: VariablecA unmeasured - all other variables known Here we cannot
control c= det(A) to zero, because we cannot evaluate it sincecA is not known.
Instead we control the resultantR(c,m1) (8.47) to zero using a P controller. The
trajectories appear identical to the optimal ones from the previous section, and the
objective value isJ= 0.2717. This is exactly as expected, because by Theorem 13,
controllingc andR(c,m1) are equivalent. The suboptimality, which is introduced
by the added P controller, does not become visible when considering the first seven
digits of the objective function. However, whereas we need to know the value of
cA to controlc, this is not necessary for controllingR(c,m1) to zero.
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Figure 8.1: Nominal optimal input, volume, and concentration trajectories
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Figure 8.2: Disturbancek1

Case 2.: Variablesk1, cB unmeasured –ċA and cA measured In this case, the
statecB is not known (measured) and the parameterk1 is not known either. There-
fore we cannot evaluatec and use it for control. Instead we controlR(c,m2,m3),
which contains neitherk1 norcB. This expression can be evaluated using the avail-
able measurements and controlled to zero. In the nominal case the trajectories look
identically the same as in Figure 8.1.

Next, we consider a change in the reaction kinetics, wherek1 rises 20%, Figure
8.2. The input and the states are given in are given in Figure 8.3 The final profit
when controllingR(c,m2,m3) to zero isJ = 0.2970, while the profit using the
optimal input isJopt = 0.2971. This difference comes from the approximation of
ċA in (8.48). Using the exact derivative, we obtainJ = 0.2971, which is the same
value as the optimal input gives.

If we had not eliminatedk1 in R(c,m2,m3), and just used the nominal value,
the objective value would be lower,J = 0.2873.

8.6 Discussion and conclusion

We have shown that the concepts of finding invariant variablecombinations can
be extended to dynamic systems, which are described by polynomial or rational
equations. By not explicitly solving for the inputu, we do not have to be concerned
whether the input appears inc, because we use a P or PI controller to generate the
optimal inputs. This is a simple alternative to analytically finding the optimal input
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Figure 8.3: Inputs and concentrations for unmeasured change of k1 at time 100



174 Invariants for dynamic systems

by further differentiations.
Adding a controller to controlc will often come at a negligible loss. This is

confirmed in our example, where controlling the invariants using only a P con-
troller gives virtually the same performance as when analytically solving for the
optimal input.

In this work, we considered only parametric uncertainties and unmeasured
states. The equally important issues as model error and measurement noise are
beyond the scope of this work and are have to be studied in future work.

We have assumed that the uncertainty does not change the active constraints.
This is valid for sufficiently small disturbances. However,for larger disturbances,
the new set of active constraints has to be determined.

Controlling the invariant can be used together with other NCO tracking meth-
ods to handle model mismatch (by adjusting model parameters) or terminal con-
straints on a run-to-run basis, similar to Srinivasan and Bonvin [2007]. Thus, our
method can be considered as a part of a larger procedure for implementing optimal
batch performance.

Beside “normal measurements” we have also allowed measurements of their
time derivatives. They may be estimated by finite differences as above, or by using
some filtering. If a measurement is assumed to be reliable, then its change over
time should also be possible to estimate reasonably well. Introducing measure-
ments of the time derivatives, makes it possible to eliminate variables, for which
we do not have a purely algebraic expression, and which enterthrough the differ-
ential equations only.

In the procedure for eliminating the adjoint variables, we have presented the
common case of input affine systems. If the model is not input affine, elimination
of the adjoint variables comes at the cost of introducing time derivatives of the
input, which have to be measured.

We used the resultant to eliminate the unknown variables. Other techniques,
such as Gröbner bases [Cox et al., 1992], could also have beenapplied. However,
it is not easy to find appropriate monomial orderings which eliminate the unknown
variables, while avoiding the trivial solution (the invariant is always zero when the
model equations are satisfied).
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Chapter 9

Conclusions and future work

Now this is not the end. It is not
even the beginning of the end. But
it is, perhaps, the end of the
beginning.

W. Churchill

9.1 Conclusions

In the first part of this thesis, existing methods from self-optimizing control have
been considered and studied under an optimization point of view. A connection be-
tween the methods used in self-optimizing control and the gradient of the optimiza-
tion problem was found. In this context, it was discovered, that self-optimizing
control can be interpreted as finding the best possible approximation to the gradi-
ent of the process. In line with this interpretation, we found a simple derivation of
the previously published null-space method [Alstad and Skogestad, 2007]. It was
found that this derivation could be extended to systems of polynomial equations as
was presented in this thesis.

For cases where no model is available, we have presented a method for finding
invariant combinations which is based on using optimal data. The suggested ap-
proach can be used to find directions in the measurements, which indicate a good
operation policy. This analysis tool may applied for findingthe “secret” of good
plant operators.

In Chapter 5, we studied the use of self-optimizing control and NCO tracking
in the context of real-time optimization. The results from this work indicate that
self-optimizing controlled variables should be used in thecontrol layer, while the
iterative NCO tracking procedure should be used in the optimization layer. Here,
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the self-optimizing variables are used to align the controlobjectives and the eco-
nomic objectives in a hierarchical control structure whichis based on time scale
separation.

In the second part of this thesis, the foundations have been laid for extending
the self-optimizing control concept for polynomial systems. The concept of null-
space method has been extended to polynomial systems, and even to dynamic sys-
tems, which are described by polynomial equations. These results are very inter-
esting from a theoretical point of view, because they demonstrate that the concept
of finding optimal invariant variable combinations is not restricted to the linear-
quadratic case. However, the results are “exact” in a rathermathematical sense,
that is they may not work well in case of plant-model mismatchand measurement
noise. But this will be very dependent on the structure of themodel equations, and
it may well be that there are cases, which give robust and simple invariants, which
are suitable for use in industrial practice.

9.2 Further work

9.2.1 Robustify and simplify the polynomial approach

In this thesis the theoretical basis has been provided for extending the self-optimizing
control concept for nonlinear (polynomial) systems. The results obtained are valid
for a perfect model without measurement noise. It is difficult to make general
statements about how this will impact the performance of theplant in case of
model mismatch and measurement noise. Another partially related issue is that
the polynomial invariants may become extremely long expressions of high degree
variables. In practice, however, it is often more convenient to have simpler (fewer
terms and low degree) robust expressions, because the modelis not exactly known.
Moreover, the computation of the resultant is computationally expensive, so the
approach for finding polynomial invariants is in practice only applicable to small
systems.

Based on the results of this work, future research could focus on systematically
finding simpler, more robust invariants, which may generally introduce some loss
in terms of the objective function, but which tolerate modelmismatch and mea-
surement noise better. A possible starting point could be touse optimization to
find approximate invariants with a simple structure, which minimize the loss over
the range of disturbances.

9.2.2 Further studying the polynomial approach

Since the results for polynomial systems are based on a perfect model without
measurement noise, it does not matter which measurements are included in the
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invariant. In practice, there will be measurements, which are more reliable than
others. So far, it has been left open which equations should be used for eliminating
the unknowns.

The choice of the equations for eliminating the unknowns canhave large im-
pact on the size and the degree of the invariants. Therefore,future research may
give indications on which equations to use for eliminating the unknowns.

9.2.3 Handling changing active constraints

Another field for future work is the consistent and tractablehandling of changing
active constraints. This is a very important topic, becausethe economic loss asso-
ciated with changing active constraints is generally higher than the loss associated
with the unconstrained degrees of freedom. In this work, we have used a prag-
matic approach, where we monitored the controlled variables of the neighbouring
regions. This is viable when the numbers of regions is small and the problems
behave nicely. However, when there are many regions, it may become difficult to
track all the controlled variables in the neighbouring regions. Some progress on
this topic has been done in the explicit model predictive control community, but
it seems that there are still many open issues when the optimization problem is
not linear-quadratic. When considering model mismatch andmeasurement noise,
handling changing active constraints becomes even more challenging, and a sys-
tematic, rigorous way of handling these issues has yet to be developed.

9.2.4 Further studies on the combination of real-time optimization
and self-optimizing control

It has been shown that real-time optimization and self-optimizing control are com-
plementary (Chapter 5). It would be worth studying the interaction of real-time
optimization and self-optimizing control further. Topicsof interest could be:

• Evaluating how the combination of real-time optimization and self-optimizing
control compare to the truly optimal dynamic real-time optimization.

• Research possibilities for further improving the combination of self-optimizing
control and real-time optimization.

• Which disturbances should be rejected in which layer.

A different direction of future work could be studying the role and effect of back-
off and active constraint handling in the combined framework of self-optimizing
control and real-time optimization. Deeper knowledge in these areas would allow
us to further fine-tune the overall control structure for optimal interplay.
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9.2.5 Disturbance discrimination

We have assumed that the important disturbances, which should be rejected op-
timally, are known a priori. This is, however, not generallythe case in practice.
It would be of great practical importance if we had theoretically sound methods
for discriminating disturbances, such that we could focus on the important distur-
bances in modelling and control structure selection.
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Appendix A

Optimal operation of a waste
incineration plant for district
heating

In writing music, the structure of
each piece is a very important
factor.

L. Ornstein

This paper demonstrates the concept of implementing a self-optimizing
control structure on an industrial case study. Using off-line optimiza-
tion, the structure of the optimization problem is exploited to find a
set of variables, which give optimal operation when controlled at their
setpoints. We first obtain a steady state plant model, which is opti-
mized on grid points in the operating region in order to determine the
set of active constraints and the optimally unconstrained variables to-
gether with their optimal values. The variables assuming a constant
optimal value are candidates for self-optimizing variables. Four oper-
ational regions are found, and for each region a simple control struc-
ture is defined to 1.) satisfy constraints and 2.) to control the self-
optimizing variables to their setpoints. To be able to change between
different regions, switching rules are defined. Using theseswitching
rules, the plant can be controlled close to optimality when adistur-
bance causes the system to change from one region to another.Finally
some dynamic simulation results are presented to show the control
performance within the regions and across region boundaries.

Based on the paper “Optimal Operation of a Waste Incineration Plant for District
Heating” presented at the American Control Conference 2009, St. Louis
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A.1 Introduction

Rising energy prices, increasing competition and environmental demands make
it increasingly necessary to operate plants as close to optimality as possible. In
order to remain close to optimality in spite of disturbances, there are two basic
paradigms [Narasimhan and Skogestad, 2007]. The first paradigm is to obtain op-
timal operation via on-line optimization [Marlin and Hrymak, 1997]. This implies
that the optimal setpoints of the controlled variables are computed on-line and are
updated at certain time intervals based on the last available measurements. Setting
up, solving and maintaining an such a real-time optimization (RTO) system can
be a very time-consuming and complex task, as the uncertainty in the model and
parameters can have a severe impact on the control performance, and the updated
setpoints have to be available at the given sample times.

A second paradigm, which is very common in practice, is to identify appro-
priate “self-optimizing control” variables [Skogestad, 2000]. Controlling these
variables at their set-points keeps the process at or close to the optimal operating
point in presence of disturbances, without the need to re-optimize. Usually, such
policies are obtained by intuition, experience, and technical insight. We present a
case study of a waste incineration plant, where the control structure can be found
by performing an off-line optimization and analysis.

In district heating networks, the network operators usually wish to obtain the
lowest possible return temperature to the heat source, while the power plants are
designed for providing a given amount of heat at a specified temperature range. In
this case study, the power plant is not owned by the district heating provider, which
can lead to conflicts as the district heating provider attempts to draw more energy
than what is produced, thus cooling down the plant. We designa control structure
which prevents the plant from being cooled down while minimizing the operating
cost. The example illustrates nicely the principles and benefits of self-optimizing
control.

The structure of the paper is as follows: First the fundamental ideas of self-
optimizing control are presented, and then the waste incineration process is pre-
sented and explained together with the operating objectives. Next, the model is
described and optimized. Based on inspection of the optimization results, a con-
trol structure is designed and tested on a dynamic model. After presenting and
discussing representative results, the paper finishes withour conclusions.

A.2 Self-optimizing control

The idea behind self-optimizing control is defined in Skogestad [2000]:
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Figure A.1: Flowsheet of the incineration plant

Self-optimizing control is when we can achieve and acceptable loss
with constant setpoint values for the controlled variables(without the
need to reoptimize when disturbances occur)

This means that for each region defined by the set of active constraints, we search
for variables or variable combinations whose optimal values are constant in pres-
ence of disturbances. If they are controlled at their optimal values, which are the
same for all disturbances within that region, we indirectlyobtain optimal opera-
tion, without having to reoptimize for new setpoints.

A.3 The process

We consider a waste incineration plant with two production lines. The process
flowsheet for one line is shown in Figure A.1. It is assumed that the lines are
designed and operated symmetrically, such that it is sufficient to consider one line.

Cool water is flowing from the district heating network (DHN)and distributed
equally onto the two production lines where is heated in the heat exchangers (HX)
before it is returned to the network. Before the cold stream is split between the two
plant lines, a bypass is installed to adjust the amount of water flowing through the
heat exchangers.

In the two lines on the primary side, liquid water is heated inthe furnaces to
the desired temperature and transfers the heat to the secondary stream in the heat
exchangers. The plant is equipped with an additional cooler, which is used when
the DHN does not require all the produced heat. To prevent cooling down the
plant, the heat exchangers can be bypassed on the primary side, too.
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Table A.1: Measurements

Variable Description

y1 Return temperature to furnace
y2 Primary side heat exchanger exit temperature
y3 Secondary side heat exchanger exit temperature
y4 Cooler exit temperature (liquid)
y5 Secondary side return temperature (to DHN)
y6 Primary side flow rate

Table A.2: Inputs

Variable Description

u1 Bypass valve opening
u2 Cooler valve opening
u3 Primary side heat exchanger valve opening
u4 Secondary side heat echanger valve opening
u5 Secondary side bypass valve opening
u6 Primary side flow pump duty
u7 Cooling fan duty
u8 Secondary side flow pump duty

In this study, the plant operator is interested in operatingthe plant to provide
16 MW per line, while minimizing energy consumption for pumps and fans and
still satisfying temperature and flow constraints. The available measurements and
inputs are listed in Table A.1 and A.2.

The two lines are operated symmetrically and are subjected to operational con-
straints: The furnace entrance temperature is given asy1 = (126±1)◦C, and should
not be violated to avoid condensing of fume gasses and boiling in the pipes. The
primary side flow rate isy6 = 250 t/h, and the primary side heat exchanger exit
temperaturey2 must not exceed 126◦C. In addition, the return temperature to the
district heating networky5 must be in the interval from 90◦C-150◦C. The con-
straints are summarized in Table A.3.
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Table A.3: Operational Constaints

Variable Constraint Description

y1 y1 = 126±1◦C Furnace return temperature
y2 y2 ≤ 126◦C Heat exchanger exit temperature
y5 90≤ y5 ≤ 150 Return temperature to DHN
y6 y6 = 250 t/h Primary side flow rate

A.4 Steady state plant model

The main modelling assumptions are: Symmetric lines, non-compressible fluids,
no pressure drop in heat exchanger and pipes, no heat losses and ideal counter
current heat exchangers. We give an overview over the most important aspects of
the model. A more thorough description of the model and all its parameters and
values is given in Smedsrud [2008].

A.4.1 Heat exchangers

The heat exchangers are modelled based on the logarithmic mean temperature dif-
ference. However, to make the numerical simulations more robust, the equations
are transformed such that we obtain a linear relationship between the input and
output temperatures [Skogestad, 2009]. The steady state transfer function from
the inlet temperatures to the outlet temperatures is

To = DT i, (A.1)

with

T i =

[
T in

hot
T in

cold

]

, and To =

[
Tout

hot
Tout

cold

]

(A.2)

as the vectors of inlet and outlet temperatures, respectively, and the dimensionless
gain matrix

D =

[ γ(1−β)
γ−β

β(γ−1)
γ−β

γ−1
γ−β

1−β
γ−β

]

. (A.3)

Using the mass flow ratesw and the specific heat capacitiescp, the parameter
β is defined as the ratio between cold and hot heat capacity flow rates,

β = wccc
p/whch

p. (A.4)

Further we define
γ = exp(−α), (A.5)



188 Optimal operation of a waste incineration plant for district heating

Table A.4: Parameter values for heat transferh

Unit a1(K2/(W2m2) a2(K/(Wm2) a3(/1(m2) a4(W/(m2K)

hHX 4·10−4 -0.15 21.92 7615.8
hCool 0.42 -20.44 432.3 666.09

with α as
α =UA

[

1/(whch
p)−1/(wccc

p)
]

. (A.6)

Here,U = hhhc/(hh + hc) is the overall heat transfer coefficient andA is the
total heat transfer area. The variableshc andhh are assumed equal, and their flow
dependency in heat exchanger and cooler is found from fittingthe steady state
model to the dynamic model used to test the results,

hunit = a1(w
c)3+a2(w

c)2+a3wc+a4, (A.7)

where the subscriptunit stands for either the heat exchanger (HX) or the cooler
(Cool). The parameter values are listed in Table A.4.

The matrixD becomes singular whenβ = 1 (parallel temperature profiles),
which is the case for some operating conditions. In order be able to simulate also
cases where 1−δmax< β < 1+δmax for smallδ , we define the number of transfer
units isη :

η =UA/(wccc
p). (A.8)

We expand the exponential term in (A.5) [Hertzberg, 2007] and define

S=
∞

∑
i=1

(−ηδ )i/(i +1)!. (A.9)

The seriesS is truncated afteri = 5. Using (A.9), we writeγ = −ηδ (1−S)+1,
and for 1−δmax< β < 1+δmax we use

D =

[ γ
1+η(1+S)

ηβ(1+S)
1+η(1+S)

η(1+S
1+η(1+S)

1
1+η(1+S)

]

(A.10)

instead of (A.3).

A.4.2 Pump, fan, valve and mixer modelling

The fan dutyP is calculated by

P=
1
η

[
w3

2ρ2

(
1

A2
2

− 1

A2
1

)

+
w∆p

ρ

]

, (A.11)
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whereη , w ρ , ∆p are the efficiency, flow rate, density and pressure difference,
respectively, andA1, A2 denote cross sectional areas of the pipes before and after
the fan, respectively.

Assuming equal pipe diameters before and after the pump and no elevation
difference, the pump pressure outlet is calculated by

∆p= (ρPη)/w. (A.12)

The valves are modelled by

w= Kv

√

(ρo/ρ)∆p, (A.13)

with Kv being constant on the primary side, and being a function of the valve
opening in the secondary side, andρ0 is a reference density. The mixer equations
are derived from the mass and energy balances:

wtot = ∑
i

wi , (A.14)

Tout = ∑
i

(wi/wtot)Ti (A.15)

A.5 Optimization

The optimization objective is to minimize the total work forthe pumps and fans,

min J = ∑w= u6+u7+u8, (A.16)

subject to the model equations and the operating constraints from Section A.3.
To obtain a map of the operating regions, the disturbance space is discretized

in two disturbance variables, namely flow and temperature coming from the dis-
trict heating network. The temperature grid ranges from 65◦C to 90◦C and has a
resolution of 0.1◦C. The flow disturbance from the district heating network ranges
from 500 t/h to 900 t/h, and has a resolution of 1.6 t/h. The model is optimized for
each of these grid points. Evaluating optimal operation forall grid points yields
four regions, defined by active constraints. These regions are shown in Figure A.2.
In Table A.5 all inputs are given with the optimal values for each region. The “x”
in the table indicate that the corresponding variable does not assume constant value
throughout the region. In most cases when an input assumes a constant value, it is
at a constraint, i.e. 0% or 100%.

Table A.6 shows the optimal output values. The furnace return temperature,y1,
and the primary side flow rate,y6, are always constant because they are operational
constraints (see Section A.3). Otherwise, only the primaryside heat exchanger and
cooler temperaturesy2 andy4 reach the constraint of 126◦C in Regionδ . All other
measurements are unconstrained and varying in the whole region.
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Figure A.2: Operating regions of the waste incineration plant

Table A.5: Optimal input values (active constraints in bold)

Region u1 u2 u3 u4 u5 u6 u7 u8
a

[%] [%] [%] [%] [%] [%] [%] [%]

α 92.6 0 100 x 100 6.78 0 x
β 92.6 0 100 100 x 6.78 0 x
γ x 0 100 100 0 x 0 x
δ 0 x 100 100 0 x x x

au8 is not actually an input as it is used to set the disturbance flow rate
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Table A.6: Optimal output values (active constraints in bold)

Region y1 y2 y3 y4 y5 y6
◦C ◦C ◦C ◦C ◦C t/h

α 126 x x x x 250
β 126 x x x x 250
γ 126 x x x x 250
δ 126 126 x 126 x 250

A.6 Control structure design

In each region, the degrees of freedom (DOF) available for optimizationN f ree
opt are

determined according to Skogestad and Postlethwaite [2005],

N f ree
opt = Nm−N0−Nactive, (A.17)

whereNm is the number of control degrees of freedom,N0 is the degrees of freedom
without steady state effect, andNactive is the number of active constraints.

In our case, we haveNm = 14 control degrees of freedom,N0 = 0 degrees of
freedom without steady state effect, and the number of active constraints,Nactive,
varies in the different regions.

If the number of DOF is zero, all inputs are used to satisfy theconstraints, and
no self-optimizing variable is required, as the optimum is at a constraint. When the
number of DOF is larger than zero we have a number of inputs which we do not
need to satisfy a constraint, and we may use these inputs to minimize the operating
cost. This is done by controlling a variable, which has an optimally invariant value,
a self-optimizing control variable.

In Tables A.5 and A.6 the active input and output constraintsare shown in
bold face for each region. All inputs exceptu5 are present in both lines, so when
calculating the DOF free for optimization, this has to be taken into account when
designing the control structure.

• In regionα ,where the bypassu5 is fully open, we have

N f ree,α
opt = 14 −2

︸︷︷︸

u2

−2
︸︷︷︸

u3

−1
︸︷︷︸

u5

−2
︸︷︷︸

u7

−1
︸︷︷︸

u8

−2
︸︷︷︸

y1

−2
︸︷︷︸

y6

= 2.

• In regionβ ,whereu4 is fully open, we have

N f ree,β
opt = 14 −2

︸︷︷︸

u2

−2
︸︷︷︸

u3

−2
︸︷︷︸

u4

−2
︸︷︷︸

u7

−1
︸︷︷︸

u8

−2
︸︷︷︸

y1

−2
︸︷︷︸

y6

= 1.
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• In regionγ ,whereu4 is fully open and the bypassu5 is fully closed, we have

N f ree,γ
opt = 14 −2

︸︷︷︸

u2

−2
︸︷︷︸

u3

−2
︸︷︷︸

u4

−1
︸︷︷︸

u5

−2
︸︷︷︸

u7

−1
︸︷︷︸

u8

−2
︸︷︷︸

y1

−2
︸︷︷︸

y6

= 0.

• In regionδ whereu1 = u5 = 0 and whereu3 andu4 are fully open, we have

N f ree,δ
opt = 14 −2

︸︷︷︸

u1

−2
︸︷︷︸

u3

−2
︸︷︷︸

u4

−1
︸︷︷︸

u5

−1
︸︷︷︸

u8

−2
︸︷︷︸

y1

−2
︸︷︷︸

y4

−2
︸︷︷︸

y6

= 0.

Thus, in regionα andβ , we have unconstrained degrees of freedom for which we
have to find self-optimizing control variables, while in regionsγ andδ all degrees
of freedom are used to satisfy the active constraints.

A.6.1 Regionα and β

In regionα , the inputsu1,u4 andu6 are unconstrained, while we have two active
constraints,y1 = 126◦C andy6 = 250 t/h. In regionβ , the inputsu1,u5 andu6 are
unconstrained, while we have two active constraints,y1 = 126◦C andy6 = 250 t/h.

In both, regions, the inputu1 is unconstrained. Since its optimal value is con-
stant, we use it as a self-optimizing controlled variable. The remaining two DOFs
have to be used to satisfy the constraints on the furnace return temperaturey1 and
the flow ratey6.

One possibility would be to control the furnace return temperature,y1, using
the secondary side heat exchanger valveu4 in regionα (andu5 in regionβ ), while
keeping the bypass valveu1 at a constant opening. However, this approach is not
desirable from a dynamic point of view, because of the long time lag between the
secondary side valves and the furnace inlet temperaturey1.

Therefore, in regionα it is chosen to employ an input resetting structure, which
utilizes the direct effect of bypassu1 to control the furnace inlet temperaturey1,
while the secondary side heat exchanger valveu4 is used to reset the primary side
bypass valveu1 to the optimal value (Figure A.3).

In regionβ the bypass valve assumes the same constant value as in regionα
and is used as a self-optimizing variable as well. However, here the secondary side
heat exchanger valveu4 is in saturation, whileu5 may be use instead to reset the
primary side bypass valveu1 to its optimal value (Figure A.4).

A.6.2 Regionγ

Regionγ does not have an unconstrained degree of freedom for optimization. This
means that the system is operated optimally when all the active constraints are
satisfied. After usingu6 to control the flow rate in the primary side, the bypass
valveu1 is used to control the furnace return temperaturey1, Figure A.5.
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Figure A.5: Control structure for regionγ

A.6.3 Regionδ

In regionδ , the bypassesu1 andu5 are closed, while the heat exchanger valvesu3

andu4 are fully opened. After usingu6 to set the primary flow rate, the region has
two unconstrained inputs, the cooler valveu2 and the cooling fan dutyu7; they are
needed to control the active constraints, the furnace return temperaturey1 and the
heat exchanger exit temperaturey2 to their setpoints at 126◦C. This means that all
three temperatures becomey1 = y2 = y4 = 126◦C. Because of the energy balance,
the plant optimum is specified by controlling any two temperatures of this set to
126◦C.

The relatively large elements in the steady state relative gain array [Skogestad
and Postlethwaite, 2005] fromu = [u2, u7]

T to y = [y1, y2, y4]
T ,

RGA=





1.1919 −0.3854
0.1182 0.0758
−0.3101 1.3096



 , (A.18)

suggest pairingu2 with y1 and u7 with y4. However this leads to a very poor
dynamic performance, because in this pairingu2 has very little initial gain ony1

due to the equality of the exit temperatures of heat exchanger and cooler.
From the energy balance it is clear that the heat has either tobe removed in

the heat exchanger or the cooler. Therefore opening the cooler valveu2 alone will
not have the desired effect ony1. If the furnace return temperaturey1 becomes
too hot and the cooler valveu2 opens, it acts as a bypass andy1 increases even
further. However, as it closes, more water goes through the main heat exchanger,
and the temperaturey1 increases as well. To effectively reduce the furnace return
temperaturey1, it has to be controlled by the cooler dutyu7.
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Figure A.6: Control structure for regionδ

A set of pairings which gives good dynamic and steady state performance, is
to use the cooling fan dutyu7 to control the furnace return temperaturey1 and
to control the cooler exit temperaturey4 manipulating the cooler valveu2 (Figure
A.6).

This pairing ensures that the fan dutyu7 increases before the disturbance com-
ing from the district heating network affects the cooler exit temperaturey4, and
avoids the bypass effect when the cooler valveu2 starts opening.

A.7 Dynamic model and simulations

To test the control structure and simulate the process, the model described in A.4
is extended to a dynamic model, where the heat exchangers aremodelled as ideal
tanks, Figure A.7. A first order transfer function with a timeconstant ofτ = 1.5s
is used to add dynamics to the pumps, valves and fans. The mixers and splitters
remain as modelled for the steady state case.

Each heat exchanger is modelled by 10 equal heat exchanger sections, with the
governing equations [Mathisen, 1994]:

dTi
h

dt
=

(

T i+1
h −T i

h−
hhA

whcp,hN
∆T i

h

)
whN
ρhVh

(A.19)

T i
w

dt
=

(
hh∆T i

h −hc∆T i
c

) A
ρwcp,wVw

(A.20)

dTi
c

dt
=

(

T i+1
c −T i

c −
hcA

wccp,cN
∆T i

c

)
wcN
ρcVc

(A.21)

In the above equationsT denotes the temperature,h the heat transfer coefficient,
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Figure A.7: Heat exchanger section

A the total heat transfer area,w the mass flow rate,cp the heat capacity flow rate,
N the number of sections,ρ the fluid density andV the volume. The superfixi
denotes the compartment, while the sufficesh, c, andwdenote the hot side, the cold
side, and the wall element, respectively. The terms∆T i

h and∆T i
c denote the signed

difference between the wall and the hot and cold side of section i, respectively.
Modelling the heat exchangers discrete instead of continuous moves the re-

gions in Figure A.2 slightly up, approximately 1◦C, but does not affect the struc-
ture of the optimal solution. Using the dynamic model and thecontrol structures
developed above, the process was simulated for various scenarios in the different
regions and for disturbances across region boundaries.

A.7.1 Control within regions

As an example, the control performance in regionα andδ is presented here. The
performance in the remaining regions,β andγ , is similar.

Regionα

In regionα , the control structure is well capable of keeping the variation in the fur-
nace return temperature close to its desired value, while the self-optimizing control
variableu1 returns to its optimal value (Figure A.8). This reflects the control pri-
orities: first, the active constraints are satisfied (y1 close to 126), and second the
system readjusts to optimal operation.

Regionα andβ have in common, that they have one unconstrained degree of
freedom. After all active constraints have been satisfied, this degree of freedom is
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Figure A.9: Control performance in regionδ . d1,d2: disturbances,y1: active
constraint,u2: cooler valve,y5: temperature to DHN,u7: fan duty

used to minimize the pump work, which is minimized whenu1 is at 94.8%. The
value differs a bit from the steady state value, because of the differences between
the dynamic and the steady state value.

Regionδ

In Figure A.9 the control performance for a disturbance in region δ is shown. It
can be seen that the combination of cooling fan dutyu7 and cooler valveu2 ensures
deviation of less than 0.3◦Cin y1, even though the disturbances entering the plant
are large.

In regionsγ andδ , all inputs are needed to guarantee that the constraints are
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Table A.7: Switching conditions

Transition Condition 1 Condition 2 Condition 3

α → β u4 = 100% t < ts Region =α
β → γ u5 = 0.00% t < ts Region =β
γ → δ u1 = 0.00% t < ts Region =γ
δ → γ u7 = 0.00% t < ts Region =δ
γ → β u1 ≤ 94.8% t < ts Region =γ
β → α u5 = 100% t < ts Region =β

satisfied. Therefore, therefore, optimal operation is completely specified by con-
trolling the active constraints.

A.7.2 Switching between regions

When the change in the disturbances becomes so large that a region boundary is
crossed, it is necessary to detect this event and to switch the control structure.
For the switching strategy here it is assumed that the systemcannot jump over
a region, i. e. the disturbances move the system gradually into the new region.
Then, the switching logic can be based on monitoring the unconstrained and self-
optimizing variables of the current and neighbouring regions. For example, in
region α variableu4 is unconstrained. If a disturbance enters such thatu4 goes
into saturation, the unconstrained variable of regionβ is released and used for
control. The same strategy is used for switching in the otherregions. Switching
from γ into the unconstrained regionβ is done when the self-optimizing variable
of regionβ , u1, reaches its optimal set-point. This is possible since in region γ the
valveu1 assumes a strictly smaller value than in regionβ .

To avoid chattering, the regions are switched when the corresponding variable
has been in saturation or crossed its value for more thants = 2.5 minutes. Using
this strategy we ensure that the control structure of one region is active long enough
to realize its effects before switching to the next control system. The conditions
for switching are listed in the Table A.7.

As an example, we consider a temperature rise in the districtheating network,
moving the system from regionβ to γ , Figure A.10. The variableu1 is constant
until u5 goes into saturation. Thenu1 leaves the optimal point of regionα to
control the furnace inlet temperaturey1.
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Figure A.10: Region switching fromβ to γ (dotted line shows switching instant)
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A.8 Discussion

This case study demonstrates the nicely the concept and properties of self-optimizing
control. First, the active constraints are controlled, andif there are remaining de-
grees of freedom, they are used to control self-optimizing variables. The advantage
is that we have a very simple and easy to implement control structure in every re-
gion. Moreover, our procedure leads to a good understandingof the operating
conditions and constraints. This understanding can be beneficial for operation of
the plant. In addition, it is easy to communicate to operators, as the control struc-
tures for each region are simple and easy to understand and maintain.

In regionβ the valveu5 was used to control the valveu1. Since there are two
lines (each having one valveu1), we are lacking one degree of freedom. The above
analysis was made based on the unrealistic assumption of twoexactly symmetrical
lines. This will not be the case in practice, therefore, a more practical solution
could be to controlc = 1

2(u
1
1 + u2

1) to 94.8%, and lettingu1 control the furnace
return temperaturey1. This would ensure the correct furnace return temperature,
while in lettingu5 affect both valves. Alternatively, one could use the split between
the lines as an additional degree of freedom to control oneu1 to its optimal setpoint.

The challenge in handling several control structures is clearly tracking the op-
erating regions and switching correctly. In this case studyit has been found that
monitoring the controlled variables of the four regions yields good results. The
self-optimizing approach has been found to be a simple alternative to methods
like real-time optimization or model predictive control, where the constraints are
handled implicitly, such that where the operating regions do not become visible.
Considering the simplicity of the control structure and theexcellent control perfor-
mance, it seems that the effort of maintaining and installing an online optimizing
control system may not be able to improve performance significantly. However
this would have to be investigated in a separate study.

A.9 Conclusion

We have presented a case study of a waste incineration plant which is operated
close to optimality using very simple control configurations and simple switching
rules for changing between them. The applied procedure reveals the different op-
eration regions obtained from steady state optimization, and yields an intuitive and
understandable control structure, while at the same time giving optimal operation.
The switching rules are based on monitoring the constrainedand self-optimizing
variables and information about the system dynamics. For this process, the self-
optimizing control approach seems to be an attractive alternative to real-time opti-
mization.
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