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Abstract: From an optimization point of view, the gradient is the key variable which gives
information about the optimality of a process. In this paper we present how the gradient is
related to the loss from optimality, and show how determining a good set of controlled variables
can be considered as weighted approximation of the gradient. We show that even if there are
setpoint changes for the controlled variables, this can still be considered as approximating the

gradient.
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1. INTRODUCTION

The overall objective of process operation is to minimize
the cost J (or equivalently to maximize the profit P = —J)
subject to given constraints. However, when using control,
the objective is to keep selected controlled variables c at
their optimal setpoints,

C(y> = Cs. (1)
With respect to these two goals, Morari et al. [1980] stated

“...our main objective is to translate the eco-
nomic objectives into process control objec-
tives. In other words we want to find a function
c of the process variables .. .] which when held
constant leads automatically to the optimal
adjustment of the manipulated variables, and
with it, the optimal operating conditions.”

However, they do not give a systematic method for finding
the controlled variables, nor do they mention that for the
unconstrained case, the obvious approach to get consis-
tency between economic and process control objectives is
to select the gradient as the controlled variable. That is,
to select

c = Ju(u,d), (2)
and keep the setpoint constant at zero, c; = 0. Here u are
the unconstrained degrees of freedom, d are unmeasured
disturbances, and Jy(u,d) = 9J(u,d)/du is the gradient.
Irrespective of the disturbance, the optimal value of Jy
is zero, (Figure 1). This was proposed by Halvorsen and
Skogestad [1997a], who write that the ideal controlled
variable would be

¢ = c1Ju +co, (3)

where cg and c¢; are constants. The idea has also been pro-
posed by Halvorsen and Skogestad [1997b, 1999], Bonvin
et al. [2001], Cao [2003, 2005], Srinivasan et al. [2008], and
intuitively it seems to be an excellent idea. The elements
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of the gradient change sign when moving from one side of
the optimum to another side (Figure 2), thus, it is well
suited for feedback control.

However, in practice, we rarely have a measurement of
the gradient and it is often not clearly defined what it
means to control the gradient to zero. The gradient is
a vector, and in many practical cases is not possible to
control all elements exactly to zero. What should we do
in these cases? A first attempt to answer this question
will be to find a control structure, which minimizes the
norm of the gradient. This is a good start, however, it is
important to keep in mind that our ultimate goal is to
minimize the cost J, so this original criterion has to be
applied to evaluate the possible control structures.

The starting point is to write the controlled variables as a
function of measurements y,

c = Hy, (4)
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which is controlled to zero, c = Hy = 0. Since the gradient
is optimally at zero, we can consider ¢ = Hy as an ap-
proximation of the gradient. If the approximation is exact,
Hy = J, then we will have optimal operation whenever
c = 0, provided convexity. If it is not possible to control
the gradient (because of e.g. unmeasured disturbances,
noise and missing measurements), there will be some loss
associated to the chosen control structure. To evaluate
the performance of the chosen control policy, we use the
original cost function and define the loss from optimality:

L= J(u,d) — J(u’* d) (5)

Considering the problem of selecting the best control
structures, there are two important questions, which we
would like to address in this paper:

Q1. Does a H which minimizes ||J,(Hy = 0)||, also min-
imize L(Hy = 0)?
Q2. If not, is the difference significant?

In terms of Q1. we show in Theorem 1 that minimizing the
norm of the gradient is not quite the same as minimizing
the loss L.

In terms of Q2. we show that it is important in the case,
when we have structural constraints on H. That is, we
have control structures involving different measurements,

Another contribution of this paper is an extremely simple
derivation of the null space method [Alstad and Skogestad,
2007].

Furthermore, we show we show how setpoint changes of
the controlled variables can be seen in the context of
minimizing the loss or approximating the gradient.

This paper is structured such that the next section
presents our main result, a derivation of the expression for
the economic loss based on the gradient. In Section 3 we
describe how this interpretation is connected to existing
methods, and its importance. Section 4 discusses how the
case of varying setpoints can be treated in this framework.
After presenting a distillation case study in Section 5, we
close the paper with a discussion and conclusions.

2. DERIVATION OF THE LOSS EXPRESSION USING
THE GRADIENT

2.1 Preliminaries

Consider the feedback system in Figure 3, where the vari-
ables ¢ and ¢, denote the vector valued controlled variable
and its setpoint, and where the variables n¥, n® denote the
noise and the steady state control error, respectively. The
noisy measurements are y,, = y + nY, and we assume
that the controllers have integral action so that there is no
steady state error, n® = 0; then at steady state c; = c+n,
where n = Hn?.

After all active constraints are satisfied (controlled), the
remaining unconstrained problem can be formulated as

m&n J(u,d) (6)

which in the neighbourhood of the optimal point can be
approximated by a quadratic problem

Ll ry [ Jun Jua | |1
mdnﬁ[u d ]|:Jdu Jdd:| {d] 0

Fig. 3. Control structure (with integral action, c; = c+n
at steady state, n® = 0)

where we assume that J,, > 0. For small deviations
around the nominal optimum, the plant can be described
by the linear model

~ u
y:Gyu+ng=GY[d], 8)

where GY and G are the steady state gain matrices from
u and d to the outputs y. Our goal is to find controlled
variables of the form

c = Hy,,, (9)
which, when controlled to zero, yield optimal or near
optimal operation.

2.2 Approximating the gradient

The first order accurate expression for gradient of (6) is

Ja(u,d) = [Juu Jua ] B] =Juuu+Juad  (10)

Assuming that (7) matches the real plant, the necessary
condition for optimality is

Ja(u,d) = [Juu Jua] {3} =0. (11)

As mentioned above, the ideal controlled variable is the
gradient, ¢ = Jy(u,d). When it is known exactly, using
it as a controlled variable is the best choice and works
fine. In practice, however, the gradient has to be some-
how estimated using measurement information. Then the
controlled variable becomes

c=Ju. (12)
Obtaining the gradient estimate Ju can be done in several
ways, such as e.g. black box modelling or estimating the
gradient using statistical methods. In the case of zero-
mean noise, the effects may cancel out, but if there
is a constant non-zero offset, the noise can deteriorate
performance severely, thus we have to include the noise
in the analysis, too.

A first approach would be to find a controlled variable
¢ = Hy,, which minimizes the worst case gradient norm,
e.g. to select H as

H= i w—Hynll, ) -
arg (mﬁnmgXIJ y ||2>

In the non-ideal case, when Hy,, # Jy, controlling
Hy,, to zero will result in a gradient which has nonzero
elements, and therefore has nonzero norm,

HJu(HYm :O)HZ #0 (14)
The norm of the gradient may seem a good criterion to
evaluate suboptimality, however it does not truly reflect

(13)
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Fig. 4. Loss L imposed by non-optimal operation

the performance in terms of the original cost function. To
quantify the suboptimality, we consider the loss L, which
is defined as the difference between the actual cost and the
optimal cost for a given disturbance d,

L =J(u,d) — J(upp, d). (15)

Note that we are considering the loss with respect to
the truly optimal instead of the cost. The loss has the
properties of a weighted norm.

Theorem 1. The local economic loss can be expressed to
first order in terms of the current gradient value as
2
Joa? Ty
2

L:%‘ (16)

Proof From Halvorsen et al. [2003] it is known that the
loss can be written as

1
L= i(u —uPHT T (u — uh). (17)

Solving J, = 0 (11) for u??* = —J ! Juad and inserting
into (17) yields (note that Jyuy is symmetric):
1

L= 5(u — I 30ad) T T (u — I T ad)
1
= 5" = d" T T0) Tuu(a = Ty Juad)
1 T T T T —1 (18)
= 5(“ Juu -d Jud)Juu(Juuu - JU-dd)
1 1 2
BN e Y ‘ Iz, o
2 u uu 2 uu 2

At the optimum, uey, the gradient J, = 0, and the loss
L = 0. Around the optimum J,, # 0, the loss L is equal to
the norm the weighted gradient, where the weight factor
. ox=1/2 o
is Juu’~, Figure 4,
Remark 1. (Effect of constraints). The above analysis is
locally valid for a system where all active constraints
are known and have been satisfied, g(u,d) = 0. If an
active constraint is not satisfied exactly, g(u,d) = ¢, then
the effect on the objective function will be given by the
corresponding Lagrangian multiplier [Nocedal and Wright,
2006]:

A= 0J/0e (19)
A perturbation of the constraints € has therefore a first
order effect on the cost function, while from (16), a small
change in J, has a second order effect on the cost. From
an economic point of view, tight control of the active

constraints will generally be more important than tight
control of the unconstrained variable c.

3. MINIMIZING THE GRADIENT VS. MINIMIZING
THE LOSS

Theorem 1 shows that a controlled variable which mini-
mizes || Jy||,, does not necessarily minimize the loss L. One

—1/2 . o
case, where J uu/ has no effect is, when it is orthogonal,

—1/2 —1/27T .
Juu' " =Juu’” , or scalar. In the next sections, we exam-
ine in which further cases an H which minimizes ||Jy|, is
the same that minimizes the loss L.

3.1 Enough measurements, no noise, full H: same H

If it is possible to have zero loss (no noise and sufficient
measurements), optimal operation corresponds to J,, = 0.

Then, qull/ % has no effect. Assume that y contains all
available information, then we require that

Ju = Hy. (20)
Theorem 2. (Null space method, no noise). Given a linear
model as in (8), with a sufficient number of independent
measurements (ny > n, + ng) and no noise (n¥ = 0),
selecting

H=[Juu Jud] [Gy} o (21)

and controlling Hy = 0 gives zero loss from optimal
operation. Here, GY is the gain matrix of any subset of
N, + ng measurements.

Proof The gradient from (10) is:
Ju:[Juu Jud] |:3:| (22)

We want to eliminate the variables [u, d]’ using the
available measurements,

~y | U
y=GY {d} . (23)
Solving for [uT, d™]7T,
71

[:ﬂ = [Gy} Y (24)

and inserting into (22) gives:

L 1-1
— y

Jo=[Juu Jua] [G¥] Ty 25)

Controlling ¢ = Hy = 0 results in zero loss. O

e This is a new derivation of the null space method
reported in [Alstad and Skogestad, 2007]. It shows
that the optimal controlled variable found by self-
optimizing control is identical to the gradient,

c=J, =Hy. (26)

3.2 Enough measurements, noise, full H: same H

The case of finding a controlled variable combination,
which minimimizes the loss in presence of sufficient (noisy)
measurements and a full H matrix is addressed in the
“exact local method” Alstad et al. [2009]. First, we scale
the disturbances and the noise, such that d = Wgd’ and
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n¥ = WyynY' where H {d’T nyT'] H < 1 and W4 and
2

W,y are diagonal scaling matrices of appropriate sizes.
Then we:

(1) Express L as a function of H, d and n¥ (assuming
c=H(y+nY)=0)

(2) Then find an expression for the worst-case loss L(H)

(worst-case w.r.t. d and nY); which is the maximum

singular value a(M). Here

M =JY2(HGY) 'HY (27)
and
Y = [FWq Wy, (28)
where ot
yO
F = 2
ad (29)

is the optimal measurement sensitivity matrix, see
Halvorsen et al. [2003]. (Kariwala et al. [2008] have
shown that the average loss is given by ||M||, where
|||| » denotes the Frobenius norm)

Find a convex problem formulation for finding H (see
Alstad et al. [2009]).

(3)

The convex problem for finding an H which minimizes the
average and worst case loss for a given set of disturbances
is [Alstad et al., 2009]:

m&n”H[FWd Worl|| ¢
subject to HGY = Q,

where Q is any nonsingular n, X n, matrix, and F as
defined in (29). Here, t00, Jyy is not needed for fining the
best measurement combination. However, if we want to
know the actual worst case loss, we need Jyy in (27).

(30)

e In the case of no structural constraints on H, it is
found that Juy is not needed for finding the mini-
mum. That is, a controlled variable which minimizes

2
—1/2
uu Jll

2

||Jul|, minimizes also the loss L = § ‘

3.8 Structural constraints on H: not the same H

In the above cases, we used all measurements y to generate
the controlled variables as linear combinations of all mea-
surements. In practice however, there are often structural
constraints on the controlled variables. Examples for struc-
tural constraints include controlling single measurements,
or using only two measurements from the rectifier section
and two measurements from the stripping section of a
distillation column. When we have to decide between two
or more controlled structures, the norm of the gradient
(if it is nonzero) does no longer give accurate information
about what controlled variable is best. To be able to make
a good decision in these cases, we need to consider norm

2
of the weighted gradient L = % ) ;&/QJU ,
Consider a process with
244 222 10
Juu = {222 202} and Jua = [10] (31)

and assume that we have the choice between the two
controlled variables

1 0275 10 5  —4.9130 10
Cl_[ms 2 }“Jr[m}dand”_[zls% 2 ]‘”{0
(32)

Prices p

Calculation

Cs

d

Fig. 5. Feedback control structure with setpoint calcula-
tion

c

n
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For a disturbance d = 1, the corresponding gradients are
Ju(cr =0)=1[11]" and Ju(co =0)=[—11]". (33)
The norm of the gradient is in both cases || Ju(c1 = 0)||, =

|[Ju(cz = 0)||, = /2. This indicates that the two con-
trolled variables give equivalent performance. However, if
we consider the loss imposed by the two different control
structures, we have that

1 _ 2
L{er) =5 ‘ Jai P Ju(en)|| =025 (34)
2
and
I 2
L(e2) = 5 ||[Juu' Julez)|| = 0.111.25 (35)
2

e When we want to compare sets of controlled variables
with each other, we need to examine the loss, as the
gradient does not give sufficient information.

e When searching for the best linear combination for a
given set of measurements, it is sufficient to consider
the gradient.

4. VARYING SETPOINTS FOR THE CONTROLLED
VARIABLES

Many processes are operated such that the setpoints of
the controlled variables are changed, when for example
product prices p and specifications change, Figure 5. To
handle this in the framework above, we consider the
reason for the setpoint change as a measured disturbance.
The relationship between the measurements y and the

controlled variables is

c=Hy, (36)
and the relationship between the setpoint change and the
prices p is

Cset = Hsetp~ (37)
We define J, = ¢ — Cget
Ju:Hnysetp: [H _Hset] [g] (38)
= Haugyaug
The gain matrices are augmented according to
Yy
o= o™ | @ga= [0 T ] @)
. 0n,,><n“,, aug,d Oan”d I”pxnp
and the scaling matrices according to
Wd Ond><n
W4 qug = P ) 40
d.aug [0 w} (40)
Wn On Xn
Whn aug = youe . 41
n,aug |:0np><ny Wnpnpx,np :| ( )

}d' Here, W, and Wy, are diagonal matrices with the
expected price variations and uncertainties, respectively.
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Fig. 6. Distillation column

If the prices are known exactly, Wpyp qug = 0. The sensi-
tivity matrix F,,, may be found by reoptimization or by
evaluating Fouy = GY, 1 — GY, JuuJud aug, [Alstad and
Skogestad, 2007]. After the problem has been formulated,
the optimal Hg,g4, which minimizes the loss is found by
solving
min ||Haug [Faugwd,aug Wn,aug] ‘ |F
Hous (42)
subject to Hg,uyGY = Q
De-partitioning Hyuy = [H — Hg], the controlled
variables and the setpoint updates are

Cc= Hy and Cser = Hsetp~
5. DISTILLATION CASE STUDY
5.1 Problem description and setup

A binary distillation column is used to demonstrate the
results. The column model is taken from Skogestad [1997].
It is controlled in the LV configuration and has 41 stages,
Figure 6. We assume that the temperatures on stage 9,
16, 24, and 33 are measured and that they can be used for
control, i.e. y = [Ty, Tig, Toa, T33)T. The temperatures are
calculated as a linear function of the liquid composition for
the respective stages 1,

T, = 10(1 — x;) (43)
This corresponds to a pure product boiling point difference
of 10°C. In order to be able to sell the top product, a purity
of 99% is required for the distillate D. This is considered
an active constraint, and is controlled to its setpoint using
the liquid reflux L. The remaining degree of freedom u
(the boilup V) can be used to maximize the profit which
is the same as minimizing the difference between the costs
for the feed and evaporation, and the profit from selling
the purified products:

J=—(ppD +ppB —pvV —prF) (44)
Assuming the price for the feed is equal to the price of
the bottom product, pr = pp, and introducing the overall
mass balance, the cost function can be simplified to

J=py <prDD + V) = pv(@D + V).

pv

The only parameter which affects the minimum is the
relative price difference of the feed and the distillate,
p = (pr — pp)/pv, We assume p’ = —64 currency units.

(45)

As disturbances, we consider the flow rate F', composition
z and liquid fraction ¢ of the feed. These disturbances are

Feed disturbance

s 10
S e [ —H]
o o} 200 400 600 800 1000 1200
time [min]
- Feed composition disturbance
$ 10
8 el A
S o . , .
[0} 200 400 600 800 1000 1200
time [min]
- Feed liquid fraction
S o]
s ?gt [ [—d]
o 200 400 600 800 1000 1200
time [min]
o Price change
s o]
3
5 ?ﬁf | —aj
o [0} 200 400 600 800 1000 1200

time [min]

Fig. 7. Disturbance trajectories

detectable through the measurement model in deviation
variables:

y=GYu+G)d (46)
In addition, we assume that the product prices change
and are known. We use the prices to update the setpoint
of ¢ The self-optimizing controlled variable is selected
as a linear combination of the four tray measurements.
The augmented gain matrices and the augmented optimal
sensitivity matrix are

1.71 —-8.14 —3.67 —1.50 0
3.22 —12.28 —11.09 —2.75 0
Glug = | 136 | GY,,,=| —436 —9.8L —144 0| (47)
0.20 —0.65 —1.45 —0.21 0
0.00 0.00  0.00 0.00 1
—2.63 —2.37 —0.49 —0.0055
—-1.90 —8.65 —0.84 —0.0103
Foug = | 0.02 —8.78 —0.64 —0.0044 (48)

0.01 —1.30 —0.09 —0.0007
0.00 0.00 0.00 1.0000

The weighting matrix Wy, 4,4 is chosen such that all
temperature measurements have an uncertainty of 0.5°C,
and the price uncertainty is zero. The expected variation
in the disturbances is captured in

W aug = diag([0.1, 0.1, 0.1, 6.4]),

which corresponds to 10% variation in every disturbance
variable. The corresponding second derivatives are

Juu =4.85

Jua = [-15.64, —3.68, —2.87, 0.02].
This gives a controlled variable combination ¢ = Hy with
H = [0.23, 0.69, —0.28, —0.04] (50)

and the setpoint is updated using cse; = Hyep’ with
H,.: = 0.0071. (51)
The first order loss from optimality estimate is calculated
according to L = ’ J;&/QJU
to Halvorsen et al. [2003] as

|

and equals 1.4869 currency units.

(49)

2
or alternatively according
2

2
J%I{IQ (HaugGZug)_lHaug [Faugwd,aug Wn,aug] ‘ ‘2 ) (52)

5.2 Sitmulations

We consider disturbances in the flow rate, AF = 10%, the
feed concentration, Az = 10%, the feed liquid fraction,
Aq = —10%, and the price, Ap’ = 10%. The disturbance
scenario is given in Figure 7, and the resulting profit is
plotted together with the inputs in Figure 8.
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Fig. 9. Controlled variables: Self-optimizing controlled
variable and top composition

In Figure 9, the controlled variables are given together
with their setpoints. The self-optimizing controlled vari-
able is nicely controlled back to the setpoint after a dis-
turbance enters the process. As long as the prices are
constant, the setpoint is zero. When the price ratio p’
changes, the setpoint is adapted to the new value. The
top composition is controlled well at its specification, as
can be noted from the plotting scale.

6. DISCUSSION AND CONCLUSIONS

We have given a first order approximation of the loss as
the weighted norm of the gradient, and we have shown
that if all measurements are used, the weighting is not
required. However, when selecting between different sets
of controlled variables, we need to consider the weighted
gradient, because neglecting the weighting can be seri-
ously misleading. The previously published “exact local
method” is basically indicating how close the norm of
the weighted gradient is to zero when a particular set of
controlled variables ¢ = Hy is used.

The key points are to weight the gradient when approxi-
mating it and to include noise in the analysis. Otherwise
we may approximate the gradient well while still suffering
from unnecessary economic loss. The controlled variables
obtained by this method have a robustness against mea-
surement noise. However, the underlying linear model and
the cost function parameters are assumed to be locally
exact, that is all the uncertainty is assumed to be taken
care of in the measurement noise and disturbances.

Our analysis is based on the assumption that the active
constraints do not to change. If the active constraints
change, it is necessary to adjust the control structure to

satisfy the new active set. However, if there are uncon-
strained degrees of freedom in the new active set, the above
analysis can be reapplied.

The second part of this paper deals with disturbances
which do not enter through the model. By considering
them as additional measurements, this can be formulated
in terms of minimizing the weighted gradient, and the
techniques from self-optimizing control can be used to
update the setpoints to ensure optimal operation for all
considered process and price disturbances
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