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Abstract: This paper reviews the role of self-optimizing control (SOC) and necessary conditions
of optimality tracking (NCO tracking). We argue that self-optimizing control is not an
alternative to real-time optimization (RTO), NCO tracking or model predictive control (MPC),
but is to be seen as complementary. In self-optimizing control we determine controlled variables
(CV), that keep the process close to the optimum when a disturbance enters the process. These
CVs are controlled at their setpoints using PID or model predictive controllers. Preferably,
the setpoints are kept constant, but they may also be adjusted using RTO or NCO tracking.
In any case, a good choice of CVs will reduce the frequency of setpoint changes by RTO or
NCO tracking. When selecting self-optimizing CVs, a set of disturbances has to be assumed, as
unexpected disturbances are not rejected in SOC. On the other hand, RTO and NCO tracking
adapt the inputs at given sample times without any assumptions on what disturbances occur.
It is only assumed that they occur on a slower time scale than the sampling. Disturbances with
high frequencies or which which do not lead to a steady state are not rejected optimally. By using
NCO tracking in the optimization layer and SOC in the control layer below, we demonstrate
that the advantages of both methods complement each other. This combination allows fast
optimal action for the expected disturbances, while other disturbances are compensated by
NCO tracking on a slower time scale.
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1. INTRODUCTION

In recent years there has been a plethora of contributions
on optimal operation in literature. Several approaches and
strategies have been independently of each other. Optimal
operation methods may be categorized by how the control
strategy is determined:

• Model used on-line (on-line optimization)
• Model used off-line
• Model not used at all

On-line optimization makes use of a model which is usually
updated using measurements and which is optimized on-
line in real-time to minimize a predefined cost function.
This is typically known as real-time optimization (RTO).

In the off-line approach, expensive online computations are
avoided, and optimal operation is achieved by designing a
“smart” control structure. This controlled variable (CV)
selection has the objective to transform the economic
objectives into control objectives (Morari et al. (1980)).
A process model is used to support decision making in
control structure design, but it will not be used for online
optimization. Self-optimizing control (Skogestad (2000))
belongs into this category.

A third strategy avoids using a process model at all, but
uses measurements in order to obtain gradient information
about the process. This information is used to update the
inputs directly in order to obtain optimal operation. NCO

tracking (François et al. (2005)) and extremum seeking
control (Krstic and Wang (2000)) represent this category.

This paper focuses on the two last categories, and is
structured as follows: In the next section we present
two methods for implementing optimal operation, NCO
tracking (François et al. (2005)) which does not rely on a
process model, and the null-space (Alstad and Skogestad
(2007)) as a representative of self-optimizing control (using
the model off-line). We discuss some properties of self-
optimizing control and NCO tracking, and their relation to
each other. Based on the results we propose to consider the
methods complementary and to use them together. NCO
tracking is used in the RTO layer, while self-optimizing
control is used in the lower, dynamic control layer. To
illustrate the presented ideas, we use a dynamic model
of a CSTR from Economou and Morari (1986) and apply
the described methods to it.

2. OPTIMAL OPERATION METHODS

In many cases, steady state operation accounts for the
largest part of the operating cost, and for these processes
significant economical improvements can be achieved by
operating the plant optimally at steady state. Therefore we
choose to focus on steady state optimization in this work.
We formulate the problem of achieving optimal operation
as

min
u

J(u,d) s.t.

{

plant and
constraints

(1)



where u is the vector of adjustable input variables
(e.g. valve opening, pump speed or the setpoint signal
to the regulatory control system), and d is a vector of
unknown disturbance parameters. For the rest of the paper
we assume that the active constraints have been imple-
mented and that (1) can be re-written as an unconstrained
optimization problem.

2.1 Self-optimizing control using the null space method

The idea of self-optimizing control has been formulated by
Skogestad (2000):

Self-optimizing control is when we can achieve
an acceptable loss with constant setpoint val-
ues for the controlled variables (without the
need to re-optimize when disturbances occur).

Consider the case when the self-optimizing variable c is a
linear combination of measurements y,

c = Hy, (2)

where H is the constant measurement selection matrix. In
the null-space method (Alstad and Skogestad, 2007), we
approximate the original optimization problem (1) locally
by a quadratic optimization problem.

Theorem 1. (Alstad et al. (2009)). Given a sufficient num-
ber of measurements (ny ≥ nu +nd) and no measurement
noise, select H in the null space of the optimal sensitivity
matrix F,

HF = 0, (3)
where

F =
∂yopt

∂d
. (4)

Controlling c = Hy to zero yields locally zero loss from
optimal operation.

The optimal sensitivity F can be obtained numerically
or calculated using the shorthand notation Ju = ∂J/∂u,
Jud = ∂2J/(∂u∂d) and Juu = ∂2J/∂u2 as

F = −GyJ−1
uuJud +G

y
d, (5)

where we use a linearized process model y = Gy∆u +
G

y
d∆d (Alstad et al., 2009).

We sketch the proof of the null space theorem: In a
neighbourhood of the nominal point, the optimal change
in the measurements can be expressed as

yopt(d)− yopt(dnom) = F(d− dnom). (6)

The optimal variation in the controlled variables c then
becomes

copt(d)− copt(dnom) = HF(d− dnom), (7)

and since H is chosen in left null space of F, the optimal
variation copt(d)− copt(dnom) = 0. 2

Another approach is to use the insight that at optimal
operation the gradient should be zero, Ju = 0 (first
order necessary optimality condition). Thus, an ideal self-
optimizing control variable is to select c = Ju. We show in
Appendix A that choosing H in the null space of F is in
fact identical to selecting c = Ju.

2.2 NCO tracking

A different approach, followed by François et al. (2005)
is the NCO tracking scheme. It is well known, that the

Karush-Kuhn-Tucker (KKT) necessary conditions for op-
timality (NCO) of the plant must hold at the optimal
operating point. If a disturbance enters the process, the
control scheme is used to adapt the inputs stepwise in such
a way, that the NCO are satisfied. We do not present the
general NCO tracking procedure (with constraints) here,
but we rather give a derivation of the special case without
constraints, i.e. only the sensitivity seeking directions.
Then the optimization problem in consideration is

min J(u,d), (8)

and the necessary condition for optimality are:

Ju(u) = 0 (9)

To achieve optimal operation, we update the input u at
each sample time k using the update equation

uk+1 = uk +∆u, (10)

until (9) is satisfied. To obtain the update term ∆u, we
linearize (9) around the current operating point uk:

Ju(uk +∆u) = Ju(uk) + Juu(uk)∆u (11)

Since we want the update ∆u to force the sensitivity to
zero, we set the left hand side of (11) to zero and solve for
∆u (François et al., 2005).

∆u = −J−1
uu (uk)Ju(uk) (12)

This Newton update step is exact for a quadratic approxi-
mation of the system (8), in the sense that the NCO (9)are
satisfied after one iteration. In practice we do not apply the
full update step ∆u, because this may lead to feasibility
and convergence problems as the process can move outside
the region where the quadratic approximation is valid.
To avoid this, the update term ∆u is multiplied by some
tuning parameter β ∈ [0 1], such that uk+1 = uk + β∆u.

To evaluate (12) we need the derivative Ju(uk) for a
given input uk. In this work it is chosen to make a small
perturbation in the input and to run the process for a
given time to estimate the gradient by finite differences.
The magnitude of the perturbation is desired to be small
in order not to upset the process excessively. At the same
time it has to be larger than the process noise to yield
sufficient information about the descent direction.

Since the Hessian Juu(uk) is difficult to obtain, it is often
determined once at the nominal operating point. Alterna-
tively, as we choose to do in this work, an approximation
of the inverse of the Hessian can be obtained by a BFGS
update scheme. The NCO tracking algorithm is summa-
rized in Fig. 1. This procedure is analog to a Newton(like)
method in optimization. In the analogy, the steady state
operating periods correspond to function evaluations in
the newton procedure, and the solution is found when the
NCO hold.

3. RELATIONSHIP BETWEEN SELF-OPTIMIZING
CONTROL AND NCO TRACKING

Both methods pursue the same goal, minimization of the
operating cost. However, in NCO tracking, we focus on
manipulating the input values (at given sample times) to
force the sensitivities to zero. Here it should be noted
that the NCO tracking is more general as described
above, since the gradient may be obtained by several
different (statistical) methods, such as correlation methods



Run plant to steady state

Perturb u and run plant to steady
state to determine the gradient Ju(uk)

Estimate inverse of the Hessian
J−1
uu (uk) using a BFGS update

Update input:
∆u = −J−1

uu (uk)Ju(uk)
uk+1 = uk + β∆u

Fig. 1. Simple NCO tracking procedure

or black-box models. In some cases, the gradient may even
be measured directly. Once the gradient is available, it is
used to calculate the input change needed to push the
sensitivities to zero.

In self-optimizing control, on the other hand, we focus on
finding controlled variables which give “good” performance
in practice. The system is “solved” for the correct inputs
indirectly, by feedback and PID controllers. Controlling
c = Hy using H from the null-space method, as described
above, is only one particular example of self-optimizing
control. In general we may impose structural constraints
on H yielding HF 6= 0. Then the self-optimizing variable
c is no longer identical to Ju. However, from a dynamic
point of view it may be desirable to compromise on the
steady state optimality in favor of good controllability.

In table 1 we summarize the main differences between the
null space method and NCO tracking as presented in the
previous section. These differences lead us to propose to

Table 1. Summary of properties

null space method NCO tracking

• locally valid (linearization)
• model used off-line
• continuous input change

by PID controller
• fast reaction (due to in-

stantaneous PID feedback)
• only rejects expected dis-

turbances

• globally valid (on con-
vergence)

• no model used, gra-
dient measured experi-
mentally

• discrete updates at
sample times

• slow reaction (only at
sample times)

use the different methods in different layers of the overall
plant control structure.

The control structure of a chemical plant is usually divided
into different layers, according to the different time scales
the control operate in. At the top of the hierarchical
structure we have a real time optimization system (RTO),
which updates the setpoint values for the layer below at
given sample times. Usually the RTO system optimizes a
large nonlinear steady state model. Because of the steady
state solution of the RTO and the infrequent updates, the
output of the RTO system is generally not directly applied
on the process, but is implemented by a dynamical control

system, such as a model predictive controller (MPC) or a
decentralized PID control system, Fig. 2.

RTO/
NCO tracking

PID/MPC
controller

Process

csetpoint

u
SOC

c = Hy

y

c

disturbance d

Fig. 2. Relation between NCO tracking and self-optimizing
control

In this dynamic control layer below the RTO, we see the
place of self-optimizing control. All plant measurements
are sent to a “selection unit”, where the controlled vari-
ables are calculated according to c = Hy. These controlled
variables c enter the dynamic PID or MPC controller,
which manipulates the plant inputs u to keep them at
their set-points (given from the RTO layer above).

This type of control structure is very common in industry,
although usually with some modifications. Many plants do
not have a RTO layer, and the set-points for PID/MPC
controllers are set from experience or engineering insight.
A common realization of this structure is to choose H
such that every row contains only a single “1”. This is
the special case of conventional decentralized control.

In many cases, the self-optimizing control structure needs
a RTO system above. The reason for this is the limitation
imposed by the local nature of obtaining the measurement
selection matrix. When selecting H in the null space
of F, a local approximation of the process is obtained
based on expected disturbances. Unexpected disturbances
and disturbances that move the process far away from
the linearization point, cannot be compensated by the
null-space method. They have to be counteracted by re-
optimization of the system.

It may be argued that if an RTO system is in place,
there is no need to select H to give a self-optimizing
control structure because the setpoints are updated by
the RTO system. However there are at least two reasons
to choose H as a self optimizing variable combination: 1.
Choosing a self-optimizing variable combination enables a
faster optimal reaction to assumed (main) disturbances,
not only at sample times. 2. RTO has to change the
setpoints less frequently, that is only in case of large
disturbances (outside region of linearization), and for
unknown disturbances.

These considerations lead us to see self-optimizing control
and NCO tracking as complementary, and to use them
together. NCO tracking is used in the optimization layer
and is thus an alternative to real-time optimization (RTO),
while self-optimizing control is located in the lower layer,
as in Fig. 2. In this configuration the manipulated variables



for the NCO tracking layer are the setpoints for the self-
optimizing control layer.

4. SIMULATIONS

4.1 Model

To illustrate the statements above, we present simulation
results for a dynamic CSTR with a feed stream F contain-
ing mainly the component an and a reversible chemical
reaction A ⇋ B, Fig. 3. The process model is taken from

F
CA,in
CB,in

Ti

CA
CB

T

Fig. 3. Schematic diagram of a CSTR

Economou and Morari (1986), and the dynamics of the
system are described by following set of equations:

dCA

dt
=

1

τ
(CA,in − CA)− r (13)

dCB

dt
=

1

τ
(CB,in − CB) + r (14)

dT

dt
=

1

τ
(Ti − T ) +

−∆Hrx

ρCp
r (15)

The reaction rate r is defined by

r = k1CA − k2CB (16)

where
k1 = C1e

−E1

RT andk2 = C2e
−E2

RT . (17)

This process has one manipulated input (u), the jacket
temperature Ti. The expected disturbances enter the pro-
cess as variations in the feed concentrations CA,in, CB,in,
and the measured variables are CA, CB , T , and the input
Ti.

The objective is to maximize the profit function which is
a trade-off between heating cost and income from selling
product B:

P = [pCB
CB − (pTi

Ti)
2], (18)

Here pCB
is the price of the desired product B and pTi

is
the cost for heating the reactor. The parameter values are

Parameter Value

pCB
2.009

pTi
1.657·10−3

Table 2. Objective function parameters

given in table 2, and the nominal operation values for all
variables are listed in table 3.

4.2 Simulations

First, we control the process for the expected disturbances
using direct NCO tracking. Next we use the null space

Variable Value Unit Description

F 1 holdup min−1 Flow rate
C1 5000 s−1 Arrhenius factor 1
C2 106 s−1 Arrhenius factor 2
Cp 1000 cal kg−1K−1 Heat capacity
E1 104 cal mol−1 Activation energy 1
E2 15000 cal mol−1 Activation energy 2
R 1.987 cal mol−1K−1 Ideal gas constant
Ti – K Input
CA,in 1 mol/l Conc. A in feed
CB,in 0 mol/l Conc. B in feed
−∆Hrx 5000 cal mol−1 Heat of reaction
ρ 1 kg/l Density
τ 1 min Time constant

Table 3. Nominal values for the CSTR model
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Fig. 4. Disturbance trajectories CA,in, Cb,in

method and compare the results with direct NCO tracking.
After comparing both control structures for an unexpected
disturbance we finally combine the methods as in Fig.2.

The expected disturbance scenario is given in Fig. 4. After
500 minutes at the nominal value, the concentration CA,in

varies sinusoidal before returning to the nominal value.
Then ramp disturbances are introduced, followed by large
step disturbances. At 4000 minutes, the concentration
CB,in makes a step change of 0.3 mole/l. The non-steady
state periods (sinusoid and ramp) are included to test
how the controller behaves in this case, which is likely to
happen in reality. Note that strictly speaking, the gradient
is not defined, as the process is not at steady state.

Direct NCO tracking To obtain the gradient informa-
tion, the input Ti is perturbed with a step of size 1 K.
Starting with a positive value, the sign is altered every
forth NCO iteration. Changing the sign of the perturba-
tion was found to give better overall performance of the
NCO procedure. No steady state detection is implemented
in the NCO tracking procedure. Instead, a step test is used
to determine the approximate time for the system to settle
down to a new steady state. At the nominal point, the
system has a time constant of less than two minutes for
an input step of ∆Ti = 5 K. To let the system settle down
far from the nominal point, where the system dynamics
are different, a sample time of 10 minutes is chosen for the
direct NCO tracking procedure. The step size parameter
β is set to 0.4.

Fig. 5 shows the concentration and temperature trajecto-
ries for the NCO tracking procedure. The control strategy
enables stable control. It is furthermore found that the



step disturbances are very well handled. Since the method
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Fig. 5. NCO tracking, concentrations and temperature

assumes steady state after 10 minutes, and uses the results
at each sample time for calculating the input update, it
has difficulties handling disturbances which do not lead
to a steady state (sinusoidal and ramp). However, the
controller manages to keep the system stable during these
periods. It is found that the performance of NCO tracking
algorithm is very sensitive to the tuning parameter β, the
sample time, and the timing and kind of the disturbance.

Self-optimizing control using the null-space method Next,
the process is controlled using the null space method from
section 2.1. Since we have one input and 2 disturbances
to compensate for, we need three measurements for the
invariant variable combination. We choose two concentra-
tions and the reactor temperature, so y = [CA CB T ]T.
We optimize the steady state system at the nominal op-
erating point and then introduce small perturbations in
the disturbance variables d = [CA,in CB,in]

T. After re-
optimizing we calculate

F =
∂yopt

∂d
=

[

−0.4862 −0.3223
−0.5138 −0.6777
−9.9043 40.5807

]

. (19)

Then H = [−0.7688 0.6394 0.0046 ], and HF = 0. Using
a PID controller, the self-optimizing variable c = Hy is
controlled to zero. The concentration and temperature
trajectories with self-optimizing control are plotted in
Fig. 6.

Comparing inputs and profit for NCO tracking and self-
optimizing control The input usage for the two cases
described above is quite differently, Fig. 7. While the NCO
tracking procedure needs large input variations to control
the process, the input usage of the self-optimizing control
structure is very moderate and smooth.

Comparing the profits, Fig. 8, shows that both systems
perform quite similar to each other at steady state periods,
but for disturbances, where no steady state is reached
within one sample time, NCO tracking is not performing
as good as the self-optimizing control policy using the null-
space method.

Using NCO tracking as RTO and self-optimizing control
in the lower layer If it can be guaranteed that the
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Fig. 6. SOC, concentrations and temperature
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Fig. 7. Input usage for SOC and NCO tracking
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Fig. 8. Profit for SOC and NCO tracking

disturbances in the feed concentration are the only ones en-
tering the process, then using only self-optimizing control
is sufficient, and a RTO layer is not necessary. However, the
situation changes for disturbances not anticipated in the
control structure design. Consider a positive step change
in the activation energy E2 of 10% after 3200 min. This
disturbance hinders the reverse reaction. Comparing the
profits using the two control structures, Fig. 9, shows that
the self-optimizing control system cannot exploit the im-
proved conditions caused by the unexpected disturbance.

Adapting the self-optimizing control setpoints by RTO or
NCO can solve this problem, and at the same time reduce
RTO/NCO sample time. In Fig. 10 the instantaneous
profit for direct NCO tracking (sample time: 10 min) and
the combined system with a sample time of 25 min is
shown. The combined system operates smoother than the
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pure NCO system while giving similar performance. In
particular, the input is used less aggressive, Fig. 11.
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Fig. 11. Input, combined NCO/SOC and direct NCO
tracking

Using online RTO the performance could be improved even
further because the setpoints move directly to the optimal
values instead of iteratively approaching them.

5. CONCLUSION

Due to the limitations of self-optimizing control it can
generally not replace an RTO system. However, combining
RTO (NCO tracking) and self-optimizing control over-
comes the limitations of the local nature of self-optimizing
control. At the same time we have fast, dynamic steady
state optimal control for the expected disturbances.

Since almost every RTO system has a dynamic control
system in the layer below, using a self-optimizing control
structure in the lower layer, improves performance and can

significantly reduce the RTO updates. For NCO tracking
this means less perturbations for gradient estimation. For
an online RTO, this means more time for complex, time
intensive, computations.
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Appendix A. CONNECTION BETWEEN THE
GRADIENT AND THE NULL SPACE METHOD

Consider the unconstrained optimization problem

min
u

J(u,d) = min
u

[uT dT ]

[

Juu Jud

Jdu Jdd

] [

u
d

]

. (A.1)

In Alstad et al. (2009) it is shown, that if the num-
ber of measurements is equal to the sum of inputs and
disturbances,ny = nu + nd, and the measurement map

y = G̃y [ u d ]
T
, (A.2)

is invertible, then we can express H as

H = M−1
n

[

J
1

2

uu J1/2
uu J−1

uuJud

] [

G̃y
]

−1

, (A.3)

where Mn can be freely chosen and is usually set to the
identity matrix, Mn = I. In this case, however, we choose

to set Mn = J
1

2

uu.

This gives
H = [Juu Jud][G̃

y]−1, (A.4)

Calculating the gradient of problem (A.1),

Ju = [ Juu Jud ]

[

u
d

]

, (A.5)

and inserting (A.2), we obtain

Ju = [ Juu Jud ] [G̃
y]−1y = Hy = c. (A.6)

Comparing with (A.4), we see that the null space method
is identical to controlling the gradient.


