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Abstract

Model predictive control has achieved remarkable success across a range of industrial ap-
plications, thanks to its capacity for handling multivariable constrained control problems.
To account for more accurate nonlinear process models, the framework has been extended
to nonlinear model predictive control. To ensure optimal performance under uncertainty, a
class of methods classified under robust (N)MPC has received widespread attention in the
past couple of decades. Many of these methods, however, suffer from a high degree of con-
servatism, while also having significant limitations in their practical applicability. More
recently, the robust multistage NMPC, based on a scenario tree evolution of uncertainty,
has emerged as a promising approach that offers robustness with low conservatism.

A major issue with this approach, however, is that it scales poorly with increasing
dimensionality of the uncertainty. The construction of the scenario tree is such that the
computational complexity of the optimization problem grows rapidly for larger problems.
Another issue with the approach is that conventional scenario tree constructions rely on
heuristics that may not be sufficiently tailored to the application at hand, and may thus
lead to unnecessary conservatism.

This thesis addresses the above issues by extending the robust multistage NMPC frame-
work with novel approaches and algorithms. In the first part of the thesis, a data-driven
approach to scenario tree construction is proposed. The proposed approach leverages cor-
relations in the available uncertainty data to seek a more compact scenario tree, thus re-
ducing conservatism. A dynamic scenario tree update strategy is considered, where one
is always up-to-date with the latest uncertainty information. The data-driven approach is
applied to a detailed thermal energy storage case study to achieve robust optimal operation
under varying supply and demand of heat. In this case study, the uncertainty data is based
upon an industrial data set sourced from a district heating company, allowing for extensive
data analysis for scenario selection.

The second part of the thesis presents an approximation strategy for robust multistage
NMPC that significantly improves its computational efficiency. This strategy is based on
finding those scenarios in the scenario tree that are most likely to cause constraint vio-
lations, and explicitly optimizing only over these scenarios to achieve robustness. The
remaining scenarios are accounted for implicitly with a sensitivity-based approximation.
This sensitivity-assisted multistage NMPC (samNMPC) approach is shown to have similar
results to conventional multistage NMPC in terms of robustness and optimal performance,
but at a fraction of the computational cost. A theoretical analysis based on soft-constrained
formulations paves the way for showing recursive feasibility and robust stability proper-
ties of the samNMPC method. Finally, the samNMPC approach is extended with a path-
following algorithm (sampfNMPC) to improve its approximation accuracy even further.
The sampfNMPC approach is shown to offer an almost identical result to the conventional
multistage NMPC in terms of robustness and setpoint tracking.
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Chapter 1
Introduction

1.1 Motivation

Chemical process plants are operated under a wide variety of operating conditions, prod-

uct specifications and safety limits, often following highly complex dynamics. In a world

with ever-increasing energy demands, it becomes vital to optimize these processes from

an environmental as well as an economic perspective. However, a key challenge in this

endeavor is that a large majority of modern real-world processes lack perfect system infor-

mation and have to contend with significant uncertainties. To this end, advanced process

control methods seek to achieve optimal operation in the presence of uncertainty.

A powerful tool that has been widely used for control and optimization in the chemical

process industry is model predictive control (MPC), mainly because of its ability to handle

complex multivariable systems under process constraints. Based on model predictions,

MPC computes an optimal control trajectory that minimizes a certain cost function over a

prediction horizon [1]. Plant dynamics are often highly nonlinear, and hence the nonlinear

counterpart of MPC (NMPC) has received attention. Inevitably, the performance of such

a model-based controller is affected by how well the model describes the real system, as

well as the process disturbances that affect the system dynamics. The presence of plant-

model mismatch or noise can cause the system to violate constraints or even be unstable.

Although a standard NMPC implementation provides some inherent robustness against

uncertainty, this is not enough when the uncertainty is pronounced. As such, robust NMPC
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Chapter 1. Introduction

approaches that rigorously handle the uncertainty have received attention in the past few

decades [2].

There are, however, significant challenges in implementing many of these robust NMPC

approaches. Some methods are highly conservative, while some others are computation-

ally very expensive. Some are unsuitable for nonlinear systems, while some others do not

scale well for large problems. A brief background of robust NMPC approaches is given

in Section 2.1. One robust NMPC approach that overcomes many of these challenges,

and has gained popularity in recent years, is the multistage NMPC proposed by Lucia [3],

based on the concepts of multistage stochastic programming. In the paradigm of stochas-

tic programming, the decision variables may be either of the two forms: “here-and-now”

variables representing decisions that have to be taken before the realization of uncertainty

- these use a priori information about the uncertainty; and “wait-and-see” variables rep-

resenting decisions that have to be taken after the uncertain data becomes known - these

can be used to hedge against future realizations of the uncertainty [4]. These latter de-

cision variables allow for recourse action that help in reducing the conservativeness of

the “here-and-now” decision variables. This is the central idea in the multistage NMPC

approach, where future control decisions represent the recourse action to the uncertainty

evolution in response to the current control decision. A key feature of this approach is

that it offers robustness in terms of constraint feasibility without being overly conservative

i.e. without the control decisions being too cautious. Multistage NMPC has been shown

to provide robust constraint satisfaction with a low level of conservatism on a wide range

of applications, including semi-batch polymerization [5, 6, 7, 8], batch bioreactor [9], hy-

drodesulphurization [10], gas lifted wells in oil and gas production [11], multi-product

distillation [12] and penicillin fermentation [13].

In robust multistage NMPC, the uncertainty is modeled such that it propagates through

time in the form of a scenario tree, with each scenario representing a distinct realization of

the uncertainty across the prediction horizon. By design, each scenario is comprised of the

combinations of discrete realizations of the uncertain parameters. Naturally, the choice

of these discrete realizations affects the performance of the controller, particularly with

respect to how conservative it is. A consequence of the scenario tree formulation is also

that the number of scenarios grows exponentially with the number of uncertain parameters,

as well as with the number of discrete realizations of each uncertain parameter. In addition,

the scenarios also expand exponentially further down the prediction horizon. All of these

2



1.1 Motivation

factors contribute to an increasing problem size that quickly becomes computationally

expensive to solve, causing a delay in the availability of the solution. As noted by [14],

computational delay in implementing control actions may lead to system instability or

suboptimal solutions.

The topics of this thesis focus on two important aspects related to multistage NMPC:

1. selecting scenarios in the scenario tree that better describe the uncertainty, and

2. improving the computational efficiency by addressing the exponential growth limi-

tation of the scenario tree.

The first aspect of scenario selection is related to that of system uncertainty descrip-

tion. For online control of nonlinear systems, a common approach for treating uncertainty

is to employ first-order approximations of the process model with respect to the uncertain

parameters [15, 16, 17]. An alternate formulation based on probabilistic chance constraints

uses polynomial chaos expansion to propagate the uncertainty through the nonlinear sys-

tem model [18, 19, 20]. For multistage NMPC, the heuristic suggested by [6] to build up

the scenario tree is to take combinations of the extreme values of the uncertain parame-

ter ranges as the discrete realizations in each stage. However, this approach may lead to

solutions with higher conservativeness. To reduce this conservativeness, a range reduc-

tion approach for parametric uncertainty was suggested by [21], making use of dynamic

experiment design for guaranteed parameter estimation. A recursive Bayesian weighting

approach is considered in [22] to update the scenarios in order to reduce conservativeness.

In the first part of this thesis, a data-driven scenario selection approach based on sampled

uncertainty data is considered within multistage NMPC to obtain less conservative but

robust solutions.

The second aspect of computational efficiency in multistage NMPC can be tackled in

two ways: decomposition methods and approximation methods. Decomposition methods

exploit the inherent structure of the multistage NMPC problem by decoupling all the sce-

narios and solving the smaller subproblems separately. To this end, algorithms based on

primal decomposition [23] and dual decomposition [10, 24, 25] have been proposed. On

the other hand, approximation methods seek to replace the larger problem with a smaller

problem without losing its main features. Examples include the work by [26], where cost-

to-go functions of different scenarios are approximated by neural networks and applied

to a semi-batch reactor. An online scenario generation approach that approximates the

3



Chapter 1. Introduction

multistage NMPC with a much smaller scenario tree is proposed in [27]. This method

is based on finding the worst-case realizations of uncertainty with respect to constraint

feasibilities. In [28], an algorithm based on nonlinear programming (NLP) sensitivities is

proposed, that can compute fast approximations of the multistage NMPC solutions. In the

second part of this thesis, a computationally fast, sensitivity-based approximation strategy

is proposed, that prunes the scenario tree by quickly identifying scenarios most likely to

cause constraint violations.

1.2 Scope of the thesis

The goal of this thesis is to extend the multistage NMPC framework with approaches that

better describe the uncertainty information and significantly improve its computational ef-

ficiency, without sacrificing its robust performance. The proposed approaches make use

of statistical data-analysis, control theory and nonlinear programming theory to further the

practical applicability of robust multistage NMPC. They allow for fast, real-time imple-

mentation of robust NMPC, and the corresponding optimization problems are reasonably

straightforward to formulate. These extensions to robust multistage NMPC are thus well

suited for implementation on large-scale problems. The performances of the these novel

approaches are evaluated with the help of various case studies, and are shown to have key

advantages over the standard NMPC and conventional multistage NMPC methods.

1.3 Thesis structure and main contributions

As alluded before, this thesis consists of two main parts and is organized as follows: Chap-

ter 2 gives a brief background of robust multistage NMPC, the formulations of the standard

and multistage NMPC problems, a short recap of the relevant NLP properties, and the ba-

sics of the interior-point algorithm for solving NLPs.

Part I of this thesis is about a data-driven scenario selection approach in multistage

NMPC. In Chapter 3, a data-driven approach based on principal component analysis (PCA)

is proposed to dynamically select the scenarios. When time-varying uncertainty is consid-

ered, PCA can be performed online to select new scenarios whenever the uncertainty data

is updated. The results, demonstrated on a simple two-plant system with a thermal stor-

age tank, show that the solution obtained is less conservative with the data-driven scenario

4
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selection strategy compared to the conventional approach. This chapter is largely adapted

from [29].

In Chapter 4, the data-driven approach is extended to a detailed case-study of a thermal

energy storage system to achieve robust optimal operation. The uncertainties in the system

are the profiles for supply and demand of heat, the data for which is sourced from a district

heating company. In addition to scenario selection, PCA is also used to detect outliers

in the industrial data. The results show that the data-driven approach is successfully able

to keep the system from violating any operating constraints, as opposed to the standard

NMPC. It is shown that the approach is robust even in the presence of significant deviations

between the predicted and actual heat profiles. The results in this chapter are published in

[30].

The thesis includes a minor contribution in the form of Appendix D, where the case of

the thermal energy storage system is investigated from a design optimization perspective.

These results are published in [31]. However, since this analysis is unrelated to the robust

multistage NMPC schemes presented in the rest of the thesis, it is only included in the

Appendix.

Part II deals with a sensitivity-based approximation strategy for multistage NMPC

to address the exponential growth in problem size. Chapter 5 presents an approximate

sensitivity-assisted multistage NMPC (samNMPC) scheme that reduces the problem size

by dividing the scenario set into so-called “critical” and “noncritical” scenarios, with the

former composed of the worst-case realizations of the uncertain parameters. In this ap-

proach, the optimization is sought explicitly over the critical scenarios, while noncriti-

cal scenarios are included implicitly through NLP sensitivity-based approximations in the

objective function. A key advantage of the proposed approach is that the problem size

is independent of the number of constraints and scales only linearly with the length of

the robust horizon. This allows for faster computations with longer robust horizons that

more rigorously account for future uncertainty. The samNMPC approach is applied to

two case studies for tracking setpoints, and the results show that it compares favorably in

performance and robustness to ideal multistage NMPC, but with a significant reduction in

computational cost.

In Chapter 6, the conventional multistage NMPC and samNMPC problems are shown

to be recursively feasible and robustly stable with rigorous proofs. In particular, the given

proofs consider formulations of the NMPC problems with soft inequalities, and are also

5



Chapter 1. Introduction

applicable for the robust horizon assumption. The content of Chapters 5 and 6 is based on

[32].

Chapter 7 extends the samNMPC framework with a path-following approach, termed

sampfNMPC. Here, a reduced NLP comprising only of critical and nominal scenarios

is solved first, and then the full multistage NMPC solution is sought by path-following

from the reduced NLP solution along all the noncritical scenario uncertainties. The path-

following algorithm is based on solving a sequence of predictor-corrector quadratic pro-

grams (QPs) that approximate the NLPs. Applied to a case study for tracking setpoints,

the sampfNMPC algorithm is shown to offer an almost identical performance to the con-

ventional multistage NMPC approach in terms of tracking and robustness. The content of

this chapter is based on the draft [33].

The thesis concludes with some summarizing remarks and provides an outlook for

future research directions.
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Chapter 2
Robust Multistage Nonlinear

Model Predictive Control

This chapter gives a brief background leading up to the development of robust multistage

NMPC, and then introduces the formulations of standard and robust multistage NMPC.

These formulations form the basis for discussing the novel approaches in robust multistage

NMPC shown in later chapters. Also included is a brief introduction to NLP properties

and the interior-point algorithm used in solving large-scale NLPs.

2.1 Brief background

MPC is a modern control technique that has its roots in optimal control theory. System

dynamics are typically modeled as ordinary differential equations (ODEs) or differential

and algebraic equations (DAEs). These equations are in the continuous-time form and

their corresponding optimal control problem formulations are thus infinite-dimensional.

In general, these infinite-dimensional problems are not straightforward to solve. For the

special case of linear systems with a quadratic cost function, an analytical solution can be

obtained by solving the Riccati differential equation. This is known as the linear quadratic

regulator (LQR). Such analytical solutions are generally not possible for nonlinear optimal

control problems, and thus they have to be solved numerically.

Approximate numerical solutions of these problems can be sought in two different

7
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ways: direct and indirect approaches [34]. The indirect approach comes from the applica-

tion of Pontryagin’s maximum principle [35], where optimality conditions are first solved

and then discretized to obtain the solution. On the other hand, the direct approach involves

first discretizing the optimal control problem into a finite-dimensional NLP which is then

solved to get the numerical solution. Examples of the latter include multiple shooting

[36] and collocation on finite elements [37, 38]. Note that the direct collocation method

has been used throughout this thesis for simultaneous optimization of the relevant optimal

control problems.

Practical implementation of NMPC algorithms thus relies on recasting the optimal con-

trol problems as NLPs. A discretized mathematical model of the system is used to predict

its evolution and, based on this, a fully discretized NLP is solved to compute a sequence

of control actions across a finite prediction horizon. Only the first control action in this

sequence is implemented to the plant. To account for the mismatch between the model and

the real system, state feedback information is incorporated by repeatedly solving the NLP

with updated state information, and with a receding prediction horizon.

As noted before, standard NMPC offers some inherent robustness against uncertainty

- see [39, 40, 41], for instance. However, a more rigorous treatment is needed for general

nonlinear systems, prompting research into robust NMPC approaches. In [2], two different

ways are noted to achieve robustness in MPC: a direct way wherein robust contraction

constraints are enforced to guarantee stability, and an indirect way wherein the objective

function and uncertainty description are specified in a way such that the optimal control

actions lead to robust stability.

The tube-based MPC, proposed for linear systems by [42], is based on the direct way.

This framework was extended to nonlinear systems in [43]. Here, a nominal controller

computes a nominal trajectory and a so-called ancillory controller forces the evolution of

the uncertain system to be within a tube centered around the nominal trajectory. Although

tube-based control can guarantee robustness, it is usually highly conservative and does

not ensure optimal performance under uncertainty. Moreover, the ancillory control law

is difficult to compute for nonlinear systems, limiting the practical applicability of the

tube-based robust NMPC.

Alternatively based on the indirect way, the min-max MPC [44] presents a robust MPC

strategy where the optimal control trajectory is computed such that it minimizes the cost

of the worst-case realization of the uncertainty. However, this approach ignores available
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2.2 Standard NMPC formulation

future recourse actions that may counteract the uncertainty, and thus can lead to overly con-

servative or infeasible results. To remedy this, feedback min-max MPC was proposed in

[45], where closed-loop optimization is sought over different control policies for different

realizations of the uncertainty. Since feedback is explicitly accounted for, this controller

leads to lower conservatism and avoids infeasibility. Combining aspects of stochastic pro-

gramming, the evolution of uncertainty is described here in the form of a scenario tree.

This framework was extended for nonlinear systems in [3], and led to the development

of the robust multistage NMPC approach that is the focus of this thesis. The multistage

NMPC formulation is discussed later in this chapter.

2.2 Standard NMPC formulation

Consider a system with dynamics described by the discrete-time mapping:

xk+1 = f(xk,uk,dk) (2.1)

where xk ∈ X ⊂ Rnx are the state variables, uk ∈ U ⊂ Rnu are the control variables, and

dk ∈ D ⊂ Rnd represents the time-varying uncertainty in the model. The sets X and U

are the domains for the state and control variables, respectively, whereas D is the bounded

uncertainty set. The function f : Rnx × Rnu × Rnd → Rnx , along with f(0, 0, 0) = 0,

represents the nominal model of the system.

In the standard NMPC controller, the model uncertainty is not explicitly accounted for.

At time tk, the current state xk is obtained from plant measurements and the following

NLP is solved:

min
zl,vl

φ(zN ,d
0
N−1) +

N−1∑
l=0

ϕ(zl,vl,d
0
l ) (2.2a)

s.t. zl+1 = f(zl,vl,d
0
l ) l = 0, . . . , N − 1 (2.2b)

z0 = xk (2.2c)

zl ∈ X,vl ∈ U, zN ∈ Xf (2.2d)

whereN is the length of the prediction horizon, zl and vl are the state and control variable

vectors, respectively at time tk+l, and the value of the uncertain model parameter is fixed
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Chapter 2. Robust Multistage NMPC

at a nominal d0
l for all time steps.

The objective function (2.2a) is composed of the stage cost ϕ : Rnx×Rnu×Rnd → R,

and the terminal cost φ : Rnx×Rnd → R. Constraints (2.2b) represent the dynamic model

used in the controller. The controller is initialized with the current state xk at tk, as shown

in (2.2c), and (2.2d) represents the bound constraints on the state and control variables.

Note that the set Xf ⊂ X is the terminal region, and is typically used to ensure recursive

feasibility of the finite-horizon NMPC controller.

At each time step k, problem (2.2) solves for a predicted state trajectory x[k,k+N ]

and a corresponding sequence of control inputs u[k,k+N−1] across the prediction horizon

[k, k + N ]. From the obtained optimal sequence of control inputs, the first stage control

input uk = v∗0 is applied to the plant. This can also be represented in the form of a

feedback control law uk = h(xk), where h : Rnx → Rnu . After injecting uk, the plant

evolves from tk to tk+1 according to (2.1). The updated state xk+1 at tk+1 is used to solve

problem (2.2) at the next time step, and the procedure repeats. It is assumed that the states

xk can be measured at each sampling time.

Typically, a receding prediction horizon is used as the controller moves forward in

time. This receding horizon nature, along with the incorporation of state feedback infor-

mation, allows standard NMPC to offer a limited degree of robustness [39, 40]. However

the plant-model mismatch arising due to uncertainty causes deteriorating performance in

standard NMPC, particularly with respect to constraint satisfaction.

A key performance metric for any NMPC scheme is the computational delay, which

is the time difference between obtaining updated state information from the plant at tk

and applying the computed control input uk to the plant. To minimize this delay, it is

important to be computationally fast in solving NMPC problem formulations such as (2.2).

A comprehensive discussion on standard NMPC can be found in [1].

2.3 Robust multistage NMPC formulation

In contrast to standard NMPC, robust NMPC methods rigorously account for the model

uncertainty. In presence of plant-model mismatch, the evolution of the state trajectory at

time step k depends on the actual realization of the uncertain parameter dk ∈ D. As such,

the sequence of control inputs u[k,k+N−1] should correspond to a cone of state trajectories

{x[k,k+N−1]}D [46]. The min-max MPC solves for a single control profile that applies to
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all realizations of the uncertainty, including the worst-case realization [44].

However, optimizing over a single control profile is overly conservative and disregards

the fact that feedback is available. In other words, it does not explicitly take into account

that new uncertainty information will be available in the future and the future control in-

puts can take recourse action to negate the effect of the current uncertainty. With this

notion of feedback, it may be prudent to optimize over different control policies for dif-

ferent realizations of uncertainty (see [47, 48]). More precisely, a cone of control profiles

{u[k,k+N−1]}D needs to be computed.

This problem can be made tractable by discretizing the uncertainty set D, which con-

verts the cone of state trajectories into discrete scenarios. The future evolution of the

uncertainty can be modeled in the form of a scenario tree as shown in [45], and closed-

loop optimization sought over the different scenarios, thereby reducing conservativeness

compared to the min-max approach. This is the main idea of multistage MPC, which was

further expanded upon in [6] in the context of nonlinear systems to propose the multistage

NMPC.

Consider that the uncertainty set D is discretized into a set M of discrete realizations.

A commonly used heuristic is to use the combinations of {max, nominal, min} values

of each uncertain parameter to build the scenario tree. The set of discrete realizations of

uncertainty is thus:

M = {dmax
1 , dnom

1 , dmin
1 } × · · · × {dmax

nd
, dnom
nd

, dmin
nd
} (2.3)

where nd is the dimensionality of the uncertain parameter vector, and |M| = 3nd . Figure

2.1 shows the evolution of a fully branched scenario tree with 27 scenarios (nd = 1,

N = 3). The current state at tk is the root node of the scenario tree. At tk+1, there are 3

possible states corresponding to the 3 discrete realizations of the uncertainty. The scenario

tree continues branching further along the prediction horizon, with 9 possible states at

tk+2, and 27 possible states at tk+3. A scenario is defined as a sequence of states from the

root node to the leaf node at the end of the prediction horizon. Thus there are 27 discrete

scenarios in the scenario tree shown in Figure 2.1. In general, the total number of scenarios

in a fully branched scenario tree is |M|N .

It is apparent that for longer prediction horizons, the number of scenarios grows expo-

nentially large, and it becomes computationally infeasible to solve the resulting optimiza-
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Figure 2.1: Fully branched scenario tree with nd = 1 and N = 3.
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2.3 Robust multistage NMPC formulation

tion problem. To resolve this, a robust horizon of length Nr was suggested in [6], wherein

the branching of the scenario tree is stopped after tk+Nr , and the uncertain parameters stay

at their tk+Nr values for the rest of the prediction horizon. Figure 2.2 shows a truncated

scenario tree with Nr = 2, and 9 scenarios. The number of scenarios is |M|Nr , which

is much lower than the fully branched scenario tree provided Nr � N , albeit with the

caveat that the truncated scenario tree does not account for every possible evolution of the

uncertainty up to N . This is justified on the basis that only the immediate control input

is applied to the plant and the next control inputs are recomputed anyway in a receding

horizon implementation.

The resulting optimization problem to be solved with current state xk at tk is formu-

lated as follows:

min
zcl ,v

c
l

∑
c∈C

ωc
(
φ(zcN ,d

c
N−1) +

N−1∑
l=0

ϕ(zcl ,v
c
l ,d

c
l )
)

(2.4a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

c
l ) l = 0, . . . , N − 1 (2.4b)

zc0 = xk (2.4c)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (2.4d)

zcl ∈ X,vcl ∈ U, zcN ∈ Xf ,dcl ∈ D (2.4e)

dcl−1 = dcl l = Nr, . . . N − 1 (2.4f)

∀c, c′ ∈ C

where C is the set of all scenarios, ωc is the probability of each scenario, and zcl ,v
c
l ,d

c
l

represent the vectors of state variables, control variables and uncertain parameters at stage

l and scenario c. The objective function in (2.4a) is the weighted sum of the cost across all

the scenarios at xk, with ωc being the probability associated with each scenario. The equa-

tion (2.4f) imposes that the uncertain parameters remain constant after the robust horizon.

Equation (2.4d) represents the non-anticipativity constraints (NACs) which impose

that all control inputs corresponding to branches of the same parent node in the scenario

tree, are equal. This is because only one control input uk = v0 can be injected into the

plant at tk, irrespective of how dk evolves. In other words, one cannot anticipate how

the state trajectory is going to evolve from a particular node before a control decision is

taken at the node. In Figure 2.1 for instance, v1
0 = v2

0 and v1
1 = v2

1 are NACs (however

v1
1 and v4

1, for example, are not coupled by non-anticipativity because their parent nodes
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Figure 2.2: Robust horizon assumption: scenario tree with nd = 1 and Nr = 2.
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are different). Note that the number of NACs grows exponentially with the number of

scenarios.

It must be noted that in robust multistage NMPC, the scenario tree grows exponentially

not only with the length of the robust horizon, but also with the number of uncertain

parameters. Hence, for complex systems with multiple uncertain parameters, it is common

to assume a very small robust horizon (for example Nr = 1) to keep the optimization

problem tractable.

2.4 Nonlinear programming properties

Since the multistage NMPC problem (2.4) is parametric in its uncertainty dk, its properties

are investigated with respect to dk by rewriting the problem in the more compact general

NLP form:
min
x

F (x; p)

s.t. c(x; p) = 0

x ≥ 0

(2.5)

where x are all the variables in (2.4), and p are all the uncertain parameters d of (2.4).

The solution of (2.5) is given by a KKT point, which satisfies the Karush-Kuhn-Tucker

conditions for (2.5):

Definition 1. (KKT, [49]) KKT conditions for (2.5) are given by:

∇F (x∗; p) +∇c(x∗; p)λ− ν = 0

c(x∗; p) = 0

0 ≤ ν ⊥ x∗ ≥ 0

(2.6)

for some multipliers (λ, ν), where x∗ is a KKT point. The Lagrangian function of (2.5) is

defined as L(x, λ, υ; p) := F (x; p) + λT c(x; p)− νTx.

A constraint qualification (CQ) is required so that a KKT point is necessary for a local

minimizer of (2.5) [49]. For (2.5), the following CQ is widely invoked:

Definition 2. (LICQ, [49]) The linear independence constraint qualification (LICQ) holds

at x∗ when the gradient vectors

∇c(x∗; p) and ∇x∗j ; j ∈ J where J = {j|x∗j = 0} (2.7)
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are linearly independent. Here the set J is known as the active set of bounds.

The LICQ implies that the set of multipliers (λ, ν) satisfying the KKT conditions are

unique. A weaker, generalized form of the LICQ is as follows:

Definition 3. (MFCQ, [49]) For (2.5), the Mangasarian-Fromovitz constraint qualifica-

tion (MFCQ) holds at x∗ if and only if

• ∇c(x∗; p) is linearly independent and the singular values of∇c(x∗; p) are bounded

away from zero.

• There exists a vector q such that

∇c(x∗; p)T q = 0

qj > 0, j ∈ J.
(2.8)

The MFCQ implies that the set of multipliers (λ, ν) is a compact convex polytope [50].

Further, the KKT point is a local minimum if the following sufficient second order

conditions apply.

Definition 4. (SSOSC, [51]) The KKT point x∗ with multipliers (λ, ν) is a strict local opti-

mum if there exists some ε > 0 and the following strong second order sufficient conditions

(SSOSC) hold at x∗:

qT∇xxL(x∗, λ, ν; p)q ≥ ε > 0 for all q 6= 0 (2.9)

such that

∇ci(x∗; p)T q = 0, i = 1, .., nc

qj = 0, for νj ≥ ε > 0, j ∈ J.
(2.10)

Definition 5. (GSSOSC, [52]) The generalized strong second order sufficient condition

(GSSOSC) holds at x∗ when the SSOSC holds for all multipliers (λ, ν) that satisfy the

KKT conditions of (2.5).

Finally, for the active set of bounds, the following definition is given:

Definition 6. (SC, [49]) At a KKT point x∗ with multipliers (λ, ν), the strict complemen-

tarity condition (SC) is defined by νj + x∗j > 0 for each j ∈ J .
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2.5 Interior-point algorithm

2.5 Interior-point algorithm

Interior-point methods represent an attractive way of handling NLPs with a large number

of inequality constraints. An efficient implementation of the interior-point algorithm for

handling large-scale NLPs is IPOPT [53]. The IPOPT algorithm substitutes the inequal-

ity constraints in (2.5) with a barrier function in the objective and solves a sequence of

problems, indexed by m with limm→∞ µm → 0:

min
x

F (x; p)− µm
nx∑
i=1

ln(xi)

s.t. c(x; p) = 0

(2.11)

For a negligibly small µm > 0, the Lagrangian of (2.11) can be denoted as:

L(x, λ, ν; p) := F (x; p) + λT c(x; p)− νTx (2.12)

and the KKT conditions of (2.11) are:

∇xL(x, λ, υ; p) = ∇xF (x; p) +∇xc(x; p)λ− υ = 0 (2.13a)

c(x; p) = 0 (2.13b)

XV e = µe (2.13c)

where X = diag(x), V = diag(υ) and eT = [1, . . . , 1].

The KKT conditions (2.13) are solved using the Newton’s method to obtain the search

direction. Linearizing (2.13) around a given current iterate [xk, λk, νk]T leads to the fol-

lowing KKT system:
∇xxL(sk(µ; p)) ∇xc(sk(µ; p)) −I
∇xc(sk(µ; p))T 0 0

V (µ; p) 0 X(µ; p)



dxk

dλk

dνk

 = −


∇xL(sk(µ; p))

c(xk(µ; p))

XkVke− µe


(2.14)

where [dxk, d
λ
k , d

ν
k]T is the search direction. As µm → 0, the solutions of (2.11) approach

the solution of the original NLP (2.5). The primal-dual solution vector is

s(µ; p) =


x(µ; p)

λ(µ; p)

υ(µ; p)


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Chapter 3
Data-driven Online Adaptation of

the Scenario Tree in Multistage

Nonlinear Model Predictive Control

In this chapter, we consider systems where the uncertainty set D can change from one time

step to the next. An online data-driven scenario tree adaptation strategy is proposed for

systems with such time-varying uncertainty information, that can be performed dynam-

ically in the multistage NMPC implementation. The idea is to use a scenario selection

approach based on principal component analysis (PCA) whenever the uncertainty set D

changes, and to dynamically change the length of the robust horizon Nr in anticipation

of any predicted change in D. This chapter is adapted from [29], and extends upon some

preliminary work done in [54].

The following sections elaborate on the proposed strategy, and show its application on

a simple thermal energy storage (TES) example. In particular, it is shown that the PCA-

based approach leads to faster computations and solutions that are less conservative than

the conventional scenario selection approach.
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3.1 Motivating the need for data-driven scenario selection

The convention in multistage NMPC is to assume that the uncertainty set D is known

a-priori, and that it can be well represented by discrete scenarios such as in (2.3). How-

ever, the selection of scenarios that build the scenario tree is important in the practical

implementation of multistage NMPC.

Stochastic programming methods assume that the uncertain parameters follow a prob-

ability distribution function (PDF) within a finite set of values [4]. Conventional scenario-

based stochastic programming methods involve a two step process:

1. using statistical methods to estimate the PDF from a given finite set of data samples

representing the uncertain parameters, and

2. discretizing the obtained PDF to generate scenarios to be used in the optimization

problem.

The main issue with this process is that the first step aims to achieve maximum estimation

accuracy without directly considering the optimization problem. Consequently, the PDF

is itself subject to uncertainty. In this context, the paradigm of so-called distributionally

robust optimization methods has been developed to deal with the issue of uncertainty-

affected PDFs [55, 56].

Alternatively, one can skip the PDF estimation step and go directly from data to sce-

narios, i.e. the discrete scenarios can directly be chosen from the available data samples.

After all, the different data samples represent the discrete measurements of uncertainty in

the system. Ideally, then, any set of selected scenarios should be a subset of this data set

for the best representation of uncertainty.

Having decided on selecting scenarios directly from available data, the next question

to consider is which data samples to select as scenarios. As noted before, the size of the

multistage NMPC problem (2.4) increases exponentially with increasing number of sce-

narios. Hence, in order to be computationally efficient, it is important to capture maximum

(and the most representative) uncertainty information with minimum number of scenarios.

In systems with multidimensional parametric uncertainty, the uncertain parameters of-

ten exhibit correlations. This is especially true for chemical process systems where dis-

turbances in temperatures or flow rates in different sections of the plant are usually corre-

lated. Sampling methods like the monte carlo or the latin hypercube sampling emphasize
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Figure 3.1: Univariate plots of sampled data for d1 and d2

randomness of sampling to maximize information, but ignore such correlations. Similarly,

selecting scenarios according to a heuristic like the one shown in (2.3) also assumes that

the parameters are independent of each other. Therefore, these scenario selection methods

may not be the best if we want to exploit the uncertainty correlations to reduce the number

of scenarios.

To overcome this, multivariate data-analysis methods can be used to detect any hidden

correlations within the available data samples. The scenarios chosen using these multi-

variate methods explicitly take into account the interdependence between the parameters.

Dimensionality reduction methods such as PCA explain the parametric variation in a data

set in fewer dimensions. This means that lesser number of scenarios are able to effectively

describe the parametric variation in the system, leading to a compact scenario tree formu-

lation in multistage NMPC. It must be stated that the combination of MPC with PCA has

been proposed previously [57, 58, 59], albeit not in the context of multistage NMPC or

scenario selection.

In addition to improving computational efficiency, a further advantage of a compact

scenario tree formulation is that the corresponding multistage NMPC formulation leads to

less conservative solutions. Note that reducing conservativeness through uncertainty range

reduction has also been considered in [21, 22].

3.1.1 Principal component analysis for scenario selection

Consider a system with two uncertain parameters (nd = 2), that are represented by their

respective data sets as shown in Figure 3.1. Based on the conventional scenario selection

heuristic (2.3), the extreme and nominal values of the parameters are considered. Another
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similar heuristic to select scenarios, which we term as the “BOX” approach, is based on

the following set of discrete realizations:

MBOX =
(
{dmax

1 , dmin
1 } × · · · × {dmax

nd
, dmin
nd
}
)
∪ dnom (3.1)

However, such an approach interprets the parameter data independently and gives no indi-

cation of whether the two parameters are correlated to each other.

PCA employs a mathematical procedure that transforms a data set with multiple, possi-

bly correlated, parameters into a lesser number of uncorrelated parameters, characterized

by principal components. To be precise, PCA can be obtained through the eigenvalue

decomposition of the data covariance matrix, or alternatively through the singular value

decomposition of the (centered) data matrix (see [60] for further details on the PCA al-

gorithm). Essentially, it is an orthogonal linear transformation of the data set into a new

coordinate system with each new axis representing a principal component. The first prin-

cipal component points in the direction of maximum variance within the data set. Subse-

quent principal components account for as much of the remaining variance as possible, in

decreasing order. This dimensionality reduction helps explain the parametric variation in

the data using smaller number of components.

Consider a data matrix X ∈ Rno × Rnd , where rows of the matrix represent obser-

vations and columns represent the (possibly correlated) parameters. To remove arbitrary

biases from the measurements, the data is mean-centered and scaled, resulting in the data

matrix Xsc ∈ Rno ×Rnd . Performing PCA on Xsc results in the output Y ∈ Rno ×Rnd′ ,

with nd′ ≤ nd, according to:

Y = XscP (3.2)

where, P ∈ Rnd×Rnd′ is the projection matrix with each column representing a principal

component. In other words, each column of P contains the coefficients that project the

original data point to the new coordinate system (Y) of nd′ principal components. These

are also referred to as loadings. The matrix Y is called the scores matrix. The score of a

data point along a principal component represents the distance of that data point from the

mean along the direction of that principal component.

Scenarios can be chosen by leveraging information from this transformed data set.

Since the principal components are orthogonal to each other, scenarios can be chosen

along the direction of these principal components to obtain maximum uncertainty infor-
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Figure 3.2: Multivariate plot of the sampled data with the BOX (left) and PCA (right) scenario
selection. Selected scenarios are marked by ‘X’.

mation. Selecting scenarios along nd′ principal components explicitly accounts for any

hidden linear correlations between the original nd uncertain parameters. In particular, we

select scenarios that correspond to the maximum and minimum scores along the principal

components. This heuristic is based on the following set of discrete realizations:

MPCA = {d′max
PC(1), d

′min
PC(1)} ∪ · · · ∪ {d′

max
PC(nd′ )

, d′
min
PC(nd′ )

} ∪ dnom (3.3)

where d′ are in the transformed axes. The scenarios are obtained projecting these coor-

dinates back on the original axes. The benefit of using this scenario selection approach

becomes apparent when the uncertain parameters are shown on a multivariate plot. As

shown in Figure 3.2, the scenarios selected by PCA are much more representative of the

sampled data than those selected by the BOX approach. This is because PCA is able to de-

tect correlations in the sampled data and explain the uncertainty more compactly with the

principal components. A more compact uncertainty representation leads to reduced con-

servativeness of the multistage NMPC solution. The corresponding scores plot is shown

in Figure 3.3.

Note that the PCA may result in principal components such that some components

dominate over the others, in terms of how much data variability they explain. We then

propose to select scenarios only along these dominant principal components, since the

chosen scenarios can then account for maximum variation in the uncertainty in fewer di-
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Figure 3.3: Scores plot obtained from PCA. The maximum and minimum scores along the two
principal components are marked by ‘X’s.

mensions. For instance, the plot on the right in Figure 3.2 shows scenarios (marked by

red and blue ‘X’s) selected along both the principal components. Instead, since it can be

seen clearly that the first principal component is dominant1, scenarios can be chosen only

in that direction (marked by red ‘X’s). Thus, instead of choosing 4 scenarios, only 2 sce-

narios can encompass most of the parametric variation in the data shown in Figure 3.2,

without any significant loss in explained variability. Reducing the number of scenarios

in this manner can thus make the size of resulting multistage MPC problem significantly

smaller, reducing the computational effort.

The number of principal components considered to be dominant can rely on a suitable

heuristic for explained variance. In general, out of the obtained nd′ principal components,

the first nd∗ components that explain at least a certain fraction ξ of variance can be con-

sidered. A high value of ξ can be chosen (for example 80% or 90%) depending on the

application.

3.2 Dynamically adjusting the scenario tree

In this chapter, we take into account that the uncertainty set D, or the sampled data it rep-

resents, may change during the operation of the system. That is, the uncertainty may have

very different characteristics during different points in time. Consequently the scenarios

1For the data shown in Figure 3.2, the first principal component explains 96.4% of the variance.
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selected from D also change with time.

To reflect these changes, we propose to update the scenario tree dynamically to ac-

knowledge this time-varying nature of D. An online PCA-based scenario selection ap-

proach is employed whenever new uncertainty data becomes available. Moreover, we

propose that if the parametric variation can be explained by a small number of “dominant”

principal components (shown by PCA), it suffices to select the scenarios only along these

components to sufficiently explain the uncertainty. The resulting PCA-based multistage

NMPC formulation can be stated as:

min
zcl ,v

c
l

∑
c∈CPCAk

ωc
(
φ(zcN ,d

c
N−1) +

N−1∑
l=0

ϕ(zcl ,v
c
l ,d

c
l )
)

(3.4a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

c
l ) l = 0, . . . , N − 1 (3.4b)

zc0 = xk (3.4c)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (3.4d)

zcl ∈ X,vcl ∈ U, zcN ∈ Xf ,dcl ∈ Dk (3.4e)

dcl−1 = dcl l = Nr, . . . N − 1 (3.4f)

∀c, c′ ∈ CPCAk

where CPCAk is the set of scenarios, formed from the set of discrete uncertainty realizations

MPCA
k , taken from the uncertainty set Dk. Note that CPCAk , MPCA

k and Dk can change

from one time step to next.

Further, we propose to extend the length of the robust horizon dynamically in antici-

pation of a predicted change in uncertainty data set. This can provide an additional hedge

against uncertainty, since the “latest” information is constantly being used to select the

scenarios further along the scenario tree. If it is known a priori that new sampled data will

represent uncertainty information at a future time step in the horizon, the robust horizon

can be accordingly modified to take this into account. Farther way from the point of data

update, a shorter robust horizon can be used to reduce computational burden. As the pre-

dicted point of data update comes closer, the robust horizon can be extended to include

the new scenarios reflecting the update. For instance, consider the scenario tree shown in

Figure 2.2. Here Nr = 2 at time tk. Now, if new data samples explaining the uncertainty

for time tk+2 become available at time tk, then the robust horizon can be increased from
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Nr = 2 to Nr = 3 at time tk, in order to accommodate the extra branching (based on

newly available sampled data) at time tk+2. This would of course lead to consideration of

additional scenarios (in this case, 33 = 27 scenarios), which increases the computational

effort in solving the problem. Thus a trade-off needs to be made between incorporating

extra information about future uncertainty and increasing computational complexity, de-

pending on the given application.

It is important to note in this framework that it is the new data set describing the

expected uncertainty at tk+2 (i.e. Dk+2) that becomes known at tk. The exact future

realization of the uncertainty at tk+2 (i.e. dk+2) is obviously not known at tk. However,

with the knowledge of Dk+2 at tk, we can extend the robust horizon from Nr = 2 to

Nr = 3 at tk itself, in order to capture this extra information. We can then perform PCA

online for the Dk+2 data set, again at tk itself, to get the extra branches in the scenario

tree resulting from this change in the robust horizon from Nr = 2 to Nr = 3. In this way,

the updates of scenarios using PCA and changes in the length of the robust horizon can

be performed online at any time step where new information about future uncertainty data

presents itself.

3.3 Case study

We consider a hypothetical two-plant TES system, with one plant being the supplier of heat

(S) and the other being the consumer (C). A thermal storage tank acts as a buffer between

the two plants to facilitate the energy exchange. The tank interacts with the two plants

via heat exchangers, as shown in Figure 3.4. Further, the tank can directly be heated up

via a limited, local heating source that is considered inexpensive. If the energy in the tank

is insufficient to meet the energy requirements on the demand side (for example, during

peak demands), the consumer plant C has to purchase the excess energy from the market.

Energy from the market, usually in the form of peak heating sources like fossil fuel burners

or electricity, is much more expensive than the local heating source. The objective is to

operate the system such that the total cost of energy purchase is minimized.

The process temperatures from the supplier and consumer plants are T processS and

T processC respectively. Temperatures on the hot and cold sides of heat exchangers on both

sides are ThotS , T coldS , ThotC and T coldC respectively. The tank temperature is TTES , whereas

the ambient temperature is T amb. The flow rates on either side of the heat exchangers are
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Figure 3.4: Illustration of a simple energy storage system.

qhotS , qcoldS , qhotC and qcoldC respectively. Local heat supply is QTES and the peak heating

sourced from the market is QpeakC . Consumer side demand is denoted by QdemandC . Table

3.1 shows the states, inputs and uncertainties in the system. Further details regarding the

process model and data are given in Appendix A. We consider hot water as the fluid for

heat exchange.

As noted, the uncertainties in the system are the process temperatures of the supplier

and the consumer. Such temperature data from a process is usually logged. A period of

24 hours is considered for this uncertainty data. Further, we consider that the process

temperature distributions are different for three distinct phases of the day - 12 am to 8

am (night phase), 8 am to 4 pm (day phase) and 4 pm to 12 am (evening phase). We

use synthetic data for the temperature distributions for these phases. The plants operate at

higher temperatures during the day phase and lower temperatures during the evening and

night phases. Further, it is reasonable to expect that these plant temperatures are correlated

to each other, since the periods of high and low activity in process plants in an industrial

cluster are similar. The scatter plot of the two process temperatures is shown in Figure 3.5.

For implementing the multistage NMPC (2.4), the economic stage cost is considered to be
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Table 3.1: Simple TES model: states, inputs, and uncertainties.

Symbol Description Unit

States
ThotS , T coldS Supplier-side temperatures ◦C
ThotC , T coldC Consumer-side temperatures ◦C
TTES Temperature of the TES ◦C

Inputs
qhotS , qcoldS Volumetric flow rates on the supplier-side HEX m3/s
qhotC , qcoldC Volumetric flow rates on the consumer-side HEX m3/s
QTES Local heating for TES kW

QpeakC Peak heating rate for consumer kW

Uncertainties
T processS Supplier process temperature ◦C
T processC Consumer process temperature ◦C
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Figure 3.5: Uncertainty data - process temperatures from the plants for the different phases. It can
be seen that the temperatures are correlated differently at different phases of the day.
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the cost of purchased energy, which we want to minimize 2:

ψl = PTES(QTES)l + P peak(QpeakC )l (3.5)

Model parameters are given in Table A.1, and bounds for the states and inputs are given in

Table A.2.

The process dynamics are discretized using third-order Radau collocation over finite

elements. The multistage NMPC problem is formulated with N = 24 hours (finite ele-

ments) and Nr = 1 hour, with control action changing every hour. JuMP [62] (version

0.18.2), a modeling tool within the framework of Julia [63] (version 0.6.2) program-

ming language, is used to implement the multistage NMPC problem. The resulting NLP

is solved using IPOPT [53], with MA27 [79] as the linear solver. The results are divided

into the following two parts:

1. Comparison of a scenario selection between the data-driven PCA approach and the

conventional BOX approach, with a constant Nr = 1.

2. Studying the effect of dynamically adjusting Nr closer to an anticipated change in

the uncertainty data, while using PCA for scenario selection.

3.3.1 Data-driven vs conventional scenario selection

For comparison, the dynamic scenario selection is done with two methods. In the first

method, the conservative BOX approach is used, selecting scenarios as the four corner

points from the box that encompasses all the uncertainty data over each 8-hour phase

during the day. Essentially, these scenarios represent the combinations of the minimum

and maximum of the data set along each dimension, along with the nominal scenario, as

shown in heuristic (3.1). As noted, the BOX method does not account for any correlations

between the uncertain inlet temperatures.

In the second, PCA method, the scenarios are chosen by performing PCA over the data

sets that are relevant for the corresponding phases of the day (shown by different colors in

Figure 3.5). The PCA results in two principal components for each data set, with the first

principal component explaining 96.51% of the total variability for the night phase data,
2For practical implementation purposes, we assume that our prediction horizon is long enough and do not

consider terminal conditions (see [61], for example).
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Figure 3.6: The TES tank temperature across the 24-hour period, for the BOX and PCA methods.

89.72% for the day phase data, and 91.84% for the evening phase data. Since the first

principal components explain a large fraction of the variance in the data, two scenarios are

selected corresponding to the minimum and maximum scores along this principal compo-

nent only. Following the heuristic (3.3), a third scenario is chosen to represent the mean

value along each dimension.

We consider the uncertainty to be time-varying over the MPC horizon, where the “true”

realization of the uncertainty in the plants is chosen randomly for each hour from the

corresponding data set. The simulation is considered for the 24 hour period from 12 am to

12 am. The demand is constant at 5 MW throughout the day, except for 7 am to 9 am and

3 pm to 5 pm, when there is a peak demand of 10 MW.

The results of the optimization are shown in Figures 3.6 and 3.7. The colored back-

ground shades in the plots relate to the corresponding phase of the day, and have a color

coding that matches the one in Figure 3.5 It can be clearly seen that for the BOX method,

the solution is more conservative. Figure 3.6 shows that the TES tank is heated to a higher

temperature for satisfying the same demand profile across the day. As shown in Figure 3.7,

the local heating of the tank is more with the BOX method compared to the PCA method.

Similarly, the data-driven approach leads to lower purchases of the expensive energy from

the market during peak demands (7 am to 9 am and 3 pm to 5 pm).

Moreover, the simulations were repeated 30 times for the time-varying uncertainty

case. The “true” set of uncertain parameters in each simulation was a randomly chosen

subset of the available data set. The performance for each simulation run was evaluated

based on the integrated objective function, which sums up the values of the objective cost

for all stages and scenarios. The results are presented in Figure 3.8, where it can be
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Figure 3.7: The energy purchased from the market and the local heating source across the 24-hour
period, for the BOX and PCA methods.

seen that the PCA method outperforms the BOX method with a lower cost. Note that we

consider only 3 scenarios in the PCA-based method, compared to 5 scenarios in the BOX

method. To this end, the integrated objective costs are divided by the respective number

of scenarios chosen for each method for a fairer comparison. The reason for a lower cost

is that the scenarios chosen via PCA encompass the uncertainty more compactly, and are

thus likely to be closer to the actual realization of the uncertainty.

Since the PCA-based method enjoys a much smaller problem size, the computation
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Figure 3.8: The averaged integrated cost for 30 different simulation runs.
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time for the BOX method is significantly greater than for the PCA method. The BOX

and the PCA methods result in NLPs with 4320 and 2592 variables respectively. Com-

paring the mean computation times for both methods reveals that the PCA-based scenario

selection is about 48% faster than the conventional approach, on average.

3.3.2 Dynamically adjusting the robust horizon

Here, the simulations are run such that the multistage NMPC is implemented using two

Nr cases. In the first case, the robust horizon is kept constant throughout the simulation at

Nr = 1. This is referred to as the constant Nr case.

In the second case, the robust horizon is dynamically adjusted (switched) fromNr = 1

to Nr = 2, one hour before the night-to-day and day-to-evening phase changes. This

change is implemented only for the corresponding next one time step, and is subsequently

reduced back to Nr = 1 for later time steps. Thus, Nr = 2 is used for the simulation at

7 am and 3 pm. This is because it is known that, at these times, the uncertainty data will

be updated in one hour due to change in phase; and the robust horizon length of 2 hours

reflects this. This is denoted as the dynamic Nr case.

The scenario selection is done via PCA for both cases. Moreover, the energy demand

is considered to be constant at 5 MW throughout the 24-hour period (i.e. no peak demand).

The results are shown in Figures 3.9 and 3.10.

It can be seen that by dynamically extending the robust horizon (dynamic Nr case),

the optimization anticipates the upcoming rise in process temperatures by preempting the

local tank heating at 7 am (shown by a higher QTES in the dynamic Nr case than in the

constant Nr case). This can also be seen from the tank temperature profile, where the

temperature of the tank rises higher in the dynamic Nr case at 7 am than in the constant

Nr case. Consequently, QpeakC at 8 am is smaller in the dynamic Nr case, leading to lower

cost. During the 4 pm phase change, the temperatures are dropping anyway so market

purchase is unnecessary. In other words, the tank has enough energy during this phase

to satisfy the energy demand of the consumer. This leads to the same temperature and

heating profiles in the evening phase for both constant and dynamic Nr cases.

34



3.3 Case study

Figure 3.9: The TES tank temperature across the 24-hour period, for the constant and dynamic Nr

cases.

Figure 3.10: The energy purchased from the market and the local heating source across the 24-hour
period, for the constant and dynamic Nr cases.

35



Chapter 3. Data-driven Adaptation of the Scenario Tree in Multistage NMPC

3.4 Conclusion

The TES case study demonstrates that the same energy demand profile can be satisfied by

heating the tank less if the scenario selection is data-driven and dynamic. Not only does

the tank operate at a lower temperature, but the cost of operation is also significantly lower.

In addition, extending the robust horizon dynamically leads to the consideration of

future changes in process temperatures by the multistage NMPC algorithm. This prompts

preemptive control action so that the tank is heated up in anticipation even before the

uncertainty data changes. The result is that the expensive market purchase is reduced

when the energy is demanded at a higher process temperature.

To conclude, we have demonstrated that an online PCA-based, dynamic scenario tree

adaptation approach leads to solutions that are less conservative while still hedging against

the uncertainty. Moreover, the approach involves solving an optimization problem of a

smaller size since fewer scenarios, chosen only along the dominant principal component,

are needed to describe the uncertainty.
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Chapter 4
Data-Driven Robust Optimal

Operation of Thermal Energy

Storage in Industrial Clusters

The industrial sector is responsible for releasing large quantities of waste heat to the en-

vironment - via cooling media, exhaust gases, and hot equipment surfaces, among others.

This is especially true for chemical, minerals and metals, pulp and paper, and the food in-

dustries [64]. Recovering, storing, and reusing this surplus heat when required is a means

of improving industrial energy efficiency and lowering its overall environmental impact.

Moreover, waste heat recovery presents a low-cost energy resource with the potential to

realize significant energy savings, improving the competitiveness of the sector.

Surplus heat recovery is an especially attractive proposition for industrial clusters since

it presents an opportunity for flexible energy exchange within the cluster, with plants repre-

senting both sources and sinks of surplus heat. Today, recovered high-grade heat is mostly

reused within the process itself in order to reduce exergy losses, but low-grade surplus heat

below 200 ◦C provides recovery potential for external energy exchange [65]. Such low-

grade heat integration is thus highly beneficial for energy exchange in industrial clusters,

since participating plants can fulfill their low-grade heat demands from within the cluster

itself.
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A prominent operational challenge for surplus heat exchange between multiple plants

is the temporal decoupling between the availability of surplus heat and its demand [66].

From the various available technologies [67], thermal energy storage is a viable option to

handle this issue. Surplus heat is supplied to, and extracted from, a TES unit at different

temperatures, allowing for a diverse set of plants to participate in the energy exchange.

TES units offer operating flexibility to heat recovery by creating a buffer between the

supply and demand of surplus heat, thereby reducing peak energy requirements. With

TES, however, the dynamic operational aspects become extremely important.

Optimal operation and control of TES units has been studied previously within dif-

ferent application areas. For instance, optimal operation of TES units in buildings for

reducing peak loads was considered by [68]. In [69, 70], an MPC scheme is implemented

on a TES system for energy-efficient buildings. Another application of MPC on a TES sys-

tem for multi-energy district boilers is investigated in [71]. Classical control techniques

like the PID-control have also been investigated, for instance in TES for concentrated solar

polar [72]. An optimal control scheme was proposed by [73] for surplus heat exchange

using TES in industrial clusters. A review of various types of TES and their applications

can be found in [74, 75], whereas a review of optimization and control for TES systems is

given in [76].

A TES unit within an industrial cluster setting presents a unique challenge from an op-

erator’s perspective, in that there are various system uncertainties to contend with. In [77],

it is noted that supply of low-grade surplus heat is usually unstable because of temperature

fluctuations in the processes producing it. Similarly, there is volatility in consumer-side

heat demands and process temperatures. These uncertainties in the supply and demand

profiles of surplus heat affect efficient utilization of the TES unit. Disregarding these un-

certainties in the system can lead to control solutions that are not only suboptimal, but also

infeasible. The plant-model mismatch that arises due to these uncertainties may result in

control solutions that cause critical constraint violations. In an industrial cluster, this may

translate to larger heat-acquisition costs to satisfy consumer demands, leading to high car-

bon emissions if fossil fuel-based peak heating is involved. Operating constraints relating

to safety or process specifications may also be violated. Such constraint violations usually

come with a significant economic penalty, and so may not be acceptable to the stakeholders

in the industrial cluster.

In this chapter, we argue that for optimally operating a TES unit in an industrial cluster,
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uncertainty in heat supply and demand must be taken into account rigorously. To this end,

we propose the use of multistage NMPC to achieve robust operation. The availability of

historical data from industrial processes motivates the need for data-driven approaches for

scenario selection in multistage NMPC. We show in this chapter that the inherent correla-

tions present in the heat supply and demand profiles can be exploited using the data-driven

PCA approach presented in Chapter 3.

Chapter 3 addresses the computational efficiency and reduced conservativeness aspect

of data-driven scenario selection in multistage NMPC. Here we address the robustness

aspect, and consider its application on a more detailed TES system using industrial heat

supply and demand data sourced from a district heating company in northern Norway.

In particular, a comparison is made between a standard NMPC formulation where only

the nominal uncertainty is considered, and the multistage NMPC scheme with data-driven

scenario selection. We demonstrate that the latter formulation leads to an efficient utiliza-

tion of the TES unit by avoiding violations of critical operating constraints specified by

the stakeholders in the industrial cluster. The results presented in this chapter haven been

published in [30].

4.1 Case study: system description and modeling

Figure 4.1 illustrates the topology of an industrial cluster with nS suppliers and nC con-

sumers of heat, along with a TES as buffer. The TES unit is considered to be a hot water

tank. The supplier plants are sources of energy, supplying excess heat to the TES. On the

other hand, the consumer plants are heat sinks, extracting energy from the TES to fulfill

their energy demands. The heat exchange between the supplier/consumer plants and the

TES happens with the help of heat exchangers, with hot water being the energy carrier.

The temperatures of the process streams in the supplier and consumer plants drive the heat

transfer.

In cases of high volatility with sharp fluctuations in heat demand on the consumer side,

it may happen that the energy from the TES is not enough to satisfy any extra demand. A

common practice for such an extra-demand scenario is to purchase electricity externally

from the market, or to burn fossil fuels using boilers, to heat up the required process

streams. Not only are these peak heating sources of energy expensive, significantly in-

creasing the operating costs in the cluster, but they also lead to higher carbon emissions.
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Figure 4.1: Topology of an industrial cluster with multiple energy suppliers and consumers, with a
TES unit as buffer. The red lines represent the hot streams and the blue ones cold streams.

The source of surplus heat in the suppliers is assumed to be the cooling of certain batch

processes. As such, the suppliers can dump heat to the environment to meet their cooling

demands.

We focus on modeling the dynamics of the heat exchange between the TES, and one

pair of supplier and consumer plants. The heat exchangers are considered to have counter-

current flow, and are discretized in space into a series of nhex cells. Further, we consider

that the supplier and consumer plants are close enough to each other such that the heat

losses in the pipes due to time delays are assumed to be negligible.

The incoming surplus heat from the supplier is denoted as QsupplyS , and the demand

from the consumer is QdemandC . This heat has to be delivered through the supply-side

heat exchanger to the tank. The temperature at which this heat is supplied is denoted

by T processS and the return temperature (after exiting the heat exchanger) is denoted by

T returnS . The analogous temperatures on the consumer side are T processC and T returnC .

On the return stream of the supplier, there is a provision to dump heat so as to reduce

the return temperature to a desired level, denoted by QdumpS . Similarly on the consumer

side, there is a provision to heat up the return stream using the expensive peak heating to

satisfy required demand, denoted by QpeakC . The temperatures on the hot and cold sides

of both heat exchangers are denoted by Thex,hotS,k , Thex,coldS,k , Thex,hotC,k and Thex,coldC,k . Here
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k ∈ {1, 2, . . . , nhex} is the cell index of the corresponding heat exchanger. The volumetric

flow rates on the hot and cold sides of both heat exchangers are denoted by qhotS , qcoldS , qhotC

and qcoldC .

Typically, a large hot water tank will have a temperature gradient along its height

leading to different densities at the top and the bottom of the tank. In this work, however,

modeling of such thermal stratification is not considered. Instead, the tank is assumed

to have uniform mixing throughout its volume, such that the temperature within the tank

is same as the tank outlet temperature, denoted by TTES . Since the temperature ranges

considered are below the boiling temperature of water, we assume an unpressurized tank.

Moreover, T amb is the ambient temperature. The detailed model equations are given in

Appendix B.

Dynamic operational optimization of the energy storage requires a central cluster op-

erator to apply optimal control inputs to the system such that the heating and cooling

requirements of the plants in the industry cluster is satisfied. Table 4.1 shows the states,

inputs, and uncertainties in the system. The volumetric flow rates on the supplier side, qhotS

and qcoldS , are considered to be fixed, and are not degrees of freedom in the system. The

operator should thus determine how much heat to dump on the supplier side, QdumpS , and

how much heat to acquire through the peak heating sources, QpeakC , on the consumer side.

Additionally, the operator must determine how much heat can be extracted from the TES

by adjusting the volumetric flow rates through the consumer-side valves, qhotC and qcoldC .

The economic objective for the operator is to minimize the use of expensive peak

heating sources in the industrial cluster. For implementations such as standard NMPC

(2.2) and multistage NMPC (2.4), this can be formulated as the stage cost:

ψl =
(
QpeakC

)
l

(4.1)

The cost (4.1) is an L1 cost function, which assists in getting sparse solutions [78]. It also

ensures that peak heating is only used in cases where the heat demands cannot be fully

met by the TES. With a purely economic objective, the idea is for the cluster operator

to primarily give directives on how much heat to dump to the surroundings and/or how

much peak heating to use, at every hour. We assume that there is a lower regulatory level

(e.g., PID control) to handle other process disturbances on a faster time scale - e.g., in

temperatures, mass flows, etc.
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Table 4.1: Detailed TES model: states, inputs, and uncertainties.

Symbol Description Unit

States
T processS , T returnS Supplier-side process and return temperatures ◦C
T processC , T returnC Consumer-side process and return temperatures ◦C

Thex,hotS,k , Thex,coldS,k Supplier-side HEX temperatures ◦C

Thex,hotC,k , Thex,coldC,k Consumer-side HEX temperatures ◦C

TTES Temperature of the TES ◦C

Inputs
qhotC , qcoldC Volumetric flow rates on the consumer-side HEX m3/s

QdumpS Heat dump rate for supplier kW

QpeakC Peak heating rate for consumer kW

Uncertainties
QsupplyS Surplus heat supply from supplier kW
QdemandC Surplus heat demand from consumer kW

An important point to note is that we only consider the application of both the NMPC

strategies during dynamic operation of the TES, and not during edge-cases like when the

TES is empty at the start. To begin with an empty TES would be equivalent to a start-up

phase where all the supplied heat goes to heating up the tank, and all the demanded heat is

fulfilled via peak heating. In this case, there are not enough degrees of freedom to improve

performance or robustness via NMPC, especially over a shorter horizon.

4.2 Case study: data description

We consider a case study with one supplier and one consumer of heat, exchanging heat

via a TES tank. The values of the various system parameters are given in Table B.1. A

tank volume of V TES = 1000 m3 is considered. This approximately corresponds to a

cylindrical tank with a height of 10 m and a diameter of 11 m. The heat losses in heat

exchangers, and in the pipes carrying the hot water, are considered to be negligible. The

operating bounds on the various system variables are given in Table B.2.

The heat supply and demand data used in this case study is based on the 2017 data from

Mo Fjernvarme AS, a district heating company which is part of the Mo Industrial Park in

northern Norway. The surplus heat in Mo Fjernvarme is sourced from a smelting plant
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Figure 4.2: The hourly supplied and demanded heat flow rates for 2017.

within the industrial park in form of flue gases. The demand, on the other hand, comes

from the town of Mo i Rana and from within the industrial park itself. For simplicity, we

do not separately model the various processes within Mo Industrial Park in this work. As

such, the models that describe our case study are not directly related to the industry park

layout or processes. We instead focus on the overall heat supply and demand data from

the industry park for data analysis, along with the detailed TES model shown in Appendix

B, to demonstrate the effectiveness of our proposed approach.

The hourly heat supply and demand for 2017 is shown in Figure 4.2. For the spring,

summer, and fall months of April to November, it can be seen that the demand is lower.

However, for the winter months of January–March and December, there is large variation

in the demand compared to a relatively smaller variation in supply. Since optimal operation

is considered on a daily basis, a TES unit is not relevant for periods when supply is always

higher, since the demand can be completely satisfied by the supplied heat. However, for

the winter months, an optimal operation strategy would allow for making TES storage and

discharge decisions in order to reduce the peak heating. Moreover, for diurnal thermal

storage there must be a period in the day at which supply is greater than demand. Figure

4.3 shows the aggregated heat supply and demand for each month of 2017.

Apart from dimensionality reduction, PCA can be used in data preprocessing to detect
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Figure 4.3: The total supplied and demanded heat for each month of 2017.

outliers. These represent instances where the system is either sampled wrongly or is not

in normal operation. Statistically, outliers are considered to not be a part of the general

sampling population, and are excluded from our analysis to avoid unnecessary conserva-

tiveness in scenario selection. We analyzed the demand and supply data the winter months

of January–March and December to detect any outliers. For a total of 121 winter days

with hourly variation in heat flows, PCA is performed separately in both sets of supply

and demand data. Our analysis shows that there were many outliers in the data during the

month of December, and hence this month is discarded (see Appendix B for more details

on outlier detection). Of the remaining winter months, January shows the least difference

between the total supplied heat and the total heat demand, making it a suitable candidate

to inspect daily storage. Hence, we focus on the month of January in this work.

Since hourly heat data is available, the January data includes 31 sample points (for

31 days), corresponding to each of the 24 hours of the day. However, our analysis in

Figure B.2 shows that the 2nd, 3rd, 4th, 5th, and the 13th days of the month are outliers

in terms of either the heat supply or demand. Hence, these are excluded from the analysis.

The scatter plot of the data points for each of the 24 hours is shown in Figure 4.4. For

most of the day, a linear correlation can be seen for the heat supply and demand. The

exceptions are the morning hours of 8–10 am, and the afternoon hours of 3–5 pm. These
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Figure 4.4: Hourly scatter plot of heat supply and demand (normalized) in January 2017. The plots
in blue show a linear trend in the data. The plots in red correspond to the peak demand hours, and
do not show the linear correlation.

are the peak demand hours, as can be expected of a district heating system. The supply

and demand data for these hours are thus not linearly correlated to each other. Figure 4.5

shows the mean hourly demand trend averaged over the winter months of January–March

and December. Combined with the analysis in Figure 4.4, it is evident that 8–10 am and

3–5 pm are the expected peak heating hours for January.

The aim is to apply the optimal control strategy for operation during a typical Jan-

uary 2018 day, based on the available January 2017 data shown in Figure 4.4. Applying

standard NMPC (2.2) or multistage NMPC (2.4) requires a prediction of the heat supply

and demand across the prediction horizon, which is taken to be 24 hours. These values

are taken to be the means of the data corresponding to each of the scatter plots in Figure

4.4. Additionally, the multistage NMPC also requires scenario selection for each hour of

operation. This scenario selection can be done by performing PCA on the corresponding

scatter plots in Figure 4.4, as explained in Chapter 3.1.1. For the non-peak demand hours,

since there is a strong linear correlation between the supply and demand, the scenarios are

chosen only along the dominant principal component. This implies a total of 3 scenarios,

corresponding to the minimum and maximum scores, along with the mean value. For the
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Figure 4.5: Mean hourly demand data for winter months (January–March and December) in 2017
showing expected peak demand hours between 8–10 am and 3–5 pm.

peak hours of 8–10 am and 3–5 pm, the correlation is not strong enough, and thus the sce-

narios are chosen along the first two principal components to more accurately encompass

the uncertainty. The number of scenarios is 5, corresponding to the extreme scores along

the two principal components, along with the mean.

4.3 Case study: results

We use third-order Radau collocation over finite elements to approximate the state equa-

tions. The inputs and the uncertain parameters are discretized into finite elements, but are

considered to be piecewise constant within each element. We consider a prediction hori-

zon of N = 24 h. The finite-dimensional NLP is formulated using 24 finite elements,

implying that control action is taken every hour. This also implies that the uncertain pa-

rameters are assumed to evolve on an hourly basis, as is also the case with the available

industrial data.

The scenarios representing the uncertainty are chosen according to PCA from their

respective January 2017 data sets. As explained before, we have |M| = 3 discrete realiza-

tions of the uncertainty for every stage of the multistage NMPC problem, in case of the

non-peak demand hours. Similarly, we have |M| = 5 discrete realizations for the peak

hours. We assume a robust horizon of Nr = 1 in this study, giving us either 3 or 5 total

scenarios in the multistage NMPC problem, depending on the hour of operation. Further,

we consider equal weights for all scenarios.

To evaluate the effectiveness of the PCA-based multistage NMPC formulation (2.4)

46



4.3 Case study: results

for this case study, we compare it with a standard NMPC formulation (2.2) where only

the nominal uncertainty is considered. To simulate the “true” plant data, we use the same

system model as that in the NLP, but the heat supply and demand data are taken from a

typical day in January 2018. For comparison, identical data representing the true values

of heat supply and heat demand is used in the plant simulation, for both the standard and

multistage NMPC methods.

The NLPs (2.2) and (2.4) are modeled using the tool JuMP [62] (version 0.18.5),

within the framework of the Julia [63] (version 0.6.2) programming language . The

solver used within this framework is IPOPT [53] (version 3.12.8), which uses interior-

point algorithms to solve the NLPs. The MA27 [79] linear solver is used within IPOPT.

We focus on the operating constraints in the system for this demonstration. The sup-

ply of heat on the supplier side is assumed to come from a batch cooling process, which

requires that the return temperature T returnS does not exceed 85 ◦C. As such, any tem-

peratures above the mandated limit may lead to inferior product quality in the batches.

Similarly, the district heating network on the consumer side needs the return temperature

T returnC to be above 60 ◦C. Therefore, any constraint violation on these return tempera-

tures carries an economic penalty for the respective supplier or consumer.

To investigate the robustness of the methods, the actual heat supply and demand pro-

files of January 06, 2018 are considered. The expected values in both the NMPC formu-

lations come from the 2017 data, as do the scenarios of multistage NMPC method. The

difference in the 2017 and 2018 data creates the plant–model mismatch, and is shown in

Figure 4.6.

Figure 4.7 shows the tank temperature, supplier return temperature and consumer re-

turn temperature profiles obtained by the application of the two control strategies, given

the constraints on the return temperatures. It can be seen that the temperature profiles are

higher with multistage NMPC in general. The multistage NMPC keeps the tank heated up

and discharges it less than the standard NMPC, even though there is a higher demand. This

conservativeness is because the multistage NMPC respects the constraint on consumer-

side return temperature T returnC to keep it above 60 ◦C. In contrast, the standard NMPC

violates this operating constraint during 8 out of the 24 hours of operation, since it pri-

oritizes the economic objective of demand satisfaction at the cost of constraint violation.

The multistage NMPC, having accounted for such a scenario in its scenario tree formula-

tion, anticipates that recourse action is possible in the future time steps. As a consequence,
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Figure 4.6: The actual and expected heat supply and demand profiles. The actual profiles are for
January 06, 2018; the expected profiles represent the average across all days in January 2017.
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Figure 4.7: The supplier return, consumer return, and tank temperature profiles with the standard
and multistage NMPC approaches for January 06, 2018. The constraint limits are shown in dashed
black lines.
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Figure 4.8: The heat dumping and peak heating profiles obtained from standard and multistage
NMPC approaches for January 06, 2018.

T returnC is always above its limit in order to satisfy consumer demand, and does not violate

it.

Multistage NMPC, however, has a higher cost of peak heating than standard NMPC,

as shown in Figure 4.8. While standard NMPC suggests a total peak heating of 42.15

MWh, multistage NMPC results in 88.73 MWh of peak heating across the day. This can

be thought of as the “cost of robustness” required by multistage NMPC. Since T returnC can

only drop so much, the remaining heat demand has to be satisfied through additional peak

heating. The supplier also has to dump a lot of heat compared to standard NMPC, since

the temperature of the return stream has to be brought down below 85 ◦C. Another factor

for this is the temperature difference between the supplier and the TES, which becomes

too small to transfer heat.

The standard NMPC is oblivious to these differences in the heat supply and demand,

and proposes control solutions that require lesser peak heating. The plant–model mis-

match that arises from this uncertainty, however, causes the states to violate their operating

constraints. Although the standard NMPC suggests lower peak heating requirements com-

pared to multistage NMPC, this is counterproductive because it is not robust and ends up

violating the operating constraint for a significant operating period. The economic penalty
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Figure 4.9: The supplier and consumer return temperature profiles for the whole month of January
2018; standard NMPC leads to frequent constraint violations, multistage NMPC keeps the tempera-
tures within bounds, shown in dashed black lines.

of such suboptimal operation may be significantly higher than any savings achieved via

lower peak heating.

We repeated the simulations for all 31 days of January 2018 using the corresponding

heat supply and demand profiles, and found that multistage NMPC is consistently suc-

cessful in keeping the system within the specified limits, whereas the standard NMPC

frequently results in constraint violations. This can be seen in Figure 4.9, which shows the

supplier and consumer return temperature profiles for all the days in January 2018. These

simulations show the applicability of the method even when the heat supply at the start of

the horizon is lower than the heat demand, as was the case for multiple days in January

2018.

The robustness offered by multistage NMPC comes with a higher peak heating cost.

The average daily use of peak heating across all days in January with standard NMPC

is found to be 17.27 MWh, whereas for multistage NMPC it is 73.11 MWh. We also

noted the frequency of constraint violations in both cases. The supplier and consumer-side

return temperature constraints are violated during a daily average of 3.2 hours and 3.6

hours respectively for standard NMPC. The corresponding values for multistage NMPC
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4.4 Conclusion

are 0.06 hours and 0.03 hours respectively. This shows that the cluster operator is better

off employing the multistage NMPC strategy even though it has higher peak heating cost.

This is because the long periods of unprofitable operation in standard NMPC may not

be acceptable to the stakeholders, resulting in higher overall costs. Multistage NMPC

thus helps to keep the overall costs down, while also making the system robust against

uncertainties in heat supply and demand.

4.4 Conclusion

In this chapter, the application of the PCA-based multistage NMPC strategy is investi-

gated for an industrial cluster system with a hot water TES unit. The case study presented

a model with one supplier and one consumer of surplus heat, whereby the heat exchange

happens through a TES tank. We looked at the challenge of effectively handling the un-

certainty in heat supply and demand for this system, with the multistage NMPC scheme.

A PCA-based scenario selection strategy is applied to quantify the uncertain supply and

demand of heat, and the robustness of multistage NMPC is demonstrated by comparing it

to a standard NMPC formulation. We use additional data analysis to detect outliers in the

data and to predict trends in the heat profiles.

The results demonstrate that although the multistage NMPC is more conservative than

the equivalent standard MPC formulation in terms of peak heating requirements (the “cost

of robustness”), it is much better at keeping the system within specified bounds on the

system states. We consider operating constraints on the return temperatures on the supplier

and consumer plants, and find that the standard NMPC strategy leads to frequent, non-

trivial, constraint violations. The multistage NMPC, on the other hand, is able to steer

the system while respecting these operating constraints. We argue that large economic

penalties for constraint violations justify the use of the multistage NMPC strategy over

standard NMPC, as it is more effective in handling the uncertain heat supply and demand.

In a nutshell, we demonstrate that implementing the proposed robust control strategy can

result in an energy-efficient utilization of the TES unit for surplus heat exchange, not only

providing cost-savings to the industrial cluster as a whole, but also benefiting its individual

stakeholders.
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Chapter 5
Sensitivity-assisted Multistage

Nonlinear Model Predictive

Control: Robustness and

Computational Efficiency

The major challenge in multistage NMPC is that the computational size of the problem

grows rapidly with the scenario tree. In particular, the problem size grows exponentially

with:

1. the number of uncertain parameters

2. the number of discrete realizations for each uncertain parameter

3. the length of the prediction horizon

The problem quickly becomes too expensive computationally, and this poses a challenge

for real-time implementation of the NMPC. To expedite computations, various approxi-

mation strategies have been proposed. Most implementations of multistage NMPC apply

robust horizon, where the branching of scenarios is stopped after a certain number of time

steps in the prediction horizon. Because the problem size still grows exponentially with

the length of robust horizon, it is typically restricted to one or two time steps in most
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applications. In the Part I of this thesis, a data-driven method of selecting scenarios was

considered, where the uncertainty information is captured with fewer scenarios using mul-

tivariate data analysis, helping with the computational speed.

To improve computational efficiency in NMPC, several sensitivity-based approaches

have been proposed (see [80, 81] for recent overviews). For instance, in [82], sensitiv-

ity calculations are used to dynamically update the NMPC horizon length in order to be

computationally fast. The advanced-step NMPC proposed by [83] precomputes a set of

solutions offline, and makes a quick sensitivity-based correction online to reduce com-

putational effort. This concept was extended to a parallelizable advanced-step multistage

NMPC algorithm proposed in [28].

In this chapter, we develop an efficient approximation to the multistage NMPC prob-

lem (2.4) by dividing the scenarios into two sets: a (small) set of so-called critical sce-

narios, and a (larger) set of noncritical scenarios. Under the assumption that inequality

constraints in the system are strictly monotonic with respect to the uncertain parameters,

the critical scenarios are considered to be those most likely to violate these inequality

constraints. Thus, the critical scenarios are composed of the uncertainty realizations that

lead to such constraint violations. We solve an optimization problem with a smaller sce-

nario tree comprising of these critical scenarios. Further, to account for the remaining

uncertainty, we include the costs of the noncritical scenarios in the objective function

based on a sensitivity-based linear approximation. This approach, which we call the

sensitivity-assisted multistage NMPC or samNMPC, directly addresses the issue of ex-

ponential growth rate of the problem size. In particular, the problem size is independent of

the number of uncertain parameters, and also the number of discrete realizations for each

uncertain parameter. Moreover, it scales only linearly with the length of the robust hori-

zon, which allows us to efficiently approximate very large scenario tree representations

for ideal multistage NMPC 1. We also propose a parallelizable algorithm based on Schur

complement decomposition that can be used to speed-up the sensitivity calculations on the

linear algebra level.

The samNMPC algorithm is implemented on two illustrative case studies: a setpoint

tracking of species concentration in a CSTR, and setpoint tracking of water levels in an in-

terconnected four tank system. Its performance is compared with the standard NMPC and

1In Part II of this thesis, we refer to the multistage NMPC problem (2.4) as “ideal” multistage NMPC in order
to differentiate it from our proposed sensitivity-assisted multistage NMPC.
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ideal multistage NMPC formulations, in terms of robustness and computational efficiency.

This chapter is largely based on the work done in [32], and extends some preliminary work

done in [84, 85].

5.1 Nonlinear programming sensitivity

To see how the primal-dual solution s∗ of the parametric NLP problem (2.5) changes as

parameter p is perturbed from p = p0 to p = p, we cite the following property:

Theorem 1. (NLP Sensitivity) If F (·) and c(·) of the parametric NLP problem (2.5) are

twice continuously differentiable in a neighborhood of the nominal primal and dual solu-

tion s∗(p0) and this solution satisfies the LICQ, SSOSC and SC, then,

• s∗(p0) is an isolated local minimizer of (2.5) at p0 and the associated Lagrange

multipliers are unique.

• For p in a neighborhood of p0 there exists a unique, continuous and differentiable

function s∗(p) which is a local minimizer satisfying SSOSC and LICQ for (2.5) at p.

• There exists a positive Lipschitz constantLS such that |s∗(p)−s∗(p0)| ≤ LS |p−p0|
where |.| is the Euclidian norm.

• There exists a positive Lipschitz constant LJ such that the optimal cost values F (p)

and F (p0) satisfy |F (p)− F (p0)| ≤ LJ |p− p0|.

Proof. See [86, 87]. �

Applying Theorem 1 and the Implicit Function Theorem to differentiate (2.13) leads

to the following linear system for sensitivity of s:

M(s(µ; p0))∆s = −N (s(µ; p0); p) (5.1)

where

M(s(µ; p0)) =


∇xxL(s(µ; p0)) ∇xc(s(µ; p0)) −I
∇xc(s(µ; p0))T 0 0

V (µ; p0) 0 X(µ; p0)


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is the KKT matrix, and

N (s(µ; p0); p)T =


∇xL(s(µ; p0); p)

c(x(µ; p0); p)

0


with

s(0; p) = s(µ; p0) + ∆s+O(‖p− p0‖2) +O(µ) (5.2)

When LICQ, SSOSC, and SC are satisfied at s(µ; p0), M(s(µ; p0)) is nonsingular and

the sensitivity steps ∆s can be computed according to (5.1) using a cheap backsolve if the

factorized form ofM(s(µ; p0)) is available. The first-order approximate solution at p can

be calculated

s̃(p) = s∗(µ; p0) + ∆s (5.3)

Comparing this approximate solution at p with the true optimal solution of (2.5) at p,

we have the following:

|s(p)− s̃(p)| = O(‖p− p0‖2) (5.4)

Assuming the differentiability and Lipschitz continuity of s(p), a positive Lipschitz con-

stant Ls exists such that

|s(p)− s̃(p)| ≤ Ls‖p− p0‖2 (5.5)

The most expensive step in an NLP method like the interior-point algorithm is to for-

mulate and factorize the KKT matrix. The main advantage of calculating the sensitivity

step with (5.1) is that we avoid the expensive solution of the NLP (2.5) at p, which is

crucial in the implementation of NMPC.

5.2 Sensitivity-assisted multistage NMPC scheme

For an efficient implementation of a multistage NMPC controller, the scenario tree should

be suitably constructed to represent the uncertainty in the system. The limitation in ideal

multistage NMPC is the exponential scaling of scenarios with the number of uncertain

parameters, which creates a bottleneck for computational tractability. The main idea of

sensitivity-assisted multistage NMPC (samNMPC) is to emulate the performance of ideal

multistage NMPC with a reduced scenario tree.
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Out of the {max, nominal, min} realizations of an uncertain parameter, we find the

“worst-case” realization that is most likely to cause violation of an inequality constraint

[27]. The combination of these worst-case realizations of each uncertain parameter forms

a “critical” scenario for that inequality constraint. Going through all the inequality con-

straints, we form the set of critical scenarios that is used to build the scenario tree in

samNMPC. Moreover, to account for the “noncritical” scenarios, we approximate them by

using their associated NLP-sensitivity steps in the stage and terminal costs in the objective

function. We first present the problem formulation of samNMPC, followed by the discus-

sion of how to get the critical scenarios and the sensitivity steps for noncritical scenarios.

The samNMPC formulation, at time step k, is:

min
zcl ,v

c
l

c∈Ĉ∪{0}

∑
c∈Ĉ∪{0}

ωc
(
φ(zcN ,d

c
N−1) +

N−1∑
l=0

ϕ(zcl ,v
c
l ,d

c
l )
)

+

∑
c∈C̄

ωcφ(z0
N + ∆zcN ,d

c
N−1) +

∑
c∈C̄

ωc
N−1∑
l=0

ϕ(z0
l + ∆zcl ,v

0
l + ∆vcl ,d

c
l ) (5.6a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

c
l ) l = 0, . . . , N − 1 (5.6b)

zc0 = xk (5.6c)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (5.6d)

zcl ∈ X,vcl ∈ U, zcN ∈ Xf ,dcl ∈ D (5.6e)

dcl−1 = dcl l = Nr, . . . N − 1 (5.6f)

∀c, c′ ∈ Ĉ ∪ {0}

where Ĉ and C̄ are the critical and noncritical scenario sets, respectively. The scenario

{0} represents the nominal scenario. To reiterate the notation, ωc is the probability of

each scenario, and zcl ,v
c
l ,d

c
l represent the vectors of state variables, control variables and

uncertain parameters at stage l and scenario c. The sets X, Xf , U and D are the state

variable domain, terminal region, control variable domain, and the bounded uncertainty

set, respectively.
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The decision variables in the problem are the state and control variables associated with

only the nominal and critical scenarios, rendering a smaller problem formulation than the

ideal multistage problem (2.4). The equality and inequality constraints (5.6b) – (5.6f) are

imposed only for the nominal and critical scenarios. As shown in (5.6a), the noncritical

scenarios are approximated with their NLP-sensitivity steps ∆zc and ∆vc in the objective

function.

Problem (5.6) is a partially linearized version of ideal multistage NMPC problem (2.4),

since the noncritical scenarios appear only as linear sensitivity steps in the objective func-

tion. The samNMPC formulation thus optimizes an expected performance over critical and

noncritical scenarios. This is much like the ideal multistage NMPC formulation, where the

expected cost is the weighted sum of the costs over all scenarios. The samNMPC thus pro-

vides an approximation of the ideal multistage NMPC with a reduced problem size.

5.2.1 Selecting critical scenarios

Critical scenarios are composed of worst-case uncertainty realizations that are most likely

to violate inequality constraints (typically state bounds zl ∈ X). Let g(zl,vl,dl) ≤ 0

represent the vector of inequality constraints in the NMPC formulation (5.6) at tk, where

g : Rnx × Rnu × Rnd → Rng . If each individual inequality is indexed as gj(·, ·, ·) ≤ 0,

the critical scenarios can be found by solving the following optimization problem at tk

with a fixed control trajectory vl, for each inequality constraint with l = 1, . . . , N and

l′ = 0, . . . , l − 1:

max
dl′

gj(zl,vl,dl) (5.7a)

s.t. zl̄+1 = f(zl̄,vl̄,dl̄) l̄ = l′, . . . , l − 1 (5.7b)

z0 = xk (5.7c)

Problem (5.7) is solved around a reference trajectory (zl,vl)|ref , l = 1, . . . , N . From

(5.7) we observe that we have the implicit relationship that:

gj(zl,vl,dl) = gj(zl(dl′),vl,dl) = gj(dl′) ≤ 0, l′ + 1 ≤ l = 1, . . . , N. (5.8)

Moreover, we assume that the gj model is strictly monotonic with respect to dl, i.e. the

sensitivities of inequality constraints g with respect to the uncertain parameters dl do not
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5.2 Sensitivity-assisted multistage NMPC scheme

change sign across the trajectory of the parametric solution of the process model. The

solution of (5.7) can then be found by linearizing process dynamics f and the inequality

constraints g around the reference trajectory.

We now concatenate the uncertain parameters and states, and define dT = [dT0 ,d
T
1 , . . . ,d

T
Nr

]

and zT = [zT0 , z
T
1 , . . . , z

T
N ]. To find the sensitivities

dg

dd
∈ Rng×ndNr around the refer-

ence trajectory, we can then write:

dg

dd

T

= ∇zg
T (
dz

dd
)T +∇dg

T (5.9)

Note that if the inequality constraints represent the state bounds zl ∈ X, then ∇dg = 0,

and ∇zg is a sparse matrix with nonzero elements 1 or −1, corresponding to the upper or

lower bounds respectively.

To compute the sensitivity
dz

dd
, let c(zl,dl) = 0 represent the equality constraints in

(5.7), with fixed vl. Differentiation by the Implicit Function Theorem yields:

∇zc
T (dz) +∇dc

T (dd) = 0

dz

dd

T

= −(∇zc
−T )∇dc

T . (5.10)

Substituting in (5.9) leads to:

dg

dd

T

= −∇zg
T (∇zc

−T )∇dc
T +∇dg

T (5.11)

Here we choose the solution of the standard NMPC problem solved at tk as the reference

trajectory. By doing so, the terms ∇zc and ∇dc are obtained from the Jacobian matrix

at the optimal solution obtained by solving the standard NMPC problem. This allows for

the efficient computation of critical scenarios even for longer robust horizons, since ∇dc

can be readily obtained by parameterizing the standard NMPC problem in the uncertain

parameters (dl)l=1,··· ,Nr .

We further assume that the worst-case realization of the uncertain parameter (dm)m=1,··· ,nd

lies on either of its extremes dmax
m or dmin

m [88]. Combining this assumption with strict
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monotonicity, the analytical solution of (5.7) can be stated for l ∈ Nr and m = 1, · · · , nd:

dwcl,m = arg maxdl∈D
dg

dd

T

d

=


dminl,m , if

d(gj)

d(dl,m)
|(zl,vl)|ref ≤ 0

dmaxl,m , otherwise

(5.12)

The result that worst-case realizations of the uncertainty are always on the extremes

follows directly from the strict monotonicity assumption. Note that this is a strong assump-

tion - it certainly holds when the dynamics and input disturbances are linear in the plant,

but may be violated for processes that are nonlinear. Finding the worst-case realizations in

the general nonlinear case requires the solution of an NP-hard optimization problem [89].

As such, it may not be possible to compute these worst-case problems in the background

except for smaller systems.

Nevertheless, the monotonicity assumption leads to a straightforward computation of

the critical scenarios Ĉ in the general framework of our samNMPC algorithm, and we only

need to apply (5.12) for the inequality constraints that are active or are close to the state

trajectory. Indeed, if an element | d(gj)

d(dl,m)
| ≤ ε, i.e. the constraint gj is insensitive to the

uncertain parameter dl,m, then the corresponding critical scenarios can be ignored. Thus,

the number of critical scenarios is bounded by the number of active inequality constraints,

which in practice is much smaller than the fully branched scenario tree. The number of

critical scenarios does not scale with the number of uncertain parameters, since only the

worst-case realizations of the uncertainties are relevant.

At each iteration of the samNMPC algorithm, a standard NMPC problem is solved to

get the reference trajectory (zl,vl)|ref , and the critical scenarios are updated dynamically.

An illustration of a reduced scenario tree is shown in Figure 5.1, where there are only 3

critical scenarios (in addition to the nominal scenario), as opposed to 9 scenarios in a fully

branched scenario tree. The constraints corresponding to the critical scenarios are included

in the final NLP of samNMPC, as shown in (5.6).
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Figure 5.1: Example of a reduced scenario tree with nd = 1 and Nr = 2. The nominal and critical
scenarios are shown with the thick lines.
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5.2.2 Computing sensitivity steps for noncritical scenarios

To get the sensitivity steps for the noncritical scenarios, we start with the scenario de-

coupled KKT matrix M of the ideal multistage NMPC formulation (2.4) (following the

notation of Chapter 5.1):

W0 A0 Ñ0

W1 A1 Ñ1

. . . . . .
...

Wnc Anc Ñnc

AT
0

AT
1

. . .

AT
nc

ÑT
0 ÑT

1 . . . ÑT
nc



(5.13)

where |C| is the number of scenarios and nc = |C| − 1 is the last index of the scenar-

ios. Wc = ∇xcxcL(x, λ, ν) + X−1
c Vc is the augmented Hessian for scenario c, with

Xc = diag(xc) and Vc = diag(νc). The Jacobian matrix of each scenario is decomposed

into two parts, with respect to the non-NAC constraints Ac, and with respect to the NAC

constraints Ñc:

Ac = ∇xcci(x) ∀i ∈ M̄ (5.14a)

Ñc = ∇xccj(x) ∀j ∈ M̂ (5.14b)

where M̄ and M̂ are the index sets for the constraints representing the non-NAC equalities

and the NACs, respectively.
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5.2 Sensitivity-assisted multistage NMPC scheme

Rearranging the KKT matrix (5.13):

W0 A0 Ñ0

AT
0 0

W1 A1 Ñ1

AT
1 0

. . .
...

. . .
...

Wnc Anc Ñnc

AT
nc 0

ÑT
0 0 ÑT

1 0 . . . . . . ÑT
nc 0



(5.15)

the linear system (5.1) can be rewritten in the following block-bordered-diagonal (BBD)

form: 

K0 N0

K1 N1

. . .
...

Knc Nnc

NT
0 NT

1 . . . NT
nc





∆s0

∆s1

...

∆snc

γ


= −



t0

t1
...

tnc

0


(5.16)

where Kc =

 Wc Ac

AT
c 0

, ∆sc =

 ∆xc

∆λc

, tc =

 ∇xcL(xc, dc)

c(xc, dc)

. The pri-

mal variables associated with the scenario c in the multistage formulation (2.4) are xc =

[zc0,v
c
0, z

c
1,v

c
1, · · · , zcN−1,v

c
N−1, z

c
N ]T and λc are the dual variables associated with sce-

nario c.

In (5.16), Nc represents the NAC constraint that contains scenario c, where Nc =

[Ñc, 0]T ∈ Rn+mc × RmNAC×nu and n and mc are the number of primal variables and

constraints, respectively, in each scenario, and mNAC and nu are the number of NAC

constraints associated with each control variable, and the number of control variables,

respectively. Nc and Ñc can be generated for robust scenarios of any length, and are

sparse with nonzero elements of 1’s and −1’s that correspond only to control variables for

the respective NAC. Additionally, γ in (5.16) is the multiplier associated with NAC (2.4d)

with the dimensions γ ∈ RmNAC×nu .
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Chapter 5. samNMPC: Robustness and Computational Efficiency

Solving the linear system (5.16) for the full multistage problem is computationally

expensive for a large number of scenarios. We seek an approximate solution of (5.16)

that is fast to compute. To be specific, we solve the standard NMPC formulation (2.2)

for the nominal scenario to get the KKT matrix K0 of the nominal scenario, we apply the

approximation Kc = K0, ∀c ∈ C in (5.16).

Defining ∆d as the maximum difference in the uncertainty vector between any two

realizations of the uncertainty

|∆d| = max
j,j′∈M

|dj − dj
′
| (5.17)

we expect anO(|∆d|) error to result from this approximation, as the sensitivities evaluated

at the standard NMPC solution differ from the full multistage NMPC solution byO(|∆d|),

i.e. we have Kc = K0 +O(|∆d|).

Thus, assembling the full KKT matrix on the LHS of (5.16) only requires the solution

of the standard NMPC problem, as the NAC matrices Nc ∀c ∈ C always stay the same.

The solution of the approximated linear system (5.16) gives the sensitivity steps for all

scenarios ∆sc, ∀c ∈ C.

Note that since we solve for the sensitivities of the standard NMPC problem to evaluate

the critical scenarios anyway, we have access to the most updated K0 to be used in (5.16)

at every time step. For especially large problems, an alternative may be to fix K0 corre-

sponding to the solution of a steady state problem, and compute all the sensitivities offline

to be reused at every time step. However, this ignores the model disturbance dynamics and

may add another layer of inaccuracy.

The Schur complement decomposition can also be used to solve the linear system

(5.16). For the KKT matrix in (5.16), the Schur complement is formed as:

S =
∑
c∈C

(NT
c K
−1
c Nc) (5.18)

The NAC multipliers γ can then be obtained by solving:

S γ = −
∑
c∈C

(NT
c K
−1
c tc) (5.19)

Finally the sensitivity steps for all scenarios ∆sc can be computed by solving:

Kc∆sc = −(tc + Ncγ), ∀c ∈ C (5.20)
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5.2 Sensitivity-assisted multistage NMPC scheme

Note that for longer robust horizons, both the size and number of Nc matrices increases

exponentially, and the summation of the matrix products in the RHS of (5.18) and (5.19)

across all scenarios, significantly adds to the computational cost. To fully realize the ad-

vantage of using Schur complements, these matrix multiplications can be parallelized. The

sensitivity steps in (5.20) can also be computed in parallel. Moreover, the approximation

Kc = K0 ∀c ∈ C helps in speeding up the computations, since we can store the factor-

ization of K0.

After identifying the critical and noncritical scenario sets as explained in Section 5.2.1,

the sensitivity steps of the noncritical scenarios c ∈ C̄ are included in the objective function

of the samNMPC formulation (5.6). Note that the NACs of the noncritical scenarios are

still satisfied in the approximated linear system (5.16), and thus they are implicitly taken

into account in the samNMPC formulation (5.6).

5.2.3 Overall samNMPC algorithm and implementation

The overall samNMPC strategy is summarized in Algorithm 1. Our procedure models

the same category of feedback information and its impact on the controller as with ideal

multistage NMPC. This is done by including the predicted state and control trajectories

for the critical scenarios, i.e., worst-case uncertainty realizations, as well as sensitivity ap-

proximations for predicted state and control trajectories for all of the remaining scenarios.

As a result, all of the scenarios considered in ideal multistage NMPC are also considered

with samNMPC. Also note that the samNMPC solution differs from the ideal multistage

solution by O(|∆d|) (see Chapter 6).

The samNMPC algorithm is implemented using the software JuMP (version 0.19.2)

[62], which provides a convenient framework for mathematical optimization for NLPs.

The JuMP tool works within the framework of the Julia (version 1.0.3) programming

language [63]. The NLP solver used within this framework is IPOPT [53], which uses

interior-point algorithms to solve NLPs. The MA57 linear solver from the Harwell Sub-

routine Library [79] is used within IPOPT. All computational experiments are carried out

with an Intel i7-7600 Quad Core CPU at 2.8 GHz and 16GB RAM.

JuMP allows for directly querying derivative information at the optimal solution, and

thus can be effectively used to construct K0. The NAC-associated sparse matrices Nc, ∀c ∈
C are generated automatically for the given number of control variables and the length of
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Chapter 5. samNMPC: Robustness and Computational Efficiency

Algorithm 1: Sensitivity-assisted multistage NMPC

Given: {max, nominal, min} of all uncertain parameters.

for k = 1, 2, . . . do

Get the current state of the plant xk.

Solve the standard NMPC problem (2.2) for the nominal uncertainty d0
k, and

get the KKT matrix K0 at the optimal solution.

For critical scenarios: Extract∇zc and ∇dc from K0, and solve (5.11) to form
the critical scenario set Ĉ.

For noncritical scenarios: Solve the linear system (5.16) with the approximation
Kc = K0 ∀c ∈ C, and get the sensitivity steps for the noncritical scenarios
c ∈ C̄.

Solve samNMPC formulation (5.6), where constraints are imposed for critical
scenarios and the noncritical scenarios are approximated with their sensitivity
steps in the objective function.

Set uk = vc0, c ∈ Ĉ ∪ {0} and inject into the plant.

end

the robust horizon. The resulting approximate linear system (5.16) is also solved using

MA57.

It is worth mentioning in the context of this algorithm that the strict monotonicity

assumption, which forms the basis for computing the critical scenarios, may not always

hold for real applications. In such cases, one could potentially apply the control input uk

obtained by solving the samNMPC problem (5.6) to simulate all the noncritical scenarios

in C̄, in order to check for constraint violations. If a noncritical scenario causes a constraint

violation, it can be removed from C̄ and added to Ĉ, and samNMPC can be solved again

with the new critical scenario set. Although such a rigorous treatment of critical scenarios

is not considered in this work, the results of the case studies in the next section indicate

that there were no constraint violations for noncritical scenarios.
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5.3 Case studies

5.3.1 CSTR example

We first consider the nonlinear benchmark CSTR problem [90], where the dynamics are

described by the following equations:

dcA
dt

=F (cA0 − cA)− k1cA − k3c
2
A (5.21a)

dcB
dt

=− FcB + k1cA − k2cB (5.21b)

dTR
dt

=F (Tin − TR) +
kWA

ρcpVR
(TK − TR) −

k1cA∆HAB + k2cB∆HBC + k3c
2
A∆HAD

ρcp
(5.21c)

dTK
dt

=
1

mKcpK
(Q̇K + kWA(TR − TK)) (5.21d)

where the reaction rate ki follows the Arrhenius law, ki = k0,ie
−EA,i

R(TR+273.15) . The state

vector x = [cA, cB , TR, TK ]T , which are the concentration of A, concentration of B,

the reactor temperature and jacket temperature, respectively. The control input vector

u = [F, Q̇K ]T , which are the inlet flow per reactor volume F = Vin/VR and the cooling

rate Q̇K . Tables C.1 and C.2 show the model parameters and bounds, respectively.

The control objective is the setpoint tracking for desired product concentration cB .

An operation period of 0.2h is considered, with the setpoint for t < 0.1h being crefB =

0.5 mol/L, and for t ≥ 0.1h it is crefB = 0.7 mol/L. The uncertain parameters in the

system are EA,3 and cA0. The cost to be minimized is:

ϕl = (cBl − cBrefl )2 + r1∆F 2
l + r2∆Q̇K (5.22)

where ∆Fl = Fl − Fl−1 and ∆Q̇Kl = Q̇Kl − Q̇Kl−1 are the difference between consec-

utive control actions for the flow rate and cooling rate, respectively, and r1 = 10−7 and

r2 = 10−11 are the penalty parameters. The prediction horizon is chosen to be N = 40

with each step time being 0.005h. The MPC algorithm is thus implemented in 40 runs for

the entire operation period of 0.2h.

The uncertainty range for EA,3 and cA0 both is ±10% of the nominal value. In this

case study, we consider that the uncertainty dk is time-variant. To be precise, we consider
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that the true realizations of EA,3 and cA0 take random values from their corresponding

{max, nominal, min} values. We consider the robust horizons Nr = 1, 2, 3 to compare

the standard, ideal multistage and samNMPC algorithms. The results for Nr = 1, 2, 3 are

shown in Figures 5.2, 5.3 and 5.4, respectively.

For each of EA,3 and cA0, there are 3 possible realizations of the uncertainty - the

number of branches per node in the scenario tree is thus 9. This corresponds to 9 scenarios

in the full tree for Nr = 1. The tracking performance of the three NMPC schemes under

uncertainty for Nr = 1 is shown in Figure 5.2. The ideal multistage and samNMPC

schemes show similar performance in tracking the setpoint of cB (shown in dashed blue

line). Moreover, both schemes show robust constraint satisfaction, respecting the upper

bound of TR (shown in dashed black line). On the other hand, standard NMPC shows

poor tracking performance due to the significant plant-model mismatch arising from the

time-varying uncertainty. Standard NMPC is also not robust, violating the TR constraint

for a significant period of operation.

The tracking performance improves for both ideal multistage and samNMPC schemes

forNr = 2 (Figure 5.3), which corresponds to 81 scenarios in the full tree. This is because

uncertainty in future time steps is also explicitly modeled in the scenario tree. Again,

both ideal multistage and samNMPC are able to satisfy the state constraints. Increasing

the robust horizon to Nr = 3 results in a full tree consisting of 729 scenarios, making

ideal multistage NMPC computationally intractable due to large problem size. However,

samNMPC is able to solve a much smaller problem as it identifies the critical scenarios,

and is able to provide robustness in its tracking performance, as shown in Figure 5.4.

Note that here the uncertainty in EA,3 and cA0 is ±10% each. For a smaller uncer-

tainty range in these parameters, a much better tracking performance is achieved for all

the NMPC schemes. However, due to the smaller plant-model mismatch, standard NMPC

does not show any bound violations and ends up being robust.

Table 5.1 shows the CPU computations measured as the wall clock solution times for

each of the three NMPC problems. These are averaged over 5 random sequences of uncer-

tainty realizations. It can be clearly seen that samNMPC requires less computational effort

than ideal multistage NMPC. Table 5.1 also gives a measure of the reduction in problem

size with samNMPC, showing that the average number of critical scenarios scales only lin-

early with the robust horizon. The computationally intensive elements of the samNMPC

algorithm are solving the linear system (5.16) and solving the approximate problem (5.6),
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Figure 5.2: Setpoint tracking (cB) and constraint satisfaction (TR) for standard, ideal multistage
and samNMPC with Nr = 1 (9 scenarios).

Table 5.1: CSTR - Average computational performance in CPUs. For samNMPC, the times for
solving linear system (5.16) and the NLP (5.6) are reported separately.

Nr |C| Standard Multistage SAM - solving (5.16) / (5.6) Avg. |Ĉ|
1 9 0.453 s 3.910 s 0.113 s / 1.589 s 2.54
2 81 0.453 s 46.327 s 1.819 s / 4.223 s 5.96
3 729 0.453 s − 18.071 s / 9.367 s 9.24
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Figure 5.3: Setpoint tracking (cB) and constraint satisfaction (TR) for standard, ideal multistage
and samNMPC with Nr = 2 (81 scenarios).
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Figure 5.4: Setpoint tracking (cB) and constraint satisfaction (TR) for standard and samNMPC with
Nr = 3 (729 scenarios).
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Table 5.2: CSTR - Average computational performance in CPUs for solving (5.16) as large linear
system and with Schur complement

Nr |C| Solving (5.16)
directly

Using Schur complement decomposition (best
parallel estimate)

1 9 0.113 s 0.019 (0.002) s
2 81 1.819 s 1.326 (0.016) s
3 729 18.071 s 530.995 (0.728) s

which are shown separately in Table 5.1. The results show that the combined computa-

tional footprint of samNMPC is much smaller than that of the full-tree ideal multistage

NMPC problem, which involves solving a full NLP.

The size of the KKT matrix in (5.16) grows exponentially with increasing Nr, and

solving the linear system takes up the bulk of the time at longer robust horizons. Using

the Schur complement strategy avoids solving the large linear system by decomposing it

into smaller linear systems, which can then be solved in parallel to achieve better compu-

tational performance. However, as noted before, computing the Schur complement itself

requires summation over the products of many matrices (5.18), and this can become very

expensive without parallelization. This is especially the case for Nr = 3, where the Schur

complement is computed by summing over 729 scenarios. On the other hand, this sum-

mation is trivially parallelizable and does not lead to communication latencies (see [91]

for extensive analysis on this). As such, we note the wall times without parallelization

for the Schur complement strategy, and divide them by the number of scenarios to report

the “best estimate” CPUs with parallelization. Table 5.2 shows the comparison between

solving (5.16) as a large linear system and with the use of Schur complement strategy,

averaged over 5 random sequences of uncertainty realizations. Because the Schur comple-

ment computations for Nr = 3 are expensive without parallelization, we only report the

wall time for solving one NMPC step in one random uncertainty sequence with the Schur

complement (instead of the average wall time), for Nr = 3.

As the length of the robust horizon increases, using the Schur complement approach

with parallelization can be up to two orders-of-magnitude faster than solving the large

linear system (5.16).
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Figure 5.5: Quadtank schematic [92]

5.3.2 Quadtank example

In our second case study, we consider the Quadtank problem [92], with a configuration of

four tanks as shown in Figure 5.5.

The water levels in the four tanks are governed by the following dynamics:

dx1

dt
=− a1

A1

√
2gx1 +

a3

A1

√
2gx3 +

γ1

A1
u1 (5.23a)

dx2

dt
=− a2

A2

√
2gx2 +

a4

A2

√
2gx4 +

γ2

A2
u2 (5.23b)

dx3

dt
=− a3

A3

√
2gx3 +

1− γ2

A3
u2 (5.23c)

dx4

dt
=− a4

A4

√
2gx4 +

1− γ1

A4
u1 (5.23d)

where xi denotes the level in the tank i, and ui represents the flow rate of pump i. The

state vector is x = [x1, x2, x3, x4] and the control inputs are u = [u1, u2]. Ai and ai are

the cross sectional areas of the tank i and its outlet port, respectively. The parameters γ1

and γ2 are the valve parameters, and are considered to the uncertainties in the system. The

values of the various model parameters and bounds are shown in Tables C.3 and C.4.
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Chapter 5. samNMPC: Robustness and Computational Efficiency

Table 5.3: Quadtank - Average computational performance in CPUs. For samNMPC, the times for
solving linear system (5.16) and the NLP (5.6) are reported separately.

Nr |C| Standard Multistage SAM - solving (5.16) / (5.6) Avg. |Ĉ|
1 9 0.096 s 1.113 s 0.058 s / 0.293 s 3
2 81 0.096 s 12.906 s 0.703 s / 0.6 s 4.99
3 729 0.096 s − 7.735 s / 1.850 s 6.97

The control goal is to track the water levels in the lower tanks (tank 1 and 2) at their

setpoints x1s = 14cm and x2s = 14cm. Further, we introduce predefined pulse changes

in the state values at certain steps k to reinitialize the controller tracking, as shown in

Table C.5. The prediction horizon is N = 25, with each time step being 10s. The MPC

simulation is run for 150 time steps.

The objective function is formulated as:

ϕl = (x1l − x1s)
2 + (x2l − x2s)

2 + r(∆u2
1 + ∆u2

2) (5.24)

where ∆u1l = u1−u1l−1 and ∆u2 = u2l−u2l−1 are the difference between consecutive

control actions for the pump flow rates, and the penalty parameter r = 0.01.

The uncertainty range for γ1 and γ2 is ±0.15 of their nominal values of 0.4. As with

the previous case study, we consider that the true realizations of γ1 and γ2 take random

values from their corresponding {max, nominal, min} values. The resulting plots for an

increasing robust horizon are shown in Figures 5.6, 5.7 and 5.8, respectively.

As is evident from the figures, all three NMPC schemes have very similar performance

in tracking the setpoints of x1 and x2 (shown in dashed blue lines). Overall, they are able

to maintain the water levels even in face of the pulse disturbances in the water levels. In

terms of robustness, ideal multistage and samNMPC do not breach the specified water level

limits for x3 and x4 (shown in dashed black lines), whereas there are frequent violations

on part of standard NMPC. Moreover, the trajectories of ideal multistage and samNMPC

overlap almost exactly for Nr = 1 (Figure 5.6), and are reasonably close for Nr = 2

(Figure 5.7). As with the CSTR case, the full tree problem becomes too large to solve for

Nr = 3, but the samNMPC algorithm is able to handle it efficiently, as shown in Figure

5.8.

A comparison of the computational times, averaged over 5 random sequences of uncer-

tainty realizations, is shown in Tables 5.3 and 5.4. Again, samNMPC significantly outper-

76



5.3 Case studies

0 50 100 150
−5

0
5

10
15

∆
x

1

0 50 100 150
−5

0
5

10
15

∆
x

2 Setpoint

0 50 100 150
0

10

20

30

x
3

0 50 100 150
0

10

20

30

x
4

Limit

0 50 100 150
0

20

40

60

u
1

0 50 100 150
0

20

40

60

u
2

Standard Multistage SAM

0 50 100 150

MPC run

0
1
2
3
4

|Ĉ
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Figure 5.6: Setpoint tracking (x1, x2) and constraint satisfaction (x3, x4) for standard, ideal multi-
stage and samNMPC with Nr = 1 (9 scenarios).
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Figure 5.7: Setpoint tracking (x1, x2) and constraint satisfaction (x3, x4) for standard, ideal multi-
stage and samNMPC with Nr = 2 (81 scenarios).
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Figure 5.8: Setpoint tracking (x1, x2) and constraint satisfaction (x3, x4) for standard, ideal multi-
stage and samNMPC with Nr = 3 (729 scenarios).
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Chapter 5. samNMPC: Robustness and Computational Efficiency

Table 5.4: Quadtank - Average computational performance in CPUs for solving (5.16) as large linear
system and with Schur complement.

Nr |C| Solving (5.16)
directly

Using Schur complement decomposition (best
parallel estimate)

1 9 0.058 s 0.0087 (0.0009) s
2 81 0.703 s 0.825 (0.01) s
3 729 7.735 s 389.26 (0.534) s

forms ideal multistage NMPC in terms of speed, without sacrificing robustness or setpoint

tracking under uncertainty. Table 5.4 shows that, consistent with the previous case study,

using the Schur complement method is expensive without parallelization. On the other

hand, parallelization can significantly improve the computational speed of samNMPC.

5.4 Conclusion

This chapter presents an approximate, sensitivity-assisted multistage NMPC strategy to

reduce the computational load of robust NMPC. The samNMPC approach optimizes over a

set of critical scenarios that are most likely to cause constraint violations, and approximates

the noncritical scenarios with their corresponding sensitivities in the objective function.

These sensitivities are obtained by solving an approximate KKT system of the multistage

NMPC problem. The strategy ensures robust constraint satisfaction under uncertainty,

while performing similarly to the ideal multistage NMPC algorithm. In contrast with the

exponential growth in ideal multistage NMPC, the problem size in samNMPC grows only

linearly with the length of the robust horizon; and it is independent of the number of

uncertain parameters and the number of discrete realizations of each uncertain parameter.

It thus leads to much lower computational costs than its full-tree counterpart.

We apply the samNMPC approach to the CSTR and Quadtank case studies, and com-

pare its performance with respect to standard NMPC and ideal multistage NMPC. The

examples demonstrate that samNMPC achieves robustness and tracking performance sim-

ilar to the ideal multistage NMPC, at a fraction of the computational footprint. It performs

particularly well computationally for longer robust horizons where ideal multistage NMPC

becomes too expensive. The use of parallel Schur complement decomposition can further

speed up the solution time.
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Chapter 6
Sensitivity-assisted Multistage

Nonlinear Model Predictive

Control: Stability Properties

In this chapter, we discuss the recursive feasibility and stability properties of both ideal

multistage and samNMPC, using a novel analysis based on soft-constrained formulations.

Previous studies have analyzed the recursive feasibility and stability properties of ideal

multistage NMPC [93, 94]. In this chapter, we show using the soft-constrained formula-

tions that recursive feasibility and stability of ideal multistage NMPC can be guaranteed

even with the robust horizon assumption (Nr ≤ N ). These concepts are are also extended

for samNMPC.

We first introduce fundamental concepts and assumptions of stability properties, then

discuss the notion of relaxed inequality (soft) constraints, and finally proceed to discuss

the recursive feasibility and input-to-state practical stability (ISpS) for both the ideal mul-

tistage and samNMPC. This chapter is based on the work done in [32].
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Chapter 6. samNMPC: Stability Properties

6.1 Preliminaries

We start with some fundamental concepts needed for the stability analysis of ideal multi-

stage and samNMPC.

Definition 7. A continuous function α(·) : R → R is a K function if α(0) = 0, α(s) >

0,∀s > 0 and it is strictly increasing. A continuous function α(·) : R → R is a K∞
function if it is a K function and lims→∞ α(s) = ∞. A continuous function β(·, ·) :

R × Z → R is a KL function if β(s, k) is a K function in s for any k > 0 and for each

s > 0, β(s, ·) is decreasing and β(s, k)→ 0 as k →∞.

Definition 8. (Lyapunov function) A function V (·) is called a Lyapunov function for sys-

tem (2.1) if there exist an invariant set X, a feedback control law h(x) and K∞ functions

α1, α2 and α3 such that, ∀x ∈ X

V (x) ≥ α1(|x|) (6.1a)

V (x) ≤ α2(|x|) (6.1b)

∆V (x) = V (f(x,h(x)))− V (x) ≤ −α3(|x|) (6.1c)

Definition 9. (Control invariant set, [1]) A set A is a control (or positive) invariant set for

system x+ = f(x,u) if for all x ∈ A, there exists u ∈ U such that f(x,u) ∈ A .

Definition 10. (RPI) A set X is a robustly positive invariant (RPI) set for system x+ =

f(x,u,d) if x+ ∈ X holds for ∀x ∈ X , and ∀d ∈ D.

Definition 11. (ISpS) The system x+ = f(x,u,d) is input-to-state practically stable

(ISpS) in X if there exists a KL function β, a K function γ and cd ≥ 0 such that for all

d ∈ D,

|xk| ≤ γ(|∆d|) = β(|x0|, k) + γ(|d̂k − d0|) + cd, ∀ k ≥ 0, ∀x0 ∈ X (6.2)

where d̂k is the realized value of d at time k, and d0 is the nominal disturbance.

Definition 12. (ISpS-Lyapunov function, [95]) A function V (·) is called an ISpS-Lyapunov

function for system x+ = f(x,u,d) if there exist an RPI set X , K∞ functions α1, α2, α3,
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K function σ, and c0, c1 ≥ 0 such that, ∀x ∈ X and ∀d ∈ D,

V (x) ≥ α1(|x|) (6.3a)

V (x) ≤ α2(|x|) + c0 (6.3b)

∆V (x,d) = V (f(x,h(x),d))− V (x)

≤ −α3(|x|) + σ(|d̂k − d0|) + c1 (6.3c)

where h(x) is the feedback control law, d̂k is the realized value of d at time k, and d0

is the nominal disturbance.

6.2 Implication of soft constraints

To facilitate the stability discussion, we consider the notion of soft constraints for the

NMPC problems proposed so far. First, we note that MFCQ and GSSOSC (Definitions 3

and 5) are the weakest conditions under which a perturbed solution of NLP (2.5) is locally

unique [52], and Lipschitz continuity of x∗(p) with respect to p can be guaranteed.

To put this in context, we now relax the inequalities in (2.5) with penalty variables r

to form:
min
x

F (x; p) +M(rT e)

s.t. c(x; p) = 0

x+ r ≥ 0

r ≥ 0

(6.4)

where M is a penalty weight and eT = [1, . . . , 1]. Note that the inequality constraints

are always feasible, and since the equality constraints in (6.4) are the discrete dynamic

equations and NACs in ideal multistage NMPC (2.4) and samNMPC (5.6), these con-

straints have (forward) solutions for all inputs and initial conditions in their domains, and

the gradients of the equality constraints therefore contain a nonsingular basis matrix and

are linearly independent [96]. Now, with the relaxation of the inequality constraints, it is

straightforward to show that the MFCQ always holds [96] at the solution of (6.4).

Finally, by adding the quadratic term

‖x− x∗‖2W (6.5)
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Chapter 6. samNMPC: Stability Properties

to the objective in (6.4), where W is a positive definite weighting matrix, solutions of the

KKT conditions of (6.4) are unchanged and (x∗, λ, ν) remains a KKT point. Moreover, by

defining matrix Z as a basis of the nullspace of active constraint gradients (in Definition

4) and choosing W , with sufficiently large eigenvalues for ZTWZ, then SSOSC and

GSSOSC can always be satisfied at x∗ (Note that if the IPOPT solver is used, it is not

necessary to know a priori the optimal solution x∗ for adding the quadratic term; in fact,

an internal quadratic term is automatically added in IPOPT as part of its regularization

strategy, such that the algorithm converges to the optimal solution [53]). As a result, the

Lipschitz continuity property holds for all x∗(p) and F (x∗(p)) with respect to all input

parameters p, but feasibility of problems (2.4) and (5.6) holds only if r = 0 at the solution.

We note that for all the case study solutions in Chapter 5, a penalty weightM could always

be chosen large enough so that r = 0 held, and there were no infeasible solutions to the

ideal multistage NMPC problem (2.4), or the samNMPC problem (5.6).

With these properties in mind, the standard NMPC problem (2.2) can be reformulated

by relaxing the bounds on the state variables. Here we redefine x ∈ X = {x | xL ≤ x ≤
xU} and x ∈ Xf = {x | xLf ≤ x ≤ xUf }, and state the relaxed problem as:

Jnom(xk) ≡min
zl,vl

φ(zN ,d
0
N−1) +

N−1∑
l=0

ϕ(zl,vl,d
0
l ) +

Mφe
T rN +

N−1∑
l=0

Mϕe
T rl (6.6a)

s.t. zl+1 = f(zl,vl,d
0
l ) l = 0, . . . , N − 1 (6.6b)

z0 = xk (6.6c)

xL − rl ≤ zl ≤ xU + rl; rl ≥ 0 (6.6d)

xLf − rN ≤ zN ≤ xUf + rN ; rN ≥ 0 (6.6e)

vl ∈ U (6.6f)

where Mφ and Mϕ are large weights for the penalty terms, and eT = [1, . . . , 1]. The

bound constraints on the states are softened with penalty variables rl ∈ Rnx as shown in

(6.6d) and (6.6e), and the corresponding penalty terms are added to the objective function

Jnom in (6.6a).

For the ideal multistage NMPC problem, let dc=1,...,|C|
l=0,...,N−1 denote the concatenated vec-

84
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tor of all uncertainties in the scenario tree (across all scenarios and across all time steps in

the prediction horizon). For brevity, we use the notation dc to denote d
c=1,...,|C|
l=0,...,N−1 in the

rest of this chapter, and make our subsequent problem formulations parametric in this dc.

Relaxing the bounds on the state variables in the ideal multistage NMPC problem (2.4)

leads to the following reformulation:

JNms(xk,d
c) ≡ min

zcl ,v
c
l

∑
c∈C

ωc
(
φ(zcN ,d

c
N−1) +

N−1∑
l=0

ϕ(zcl ,v
c
l ,d

c
l )
)

+

∑
c∈C

ωc
(
Mφe

T rcN +

N−1∑
l=0

Mϕe
T rcl

)
(6.7a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

c
l ) l = 0, . . . , N − 1 (6.7b)

zc0 = xk (6.7c)

xL − rcl ≤ zcl ≤ xU + rcl ; rcl ≥ 0 (6.7d)

xLf − rcN ≤ zcN ≤ xUf + rcN ; rcN ≥ 0 (6.7e)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (6.7f)

vcl ∈ U, dcl ∈ D (6.7g)

dcl−1 = dcl l = Nr, . . . , N − 1 (6.7h)

∀c, c′ ∈ C

where we note that (6.7a) and its optimal objective function JNms are parametric in (xk,d
c).
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Chapter 6. samNMPC: Stability Properties

Similarly relaxing the bounds in the samNMPC problem (5.6) leads to the following

formulation:

JNsam(xk,d
c) ≡ min

zcl ,v
c
l

c∈Ĉ∪{0}

∑
c∈Ĉ∪{0}

ωc
(
φ(zcN ,d

c
N−1) +

N−1∑
l=0

ϕ(zcl ,v
c
l ,d

c
l )
)

+

∑
c∈Ĉ∪{0}

ωc
(
Mφe

T rcN +

N−1∑
l=0

Mϕe
T rcl

)
+

∑
c∈C̄

ωcφ(z0
N + ∆zcN ,d

c
N−1) +

∑
c∈C̄

ωc
N−1∑
l=0

ϕ(z0
l + ∆zcl ,v

0
l + ∆vcl ,d

c
l ) (6.8a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

c
l ) l = 0, . . . , N − 1 (6.8b)

zc0 = xk (6.8c)

xL − rcl ≤ zcl ≤ xU + rcl ; rcl ≥ 0 (6.8d)

xLf − rcN ≤ zcN ≤ xUf + rcN ; rcN ≥ 0 (6.8e)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (6.8f)

vcl ∈ U,dcl ∈ D (6.8g)

dcl−1 = dcl l = Nr, . . . N − 1 (6.8h)

∀c, c′ ∈ Ĉ ∪ {0}

where (6.7a) and its optimal objective function JNsam are also parametric in (xk,d
c).
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Further, we consider the nominal case of the ideal multistage NMPC problem (6.7)

where we set dcl = d0
l ∀c ∈ C:

JNms(xk,d
0) ≡ min

zcl ,v
c
l

∑
c∈C

ωc
(
φ(zcN ,d

0
N−1) +

N−1∑
l=0

ϕ(zcl ,v
c
l ,d

0
l )
)

+

∑
c∈C

ωc
(
Mφe

T rcN +

N−1∑
l=0

Mϕe
T rcl

)
(6.9a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

0
l ) l = 0, . . . , N − 1 (6.9b)

zc0 = xk (6.9c)

xL − rcl ≤ zcl ≤ xU + rcl ; rcl ≥ 0 (6.9d)

xLf − rcN ≤ zcN ≤ xUf + rcN ; rcN ≥ 0 (6.9e)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (6.9f)

vcl ∈ U,d0
l ∈ D (6.9g)

d0
l−1 = d0

l l = Nr, . . . N − 1 (6.9h)

∀c, c′ ∈ C

We note that if we similarly set dcl = d0
l , ∀c ∈ C in the samNMPC problem (6.8), then

(6.9) is also equivalent to this nominal case of (6.8), i.e. JNsam(xk,d
0) = JNms(xk,d

0).

6.3 Recursive feasibility for ideal multistage NMPC and

samNMPC

In multistage NMPC, the true realization of the uncertainty at time step k can take the state

to any of the branched scenarios at time step k + 1 (Figure 2.2). For recursive feasibility,

it is necessary to map the new scenario tree at time step k + 1 to the one at time step k.

The mapping has to be such that the probability of any particular scenario ωc remains the

same across the run time of the controller, i.e. ωck = ωck+1.

To this end, we define ωjl the probability of the state evolving from zl to zl+1 =

f(zl,vl,d
j
l ), where j ∈M, and l = 0, 1, . . . , N − 1. Note that∑

j∈M
ωjl = 1, l = {0, . . . , Nr − 1} (6.10)
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The probability of each scenario c ∈ C is then calculated as:

ωc =

Nr−1∏
l=0

ωjll (6.11)

where the scenario c is represented as c = {j0, j1, . . . , jNr−1}. We assume that ωjl =

ωjl′ ∀l, l′ ∈ {0, 1, . . . , Nr−1}, so that ωc is the same for all time steps k. In this way we

can handle the robust horizon with Nr < N . Note, however, that this does not necessarily

imply ωc = ωc
′ ∀c, c′ ∈ C.

Assumption 1.

• For all x satisfying (6.6d) - (6.6e) and u ∈ U the model dynamics and both stage and

terminal costs are twice differentiable and Lipschitz continuous in all arguments,

and they satisfy ∀j ∈M, f(0, 0,dj) = 0, ϕ(0, 0,dj) = 0, and φ(0,dj) = 0 where

M is as defined in (2.3). We therefore assume that (6.6d) - (6.6e) defines an RPI set.

• The sets of state bounds X and the terminal region Xf are closed, and the control

set U is compact. All sets contain the origin.

• For all j ∈ M, ∃ a common Xf that is control invariant for xk+1 = f(xk,uk,d
j
k)

and uk ∈ U, ∀xk ∈ Xf .

Assumption 2.

• For each parametric disturbance j ∈M, there exists a local control law u = hf (x)

defined on Xjf such that f(x,hf (x),dj) ∈ Xjf ,∀ x ∈ Xjf , and φ(f(x,hf (x),dj),dj)−
φ(x,dj) ≤ −ϕ(x,hf (x),dj),∀x ∈ Xjf .

• For each parametric disturbance j ∈M, the stage costϕ(x,u,dj) satisfiesαp(|x|) ≤
ϕ(x,u,dj) ≤ αq(|x|) + σq(|∆d|) where αp(·), αq(·) are K∞ functions, and σq(·)
is a K function.

• For the relaxed nominal NMPC problem (6.6), equivalent to problem (6.9), the hori-

zon N and the weighted terminal cost are chosen sufficiently large so that the solu-

tion of (6.9) satisfies zN ∈ Xf with rN = 0 ∀ xk in the relaxation of X defined by

(6.6d). Existence of these solutions was shown in [97].
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From these assumptions we can state the following result:

Theorem 2. (Recursive feasibility of ideal multistage NMPC and samNMPC) Suppose

Assumptions 1 and 2 hold, then the soft-constrained problems (6.7) and (6.8) with a robust

horizon (Nr ≤ N) are recursively feasible.

Proof. Since MFCQ and GSSOSC hold for the relaxed problems (6.7) and (6.8), Lipschitz

continuity holds at the optimal solutions of these problems for all values of xk and dcl (see

Chapter 6.2).

Comparing the ideal multistage NMPC problem (6.7) with its nominal case (6.9), it

follows from NLP sensitivity that the difference of their respective solutions are bounded

by: ∣∣∣(z∗(dc),v∗(dc), r∗(dc))− (z∗(d0),v∗(d0), r∗(d0)
)∣∣∣ ≤ LS |∆d| (6.12)

where LS is a positive Lipschitz constant, and |∆d| is as defined in (5.17). Similarly, we

note that the same relations hold when we compare the samNMPC problem (6.8) with

its nominal case (6.9) (remember that (6.9) represents the nominal case of both the ideal

multistage and samNMPC problems).

Finally, since the system state evolves from xk+1 = f(xk,uk, d̂k) where d̂k is the

realization of dk at time k, the difference from the nominal state xk+1 = f(xk,uk,d
0
k) is

bounded by O(|∆d|). Moreover, the difference between optimal values (zl,vl, rl) from

(6.7) and their nominal solutions from (6.9), is also bounded by O(|∆d|). Similarly, the

difference between optimal values (zl,vl, rl) from (6.8) and their nominal solutions from

(6.9) is bounded by O(|∆d|).

Thus, irrespective of the evolution of the scenario tree (and even with Nr ≤ N ),

a nonnegative, bounded rk can always be found that satisfies (6.7d) – (6.7e) for ideal

multistage NMPC, and all of the (relaxed) constraints remain satisfied. In the case of

samNMPC, similar arguments can be made for (6.8d) – (6.8e).

Thus, the ideal multistage NMPC problem (6.7) and the samNMPC problem (6.8) are

recursively feasible. �
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6.4 Input-to-State practical stability for ideal multistage

NMPC

We now consider ideal multistage NMPC and show that it is ISpS-stable.

Theorem 3. (Robust stability of ideal multistage NMPC) Under Assumptions 1 and 2, the

cost function Jms obtained from the solution of (6.7) is an ISpS-Lyapunov function, and

the resulting closed-loop system is ISpS stable.

Proof. Consider the nominal case of the ideal multistage NMPC formulation as shown in

(6.9). Here, since every scenario in ideal multistage NMPC becomes the nominal scenario,

this problem has nominal (asymptotic) stability [1]. Let the optimal control sequence

obtained from (6.9) for the nominal scenario be {vc0,vc1, . . . ,vcN−1,hf (zN )}. Based on

Theorem 2, recursive feasibility is guaranteed for (6.9) and is valid for Nr ≤ N ; and so

this control sequence is also feasible for the same problem with an extended prediction

horizon N + 1. The objective function for the extended problem is given by:

J̃N+1
ms (xk,d

0) =
∑
c∈C

ωc
(
φ(zcN+1,d

0
N+1) +

N∑
l=0

ϕ(zcl ,v
c
l ,d

0
l )
)

+
∑
c∈C

ωc
(
Mφe

T rcN+1 +

N∑
l=0

Mϕe
T rcl

)
(6.13)

and the following is valid from Assumption 2:

J̃N+1
ms (xk,d

0)− JNms(xk,d0) =
∑
c∈C

ωc
(
φ(zcN+1,d

0
N+1)− φ(zcN ,d

0
N )
)

+∑
c∈C

ωcϕ(zcN ,v
c
N ,d

0
N )

≤ 0 (6.14)

Moreover, from (6.10) and (6.14) we have:

JNms(xk,d
0) ≥ J̃N+1

ms (xk,d
0)

= ϕ(xk,uk,d
0
l ) +

∑
j∈M

ωjJNms

(
f(xk,uk,d

0
l ),d

0
)

= ϕ(xk,uk,d
0
l ) + JNms

(
f(xk,uk,d

0
l ),d

0
)

(6.15)
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which leads to the descent property in the absence of disturbances:

JNms

(
f(xk,uk,d

0
l ),d

0
)
− JNms(xk,d0) ≤ −ϕ(xk,uk,d

0
l ) (6.16)

With actual uncertainties the system state evolves as xk+1 = f(xk,uk, d̂k), where d̂k

is the realization of d at time step k. In this case we have

JNms(xk+1,d
0)− JNms(xk,d0) ≤ −ϕ(xk,uk,d

0
l ) + LJ |d̂k − d0

k| (6.17)

Finally, from (6.7) and (6.9) we have

JNms(xk,d
c) = JNms(xk,d

0) +O(|∆d|) (6.18)

JNms(xk+1,d
c) = JNms(xk+1,d

0) +O(|∆d|) (6.19)

which can be combined with (6.17) to form:

JNms(xk+1,d
c)− JNms(xk,dc) ≤ −ϕ(xk,uk,d

0
l ) + LJ |d̂k − d0

k|+(
JNms(xk+1,d

c)− JNms(xk+1,d
0)
)

+(
JNms(xk,d

0)− JNms(xk,dc)
)

≤ −ϕ(xk,uk,d
0
l ) + LJ |d̂k − d0

k|+ 2LK |∆d|

= −α(xk) + σ(|d̂k − d0
k|) + cd. (6.20)

where cd ≥ 0. This result proves that ideal multistage NMPC is ISpS-stable. �

6.5 Input-to-State practical stability for samNMPC

To extend the stability discussions to samNMPC, we compare the formulations of the re-

laxed standard NMPC (6.6) and relaxed samNMPC (6.8). Since MFCQ and GSSOSC are

satisfied for (6.6) and (6.8), Lipschitz continuity holds for Jnom(xk) and JNsam(xk,d
c).

Theorem 4. (Robust Stability of samNMPC) Under Assumptions 1 and 2, the cost function

Jsam obtained from the solution of relaxed samNMPC problem (6.8) is an ISpS-Lyapunov

function, and the resulting closed-loop system is ISpS stable.

Proof. From Theorem 2, recursive feasibility properties hold for samNMPC and are valid

for Nr ≤ N . To compare (6.6) and (6.8) we replicate (6.6) |C| times and we partition the

91



Chapter 6. samNMPC: Stability Properties

objective function into its critical, noncritical and nominal components, Jsam(xk,d
c) =

Ĵ(xk,d
c) + J̄(xk,d

c) + ω0Jnom(xk) using C = Ĉ ∪ C̄ ∪ {0} and the construction of

(6.8).

For Ĉ and the solutions of (6.6) and (6.8) we note that:

Ĵ(xk,d
c)−

∑
c∈Ĉ

ωc Jnom(xk) =
∑
c∈Ĉ

ωc
(

(φ(zcN ,d
c
N )− φ(z0

N ,d
0
N )
)

+

∑
c∈Ĉ

ωcMφe
T (rcN − rN ) +

∑
c∈Ĉ

ωc
N−1∑
l=0

(
ϕ(zcl ,v

c
l ,d

c
l )− ϕ(z0

l ,v
0
l ,d

0
l ))
)

+

∑
c∈Ĉ

ωc
N−1∑
l=0

Mϕe
T (rcl − rl)

= O(|∆d|) (6.21)

For C̄ we note from the solution of (6.6) and its KKT sensitivity that

J̄(xk,d
c)−

∑
c∈C̄

ωc Jnom(xk) =
∑
c∈C̄

ωc
(
φ(z0

N + ∆zcN ,d
c
N )− φ(z0

N ,d
0
N )
)

+

∑
c∈C̄

ωcMeT (rcN − rN ) +

∑
c∈C̄

ωc
N−1∑
l=0

(
ϕ(z0

l + ∆zcl ,v
0
l + ∆vcl ,d

c
l )− ϕ(z0

l ,v
0
l ,d

0
l )
)

+

∑
c∈C̄

ωc
N−1∑
l=0

MeT (rcl − rl)

= O(|∆d|). (6.22)

From (6.8), (6.9), (6.21) and (6.22) we have

JNsam(xk,d
c
l ) = JNsam(xk,d

0
l ) +O(|∆d|)

JNsam(xk+1,d
c
l ) = JNsam(xk+1,d

0
l ) +O(|∆d|) (6.23)
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which can be combined with (6.17) to form:

JNsam(xk+1,d
c
l )− JNsam(xk,d

c
l ) ≤ −ϕ(xk,uk,d

0
l ) + LJ |d̂k − d0

k|) +(
JNsam(xk+1,d

c
l )−

∑
c∈C

ωc Jnom(xk+1)
)

+(∑
c∈C

ωc Jnom(xk)− JNsam(xk,d
c
l )
)

≤ −ϕ(xk,uk,d
0
l ) + LJ |d̂k − d0

k|) + 2LK |∆d|

= −α(xk) + σ(|d̂k − d0
k|) + cd. (6.24)

where cd ≥ 0. This result shows that samNMPC is ISpS-stable. �

It is worth mentioning here that, in Theorems 3 and 4, the constant cd scales with

|∆d| as shown in (6.20) and (6.24). Equation (5.17) shows that |∆d| is the maximum

difference in the uncertainty vectors between any scenarios. In context of ISpS, this allows

for potentially large values of the constant cd if the uncertainty range is large. Although

ISpS still stands, a large uncertainty range would somewhat weaken the above results.

6.6 Conclusion

By relaxing the bound constraints on the states, it is shown that both ideal multistage and

samNMPC are recursively feasible under the robust horizon formulation. In addition, the

ideal multistage and samNMPC formulations are compared with their nominal cases, and

the corresponding differences in their value functions are shown to be bounded. Thus it is

shown that ideal multistage and samNMPC are ISpS-stable, even under the robust horizon

formulation.
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Chapter 7
Sensitivity-assisted Multistage

Nonlinear Model Predictive Control

with Path-Following

In Chapter 5, we looked at an approximate multistage NMPC strategy with a pruned sce-

nario tree consisting of critical scenarios, while the noncritical scenarios were approxi-

mated with one-step linear sensitivity steps in the objective function. The sensitivity steps

were calculated according to the linear system (5.1), which comes from the application of

Theorem 1 to the optimality conditions of (2.5). A key assumption of Theorem 1 is strict

complementarity (SC), which implies that the active set does not change for any p in the

neighborhood of p0. The SC assumption usually holds for small perturbations, but for a

large ∆p = p − p0, there may very well be changes in the active set. Neglecting such

changes in the active set typically will affect the accuracy of the obtained solution.

A more general approach allows for changes in the active set and several sensitivity

updates along a path from p = p0 to p = p. Such multi-step path-following algorithms

have been proposed to improve the NLP sensitivity predictions and accuracy. For instance,

the advanced-step NMPC framework (proposed by [83]), was implemented for economic

NMPC with a predictor path-following method in [98]. In this method, active set changes

are rigorously handled by tracking the optimal solution path from p = p0 to p = p with a
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sequence of pure-predictor quadratic programs (QPs). This was further improved in [99]

where the path-following algorithm employed a sequence of predictor-corrector QPs. In

context of ideal multistage NMPC, this latter algorithm was used in [100] for facilitating

a scenario decomposition approach to speed up online computations. A more rigorous

treatment of path-following algorithms that also allow for non-unique Lagrange multipliers

can be found in [98, 101, 102, 103].

In this chapter, we extend the samNMPC framework with a path-following algorithm

based on predictor-corrector QPs. This approach, which we call sampfNMPC, has subtle

but significant differences with the samNMPC approach. Here, we formulate an approxi-

mate multistage NMPC problem with a reduced scenario tree consisting of the critical and

nominal scenarios, but unlike in samNMPC, the noncritical scenario costs are first equated

to the nominal scenario cost in the objective function. From the solution of this approx-

imate problem, we path-follow from the nominal uncertainty representing the noncritical

scenarios to the actual noncritical uncertainty representing the noncritical scenarios. In

essence, the reduced NLP first handles the critical (and nominal) scenarios, and the non-

critical scenarios are subsequently accounted for via path-following.

The following sections expand upon the path-following algorithm with predictor-corrector

QPs and its application in the sampfNMPC approach. We compare the results of ideal mul-

tistage NMPC and sampfNMPC in terms of robustness, for the Quadtank case study. The

contents of the this chapter are part of the preliminary draft [33].

7.1 Sensitivity-based path-following

7.1.1 Predictor-corrector QP

For the parametric NLP (2.5), recall that the active set of bounds at x∗ is defined as J =

{j | x∗j = 0}. We define the strongly active set as J+ = {j | νj > 0} and the union of the

weakly active and inactive sets as J0 = {j | νj = 0}. It can be shown that the strongly

active set does not change in the small neighborhood of p0. Thus, we can formulate a QP

related to the sensitivity system (5.1) such that we stay on the strongly active constraints

in this small neighborhood. In fact, the primal-dual solution of this QP is the directional

derivative of the primal-dual solution s∗(p) of the parametric NLP (2.5).

Theorem 5. (NLP Sensitivity) If F (·) and c(·) of the parametric NLP problem (2.5) are
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twice continuously differentiable in a neighborhood of the nominal primal and dual solu-

tion s∗(p0) and this solution satisfies the LICQ and SSOSC, then,

• s∗(p) is Lipschitz continuous in a neighborhood of s∗(p0).

• s∗(p) is directionally differentiable.

• The directional derivative uniquely solves the following QP:

min
∆x

1

2
∆xT∇xxL(s∗(p0))∆x+ ∆xT∇xpL(s∗(p0))∆p (7.1a)

s.t. ∇xc(s∗(p0))T∆x+∇pc(s∗(p0))T∆p = 0 (7.1b)

∆xj = 0 j ∈ J+ (7.1c)

∆xj ≥ 0 j ∈ J0 (7.1d)

Proof: See [104] (Section 5.2), and [105] (Proposition 3.4.1). �

As opposed to Theorem 1, the SC condition is not needed for the above result. For

the small ∆p, the theorem above gives the approximate solution of (2.5) at p0 + ∆p. The

solution of the QP (7.1) is a first-order estimate of the change in the solution of (2.5) from

p = p0 to p = p0 + ∆p [101]. This QP is often referred to as a pure-predictor QP. A key

difference between calculating the sensitivity step using the QP (7.1) and the linear system

(5.1) is that with the QP, we account for the correct active set by staying on the strongly

active constraints as shown in (7.1c). Note that in the absence of weakly active constraints

(i.e. if SC holds), the sensitivity step obtained from (7.1) is equivalent to that obtained

from (5.1).

A pure-predictor QP, however, may not lead to a sufficiently accurate approximation.

A common approach to improve accuracy is to add a corrector step separately (see for

instance [101, 102, 103]) to push the estimate towards the true solution. In this chapter,

we consider a corrector term that is directly incorporated into the QP formulation as shown

in [99]. This predictor-corrector QP approximation of the parametric NLP (2.5) is formed

by including a corrector term in the objective function of the QP. The QP constraints are

formed by linearizing the NLP constraints with respect to x and p, and again enforcing

the strongly active inequalities as equalities. With the technical assumption that p enters
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linearly in the constraints, we formulate the following predictor-corrector QP:

min
∆x

1

2
∆xT∇xxL(s∗(p0); p)∆x+∇xF (s∗(p0); p)T∆x (7.2a)

s.t. c(s∗(p0); p) +∇xc(s∗(p0); p)T∆x = 0 (7.2b)

xj + ∆xj = 0 j ∈ J+ (7.2c)

xj + ∆xj ≥ 0 j ∈ J0 (7.2d)

The predictor component in the QP (7.2) estimates a first-order approximation of the

perturbed NLP, and this estimate is improved with the corrector component that makes

it more closely aligned with satisfying the KKT conditions at the new point [101]. Note

that in (7.2), the gradients, Jacobians and Hessians are computed at the updated parameter

value p = p0 + ∆p. The solution of (7.2) thus leads to good approximations of the NLP

solution for a small ∆p. However, in the context of sampfNMPC, we want to approxi-

mate the noncritical scenario solutions from the nominal scenario solution, and here the

∆p (which is the difference between the nominal and noncritical uncertainty) may not be

small. This necessitates a multi-step path-following approach that solves a sequence of

predictor-corrector QPs with small ∆p’s, as explained in the following section.

7.1.2 Path-following algorithm

The optimal solution path from p0 to pf can be parameterized with the path-following

parameter tk such that:

p(tk) = (1− tk)p0 + tkpf (7.3)

The predictor-corrector QP (7.2) is solved at each p(tk) with the path sequence t1, . . . , tK ,

where 0 < t1 < . . . < tk < . . . < tK = 1. The primal-dual solution is updated along the

path according to:

x(tk+1)= x(tk) + ∆x (7.4a)

λ(tk+1)= ∆λ (7.4b)

ν(tk+1)= ∆ν (7.4c)

where ∆x is obtained from the solution of (7.2), and ∆λ and ∆ν are the corresponding

multipliers of (7.2). This approach is similar to the Euler integration for solving ODEs on
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a discretized time interval.

As explained in [99], if a constraint changes from strongly active to inactive at some

point along the path, the corresponding multiplier will become νj = 0, and it will be added

to J0 for the next QP. The next QP solution can then move away from this constraint as

it is imposed as an inequality. Similarly, if constraint becomes active, the corresponding

multiplier will be added to J+ for the next QP, forcing the subsequent solution to be tracked

further along the equality. The path-following algorithm is shown in Algorithm 2.

Algorithm 2: Path-following algorithm (adapted from [99])

Given:
• Initial parameter p0, and final parameter pf
• initial number of points along the path K
• constant 0 < α < 1

Input: Primal-dual solution of NLP (2.5) at p0, s∗(p0)

Output: Approximate primal-dual solution of NLP (2.5) at pf , s̃(pf )

set k = 1, t0 = 0, ∆t = 1/K

while TRUE do

Update tk = tk−1 + ∆t

Compute p(tk) = (1− tk)p0 + tkpf

Solve predictor-corrector QP (7.2) at p(tk) /* to obtain ∆x,∆λ,∆ν */

if QP is feasible then

Update primal-dual variables according to (7.4)

Update k ← k + 1

else

Reduce QP stepsize ∆t← α∆t

end

if tk ≥ 1 then

Return updated primal-dual variables /* x, λ, ν */

break

end

end
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7.2 Sensitivity-assisted multistage NMPC scheme with path-

following

The sampfNMPC approach, in a nutshell, can be summed up in a two-step process:

1. explicitly handle the uncertainties of the critical and nominal scenarios through a

reduced scenario tree formulation, and then

2. path-follow our way to the uncertainties of the noncritical scenarios to arrive at the

(approximate) solution of the ideal multistage NMPC problem.

To this end, we first formulate the sets of critical and noncritical scenarios as explained in

Chapter 5.2.1.

7.2.1 Reduced NLP for critical and nominal scenarios

Recall that the critical and noncritical scenario sets are denoted by Ĉ and C̄. The NLP

formulation in the reduced space of critical and nominal scenarios is as follows:

min
zcl ,v

c
l

c∈Ĉ∪{0}

∑
c∈Ĉ∪{0}

ωc

(
φ(zcN ,d

c
N−1) +

N−1∑
l=0

ϕ(zcl ,v
c
l ,d

c
l )
)

+

∑
c∈C̄

ωc

(
φ(z0

N ,d
0
N−1) +

N−1∑
l=0

ϕ(z0
l ,v

0
l ,d

0
l )
)

(7.5a)

s.t. zcl+1 = f(zcl ,v
c
l ,d

c
l ) l = 0, . . . , N − 1 (7.5b)

zc0 = xk (7.5c)

vcl = vc
′

l {(c, c′) | zcl = zc
′

l } (7.5d)

zcl ∈ X,vcl ∈ U, zcN ∈ Xf ,dcl ∈ D (7.5e)

dcl−1 = dcl l = Nr, . . . N − 1 (7.5f)

∀c, c′ ∈ Ĉ ∪ {0}

Importantly, the noncritical scenario costs are approximated by the nominal scenario costs

(with corresponding weights) in the objective function (7.5a). We denote the concatenated

vector of all uncertainties in the reduced problem (with the subscripts l=0,...,N−1 omitted
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for brevity) as:

dreduced :=


d0

dc

...
(∀c∈Ĉ)

 (7.6)

We further denote the primal-dual solution vector of (7.5) as:

sreduced :=


s0

sc

...
(∀c∈Ĉ)

γ̂

 (7.7)

where each sc denotes the primal-dual solution vector for the corresponding scenario

variables, and γ̂ denotes the vector of the multipliers for the nonanticipativity constraints

(7.5d).

The formulation (7.5) can be thought of as a “partial” representation of the ideal mul-

tistage NMPC problem (2.4), albeit in the reduced space, where the noncritical scenario

uncertainty is equated to the nominal scenario uncertainty. This is because the nominal

cost replaces all the noncritical scenario costs in the objective function, and all the non-

critical scenario constraints (including the corresponding nonanticipativity constraints) are

represented all at once by the nominal scenario constraints (7.5b)–(7.5f) for d0
l .

7.2.2 Path-following to noncritical scenarios

The aim here is to path-follow from the “partial” solution of the ideal multistage prob-

lem (2.4) obtained from (7.5), to the “full” solution of (2.4) where the noncritical scenario

uncertainties are represented by their true values. Note that this path-following from the

partial solution to the full solution of (2.4) thus needs to happen in the full space of all sce-

narios, i.e. the predictor-corrector QPs (7.2) along the path should represent the full NLP

(2.4). Since we obtain the solution vector (7.7) of the reduced NLP, we can extrapolate it
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to represent the partial solution of (2.4) as follows:

sreduced :=


s0

sc

...
(∀c∈Ĉ)

γ̂

 =⇒



s0

sc

...
(∀c∈Ĉ)

s0

...
(∀c∈C̄)

γ̂
γ̄


=: sms,partial (7.8)

In this way, the noncritical scenario solutions are represented by the nominal scenario

solution in the extrapolated vector. Note that the NAC multipliers associated with noncrit-

ical scenarios γ̄ do not come from sreduced, and are chosen arbitrarily. Thus, the solution

vector sms,partal represents the solution of the ideal multistage NMPC problem (2.4) with

the partial uncertainty vector:

dms,partial :=



d0

dc

...
(∀c∈Ĉ)

d0

...
(∀c∈C̄)


(7.9)

The derivative information (gradients, Jacobians, Hessians) from the ideal multistage

NMPC problem (2.4) is used to formulate the predictor-corrector QP (7.2). We can now

solve a sequence of these predictor-corrector QPs, path-following from p0 = dms,partial

to pf = dms,full:

dms,partial :=



d0

dc

...
(∀c∈Ĉ)

d0

...
(∀c∈C̄)


→ · · · → · · · →



d0

dc

...
(∀c∈Ĉ)

dc

...
(∀c∈C̄)


=: dms,full (7.10)
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Consequently, we reach the (approximate) full solution vector s̃ms,full of (2.4) from its

partial solution vector:

sms,partial :=



s0

sc

...
(∀c∈Ĉ)

s0

...
(∀c∈C̄)

γ̂
γ̄


→ · · · → · · · →



s̃0

s̃c

...
(∀c∈Ĉ)

s̃c

...
(∀c∈C̄)

γ̃


=: s̃ms,full (7.11)

where γ̃ are the multipliers of all NACs (2.4d). The NACs (2.4d) are linear equality con-

straints, and so these are automatically imposed in the corresponding QPs also as equali-

ties. This ensures that NACs are satisfied at the full solution s̃ms,full, despite choosing the

initial γ̄ arbitrarily in (7.8).

Note that we only ever solve the predictor-corrector QP (7.2) associated with the ideal

multistage NMPC (2.4), and never the full NLP (2.4) itself. Also note that, in theory, if we

path-follow along an infinite number of points along the path (i.e. with ∆p infinitesimally

small at each segment of the path), we will reach the exact solution the ideal multistage

NMPC problem (2.4).

7.2.3 Overall sampfNMPC algorithm and implementation

The overall sampfNMPC strategy is summarized in Algorithm 3.

Algorithm 3 is implemented using JuMP (version 0.19.2) [62], a tool works within the

framework of the Julia (version 1.0.3) programming language [63]. The NLP solver

used within this framework is IPOPT [53], and the MA57 linear solver from the HSL li-

braries [79] is used within IPOPT. We also use IPOPT to solve the QPs, with the “mehro-

tra algorithm” option enabled [106]. All computational experiments are carried out with

an Intel i7-7600 Quad Core CPU at 2.8 GHz and 16GB RAM.

JuMP allows for querying the derivative information directly from a created optimiza-

tion model at a given point, without having to explicitly solve the model. Thus we create

(but not solve) a model for the ideal multistage NMPC problem (2.4) in JuMP, and initial-

ize its derivative information, so that the necessary gradients, Jacobians and Hessians that
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Algorithm 3: Sensitivity-assisted multistage NMPC with path-following

Given: {max, nominal, min} of all uncertain parameters.

for k = 1, 2, . . . do

Get the current state of the plant xk.

Solve the standard NMPC problem (2.2) for the nominal uncertainty d0
k, and

get the KKT matrix K0 at the optimal solution.

Critical scenarios: Extract∇zc and ∇dc from K0, and solve (5.11) to form the
critical scenario set Ĉ.

Reduced NLP: Solve the reduced NLP (7.5) to get sreduced, and extrapolate this
to get sms,partial according to (7.8).

Formulate QP: Use derivative information from ideal multistage NMPC
formulation (2.4) to formulate the associated predictor-corrector QP (7.2).

Path-follow: Apply Algorithm 2 to path-follow from sms,partial to s̃ms,full as
the uncertainty changes from dms,partial to dms,full.

Set uk = vc0, c ∈ C and inject into the plant.

end

go into the QP formulation (7.2) can be calculated at the appropriate points along the path.

An interesting point to discuss relating to this algorithm is how the path-following af-

fects the critical scenario set. Recall that the computation of critical scenarios in sampfN-

MPC is done in the same way as sampfNMPC, under the strong assumption of strict mono-

tonicity. Now with path-following, the changes in the active set can reveal more informa-

tion about which scenarios are actually likely to violate constraints in the absence of strict

monotonicity. The scenarios corresponding to the inequality constraints that change from

inactive to active along the path can then be added to the critical scenario set Ĉ, and the

sampfNMPC algorithm can then be reinitiated with the new Ĉ. However, this rigorous

treatment of critical scenarios has not been considered in this thesis, and is an avenue for

further research on the topic.

7.3 Case study

We consider the Quadtank model from Chapter 5.3.2 for setpoint tracking in a system of

four interconnected tanks. The model dynamics are given in (5.23), and supplementary
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information relevant to the model is given in Tables C.3, C.4 and C.5.

The task is to track the water levels in the lower tanks at 14 cm, while respecting level

bounds in the upper tanks. Note that, as before, we introduce predefined pulses at time

steps 50 and 100 to reinitialize the controller tracking. The objective function is also the

same as in (5.24).

We consider that γ1 and γ2 are uncertain with the discrete realizations {0.25, 0.4,

0.55}. Thus we have 9 scenarios for a robust horizon of Nr = 1. The true realizations

of γ1 and γ2 are chosen randomly for each time step from {0.25, 0.4, 0.55}. A prediction

horizon of N = 10 time steps is chosen with each time step of length 10s. The MPC

simulation is executed for 150 time steps. Further, we consider an initial K = 4 points for

the path-following Algorithm 2.

The results, shown in Figure 7.1, show overlapping tracking performance for ideal

multistage NMPC and sampfNMPC (see plots for ∆x1 and ∆x2). In terms of robustness

as well, the performances of both approaches are almost identical. Importantly, neither ap-

proach results in constraint violations (see plots for x3 and x4). Moreover, both approaches

have very similar input usage (see plots for u1 and u2).

A comparison of the computation times between the ideal multistage and the sampfN-

MPC approaches, averaged across all the time steps shown in the Figure 7.1 simulation, is

as follows. The ideal multistage NMPC approach takes, on average, 0.376 CPUs to solve

(2.4). On the other hand, the reduced NLP of the sampfNMPC approach takes only 0.172

CPUs to solve (7.5), on average, owing to its smaller size. However, with the current

software implementation, the path-following QPs add significantly to the sampfNMPC

computation time, taking on average 0.526 CPUs to solve (7.2) multiple times along the

path. The main reason for this is that we do not use specialized QP solvers, and solving

the relatively small NLP (2.4) directly is efficient.

We expect sampfNMPC to be significantly faster than ideal multistage NMPC for

larger problems with longer robust horizons, and especially with specialized QP solvers.

However, at the time of writing this thesis, there are certain software-related computational

challenges with our implementation of the sampfNMPC algorithm, that do not allow us

to consider longer robust horizons. Specifically, the computational bottleneck pertains to

building the large QP models in our software. Although solving these QP models was

found to be relatively fast under limited tests, generating these models is prohibitively

expensive in the current implementation.
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Figure 7.1: Setpoint tracking (x1, x2) and constraint satisfaction (x3, x4) for ideal multistage and
sampfNMPC (Nr = 1 i.e. 9 scenarios).
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7.4 Conclusion

This chapter extends upon the samNMPC approach presented in Chapter 5, with a path-

following algorithm. In sampfNMPC, instead of one-step linear sensitivity-based approx-

imations for the noncritical scenarios, we use a multi-step path-following approach based

on predictor-corrector QPs. The benefit here is that sensitivity-based approximate solu-

tions can be sought for larger changes in parameters. Another key advantage is that such

an approach accounts for the correct active constraint set at all points along the path.

In the sampfNMPC approach, a reduced NLP is solved to get the partial solution of the

ideal multistage NMPC, where noncritical uncertainties are approximated as the nominal

uncertainty. This partial solution serves a starting point to path-follow to the full solution

of ideal multistage NMPC, where all uncertainties are accounted for. We demonstrate the

performance of the proposed approach on the Quadtank case study, and show that it per-

forms as well as the ideal multistage NMPC in terms of robustness and setpoint tracking.

Currently, there are significant software-related challenges in terms of computational effi-

ciency of the proposed approach, which we discuss further in the concluding remarks of

this thesis.
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Summary and contributions

This thesis has examined the robust multistage NMPC problem and proposed new methods

and algorithms to further its practical applicability. These novel approaches have sought to

retain the key advantages of the multistage NMPC formulation, while overcoming some

of its limitations. In particular, the focus has been on improving the important aspects

of scenario selection and computational efficiency. To this end, the first part of the thesis

has shown that employing multivariate data-analysis is prudent when tailoring the scenario

tree to the given application, so that interdependencies within the uncertainty data are fully

leveraged. The second part of the thesis has demonstrated, through the use of nonlinear

optimization theory and sensitivity analysis, a framework that drastically shrinks the size

of the scenario tree (especially for longer robust horizons), offers robustness in terms of

performance and stability, and is computationally fast.

Chapter 1 gives an overview of the salient features of the multistage NMPC approach

in the context of robust NMPC, and identifies some pertinent issues that motivate the topics

of this thesis. Chapter 2 discusses the relevant background for multistage NMPC, in terms

of the some historical context as well as its practical optimization formulation, and lays

the foundation for discussing the novel approaches in this thesis.

Introducing Part I of the thesis, Chapter 3 motivates the need for data-driven scenario

selection to get a better representation of the uncertainty. Using PCA, the variability

in large correlated data sets in explained in fewer dimensions. This method has a two-
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pronged advantage: the solutions are less conservative because the scenario tree is more

compact, and the problem size is smaller because of the dimensionality reduction. Further,

time varying uncertainty sets are considered, and an online adjustment strategy for the sce-

nario tree is shown. The online updates are in the form of PCA-driven scenario selection

and a changing length of the robust horizon, depending on availability of new data. The

main contributions of Chapter 3 are as follows:

• Proposed a scenario selection strategy based on PCA.

• Proposed a dynamic update strategy for the scenario tree in face of time-varying

uncertainty.

• Compared the conventional scenario selection approach with PCA-based scenario

selection for a simple thermal energy storage model.

• Compared the performance of the approach with respect to a constant and a dynamic

robust horizon, for the simple thermal energy storage model.

Chapter 4 demonstrates the practical applicability of the PCA-based scenario selection

strategy for a detailed case study motivated by industrial data. A brief background of

thermal energy storage systems is given in the context of optimal operation. Uncertainty

in heat supply and demand is considered, with the objective of minimizing the use of

peak heating sources, and satisfying temperature constraints for the participating plants.

Thorough analysis of the industrial data set reveals correlations in the heat supply and

demand, and allows for the use of PCA-based multistage NMPC. The approach is shown

to provide robustness in terms of keeping the relevant temperatures within bounds even

when the actual heat supply and demand profiles are taken from a completely different

data set. The main contributions are listed below:

• Developed a detailed heat exchanger model where heat transfer from suppliers to

consumers is facilitated through thermal energy storage.

• Performed rigorous preprocessing of the industrial data to identify where diurnal

thermal energy storage is most relevant, and where PCA-based scenarios selection

can be used.

• Employed PCA for outlier detection to get rid of data samples that are not represen-

tative of the uncertainty.

• Compared the PCA-based multistage NMPC approach with a standard NMPC ap-

proach to demonstrate robust constraint handling.
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Chapter 5 introduces Part II of the thesis, presenting the sensitivity-assisted multistage

NMPC (samNMPC) approach. Here, a critical scenario set is formed by going through

the inequality constraints and ascertaining which uncertainty realizations are most likely

to cause the inequality to be violated. One of the main highlights of this approach is

that the critical scenarios only increase linearly with the robust horizon length, allowing

for consideration of problems with longer robust horizons. This allows for solving an

approximate multistage NMPC problem with these few scenarios. Moreover, the rest of the

scenarios are approximated based on their NLP sensitivities in the objective function, and

thus do not increase the problem size. Computational results are shown for two examples

from literature. The work done for this chapter includes several contributions as shown

below:

• Developed the samNMPC framework as an approximation strategy for multistage

NMPC

• Generalized the computation of critical scenario set for any length of the robust

horizon, based on the KKT matrix of a parameterized standard NMPC problem.

• Performed the sensitivity calculations for noncritical scenarios using a quick buildup

of an approximate multistage KKT matrix, further exploiting its structure using the

Schur complement decomposition.

• Applied the proposed framework to track setpoints in benchmark CSTR and Quad-

tank examples for up to a robust horizon length of 3 (729 scenarios), showing ro-

bust constraint handling and significant reduction in computational cost compared

to conventional multistage NMPC, especially for longer robust horizons.

• Compared the sensitivity computation times with and without Schur complement

decomposition, in the context of parallelization.

• In terms of software, wrote a piece of code in Julia that auto-generates the NACs

and the Jacobian of NACs for any given number of uncertain parameters and any

given length of the robust horizon.

• In terms of software, wrote a piece of code in Julia that computes NLP sensitivity

steps for any given parametric NLP.

In Chapter 6, the recursive feasibility and stability properties of ideal multistage NMPC

and samNMPC are investigated. The different NMPC problems are reformulated with soft

inequality constraints using slack variables, and it is shown that Lipschitz continuity and
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NLP sensitivity properties hold for the relaxed problems. Consequently, the bounded na-

ture of the slack variables lends itself to the proof of recursive feasibility for both formu-

lations. Comparing the two formulations with their nominal case, ISpS is shown to hold.

The main contributions of this chapter are as follows:

• Proved recursive feasibility of ideal multistage NMPC under the robust horizon as-

sumption.

• Proved recursive feasibility of samNMPC under the robust horizon assumption.

• Proved ISpS for ideal multistage NMPC under the robust horizon assumption.

• Proved ISpS for samNMPC under the robust horizon assumption.

In Chapter 7, a path-following sensitivity update strategy is used to improve the ac-

curacy of samNMPC. Solving a reduced problem over critical and nominal scenarios, the

sampfNMPC approach first seeks a the partial solution of the multistage NMPC problem.

Having obtained the partial solution, it path-follows along all the noncritical scenarios

to reach the full multistage solution. The path-following algorithm employs predictor-

corrector QPs that keep track of changes in the active set along the path. Although some

computational challenges remain in terms of the software implementation, sampfNMPC

is shown to perform extremely well in terms of robust constraint handling and tracking for

an illustrative example. Listed below are the main contributions from this chapter:

• Proposed the sampfNMPC framework.

• Proposed an extrapolation strategy to get the partial solution of multistage NMPC

from the reduced NLP solution.

• In terms of software, wrote a piece of code in Julia that computes NLP sensitivity

updates using the path-following algorithm for any given parametric NLP.
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A few avenues for further work in the topics of this thesis are presented here. Some of

these are broad recommendations, while some are specific to the proposed algorithms.

Data-driven scenario selection

The use of PCA for selection of scenarios, as was done in Part I of this thesis, has some

obvious limitations. Since PCA is a linear transformation technique, it can only reveal

correlations that are linear in nature. Although this was the case in the case studies demon-

strated in Part I, process data can exhibit interdependencies that are inherently nonlinear.

To exploit such data sets, data classification techniques such as the nonlinear support vec-

tor machines can be employed. These techniques use so-called kernel functions to project

the data into a higher-dimensional space, where it can then be linearly separated [107].

A robust NMPC technique that combines multistage NMPC with tube-based NMPC is

considered in [108]. The idea is to use multistage NMPC as a primary controller to com-

pute different state trajectories for the “important” uncertainties, and to use an ancillary

controller to track these state trajectories. The proposed framework can be thought of in

the context of PCA-based scenario selection. Scenarios along the dominant principal com-

ponents can be incorporated in the primary controller, whereas an ancillary control law is

sought in the direction of the “insignificant” principal components, which were discarded

in scenario selection procedure in this work.

Scenarios chosen along the dominant and insignificant principal components can also

be seen as the critical and noncritical scenarios of the samNMPC or sampfNMPC frame-

works discussed in Part II of the thesis. Since variability is low along the insignificant

principal components, the corresponding noncritical scenarios will be well represented by

their NLP sensitivity updates.

Thus there are potential synergies to be explored between the following approaches:

1. the combined multistage and tube-based NMPC as proposed in [108],

2. PCA-based multistage NMPC proposed in Part I, and

3. samNMPC / sampfNMPC proposed in Part II.

115



Conclusion and Future Work

samNMPC and sampfNMPC implementation

In the current implementation of samNMPC, although Schur complement decomposition

is used, it is not parallelized (remember that only theoretical parallel estimates are reported

in Chapter 5). Extending the framework with parallel computing will show significant

bump in computational performance. The samNMPC is an approximation strategy, but

since it retains its multistage structure, the computational effort can also be aided by em-

ploying other NLP decomposition strategies. Another option to speed up computations is

to integrate samNMPC with the advanced-step multistage NMPC proposed in [28]. The

approach also needs to be tested on large-scale industrial case studies with many uncertain

parameters, where it becomes necessary to branch the scenario tree further in time in order

to better represent the uncertainty.

The sampfNMPC approach is shown to work well and compares favorably with ideal

multistage NMPC from the robustness perspective. However, at the time of writing this

thesis, there are two challenges with the software implementation of the sampfNMPC

approach. First, the QP model generation time is a bottleneck with the current implemen-

tation. This is because there are thousands of QP constraints even for small problems, and

most of these constraints each involve computing the dot product of large vectors (see the

constraints (7.2b) for example). Although the QPs are solved fast, they take a long while

to be generated at each point along the path, limiting the analysis in Chapter 7 to only

Nr = 1. It also does not allow a fair comparison to be made between the computation

times of sampfNMPC and ideal multistage NMPC. A way to resolve this issue is to reuse

QP models from the previous point in the path and only update those constraints that rep-

resent a change in the active set. In this way, the entire QP model need not be regenerated

at every point in the path. Second, the current implementation does not use specialized QP

solvers. Since the QPs represent a multistage problem, the corresponding KKT matrices

have a block-bordered-diagonal structure that can be exploited using Schur complement

decomposition. Solving the QPs based on a parallelized Schur complement implementa-

tion would significantly improve the computational performance of sampfNMPC.

Finally, it must be noted that a software package for computing NLP sensitivities,

in a similar vein as sIPOPT [109], is currently in the works for Julia. The package is

also meant to provide functionality for computing sensitivity updates using path-following

algorithms.
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[30] M. Thombre, Z. Mdoe, and J. Jäschke, “Data-Driven Robust Optimal Operation of

Thermal Energy Storage in Industrial Clusters,” Processes, vol. 8, p. 194, Feb 2020.

[31] M. Thombre, S. Prakash, B. R. Knudsen, and J. Jäschke, “Optimizing the capacity
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Appendix A
Supporting information: Chapter 3

Simple TES model

Figure A.1 shows the schematic with the different states, inputs and disturbances in the

TES model. The heat exchangers are modeled as devices with two chambers representing

the hot side and the cold side. Both chambers of the heat exchanger, as well as the TES tank

itself, are considered to have the same temperature throughout their volumes. Thus the

temperatures exiting these volumes are considered to be same as those inside the volumes.

The dynamics of the process involve energy balances over the hot and cold sides of the

heat exchangers, and over the TES tank.

The TES tank has a volume V TES , and experiences heat loss with a conductance

(UA)
TES . Each side of the heat exchangers has a volume V hex and heat transfer conduc-

Supp
lier S HEX TES HEXT S

process

T S
hot

qS
hot

T S
cold

T TES T TES

T C
hot

qS
cold qC

hot qC
cold

QTES QC
Peak

T C
process

T C
cold

Consume r C

Figure A.1: Schematic of the model. The states, inputs and uncertainties are shown in red,blue, and
green respectively.
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tance (UA)
hex. The heat exchanger fluid is water, with density and specific heat capacity

denoted by ρ and Cp respectively.

The energy balances on the supplier side can then be formulated as:

ρCpV
hex dT

hot
S

dt
= ρCpq

hot
S (T processS − ThotS )− (UA)

hex
(ThotS − T coldS ) (A.1a)

ρCpV
hex dT

cold
S

dt
= ρCpq

cold
S (TTES − T coldS ) + (UA)

hex
(ThotS − T coldS ) (A.1b)

Similarly on the consumer side:

ρCpV
hex dT

hot
C

dt
= ρCpq

hot
C (TTES − ThotC )− (UA)

hex
(ThotC − T coldC ) (A.2a)

ρCpV
hex dT

cold
C

dt
= ρCpq

cold
C (T processC − T coldC ) + (UA)

hex
(ThotC − T coldC ) (A.2b)

The energy balance over the TES tank yields:

ρCpV
TES dT

TES

dt
= ρCpq

cold
S (T coldS − TTES) + ρCpq

hot
C (ThotC − TTES)

− (UA)
TES

(TTES − T amb) +QTES (A.3)

Finally, the demand satisfaction constraint on the consumer side can be written as:

ρCpq
cold
C (T coldC − T processC ) +QpeakC ≥ QdemandC (A.4)

For the multistage NMPC formulation (2.4), we consider an economic objective func-

tion related to minimizing the cost of energy purchase for the TES system:

ψl = PTES(QTES)l + P peak(QpeakC )l (A.5)

The model parameters are shown in Table A.1, and the bounds on states and inputs are

given in Table A.2.
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Table A.1: Simple TES - Model parameters.

Parameter Value Unit
ρ 1000 kg/m3

Cp 4.18 kJ/kg.K
V TES 100 m3

V hex 0.5 m3

(UA)
TES 50 kW/K

(UA)
hex 150 kW/K

T amb 20 ◦C
QdemandC (normal) 5 MW
QdemandC (peak) 10 MW

PTES 5 price units
P peak 1000 price units

Table A.2: Simple TES - Bounds on states and inputs.

Variable Minimum Maximum Unit
ThotS 0 100 ◦C
T coldS 0 100 ◦C
ThotC 0 100 ◦C
T coldC 0 100 ◦C
TTES 30 100 ◦C
qhotS 0 1 m3/s
qcoldS 0 1 m3/s
qhotC 0 1 m3/s
qcoldC 0 1 m3/s
QTES 0 5 MW

QpeakC 0 - MW
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Appendix B
Supporting information: Chapter 4

Detailed TES model

A full schematic of the process used for model derivation is shown in Figure B.1.
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Figure B.1: Detailed model illustration for the heat exchangers in the TES. The red and blue lines
represent the hot and cold streams respectively.

The TES tank has a volume V TES , and experiences heat loss with a conductance

(UA)
TES . Each cell of the heat exchangers has a volume V hexpart and heat transfer conduc-

tance (UA)
hex. The heat exchanger fluid is water, with density and specific heat capacity

denoted by ρ and Cp respectively.

We apply enthalpy balances over the components shown in Figure B.1, namely the

process and return pipe elements, as well as the hot and cold sides of the heat exchanger.

Note that we consider countercurrent flow in the heat exchangers.
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The enthalpy balance over the process pipe element yields:

ρCpV
hex
part

dT processS

dt
= QsupplyS − ρCpqhotS (T processS − T returnS ) (B.1)

Similarly, the enthalpy balance over the return pipe element gives:

ρCpV
hex
part

dT returnS

dt
= ρCpq

hot
S (Thex,hotS,nhex

− T returnS )−QdumpS (B.2)

The balances over the hot and cold sides of the supplier-side heat exchanger lead to the

following equations:

ρCpV
hex
part

dThotS,k

dt
= ρCpq

hot
S (ThotS,k−1 − ThotS,k )− UAhex(ThotS,k − T coldS,k ), (B.3a)

ThotS,0 = T processS , ∀k ∈ {1, 2, . . . , nhex} (B.3b)

ρCpV
hex
part

dT coldS,k

dt
= ρCpq

cold
S (T coldS,k+1 − T coldS,k ) + UAhex(ThotS,k − T coldS,k ), (B.4a)

T coldS,nhex+1 = TTES , ∀k ∈ {1, 2, . . . , nhex} (B.4b)

The enthalpy balances for the consumer side are analogous to the supplier side. The

enthalpy balance for the process pipe element leads to:

ρCpV
hex
part

dT processC

dt
= ρCpq

hot
C (T returnC − T processC )−QdemandC (B.5)

Similarly, the balance over the consumer-side return pipe element yields:

ρCpV
hex
part

dT returnC

dt
= QpeakC − ρCpqhotC (T returnC − Thex,coldC,1 ) (B.6)

Finally, the enthalpy balances over the hot and cold sides on the consumer-side heat ex-

changer result in the following equations:

ρCpV
hex
part

dThotC,k

dt
= ρCpq

hot
C (ThotC,k−1 − ThotC,k)− UAhex(ThotC,k − T coldC,k ), (B.7a)

ThotC,0 = TTES , ∀k ∈ {1, 2, . . . , nhex} (B.7b)

ρCpV
hex
part

dT coldC,k

dt
= ρCpq

cold
C (T coldC,k+1 − T coldC,k ) + UAhex(ThotC,k − T coldC,k ), (B.8a)

T coldC,nhex+1 = T processC , ∀k ∈ {1, 2, . . . , nhex} (B.8b)
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QTES,inS is the heat supplied to the TES, and can be calculated as the heat transfer

from the hot to cold side of the supplier-side heat exchanger (since heat loss in the pipes

is negligible).

QTES,inS =

nhex∑
k=1

(UA)hexk (Thex,hotS,k − Thex,coldS,k ) (B.9)

where (UA)hex is the heat-transfer conductance of the heat exchangers. Similarly,QTES,outC

is the heat extracted from the TES.

QTES,outC =

nhex∑
k=1

(UA)hexk (Thex,hotC,k − Thex,coldC,k ) (B.10)

The resulting TES energy balance is:

ρcpV
TES dT

TES

dt
= QTES,inS −QTES,outC −QTES,loss (B.11)

where QTES,loss is the heat lost by the tank to the surroundings.

QTES,loss = (UA)TES
(
TTES − T amb

)
(B.12)

It may be noted from Figure B.1 that the volumetric flow rates of water going in and

out of the TES are equal. The volume of the water inside the TES is thus always constant.

For the NMPC formulations such as (2.2) and (2.4), we consider an economic objective

cost related to minimizing the use of peak heating sources in the industrial cluster:

ψl =
(
QpeakC

)
l

(B.13)

The model parameters are shown in Table B.1, and the bounds on states and inputs are

given in Table B.2.

Outlier detection using PCA

The data set is limited to winter months of January–March and December when thermal

energy storage is applicable. This resulting supply and demand data sets each have 121

sample days with 24 hourly measurements in each day.

PCA is performed separately on the supply and demand data matrices each of dimen-

sions 121 × 24, resulting into two models. Since we aim at finding a linear correlation
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Table B.1: Detailed TES - Model parameters.

Parameter Value Unit
V TES 1000 m3/s

(UA)TES 0.1 kW/K
V hex 1 m3

(UA)hex 3000 kW/K
nhex 5 -
T amb −5 ◦C
ρ 1000 kg/m3

Cp 4.18 kJ/kg.K
qhotS ,qcoldS 0.3 m3/s

Table B.2: Detailed TES - Bounds on states and inputs.

Variable Minimum Maximum Unit
T processS 50 100 ◦C
T returnS 50 85 ◦C
T processC 50 100 ◦C
T returnC 60 100 ◦C
TTES 50 100 ◦C
qhotC 0.001 0.3 m3/s
qcoldC 0.001 0.3 m3/s

QdumpS 0 - kW

QpeakC 0 - kW
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between supply and demand, we detect outlier samples appearing in either of the two PCA

models. The supply data PCA model covered a total variance of about 89.90% using 7

principal components. On the other hand, demand data PCA model captured more vari-

ation with fewer components and achieved a total explained variance of 95.58% using 6

principal components.

Determination of an outlier is done by calculation of sample residuals and leverage

in each PCA model. Leverage is the distance of the sample point from the origin of

the PCA model measured along the new model subspace. A sample with high leverage

implies over-influence on the PCA model, making it not a general representation of the

system. Samples with significantly higher residuals and leverage compared to the others

are considered outliers. This is a statistical anomaly detection which can be applied to

processes as explained in [110, 111].

The sample residuals are estimated to be F-distributed and the X-residuals are con-

verted to F-residuals. A multivariate t-test on the PCA scores (not the original variables)

is called the Hotelling’s T 2 statistic [112]. The Hotelling’s T 2 statistic is directly related

to the leverage of the sample on the PCA model. It is also approximated as being F-

distributed. The critical limits for Hotelling’s T 2 and F-residuals are estimated such that

the confidence interval is 95%. A plot of F-residual against Hotelling’s T 2 shown in Fig-

ure B.2, called the influence plot, represents the outlier analysis for supply and demand

data sets.

The samples that are above the critical limits (red-dashed lines) in either F-residual and

Hotelling’s T 2 statistic are considered outliers and are discarded from further analysis. In

the Figure B.2, the outliers corresponding to the months of January and December are

numbered with their corresponding date.
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Figure B.2: Influence plots for demand and supply data in the winter months (January–March and
December) of 2017. The confidence interval is set to 95% and the limits are shown as red-dashed
lines. Samples with either high Hotelling’s T 2 or F-Residuals (F-distributed) are considered outliers.
The outliers are labelled with their corresponding date.
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Appendix C
Supporting information: Chapter 5

CSTR model

Table C.1: CSTR - Model parameters.

Parameter Value Unit
k0,1 1.287 × 1012 1/h
k0,2 1.287 × 1012 1/h
k0,3 9.043 × 109 L/mol.h

EA,1/R 9758.3 K
EA,2/R 9758.3 K
EA,3/R 8560.0 K
∆HAB 4.2 kJ/mol
∆HBC -11.0 kJ/mol
∆HAD -41.85 kJ/mol
cp 3.01 kJ/kg.K
cpK 2.0 kJ/kg.K
ρ 0.9342 kg/L
A 0.215 m2

VR 10.0 L
Tin 130 kg
kW 4032 kJ/h.m2.K
mK 5.0 kg
cA0 5.1 mol/L
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Table C.2: CSTR - Initial conditions and bounds on states and inputs.

Variable Initial condition Minimum Maximum Unit
cA 0.8 0.1 5.0 mol/L
cB 0.5 0.1 5.0 mol/L
TR 134.14 50 140 ◦C
TK 134.0 50 180 ◦C
F 18.83 5 100 1/h

Q̇K -4495.7 -8500 0 kJ/h

Quadtank model

Table C.3: Quadtank - Model parameters.

Parameter Value Unit Parameter Value Unit
A1 50.27 cm2 a1 0.233 cm2

A2 50.27 cm2 a2 0.242 cm2

A3 28.27 cm2 a3 0.127 cm2

A4 28.27 cm2 a4 0.127 cm2

γ1 0.4 − γ2 0.4 −

Table C.4: Quadtank - Bounds on states and inputs.

Variable Minimum Maximum Unit
x1 7.5 28.0 cm
x2 7.5 28.0 cm
x3 14.2 28.0 cm
x4 4.5 21.3 cm
u1 0.0 60.0 mol/L
u2 0.0 60.0 mol/L

Table C.5: Predefined pulse changes to state variables in Quadtank case study.

k x1 x2 x3 x4

0 28 cm 28 cm 14.2 cm 21.3 cm
50 28 cm 14 cm 28 cm 21.3 cm
100 28 cm 14 cm 14.2 cm 21.3 cm
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Appendix D
Optimal Sizing in a Thermal

Energy Storage System

In this chapter, we investigate design optimization formulations for finding the optimum

size of the storage tank and heat exchangers, that offer robustness against heat supply and

demand uncertainty. Two stochastic programming formulations, one based on a single-

level and another based on a bilevel approach are shown. For the bilevel formulation,

the design decisions are the upper level variables and the operating decision constitute

the lower level variables. Since we consider linear formulations, the bilevel problem is

reformulated as a mathematical program with complementarity constraints (MPCC) by

replacing the lower level problem with its optimality conditions. The MPCC is further

cast as a mixed-integer linear program (MILP) using the Big M approach, which is then

solved using Gurobi, a specialized MILP solver.
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Abstract 

A key factor for energy-efficient industrial clusters is the recovery of waste heat. To this 

end, thermal energy storage (TES) is an appealing technology that facilitates dynamic 

heat integration between supplier and consumer plants. A long-term strategy for energy 

savings must involve adequate consideration for the optimal design of the TES. From an 

industrial perspective, finding the capacity of the TES unit is often based on heuristic 

rules which may lead to suboptimal design. This approach does not account for the 

short-term variability in operation of the TES system. Scenario-based stochastic 

programming approaches, where the operational uncertainty is described in form of 

discrete scenarios, can be used to find the best design for the TES system. We present 

two problem formulations for finding the optimal capacity of the TES unit. The first is a 

single-level formulation where the design and operating constraints are combined for all 

scenarios, with the objective of minimizing the combined cost of design and operation. 

The second is a bilevel formulation where the design decisions are taken on the upper 

level to minimize overall system cost, whereas the lower level problems (one per 

scenario) represent the optimal operation for the chosen design variables, each 

minimizing the operating cost for their respective scenarios. We compare the results of 

the two approaches with an illustrative case study of an industrial cluster with one 

supplier plant and one consumer plant exchanging heat via a TES unit. 

Keywords: thermal energy storage, bilevel programming, industrial cluster 

1. Introduction 

Storage and reuse of industrial waste heat is vital for improving energy efficiency of 

many energy-intensive processes. When multiple industrial plants operate in close 

proximity of each other, waste heat can be recovered from one plant and supplied to 

another plant in need of it. Thermal energy storage (TES) can mitigate the issue of 

asynchronous heat supply and demand by storing energy during off-peak periods and 

discharging it during peak demands, leading to savings in operating costs. The capital 

investment costs for installing a TES system are proportional to the capacity of the TES, 

and may become significantly high. In order to find a trade-off between high capital 

costs (large capacity) and high operating costs (small capacity), it is worth investigating 

methods for optimally sizing the TES. A well designed TES system has to contend with 

operational uncertainty, for example the daily/weekly fluctuations in heat supply and 

demand. By incorporating this uncertainty information in the design phase itself, it is 

possible to size a TES system that is robust against this uncertainty. Solving a single 

deterministic optimization problem that spans across the entire operation horizon of the 

TES (typically multiple years), and accounts for all the heat profile fluctuations therein, 
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is computationally intractable. To overcome this, stochastic programming approaches 

can be used to optimize the design decisions over a set of representative scenarios.   

Our aim is to find a measure for the optimal sizing of the TES equipment - the volume 

of a TES unit and the areas of the HEX delivering/extracting heat from the TES unit - 

by rigorously accounting for the uncertain heat supply and demand in operation phase. 

For the TES system, the decisions can be divided into two stages - design and operation. 

In the extensive form of stochastic programming (Birge and Louveaux, 2011), the 

design variables are “here-and-now", whereas the “wait-and-see" operation variables are 

assigned to each scenario. This results in a single-level optimization problem, where the 

objective function represents the overall system cost. The design constraints and the 

operating constraints for each scenario are all imposed together in this formulation. 

Another stochastic approach is the bilevel formulation, based on a Stackelberg leader-

follower hypothesis. The upper level problem (leader) identifies the optimal design 

decisions that minimize the overall cost over a set of scenarios. On the other hand, the 

lower level problems (followers), representing different scenarios, aim to minimize their 

corresponding operating cost (see Xu et al. (2017), for example). Bilevel problems are 

typically nonconvex and NP-hard. However, for cases where the lower level problems 

are convex and follow some constraint qualifications, the lower level problems can be 

replaced with their Karush-Kuhn-Tucker (KKT) optimality conditions (Dempe and 

Franke (2019)). The KKT reformulation turns the bilevel problem into a single-level 

mathematical program with complementarity constraints (MPEC). The complementarity 

constraints can be further linearized using disjunctive programming (Fortuny-Amat and 

McCarl, 1981), rendering the problem a mixed-integer program. 

In this paper, we develop a linear model for the TES system and present the two 

formulations for optimizing the TES design. The results are compared with the help of a 

case study that is motivated from an industrial district heating network in northern 

Norway. We compare the results of the two approaches in terms of design parameters 

for the TES - its volume, the HEX area and the associated capital investment. 

2. Methodology 

Topology of a TES system with one supplier and one consumer is shown in Figure 1. 

We employ a simplified linear model in terms of heat duties (MW) to represent the TES 

system. The heat supplier needs to reject Qsupply(t) amount of duty, whereas the 

consumer has a heat demand Qdemand(t) to be met. If the TES cannot meet the total 

demand of the consumer, the excess energy Qpeak(t) is imported from an external peak 

heating source. Similarly, if all of supplied heat cannot be extracted from the supplier, 

the excess energy Qdump(t) is rejected into a cooling water system. The resulting heat 

flows in and out of the tank are denoted by ( )
in

tes
Q t and ( )

out

tes
Q t . The energy in the TES 

unit is denoted by Etes(t) (MWh). Heat losses from the TES unit to the surroundings are 

denoted by Qloss(t), which proportional to its energy content. The peak heating and heat 

dumping duties, along with the energy in the TES unit represent the operating variables 

in the system. xopr := {Qpeak(t), Qdump(t), Etes(t)} The associated costs (NOK/MWh) of 

importing and dumping heat are Cpeak(t) and Cdump(t) respectively. Considering an 

operating period from t0 to tf , the total operating cost can be shown as 

 
0

: ( ) ( ) ( ) ( )

ft

opr peak peak dump dump

t

C C t Q t C t Q t dt   (1) 
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Figure 1: Industrial cluster with one supplier and one consumer exchanging heat through TES. 

In context of the system design, the required total energy capacity of the TES unit 

(MWh) is denoted by CAPtes, whereas the required maximum power rating for heat 

exchange with the TES unit (MW) is POWtes. For taking design decisions, the former 

gives the basis for choosing the total volume of the tank. Similarly, the maximum power 

rating, often serving as the heat exchanger (HEX) design point is related to the HEX 

area required to deliver and withdraw heat from the TES unit. Thus, CAPtes and POWtes 

represent the design variables in the system. xdes := {CAPtes, POWtes}. The prices 

associated with these variables are Ccap(NOK/MWh) and Cpow(NOK/MW) respectively. 

The total design cost is: Cdes := CcapCAPtes +CpowPOWtes. 

Our aim is to identify optimal design parameters for TES system under some 

information about the operational uncertainty. Uncertainty is modeled in terms of N 

scenarios, each representing a discrete combination of the heat supply and demand 

profiles Qsupply(t) and Qdemand(t) across the operating period. We consider two different 

formulations of the design optimization problem, a single-level formulation and a 

bilevel formulation. 

2.1. Single-Level formulation 

Considering N scenarios of operation, the single-level problem is formulated as (2). 

,
min
des oprx x

  
,

1

N

des n opr n

n

C C


    (2a) 

. .s t   0tesCAP     (2b) 

 0tesPOW     (2c) 

 , , , ,( ) ( ) ( ) ( )in out

tes n tes n tes n loss nE t Q t Q t Q t     1,...,n N  (2d) 

 , ,0 ( )peak n peak maxQ t Q    1,...,n N  (2e) 

 , ,0 ( )dump n dump maxQ t Q    1,...,n N  (2f) 

 ,0 ( )in

tes n tesQ t POW    1,...,n N  (2g) 

 ,0 ( )out

tes n tesQ t POW    1,...,n N  (2h) 

 ,0 ( )tes n tesE t CAP    1,...,n N  (2i) 

Here, the subscript n represents the nth scenario of operation. In the objective (2a), 
n   

is the probability associated with the nth scenario. Equation (2d) is the energy balance 

equation for the TES, where , ( )tes nE t  is the derivative of the energy in the TES unit. The 

heat flows in and out of the TES unit are upper bounded by the POWtes, and energy in 

TES unit is upper bounded by its capacity CAPtes. For implementation, 

we discretize all the continuous variables in (2) using constant time steps. The integral 

in the objective (2a) is thus replaced by summation over all the discretized time steps. 
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Moreover, we employ a forward Euler scheme to discretize the energy balance equation 

(2d). This transforms (2) into an LP, solvable by MILP solvers like Gurobi and CPEX. 

2.2. Bilevel formulation 

In the bilevel formulation (3), the lower level operating variables are constrained to be 

the optimal solutions of the lower level problems (3d), corresponding to their respective 

scenarios of operation. The upper level objective function is the overall cost (same as 

(2)), whereas the objective function of each lower level problem is the operating cost for 

the corresponding scenario. 

,
min
des oprx x

  

,

1

N

des n opr n

n

C C



  

  (3a) 

. .s t  0tesCAP      (3b) 

 0tesPOW      (3c) 

 

,

, arg min
opr n

opr n
x

x    

,opr nC   1,...,n N  (3d) 

 . .s t  
, , , ,( ) ( ) ( ) ( )in out

tes n tes n tes n loss nE t Q t Q t Q t       

  
, ,0 ( )peak n peak maxQ t Q      

  
, ,0 ( )dump n dump maxQ t Q      

  
,0 ( )in

tes n tesQ t POW      

  
,0 ( )out

tes n tesQ t POW      

  
,0 ( )tes n tesE t CAP      

The notation used for various variables is the same as in (2). Note that the lower level 

constraints involve the upper level variables. We also use the same discretization 

scheme as (2) to convert (3) into a linear bilevel program. This linear bilevel program is 

still nonconvex is nature owing to the constraints (3d). However, since the lower level 

problems (3d) are LPs after discretization, the bilevel problem (3) can be reformulated 

as an MILP as explained in Section 1, and can thus be solved by solvers like Gurobi and 

CPLEX. 

The formulation (3) has tighter feasible set than (2). Problem (3) is thus expected to 

result in more conservative solutions than (2). However, the bilevel formulation is more 

representative of the design problem since in practice the problem has a hierarchical 

nature with the operator’s decisions following those of the designer’s, with both trying 

to optimize their respective objectives. 

3. Case study – design basis 

An industrial TES system with one supplier and one consumer of heat is studied. To 

formulate the design problem, 5 years of operation is assumed for the TES unit. The 

overall objective function (Equations (2a) and (3a)) in the formulation then consists the 

design cost and the operating cost for 5 years of operation. On the operation level, we 

consider only hourly variation in the heat duties and, to maintain computational 

tractability, an operating horizon of one week (168 hours). On the design level, we 

approximate the total 5-year operating cost by extrapolating the weekly operating cost 

from the operation level over 5 years of operation. The scenarios for weekly operation 

are taken from the 2017 winter data for heat supply/demand provided by Mo 

Fjernvarme, a district heating company in northern Norway. Further, all scenarios are 
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considered equally likely in the formulations (2) and (3). The prices for peak heating, 

Cpeak are taken to be the corresponding hourly 2017 electricity prices in northern 

Norway. The prices for heat dumping, Cdump, are assumed to be 1/10th of the peak 

heating prices. The maximum peak heating and heat dumping rates Qpeak,max and 

Qdump,max are set to be 50 MW each. The design basis for calculating the TES volume 

and HEX area is as follows. The maximum energy storage capacity CAPtes is related to 

the TES volume and depends on the total enthalpy change of the TES fluid in the tank 

between the fully charged and fully discharged state,
tes p tesCAP C V T  . Assuming 

water as the storage medium and an operating window of 20 C  for the storage tank, the 

following relation is obtained: 

3(m ) 43.06 (MWh)tes tesV CAP
 

(4) 

The maximum power rating POWtes corresponds to the maximum duty transferred 

across the HEX to and from the TES unit, given by ( )LMTD pQ UA T mC T    . 

Charging to a nearly fully charged TES or discharging from a nearly discharged TES 

unit would give the maximum area requirement of the HEX. We assume that the TES 

unit is large enough to have a nearly flat profile across the HEX and use a 10 C  

approach temperature in the HEX. Using the fluid properties of water, we estimate the 

lowest ( )LMTDT to be 19.5 C , and get the relation between POWtes and an upper bound 

for the area required for the HEX as: 

2(m ) 60.24 (MW)hex tesA POW
 

(5) 

Finally, we use a linearized approximation of the total purchased equipment cost as 

provided by Sinnott and Towler (2009), to estimate our design costs Ccap and Cpow. 

Following the factorial method to convert the purchase costs to total design costs, we 

get the following approximate relations: 

(mil. NOK 2017) 0.7 0.11 (MWh)cap tesC CAP 
 

(6) 

(mil. NOK 2017) 0.095 0.3 (MW)pow tesC POW 
 

(7) 

4. Results and discussions 

We compare the results between the two formulations while considering 5, 10 and 20 

weekly scenarios, chosen from the 2017 winter data. Also, when considering real data, 

care has to be taken to avoid any outliers that may skew the results of the design 

optimization. Figure 2 shows that the single-level formulation results in higher TES 

capacities, whereas the bilevel formulation emphasizes higher HEX areas for efficient 

heat transfer. This implies that, at higher TES capacities, optimal lower level solutions 

result in a higher design cost for the bilevel formulation. The bilevel formulation 

prioritizes minimizing the design objective at the expense of operation objective. 

Although this results in a higher operation cost for the bilevel formulation (Figure 3), it 

ensures that the chosen design parameters lead to optimal operation on the lower level. 

Also interesting to note is that the design costs from the bilevel formulation remain 

unchanged when scenarios are increased from 10 to 20. The single-level formulation 

leads to lower overall costs, but optimal operation is not guaranteed explicitly for any of 

the chosen scenarios. Including more scenarios seems to reduce the design cost in 

single-level formulation. Availability of more data would allow us to check if this cost 

converges to a particular value. 
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Figure 2 : TES volume and HEX area for the two formulations 

 

Figure 3 : Design and operating cost for the two formulations 

5. Conclusion 

In this paper, we compared two stochastic formulations for design optimization of TES 

systems. The results show that the bilevel formulation prioritizes minimizing the design 

cost, leading to higher operating costs. On the other hand, the single-level formulation 

minimizes the overall cost, but does not explicitly account for optimal operation.  
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