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Abstract

Accurate knowledge of multiphase flowrates produced by each well in an oil and
gas production system is important for performing production optimization, flow
assurance and reservoir management. Among the alternatives, estimation methods,
often referred as Virtual Flow Metering, are promising in terms of high level of
accuracy given the low cost of the solution. Virtual Flow Metering systems use
readily available field measurements and estimate multiphase flowrates by means
of mathematical modeling of a production system.

The main objective of this work is to review the current state-of-the-art multiphase
flowrate estimation methods and further develop new estimation solutions based on
combining physical knowledge about petroleum production systems and machine
learning techniques.

The literature review shows that current approaches for creating Virtual Flow Meter-
ing systems mostly rely on first principles models of petroleum production system
parts. However, despite the reasonable accuracy of these models, their estimation
uncertainty and sensitivity to erroneous field measurements has not been studied
in detail yet. We address this issue in Chapter 4, where, in the first part, we create
a first principles Virtual Flow Metering system based on a commercial multiphase
flow software and optimization engine and study the sensitivity of the resulting
solution to erroneous field measurements. In the second part, we investigate how
Bayesian Machine Learning can help in uncertainty estimation of first principles
multiphase flow models based on the available field data.

In addition, the literature review shows that applications of machine learning to
multiphase flowrate estimation problems are promising and have been gaining mo-
mentum in the last several years. However, in the vast majority of cases, the cre-
ated machine learning Virtual Flow Metering solutions are based on feed-forward
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neural networks which use raw field data without any multiphase flow physics con-
sideration. This results in black-box solutions which are hardly used in industry
because productions engineers do not trust the produced results. We address this
problem in Chapter 3, where, in addition to feed-forward neural networks, we
investigate capabilities of gradient boosting machine learning algorithm and recur-
rent neural networks, and combine them with multiphase flow physics to create
accurate and explainable data-driven Virtual Flow Metering solutions.

The results of this work show that first principles Virtual Flow Metering systems
are very sensitive to measurement drift, and production engineers must carefully
address this issue when tuning the software to the available field measurements.
In addition, it was revealed that by combining Bayesian machine learning meth-
ods with first principles modeling, it is possible not only to tune first principles
models to field conditions accurately, but also quantify the estimation uncertainty
depending on the distribution of the historical data as well as process conditions.
As a result, it becomes possible to understand when there is a need for model
recalibration or performing condition maintenance.

This work also demonstrates that by combining machine learning with first prin-
ciples models, it is possible to create robust hybrid multiphase flow estimation
solutions with enhanced accuracy and explainability of the resulting data-driven
models.

The results from this work can further be extended towards more advanced com-
binations of machine learning methods and first principles models, especially for
dynamic process conditions. In addition, various combinations of Bayesian ma-
chine learning approaches with first principles modeling can further be developed
in order to create a basis for robust, trustworthy and auto-tunable models applied
to multiphase flowrate estimation tasks.
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Chapter 1

Introduction

This chapter gives an introduction and motivation for the conducted PhD work.
Also, the structure of the thesis is presented. The journal and conference publica-
tions are listed together with the list of presentations and poster contributions given
by the author during the PhD time.

1.1 Motivation
Oil and gas are still among major energy resources and this situation is not go-
ing to be changed significantly in the near future (Zou et al. (2016)). As such,
oil and gas companies become more and more concerned about safe, reliable and
efficient operation of petroleum fields to stay competitive on the energy resources
market to extend this trend. However, in practice, it is often difficult to main-
tain efficient operation of petroleum systems because it includes handling various
complex physical phenomena. It is even more difficult in offshore and subsea en-
vironment due to the difficulty of the production facility access, high cost of the
operation and influence of the sea conditions, for instance, low temperature and
high loads on the infrastructure. A typical offshore production system with subsea
wells is shown in Figure 1.1.

In the shown system, typically, the produced petroleum fluid has the form of a
multiphase flow which can consist of oil, gas and water (Bendiksen et al. (1991)).
In many cases, sand and other solid particles may exist in the flow (Leporini et al.
(2019)). In order to produce oil and gas from a reservoir in a safe, reliable and effi-
cient manner, it is essential to know the produced multiphase volumetric flowrates
in the real time or close to the real time scale. This is because it enables identi-
fication of unstable well behavior, efficient reservoir management and production
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Figure 1.1: Schematic representation of a typical offshore production system with subsea
wells with a multiphase flow meter (MPFM) and a Virtual Flow Meter (VFM) together
with available measurements and typical production and processing stages. In the meas-
urements, P denotes the pressure, T- the temperature, BH - bottomhole, WHCU - wellhead
choke upstream, WHCD - wellhead choke downstream, Cop - the choke opening.

optimization (Falcone et al. (2001; 2009)). Apart from that, multiphase flowrates
are typically used as boundary conditions to fluid dynamics and flow assurance
models. These models are used to describe undesirable situations in production
systems and prevent them when possible (Bendiksen et al. (1991)).

In addition to the technical side, for small petroleum fields which are tied-in to
existing infrastructures, it is crucial to know by which margin they increase the
overall produced volume which is measured by fiscal meters at the offshore plat-
form outlet. This is because it will largely impact the income of the assets owners.

One of the main solutions to the multiphase flow production monitoring problem
is installation of hardware multiphase flow meters (MPFMs), shown in Figure 1.1,
installed at the well on the right (Well 2). This is a special device which measures
the gas, oil and water flowrates in real time using various techniques, for instance,
gamma-rays. Such measurements are then used in correlations together with fluid
properties, so called Pressure-Volume-Temperature (PVT) data, to estimate the
flowrates of each multiphase flow phase (Falcone et al. (2009)).

Despite being a relatively accurate source of multiphase flowrate estimates, MP-
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FMs are prone to degradation, drifting and have a certain limited operational en-
velope (Falcone et al. (2009)). As such, they require expensive calibrations using
test separators. The frequency of the calibration varies from 3 to 12 months de-
pending on the field conditions. However, the main drawback of MPFMs is the
price which varies from 0.5 to 1.5 million dollars depending on if it is supposed to
be installed onshore or subsea.

An alternative to MPFMs is a mathematical model which estimates the flowrates.
Such a multiphase flowrate estimation tool is usually called Virtual Flow Meter
(VFM) (Parthasarathy et al. (2016)), shown in Figure 1.1, applied at the well on
the left (Well 1). A Virtual Flow Meter uses sensors already installed in the field
(examples of the sensors are shown in Figure 1.1) and some historical flowrate
measurements produced by test separators or any other reliable source of flow
information in order to construct and tune the mathematical model. The main
advantage of using a Virtual Flow Meter instead of a MPFM is the cost reduction
of the multiphase flow monitoring system.

Despite the fact that Virtual Flow Metering technology has been being developed
for almost 25 years, there has not been done a comprehensive review on this topic
which resulted in the fact that it is still unclear how to construct a model of an oil
and gas field which gives robust and accurate estimates of the flowrates. This is
especially challenging under conditions when the measurements, which VFM sys-
tems rely on, degrade over time. In this case, VFM systems will typically become
biased until tuned against the separator measurements. All this was the reason
for performing a detailed literature review on the multiphase flowrate estimation
topic and identifying directions for future development of accurate and robust mul-
tiphase flowrate estimation systems for oil and gas production fields.

Nowadays, in the era of machine learning being applied to many process engin-
eering problems, it is very interesting to investigate how these techniques can help
us to construct multiphase flow estimation tools which produce accurate estim-
ates. It is also interesting to see if we are able to include knowledge of multiphase
flow modeling into machine learning techniques to make flowrate estimates more
accurate. Such a promising research direction at the border of mechanistic and
data-driven modeling has formed the second motivation for performing this work.

Another issue that has not been well addressed so far is investigation of sensitivity
of first principles Virtual Flow Metering systems to degraded field measurements
and the associated estimation uncertainty. Moreover, the general problem of un-
certainty estimation of first principles multiphase flows models that are tuned to
field conditions has not been well described yet. These facts gave motivation to
explore this problem in this work and address it using Bayesian Machine Learning
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techniques.

1.2 Main contributions and the thesis structure
The thesis is organized in a paper-based format and includes five chapters. In
Chapter 1, motivation for performing this PhD work is described. The other
chapters present the main contributions of the work which are the following:

1. A comprehensive overview of the currently available methods on the topic
of multiphase flow estimation. This is presented in Chapter 2.

2. Development and investigation of new Virtual Flow Metering solutions that
are based on combinations of first principles and machine learning modeling
which result in accurate and explainable data-driven solutions. This part of
the work is described in Chapter 3.

3. Methods for uncertainty estimation of first principles and hybrid data-driven
multiphase flow models, applied to multiphase flow modeling and estim-
ation based on sensitivity analysis and Bayesian Machine Learning tech-
niques. This contribution is presented in Chapter 4.

Finally, in Chapter 5, concluding remarks are made and recommendations for fu-
ture work are suggested.

1.3 List of publications
I Bikmukhametov, T. and Jäschke, J. (2019). First principles and machine

learning virtual flow metering: a literature review. Journal of Petroleum Sci-
ence and Engineering, Volume 184, 106487, 3037–3043, doi.org/10.1016/
j.petrol.2019.106487

II Bikmukhametov, T., and Jäschke, J. (2019). Oil Production Monitoring us-
ing Gradient Boosting Machine Learning Algorithm. IFAC-PapersOnLine,
Volume 52(1), 514-519, doi.org/10.1016/j.ifacol.2019.06.114

III Bikmukhametov, T., and Jäschke, J. (2020). Combining Machine Learn-
ing and Process Engineering Physics Towards Enhanced Accuracy and Ex-
plainability of Data-Driven Models. Computers and Chemical Engineering,
Volume 138, 10683, doi.org/10.1016/j.compchemeng.2020.106834

IV Bikmukhametov, T., Stanko, M., and Jäschke, J. (2018). Statistical Ana-
lysis of Effect of Sensor Degradation and Heat Transfer Modeling on Mul-
tiphase Flowrate Estimates from a Virtual Flow Meter. In SPE Asia Pacific
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Oil and Gas Conference and Exhibition. Society of Petroleum Engineers,
doi.org/10.2118/191962-MS

V Bikmukhametov, T., and Jäschke, J. Uncertainty Estimation of Mechanistic
First Principles Models and Digital Twins Using Bayesian Machine Learning.
Submitted to Engineering Applications of Artificial Intelligence, 2020.

1.4 List of conference and workshop presentations and poster
contributions

Bikmukhametov T. and Jäschke J. (2018). Analysis of Influence of Sensor Degrad-
ation on Flowrate Estimates by Virtual Flow Metering Systems. Presentation at
Nordic Process Control Conference. Abo Akademi, Finland

Bikmukhametov T. and Jäschke J. (2019) Physics-Aware Machine Learning Al-
gorithms with Improved Accuracy and Explainability Applied to Multiphase Flowrate
Estimation. AIChE Annual Meeting, Orlando, USA.

Bikmukhametov T., Jäschke J. (2019) Physics-Aware Machine Learning in Mul-
tiphase Flow Estimation. Poster at Nordic Process Control Conference. Technical
University of Denmark, Denmark

Bikmukhametov T. (2019). Using First Principles Modeling in Machine Learning
VFM. Presentation at IOC and BP workshop on daily production optimization. Rio
de Janeiro, Brazil.
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Chapter 2

Literature Review of Multiphase
Flowrate Estimation Methods
(Paper I)

This chapter consists of Paper I, which is a comprehensive review of multiphase
flow estimation methods referred as Virtual Flow Metering technology. It gives an
overview of the applied methods, which have been reported in the literature, com-
mercial products, field experience, comparison between different flow estimation
methods and future directions for the research and development of the technology.

Bikmukhametov, T. and Jäschke, J. (2019). First principles and machine learning
virtual flow metering: a literature review. Journal of Petroleum Science and Engin-
eering, Volume 184, 106487, 3037–3043, doi.org/10.1016/j.petrol.2019.106487
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A B S T R A C T

Virtual Flow Metering (VFM) is an increasingly attractive method for estimation of multiphase flowrates in oil
and gas production systems. Instead of using expensive hardware metering devices, numerical models are used
to compute the flowrates by using readily available field measurements such as pressure and temperature.
Currently, several VFM methods and software are developed which differ by their methodological nature and the
industry use. In this paper, we review the state-of-the-art of VFM methods, the applied numerical models, field
experience and current research activity. In addition, we identify gaps for future VFM research and development.
The review shows that VFM is an active field of research, which has the potential to be used as a standalone
metering solution or as a back-up for physical multiphase flow meters. However, to increase the value of VFM
technology for oil and gas operators, future research should focus on developing auto-tuning and calibration
methods which account for changes of fluid properties and operation conditions. In addition, the review shows
that the potential of machine learning methods in VFM is not fully revealed, and future research should focus on
developing robust methods which are able to quantify flow estimation uncertainties and incorporate first
principle models that will result in more accurate and robust hybrid VFM systems. Finally, our review reveals
that dynamic state estimation methods combined with first principles and machine learning models could fur-
ther improve the VFM accuracy, especially under transient conditions, but implementation of these methods can
be challenging, and further research is required to make them robust.

1. Introduction

An oil and gas production system typically consists of a number of
wells which are connected to a flowline which carries the produced
fluid from wellheads to an inlet separator of a processing facility. If the
field is subsea, the flowline is connected with the inlet separator via a
riser. The flowrate of the produced fluid is controlled by choke valves
installed at the wellheads. A schematic representation of a typical
subsea production system is shown in Fig. 1, where an example with
two wells is shown for simplicity. In the vast majority of cases the
production field consists of more wells. In this example, we also include
an electric submersible pump (ESP) as an example of artificial lift,
however, other methods may also be used for this purpose, for instance,
gas lift (Rashid et al., 2012). Typically, the produced fluid is a multi-
phase mixture of oil, gas, water and solids such as sand or asphaltenes
(Falcone et al., 2009). This mixture is split into single phases in the inlet
separator and further processed at a processing facility.

For economic operation of the production systems, it is important to
know the oil, gas and water flowrates from each well. It allows

operators to make critical decisions in production optimization, rate
allocation, reservoir management and predict the future performance of
the field (Retnanto et al., 2001; Morra et al., 2014; Falcone et al., 2001).
At the early stage of the industry, the main method to estimate well
flowrates was well testing. Here, a well stream is directed into a test
separator where it is split into oil, gas and water. These flow streams are
then measured by single-phase meters at the separator outlet
(Corneliussen et al., 2005). The test separators require a separate
flowline, so that each well can be routed to the test separator and tested
without shutting-down the entire field. As an alternative, the flowrates
can be estimated by the use of an inlet separator. In this case, two
options are possible. The first option is to shut-down all the wells except
the tested one, so that the flowrates of this well can be estimated. This
option is associated with a large production loss and often economically
undesirable. Another possibility is to close the well of interest, measure
the flowrates of the producing wells at the separator conditions and
then back-calculate the flowrates of the closed well. This is done by
subtracting the obtained flowrates from the ones recorded before the
well test. This method is called deduction well testing (Idso et al.,

https://doi.org/10.1016/j.petrol.2019.106487
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2014). In all the described options, stable operating conditions need to
be achieved in order to measure the flowrates, which might require
several hours depending on the distance between the well and se-
parator. In addition, the act of closing one well affects the performance
of other wells which may result in inaccurate flowrate estimations
(Falcone et al., 2001; Idso et al., 2014).

Over the last 25 years, physical multiphase flow meters (MPFMs)
have been developed as an alternative solution to well testing to mea-
sure well multiphase flowrates and were first commercialized in the
early 1990s (Falcone et al., 2001). The core idea behind MPFMs is to
estimate oil, gas and water flowrates without separating the phases.
These meters are usually installed at the wellhead, so that the multi-
phase flowrates from a particular well can be tracked in real-time. The
flowrates are calculated indirectly using supplementary measurements
of fluid phase properties such as velocities and phase fractions inside
the device (Falcone et al., 2001; Gryzlov, 2011). An extensive effort was
made to develop accurate multiphase flow meters and several tech-
nologies have been used for this purpose such as acoustic attenuation,
impedance and gamma densitometers (Falcone et al., 2001). A number
of review articles exist, in which the applied methods, principles,
governing equations and measurement strategies are discussed in de-
tails (Corneliussen et al., 2005; Falcone et al., 2009; Thorn et al., 2013).

Both aforementioned flowrate measurement techniques have their
advantages and disadvantages. First of all, well testing requires a se-
parate flowline and a separator, which results in high capital costs of
the field development (Falcone et al., 2001). If the inlet separator is
used as a test separator, the cost associated with the production loss can
be significant due to closing the well of interest. Sometimes, deduction
testing may be impossible to perform due to potential flow assurance
problems (Melbø et al., 2003). Despite these facts, well testing mea-
surements are still widely used in oil and gas production monitoring,
even if multiphase flow meters are installed in the field. The reason for
this is that the flowrate measurements from well tests are used as a

reference to calibrate multiphase flow meters and extract information
about the fluid properties (Corneliussen et al., 2005).

In contrast to well testing, MPFMs provide real-time information
about the well flowrates. This is definitely advantageous from an op-
erational point of view. However, MPFMs are quite expensive and re-
quire an intervention in case of a failure, which adds a significant op-
erational cost (Falcone et al., 2001; Patel et al., 2014). Moreover,
MPFMs have a specific operation range beyond which the accuracy of
the flowrate estimates can decrease significantly. Apart from this, the
meters may face degradation due to sand erosion or partial blockage
which also has an impact on the measurement accuracy (Marshall and
Thomas, 2015).

Considering the discussed challenges as well as associated costs for
both flow measurement approaches, an alternative solution is Virtual
Flow Metering (VFM). The idea behind VFM is to collect available field
data and use it in a numerical model to estimate flowrates (Rasmussen,
2004; Toskey, 2011). The measurement data usually include:

• Bottomhole pressure and temperature (PBH and TBH).
• Wellhead pressure and temperature upstream of the choke (PWHCU
and TWHCU).
• Wellhead pressure and temperature downstream of the choke
(PWHCD and TWHCD).
• Choke opening (Cop).
In contrast to well testing and MPFMs, VFM systems do not require

installation of an additional hardware, as such they can reduce the
capital and operational costs of the field development. At the same
time, VFM systems have capabilities to estimate the flowrates in real
time and reflect changes of flow conditions accordingly. This is a clear
advantage compared to the well testing approach which assumes con-
stant well flowrates between the tests (Marshall and Thomas, 2015).
Moreover, VFM can be used as a standalone solution, or in a

Fig. 1. Schematic representation of a typical subsea oil and gas production system.

T. Bikmukhametov and J. Jäschke Journal of Petroleum Science and Engineering 184 (2020) 106487
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combination with a MPFM as a back-up system such that it can use the
information from a MPFM to further improve the flowrate estimates
(Holmås et al., 2013).

Despite the amount of work done on Virtual Flow Metering and the
diversity of applicable methods and models, there is a lack of an
overview of this. In this paper, we fill this gap and cover the following
objectives:

• Summarize and classify VFM methods, models and computational
procedures.
• Distinguish the differences among the VFM vendors based on pub-
licly available resources.
• Review the reported VFM field experience and the research activity.
• Identify gaps and propose directions for future VFM research and
development.

We believe that this paper will be an asset for readers who want to
get an overview of available VFM solutions, implement the existing
commercial VFM solutions in the field, construct an own VFM or im-
prove the already created one.

Our paper is organized as follows. First, we introduce the main VFM
approaches which are applied in industry or developed for research
purposes. Then, we explain each VFM method in detail by providing the
main concepts behind it, the models used, the available market pro-
ducts as well as reported field experience and the current status of the
academic research. Finally, we compare the methods and specify their
advantages and disadvantages and propose directions for the future
research and development of the VFM systems.

2. VFM methods

Over the last 20 years, the concept development of VFM resulted in
various methods to estimate the multiphase flowrates using available
field data, and several companies have developed commercial VFM
systems which are used by oil and gas operators around the world.
Some methods are currently emerging and aiming to improve the ac-
curacy of the flowrate predictions, while yet other methods are cur-
rently not used in the industry but have a good potential to move the
VFM development forward in the future.

Based on modeling paradigms, two main Virtual Flow Metering
approaches can be distinguished:

• First principles VFM
• Data-driven VFM
The first principles VFM systems are based on mechanistic modeling

of multiphase flows in the near-well region, wells, pipelines and pro-
duction chokes (Holmås and Løvli, 2011). The models are used together
with the measurements such as pressure and temperature to find ac-
curate estimates of the flowrates. An optimization algorithm adjusts the
flowrates and other tuning parameters to minimize the mismatch be-
tween the model predictions and real measurements (Holmås and Løvli,
2011). The production system can be modelled as a whole from the
reservoir to the processing facility, or it can be separated into sub-
models depending on the available measurement data. First principles
models are currently used in most commercial Virtual Flow Metering
systems.

The data-driven VFM approach is based on collecting the field data
and fitting a mathematical model to it without the exact description of
the physical parameters of the production system such as a wellbore
and choke geometry, flowline wall thickness, etc. This approach is also
referred to as “machine learning” modeling and it has become very
popular in the past several years, not only for oil and gas applications
but for many other applications as well. In this paper, we will call this
approach “data-driven” modeling because in many VFM related pub-
lications it was named with this definition. In data-driven modeling, the

fitting process is often called training (Hastie et al., 2009). If the model
is well trained and the exposed conditions are within the range used for
the training, the data-driven model can perform fast and accurate real-
time metering. In this approach, deep domain knowledge of production
engineering is not as important as in the first principles models and the
model can be constructed at a lower cost.

In addition to the classification based on the modeling principles,
we may classify approaches based on how time dependency is included
in the model. Based on this, the following sub-classification can be
performed:

• First principles VFM – steady state and dynamic models
• Data-driven VFM – steady state and dynamic models

In the first principles VFM, conservation equations often have a
dynamic form, however, the formulation of the optimization problem is
steady state or quasi-steady state, so that an optimization solver finds
the solution for only one point in time or takes the solution from the last
step as an initial guess for the current time step prediction. In some
cases, even the conservation equations take steady state form or do not
consider time because of its nature, for instance, a choke model
(Perkins, 1993). While it is possible to formulate the VFM optimization
problem in a dynamic way, in the available literature on the first
principles VFM does not consider this approach. The main reason for
this may be the fact that dynamic optimization for first principles VFM
systems is computationally very expensive (Lew and Mauch, 2006). On
the other hand, such methods may have been utilized but not discussed
in the literature.

Apart from dynamic optimization, state estimation techniques such
as Kalman filter approaches can be used in order to create a dynamic
VFM (De Kruif et al., 2008). This approach has been covered in the
research as we will show in the future sections, however, it is not im-
plemented in the commercial software yet. The main reason for this
may be that it requires a high expertise for setting up and using, and it
can be difficult to tune in a robust manner for real field data.

For the large majority of data-driven algorithms used for VFM, the
model formulation is steady state, so that the algorithms consider
pressure and temperature measurements in one point in time to predict
the flowrates at the same time step. At the same time, there are data-
driven algorithm structures which have a dynamic formulation, so that
measurements from the past may also be used to estimate the flowrate
at the current time step and some of these algorithms have recently
been studied for VFM applications. In the next sections, we consider
each VFM paradigm in more detail and explain the considerations of
dynamic system behavior by each method based on the used models
and algorithms.

3. First principles VFM systems

3.1. An overview of the concept

The first principles VFM systems are the most widely used Virtual
Flow Meters in the industry. This is because a tremendous effort was
made over the past 50 years in order to describe each part of this VFM
approach. This resulted in a quite good understanding of the mechan-
istic modeling of production systems, fluid properties and optimization
techniques. As such, first principles modeling can be considered as a
reliable way to describe the production system behavior in general, and
multiphase flow phenomena in particular. In this section, we will de-
scribe the main concept behind the first principles VFM. In the later
sections, each model used in the concept is discussed in more detail.

A current state-of-the-art first principles VFM system consists of the
following main components:

• Fluid properties model.
• Production system model including:
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- Reservoir inflow model
- Thermal-hydraulic model
- Choke model
- Electric submersible pump (ESP) model
• Data validation and reconciliation (DVR) algorithm.
The main idea behind the first principles VFM system is depicted in

Fig. 2 where the concept is applied for the production system shown in
Fig. 1. First, the thermal-hydraulic, choke, ESP and reservoir inflow
models produce model outputs which can be pressures and tempera-
tures along the production system. To do that, the models require pre-
generated pressure-volume-temperature (PVT) data which describe the
fluid properties under given conditions and generated using fluid
properties models. The popular forms of the fluid properties model are
Equations of State (EoS) and Black Oil model (BOM) which will be
described further below.

Next, the measured field data is processed by the data validation
and reconciliation algorithm. In the DVR, first, the data are validated
which can include removal of outliers and noise filtering. Then, in the
reconciliation step the model parameters (e.g. flowrates, choke dis-
charge coefficient, gas and water fractions, friction and heat transfer
coefficients, slip relation, etc.) are adjusted such that the model outputs
(in red in Fig. 2) match the measurements from the physical system (in
blue in Fig. 2) and the overall material balance (flowrates measured at
the separator outlet).

In summary, for VFM using the first principles models, the following
steps are taken:

1 Create a fluid properties model which represents the fluid data ac-
curately.

2 Choose appropriate production system models based on the avail-
able measurements.

3 Read and validate the measurement data, remove outliers and filter
noise.

4. Select appropriate tuning parameters, for instance, flowrates, choke
discharge and heat transfer coefficients, etc. and make a guess of the
initial parameter values.

5. Simulate the models selected at step 2 using the fluid properties
from step 1 and initial values of the tuning parameters from step 4.

6. Select the model outputs from step 5 for which the measurements
are available, for instance, pressures and temperatures at the bot-
tomhole and the wellhead.

7. Run the data reconciliation algorithm to minimize the mismatch
between the model outputs from step 6 and the validated mea-
surement data from step 3 by adjusting the tuning parameters se-
lected at step 4.

8. Report the oil, gas and water flowrates for each well from the so-
lution from step 7.

3.2. Commercial first principles VFM systems

To discuss the details behind each component of the first principles
VFM, we consider commercial VFM systems which are based on this
approach. The reason for this is that these systems use the most ad-
vanced methods and models which are currently applied in VFM

Fig. 2. Schematic overview of a first principles Virtual Flow Metering system. Thermal-hydraulic, choke, ESP and reservoir inflow models use pre-generated PVT data
in order to predict the system variables such as pressures and temperatures along the system. The data validation and reconciliation algorithm adjusts the model
parameters (flowrates, choke discharge coefficient, etc.) such that the model outputs (red color) match the measurements from the physical system (blue color) and
the overall material balance (flowrates measured at the separator outlet). (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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technology. At the same time, the discussion gives an overview of the
model variations among the software as well as the available products
on the market. As such, we believe by describing the models and cap-
abilities of the commercial software, we will be able to better evaluate
the current state of the VFM technology development.

In our review, we will consider the methods and models of the
commercial VFM systems listed in Table 1. All these products have
conceptually the same structure, i.e. utilize fluid properties and pro-
duction system models together with the data validation and re-
conciliation algorithm to estimate the multiphase flowrates. It is also
important to mention other VFM suppliers which are not included in
the list. Ensys Yocum delivers VMSS3 Virtual Flow Meter but the in-
formation about it in the literature is very limited, so that it is hard to
evaluate software's features precisely. TurbulentFlux is currently an
emerging company which supplies a state-of-the-art VFM product. As
the company is at the starting phase, the information about the software
is not publicly available yet, as such we do not consider it in the further
analysis.

In addition to the listed software, there are several other software
which could potentially be considered as a VFM system, but they are
not considered in this paper in details. For instance, Amin (2015) used
Prosper (PETEX, 2017) as a Virtual Flow Meter. Prosper is a software
which describes performance of wells and production systems under
various conditions and extensively used in the petroleum industry. The
software has a variety of reservoir inflow, choke and hydrodynamic
models linked to PVT data to evaluate production performance of wells
(PETEX, 2017) However, in this paper we do not consider Prosper as a
fully integrated VFM system because, according to the software de-
scription, it does not include the DVR algorithm to fit specific field
measurement conditions. In addition, there are no other studies or
papers which evaluate Prosper as a VFM system. Mokhtari and Waltrich
(2016) used PIPESIM as a Virtual Flow Metering system to evaluate
different models for VFM purposes. PIPESIM is a steady state multi-
phase flow simulator supplied by Schlumberger which delivers OLGA
Online as a VFM product which we consider in this study. As such,
PIPESIM is not considered as Schlumberger's VFM system in this study,
but potentially can be utilized for VFM purposes.

In the next section, we will consider the components of the first
principles VFM products from Table 1 in more detail. More specifically,
we will emphasize the mathematical description of the models and the
usage of a particular model type in a particular VFM product.

3.3. Description of the first principles VFM components and applied methods

In this section, we consider the components of the first principles
VFM systems in more detail. First, we will discuss the fluid properties
model together with subsequent PVT data generation. Then, we will
show what the principles behind the production system models are and
how the PVT data is used for in these models. Finally, we will discuss
how the data validation and reconciliation algorithm finds optimum
flowrate estimates. Throughout the description of the models, we will
discuss its implementation in the commercial VFM products.

3.3.1. Fluid properties model
Hydrocarbon mixtures are complex substances whose properties

vary with local pressure and temperature conditions along the pro-
duction system. In order to take these variations into account, fluid
characterization is carried out based on fluid samples taken at different
points such as downhole or at the separator (Whitson and Brule, 2000).
Based on the characterized fluid, a pressure-volume-temperature (PVT)
data can be generated which is then used by VFM systems for two
purposes (Falcone et al., 2009):

• Calculating local phase properties of the hydrocarbon mixtures such
as density, viscosity, thermal conductivity, etc. for using in the first
principles models.
• Reconciling reference flowrate measurements (e.g. at separator or
standard conditions) with flowrate measurements/estimates at local
conditions (e.g. at the wellhead).

As for the first point, the local fluid properties have a direct influ-
ence on the flowrate predictions by a VFM system because they are
included in thermal-hydraulic conservation equations as well as the
models of choke, ESP and reservoir inflow. As such, giving incorrect
phase densities or enthalpies for certain pressures and temperatures to
the VFM system will result in deviations between the predicted and
actual flowrates. This in turn will cause problems in finding a good
solution by the data validation and reconciliation algorithm when
tuning flowrates and other model parameters.

Regarding the second point, when the local flowrates are calculated,
they are usually reported at reference conditions for reconciliation,
production and sales reporting purposes (Pinguet et al., 2005). Re-
conciliation is especially important in fields with commingled wells, so
that the overall measured production rates at the separator conditions
can be back-allocated (reconciled) to the individual wells as shown in
Fig. 2.

Fluid characterization is typically done by two approaches separator
(Whitson and Brule, 2000; Falcone et al., 2009):

• Black Oil model.
• Compositional model.
These two models are discussed below.

3.3.1.1. Black Oil Model (BOM). Black Oil model is a simple, yet useful
approach for petroleum fluid characterization. In this approach, oil and
gas are treated as two separate substances and their properties are
calculated based on correlations (Whitson and Brule, 2000). In the
traditional formulation of the BOM, three main PVT properties are
considered: oil formation volume factor, gas formation volume factor
and solution gas-oil ratio. For volatile hydrocarbon mixtures, modified
Black Oil models (MBOM) are developed which introduce another core
variable called solution oil-gas ratio. If water is present in the produced
fluid, additional properties such as water formation volume factor,
solution gas-water ratio and water content in gas are introduced into
calculations. The full description of both traditional and modified black
oil models for volatile oils and water/hydrocarbon systems are well
described in the SPE monograph by Whitson and Brule (2000).

3.3.1.2. Compositional model. A compositional fluid model is described
by Equations of State (EoS) which are relations between pressure,
volume and temperature which is a basis for calculating phase and
volumetric behavior of the produced fluid (Whitson and Brule, 2000).
The history of the EoS development starts from the fundamental work
by Van der Waals (1870). Later, various modifications and
improvements of the van der Waals’ equation were proposed. For the
majority of oil and gas applications, the following modifications are
used (Whitson and Brule, 2000; Falcone et al., 2009):

Table 1
Commercial first principles VFM systems.

Virtual Flow Metering system Vendor

OLGA Online Schlumberger
K-Spice Meter (K-Spice + LedaFlow) KONGSBERG
FlowManager FMC
Well Monitoring System (WMS) ABB
Virtuoso WoodGroup
FieldWatch + METTE Roxar
ValiPerformance Belsim
Rate&Phase BP
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• Peng-Robinson (PR) (Peng and Robinson, 1976).
• Redlich-Kwong (RK) (Redlich and Kwong, 1949).
• Soave-Redlich-Kwong (SRK) (Soave, 1972).
State-of-the-art VFM systems support both compositional and BOM

approaches for PVT modeling (Bendiksen et al., 1991; Haldipur and
Metcalf, 2008; Kongsberg, 2016; Løvli and Amaya, 2016; Melbø et al.,
2003). Even though the current trend in the first principles VFM is to
use the compositional approach [e.g. VFM evaluation study by Letton-
Hall Group (Toskey, 2011)], simplified VFM systems based only on one
model (e.g. choke/orifice model) tend to utilize the Black Oil model
because of its simplicity (Campos et al., 2014; Da Paz et al., 2010).

3.3.1.3. PVT data development. In order to simplify the simulation
process, the obtained fluid properties models (BOM or compositional
model) are typically stored in the form of PVT tables which are then
used by the VFM models. In principle, the fluid properties models could
be used directly in the VFM systems, however, this would lead to a high
computational cost. Therefore, before performing the simulations, the
fluid properties data are stored in PVT tables which are then used by the
models to find the fluid properties values by interpolating between the
generated data points.

Prior to the PVT table construction, it is first required to tune the fluid
properties models to the specific petroleum fluid. This is because the de-
fault model parameters usually do not predict precisely the fluid properties
from a specific field (Coats and Smart, 1986). Moreover, during the field
life-cycle, fluid properties are changing which also require model cali-
bration (Falcone et al., 2009). This tuning/calibration can be performed by
applying non-linear regression (Agarwal et al., 1990; Coats and Smart,
1986) or by an iterative adjustment of EoS parameters (Pedersen et al.,
1988; Whitson and Torp, 1983). The calibration is performed based on the
data obtained in the laboratory tests. For the EoS model, the tests may
include compositional analysis (gas chromatography), constant composi-
tion expansion, multistage surface separation, constant volume depletion
and differential liberation expansion (Whitson and Brule, 2000). If BOM is
used, the laboratory tests are used in order to estimate the main model
parameters. An example of BOM parameters estimation based on the lab
data is Whitson-Torp method (Whitson and Torp, 1983).

When the fluid models are tuned to the specific fluid properties, the
PVT tables for the expected range of pressure and temperature condi-
tions is generated and uploaded into a VFM system. Using these data,
the system can interpolate the computed properties (e.g. phase density
and viscosity) to local pressure and temperature (e.g. at the wellhead)
based on the specified table values (Bendiksen et al., 1991).

3.3.1.4. Importance of fluid properties model tuning. Regardless the fluid
model used for the PVT properties characterization, the fluid properties
model accuracy has to be addressed with a particular attention. PVT related
deviations in flowrate metering have been typically observed in MPFMs
which have been found to be very sensitive to PVT data (AlDabbous et al.,
2015). The sources of the PVT related deviations in MPFMs may originate
from incorrect phase properties estimation or inaccurate usage of EoS
(Åbro et al., 2017). EoS estimates of the fluid properties are consistent only
within the tuning range of pressures and temperatures. If the fluid
properties values are extrapolated outside the tuning range, the error of
the estimates may be significant (Joshi and Joshi, 2007).

Similar to MPFMs, first principles VFM systems strongly rely on the
PVT data. This means that accurate flowrate estimations require well
characterized fluid properties data (Petukhov et al., 2011; Zhang et al.,
2017). It has been found that when VFM is applied in a pilot case study
or a field, PVT data is one of the most critical system parameters
(Haouche et al., 2012a). Inaccurate PVT characterization results in the
increase of the uncertainty of the VFM estimates (Ausen et al., 2017).
The reason for such a large influence is the fact that the PVT data de-
fines the local fluid properties, hence the discrepancies in fluid prop-
erties will directly influence the local flowrate estimates. Also, it will

affect the reconciliation algorithm outputs because the fluid properties
are directly involved in converting the rates from local to reference
conditions which are used in the algorithm.

3.3.2. Production system model
The production system model typically consists of different com-

ponents that are given by the measurements available in the field as
well as the installed equipment. Below, we present the most relevant
models which may be included into the first principles VFM system.

3.3.2.1. Reservoir inflow model. The reservoir inflow model is usually
represented by an Inflow Performance Relationship (IPR) model which
defines the well production rate as a function of pressure difference at
reservoir and bottomhole conditions. The data for IPR curves are
collected during multi-rate well testing (Golan and Whitson, 1991).
This method has been extensively used in the industry to calculate the
performance and production potential of wells and many models have
been developed which are currently implemented in the state-of-the-art
VFM systems. The most frequently used models are:

• Linear
• Backpressure/Backpressure normalized
• Undersaturated
• Vogel
• IPR table
• Forchheimer/Single Forchheimer
The linear model assumes that the well rate is proportional to the

pressure difference between the reservoir and bottomhole (Bradley,
1987). This model is typically used for undersaturated oil wells and can
be expressed in the following form (Cholet, 2008; Schlumberger
Limited., 2014):

=q PI P P( )R BH0 (1)

where q0 denotes the oil flowrate, PI– the productivity index, PR – the
reservoir pressure, PBH – the bottomhole pressure. The productivity
index PI is estimated during a well test and then used in subsequent
calculations.

The backpressure model is suitable for gas wells and can be written
as follows:

=q C P P( )g b R BH
n2 2

(2)

where qg denotes the gas flowrate, Cb and n – the tuning coefficients
which are estimated during well tests.

A normalized form of Eq. (2) is used for saturated oil wells and can
be expressed as:

=q q P
P

1o o
BH

R

n

,max

2

(3)

where qo,max denotes the maximum oil flowrate.
For the full description of the backpressure model, please see

Bradley (1987).
The undersaturated model is often used to model oil wells with the

static reservoir pressure for which the bottomhole pressure drops below
the bubble point during production (Schlumberger Limited., 2014).

= +q PI P P PI
P

P P( )
2
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B

B BH
2 2

(4)

where PB denotes the bubble point pressure.
The Vogel model (Vogel, 1968) is commonly used in solution-gas-

drive reservoirs and expressed as the following:

=q q P
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(5)
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To compute the gas flowrate using the equations above, the ob-
tained flowrate must be multiplied by GOR.

IPR table, as the name states, represents the tabulated relationship
between the flowrate and pressure difference. Based on the user-specified
data and a calculated pressure difference value, the flowrate is inter-
polated by a linear or polynomial method (Schlumberger Limited., 2014).

For gas reservoirs with high flowrates, the inertial effect can be
important to be accounted. In this case, a non-Darcy's law model called
Forchheimer model is applicable (Bradley, 1987) which has the fol-
lowing form (Schlumberger Limited., 2014):

= +P P B q C qR BH f g f g
2 2 2

(6)

where Bf and Cf denote the tuning coefficients, which are estimated
during well tests.

In case of high pressure gas wells, the single Forchheimer model can
be used instead. It has a linear form of the pressure difference as fol-
lows:

= +P P B q C qR BH f g f g
2

(7)

Except for the Forchheimer's models, all the models are currently
implemented in K-Spice Meter, while OLGA-Online currently in-
corporates all the listed models (Kongsberg, 2016; Schlumberger
Limited., 2014). For other VFM software the information about im-
plemented IPR models is rather limited. In ValiPerformance (Belsim),
Vogel's model was utilized and tested (Haouche et al., 2012a, 2012b),
while in Petukhov et al. (2011) and Wising et al. (2009). IPR model is
mentioned as a part of the system but the type is not specified. In both
FieldWatch and FlowManager, the reservoir inflow model can be speci-
fied by IPR tables (Gunnerud, 2011; Roxar, 2015). WoodGroup's Virtuoso
and BP's Rate&Phase also use the IPR models, however, the exact models
are not specified (Haldipur and Metcalf, 2008; Heddle et al., 2012).

As we can see, the IPR models have variety of forms depending on the
well production conditions. In VFM, IPR models can be used in different
purposes. First, it can be used as a separate model to estimate the pro-
duction potential of a well. Secondly, the IPR models can be used in a
combination with the thermal-hydraulic and choke models as a boundary
condition of the system representing reservoir inflow to the well. In this
case, it adds additional variables to the tuning process described in Fig. 2
which can further be used to tune the VFM system to the historical data.
Apart from that, IPR equation can be combined with a thermal-hydraulic
model (vertical lift performance curve) to estimate multiphase flowrate
under steady state conditions, please, see, for instance, Lansagan (2012).

3.3.2.2. Thermal-hydraulic model. Multiphase flows in wells and
pipelines in oil and gas fields have existed for more than a hundred
years (Shippen and Bailey, 2012). The first attempt to model the
multiphase flow was made by Lockhart and Martinelli (1949). At that
time, the approach for multiphase flow modeling was based on
empirical correlations obtained from experiments and available field
data. With time, a more fundamental modeling approach replaced pure
empirical models by including the physics behind the multiphase flow
phenomena. An excellent review of the history of multiphase flow
models development can be found in Shippen and Bailey (2012).

In this work, we will focus on the models currently used in com-
mercial Virtual Flow Metering systems. Based on the literature, the
following types of thermal-hydraulic multiphase models are currently
implemented in the first principles VFM products:

• Two-fluid model.
• Drift-flux model.
• Steady state mechanistic model.
In the two-fluid model (often referred as the multi-fluid model), the

conservation equations are written for each phase which can be con-
tinuous or dispersed. In a simplified manner, the general form of mass,

momentum and energy equations respectively can be written as follows
(Goldszal et al., 2007; Nydal, 2012):
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where k denotes the phase volume fraction, k – the phase density, t –
the time, uk – the phase velocity, x – the pipe axial dimension, – the
mass transfer sources (e.g. phase change and mixing), pk – the phase
pressure, – the pipe inclination angle, Fkw – the wall friction, Fki – the
interphase friction, Ok – the other momentum exchange terms (e.g.
phase change, droplet-exchange, level-gradient term), p – the system
pressure, kk – the effective phase thermal conductivity, Qkw – the phase
transfer rate at pipe wall, Qki – the interfacial heat transfer rate of k-
phase with other fields, Qext – the other net external heat transfer
sources.

In the drift-flux model, the momentum and energy equations are
written for the mixture while the mass conservation equations can be
written for each phase. It can be expressed as the following (Holmås
and Løvli, 2011):
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where Ftot denotes the total wall friction, Otot – the source term,Ek – the
total energy, Utot – the total source term including wall heat transfer,
mass transfer and sources.

The drift-flux model requires a slip relation in order to take the
difference between the phase velocities into account. The most famous
and commonly used form is developed by Zuber and Findlay (1965):

= +u C u ug m d0 (14)

where ug denotes the gas velocity, um – the mixture velocity, ud – the
drift velocity, C0 – the profile parameter.

Both multiphase flow model formulations above are transient which
means they reconstruct the flow behavior in space and time. If the time
derivative term

t
is set to zero, the model becomes steady state and

resolved only in space. With a steady state model, it is not possible to
properly describe an unstable behavior in wells, for instance, liquid
loading or severe slugging as it is transient in nature (Waltrich and
Barbosa, 2011).

Some VFM systems use only one specific formulation of the thermal-
hydraulic model, while others utilize a combination of them. For in-
stance, in OLGA the two-fluid formulation of the momentum equation is
combined with a mixture energy equation (Nydal, 2012). In total,
OLGA includes five mass and three momentum equations as well as one
mixture energy equation (Shippen and Bailey, 2012). In K-Spice Meter
which uses LedaFlow for resolving multiphase flows in wells, nine mass,
three momentum and three energy equations are used (Kongsberg,
2016; Shippen and Bailey, 2012). As such, it is classified as a two-fluid
model which have nine fields: 3 continuous and 6 dispersed.

In contrast to OLGA and K-Spice Meter, FlowManager utilizes the
transient drift-flux model with one mixture momentum and one energy
equation. The mass balances are solved for each phase (Holmås and
Løvli, 2011). A similar approach is used in METTE which is a
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multiphase flow solver in FieldWatch. The software uses the transient
drift-flux model with the mixture momentum and energy equations
with a possibility to include and exclude the slip effect between the
phases (Roxar, 2015).

Based on the literature available on Well Monitoring System by
ABB, it is difficult to relate the software model to any of the formula-
tions above. van der Geest et al. (2000) formulated the momentum
equation in a very generic way as the following:

= +dp
dx

f u
D

g2 sinfric

2

(15)

where p denotes the system pressure, ffric – the friction factor, u – the
fluid velocity, – the fluid density, D – the pipe diameter, x – the pipe
axial dimension, – the pipe inclination angle.

The equation basically states that the pressure drop along the well
depends on friction and gravity. In this case, the multiphase flow is
resolved as follows. First, the flow pattern is identified based on the
method developed by Barnea (1987). Based on the local flow pattern,
the respective closure laws and correlations are identified and the
momentum equation is solved. Given the solution of the momentum
equation, the temperature gradient is solved which has the following
form (van der Geest et al., 2000):

=
+

dT
dx

u g sine w
dx

du
dx

h
P

dp
dx

h
T (16)

where e denotes the specific heat exchange with the environment, T –
the fluid temperature, h – the specific fluid enthalpy, w – the specific
work done on the system.

This is a similar approach to the Unified Model developed at the
University of Tulsa, see Zhang et al. (2003). However, since the literature
on the model applied in Well Monitoring System is limited, it is not
possible to surely state that the Unified Model is applied. On the other
hand, it is possible to conclude that this model uses a mechanistic steady
state approach as there is no time derivative in the model as well as flow
is modelled based on the physics behind including force balances and
correlations based on the flow pattern. This classification is also in cor-
respondence with the one provided by Shippen and Bailey (2012).

As for the rest of the commercial VFM systems, based on the available
sources, we have not been able to identify the type of the implemented
thermal-hydraulic model. However, the software definitely use one,
please see Haouche et al. (2012b) for Vali-Performance, Haldipur and
Metcalf (2008) for Virtuoso and Heddle et al. (2012) for Rate&Phase.

3.3.2.3. Choke model. Over many years, choke valves at the wellheads
have been used in oil and gas production for safety and control purposes
(Buffa and Baliño, 2017). In addition to this, because the pressure drop
over the choke depends on the flowrate, the choke valve can be used to
estimate the flow. As such, a choke valve model can be considered as a
simple Virtual Flow Meter because the flow is not measured directly but
rather estimated. However, estimating the flow over the choke is not a
straightforward task due to the multiphase flow complexity.

As in many other fluid dynamics applications, the first attempts to
estimate the flow through the choke were made using empirical cor-
relations. For example, see the model developed by Gilbert (1954). At
the later development stage, mechanistic models were proposed which
are currently implemented in Virtual Flow Meters.

Based on the available literature, we found that four models are
currently implemented in commercial VFM systems. It can be the case
that there are more utilized models, but, unfortunately, the literature
published by VFM suppliers on this topic is rather limited.

As for the implemented models, they are:

• Modified Bernoulli
• Hydro (Long and Short)
• Perkins

The Modified Bernoulli model is implemented in Roxar's
FieldWatch. The model is derived from the famous Bernoulli equation
which was originally applied for a single-phase flow. In order to adjust
the model to specific choke parameters, the choke discharge coefficient
and mixture density are introduced. The Modified Bernoulli model can
be written as follows:

=m A C
p. 2

1
D

m
A
A

1

1/2

1
2 (17)

where m. denotes the mass flowrate, CD – the choke discharge coeffi-
cient, A1 – the inlet choke area, A2 – the choke throat area, m – the fluid
mixture density, p – the pressure drop over the choke.

The Hydro model developed by Selmer-Olsen (1995) is used in
OLGA Online. This model has two versions: Long and Short. In the Long
version, it is assumed that vena contracta is located inside the throat
while in the Short model it is located downstream of the throat. In both
models, sub-critical and critical flows are calculated and then the
smallest one is selected since the critical flow is the largest possible. In
comparison with many other models, the Hydro model considers irre-
versible losses in the choke in a mechanistic manner, thus, the dis-
charge coefficient is not involved in calculations. For the full Hydro
model description with the derivation details, an improved slip relation
as well as testing results by experimental data, please see Schüller et al.
(2003) and Sampath et al. (2006).

The Perkins model (Perkins, 1993) is implemented in Rate&Phase.
The model is derived from the energy equation applied on a control
volume of a fluid. It calculates the mass flowrate for sub-critical and
critical flows and then adjusts it to the actual flow by multiplying with a
discharge coefficient (Perkins, 1993). In contrast to the Hydro model,
this model does not consider the slip effect between the phases as well
as frictional losses in the throat. However, Sampath et al. (2006) found
that this is a disadvantage of this model and that the Hydro model
outperforms Perkins model by accounting the slip effect. K-Spice Meter
includes both Hydro and Perkins models, so that the user may choose a
preferable option (Kongsberg, 2016).

Apart from the models implemented in the commercial simulators,
there are many other models suitable for estimating the mass flowrate
over the choke. Ashford (1974) derived a model for the total mass
flowrate based on the fluid properties, choke size and discharge coef-
ficient. With the computed total mass flowrate, the oil flowrate can be
estimated based on Black Oil properties.

By considering a no-slip frozen two-phase flow, Sachdeva et al.
(1986) developed a model which has been popular in the literature. As
in the Perkins model, they consider the discharge coefficient to adjust
the flowrate to the actual conditions. Sampath et al. (2006) showed that
the no-slip assumption makes this model to be less accurate than the
Hydro model. Despite this drawback, the Sachdeva et al. (1986) model
is one of the first mechanistic choke models and often considered in the
literature for the analysis and comparison with new models.

Al-Safran and Kelkar (2009) developed a mechanistic choke model
which accounts for the slip between phases. The idea behind the model
development was to create a simple (as Sachdeva and Perkins) and
accurate (as Hydro) model. As such, the basis of the model is taken from
Sachdeva and Perkins models with an implementation of the slip model
developed by Schüller et al. (2003) for a modified version of the Hydro
model (Sampath et al., 2006). Based on experimental tests, Al-Safran
and Kelkar model outperformed Sachdeva and Perkins models and
decreased the average percent error by 5–10%.

As the field of choke models for flowrate estimation is wide, in
addition to the aforementioned models, there are some less popular and
general models available in the literature and utilized for real field
cases. Several review papers study the history of the choke models’
development and evaluate performance of different models. So, if the
validation of the discussed models as well as description of other
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developed ones is of interest, see the works by Rastoin et al. (1997),
Buffa and Baliño (2017) and Sampath et al. (2006).

3.3.2.4. Electric submersible pump (ESP) model. An electric submersible
pump is a widely used artificial lift equipment which is used to produce
oil where natural production is not possible due to various reasons, for
instance, low bottomhole pressure, liquid loading, heavy oil presence,
etc. ESPs have a long application history in the oil and gas industry, for
example, see Lea and Bearden (1999) for a review of ESP applications in
onshore and offshore oil and gas production. Due to its popularity, there
have been a numerous amount of attempts to make a first principles
model which describes ESP operation which are not possible to cover
within this paper. The general idea behind an ESP model is to link the
pump pressure increase with the pump inlet pressure, the flow and the
pump speed (Schlumberger Limited., 2014):

=P f q P( , , , )l inlet (18)

where q denotes the flowrate, – the pump speed, l – liquid fraction,
Pinlet – pump inlet pressure.

By measuring the pressure before and after the pump and using a
model described in a form of Eq. (18), it becomes possible to compute
flowrates of the multiphase flow mixture which is pumped by an ESP. In
this paper, we do not describe the exact differences between the models
which are used by the commercial VFM systems. First of all, it is in
general difficult to group the ESP models as it was done, for instance, for
the thermal-hydraulic and choke models. In addition, some VFM sup-
pliers do not provide specifics of the used models and mention only the
fact that these models exist. What is important to note is the fact that
these systems use ESP models and it can be a good source for multiphase
flowrate estimation without additional hardware installations.

3.3.3. Data validation and reconciliation (DVR) algorithm
Another important part of the state-of-the-art first principles VFM

systems is a data validation and reconciliation algorithm. In some pa-
pers and software, this VFM part is called simply “optimization algo-
rithm” (Heddle et al., 2012; Holmås and Løvli, 2011), while in others it
is mentioned as DVR (Haouche et al., 2012a; Patel et al., 2014). In case
of Well Monitoring System by ABB, Melbø et al. (2003) defines it as the
optimization algorithm, while van der Geest et al. (2001) defines it as
DVR. In this paper, we use the term “data validation and reconciliation”
to describe the process of adjusting the VFM model parameters such
that the VFM model outputs match the measured field data.

As the technique name states, DVR consists of two parts: (1) vali-
dation and (2) reconciliation. In the data validation part (1), the goal is
to remove erroneous and noisy data. This step can be done by means of
statistical analysis and filtering techniques, for example, exponential
filters or moving averages (Stanley, 1982).

When the data is validated, the reconciliation part (2) takes place.
Here, an optimization algorithm adjusts the model parameters, for in-
stance, flowrates, choke discharge coefficient, gas and water fractions,
and friction and heat transfer coefficients such that the model outputs
match the validated measured data being constrained to process con-
ditions, for instance, the material balances (Câmara et al., 2017). In
Virtual Flow Metering systems, the reconciliation algorithm is often
written in the constrained least-squares form (Petukhov et al., 2011):

y y
min

x i

N
meas i predicted i

i

2

(19)

subject to the following constraints:

=F s y( , ) 0 (20)

y y ypredicted imin max (21)

s s simin max (22)

where i denotes the measurement index, ymeas i – the measured value,

ypredicted i – the reconciled (predicted) value, i – the measurement un-
certainty, si – the unmeasured variable, =F s y( , ) 0 – the process
equality constraints (e.g. mass and energy balances).

In VFM applications, the problem formulation is usually non-linear
due to the complexity of the system. In order to find the solution of a
non-linear data reconciliation problem, different methods can be applied.
If inequality constraints are not present, the method of Lagrangian
multipliers may be used to obtain the solution (Câmara et al., 2017). If
constrains are included, typically gradient based optimization methods
are used such as Levenberg-Marquardt, SQP or Gauss-Newton (Câmara
et al., 2017; Holmås and Løvli, 2011). In the outcome, the algorithm
estimates the flowrates which give a local or global minimum error.

When the reconciliation process is finished, the results can be va-
lidated. In this step, statistical tests are conducted in order to further
detect unreliable measurements and estimates and probability of a
gross error existence. This can be achieved by performing individual
(e.g. penalty) and global (e.g. chi-squared) tests (Petukhov et al., 2011).

3.4. Reported field experience with first principles VFM systems

The VFM systems derived from the first principles have been used in
the industry as standalone solutions as well as back-up systems for
physical multiphase flow meters. Unfortunately, not many examples of
using a particular VFM solution are published. Despite this fact, some
examples are still available in the open literature and are summarized
in this section.

3.4.1. Reported field experience with commercial first principles VFM
products

One of the most widely spread first principles VFM systems is Rate&
Phase which was reported to be installed in more than 300 production and
injection wells by 2011(Heddle et al., 2012). The authors reported that the
average error of this VFM is usually recorded at the level of less than 5%.

In 2004, FlowManager was in operation in a subsea field with three
wells which had challenges with downhole pressure sensors and unreliable
choke information. Despite these difficulties, the software was able to
identify erroneous flowrate measurements at the separator that emphasized
possible features of the VFM technology (Rasmussen, 2004). FlowManager
is also successfully utilized as a flow assurance system in Ormen Lange and
Vega fields in the North Sea and used as a back-up system to the MPFMs
(Holmås et al., 2013; Holmås and Løvli, 2011). Løvli and Amaya (2016)
showed six cases of FlowManager implementation for VFM applications
including gas condensate and oil fields. The software was used during
normal conditions as well as start-up operations. These examples showed
usefulness of VFM not only as a standalone solution but also for perfor-
mance monitoring of physical flow meters. Overall, by 2018, FlowManager
is in operation of 700 wells around the world (Escuer et al., 2018).

Application of Well Monitoring System in the British sector in the
North Sea is discussed in Melbø et al. (2003). In this application, the
information from the sensors was limited and not reliable but the flow-
rate estimations were close to the true values. van der Geest et al. (2001)
presented the tests of WMS in Troika Field in the Gulf of Mexico and
emphasized the ability of the simulator to predict the flowrates as well as
other system parameters when necessary. Another example of installa-
tion is Bonga field in Nigeria (ABB, 2004; Bringedal et al., 2006).

An example of VFM as a standalone metering solution is the im-
plementation of K-Spice meter in Alta field in Norway which is a small
field tied-in to the existing infrastructure (Patel et al., 2014). In this
case, the MPFM solution would have significantly increased CAPEX and
OPEX, so that it was decided to apply the VFM solution which showed a
good performance during the tests.

ValiPerformance was successfully tested and suggested for further use
in Ceiba oil field in Equatorial Guinea (Petukhov et al., 2011). It was also
installed in an offshore field in the Middle East operated by Total with 16
wells with ESPs (Couput and Renaud, 2010). During the tests and
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operation, the ESP model was tested and improved by “density correc-
tion factor” (Haouche et al., 2012a, 2012b). Couput et al. (2008) showed
examples of the software installation in an onshore field in France and a
complex subsea field as a back-up and reduction uncertainty system.

Virtuoso was successfully used as a standalone multiphase flow me-
tering technology in gas condensate and black oil systems in Asia Pacific,
the Gulf of Mexico and Southern North Sea (Haldipur and Metcalf, 2008).
The system was also linked to the implemented pipeline flow simulators
that resulted in an integration flow assurance system used for multiple
purposes such as flow metering, detection of hydrates, asphaltene and
wax depositions and leak detection. Parthasarathy and Mai (2006)
showed two other examples of Virtuoso implementation. In the examples,
Virtuoso was used as a back-up for wet gas meters initially but after ones’
failure it was used as primary metering information for the flow assurance
system. In another example, the software revealed inconsistent perfor-
mance of topside meters which then was successfully fixed.

Couput et al. (2017) summarized the operational experience with
ValiPerformance and K-Spice VFM systems in Total providing examples
from Couput and Renaud (2010) and Patel et al. (2014). They em-
phasized that despite the advantages of the VFM costs, this technology
still needs skilled people to tune and calibrate the software which can
be a challenge for operator companies.

3.4.2. Reported field experience with patchwork first principles VFM
solutions

Apart from the commercial first principles VFM products discussed
above, there were several examples of combining commercial software
with an optimization algorithm to create a VFM solution. Acuna (2016),
Omole et al. (2011) and Ma et al. (2016) combined the software
packages Prosper and GAP as an engine for VFM in real field cases and
then combined it with external optimization techniques to estimate the
flowrates continuously and optimize the field production.

In addition, smaller VFM solutions have also been utilized for flow
metering. Usually, these systems rely on a particular model rather than
on an integrated approach as the systems described above. For example,
Ajayi et al. (2012) and Allen and Smith (2012) used the models of
downhole inflow control valves (ICV) to construct a Virtual Flow Me-
tering system. Campos et al. (2010), Hussain et al. (2016), Moreno et al.
(2014), Loseto et al. (2010) and Espinoza et al. (2017) used choke valve
models in order to estimate the flowrate at the field conditions. Delarolle
et al. (2005) and Faluomi et al. (2006) from TEA Sistemi also developed a
choke model, validated it with experimental data and CFD analysis and
applied the model at field conditions in Italy, North and West Africa and
the Gulf of Mexico. They also tried to implement the hydraulic tubing
model, but it showed a less accurate performance than the choke model.

Cheng et al. (2018) created a VFM system based on not a particular
model but a combination of the discussed models such as IPR, steady
state thermal-hydraulic and choke models and successfully applied in
real operation of an offshore field in China. Similarly, Mursaliyev (2018)
used a steady state thermal-hydraulic model together with tuned PVT
model to construct a VFM system and applied it for real time production
monitoring in Kashagan field achieving the error of less than 5%.

Apart from the choke model based VFM solutions, the ESP model
has also been used for flow metering. Camilleri and Zhou (2011) and
Camilleri et al. (2016a, 2016c, 2016b, 2015) showed field case studies
in which ESP first principles models act as Virtual Flow Meters and able
to estimate the flowrates as well as other production system parameters
such as productivity index.

3.5. Evaluation studies of the first principles VFM systems in the literature

In order to improve accuracy of VFM systems, it is important to cri-
tically evaluate it against various input data. This is because each single
field may differ from one to another in terms of sensor availability and
accuracy, frequency of well testing, presence of an additional equipment
(e.g. Venturi meters), etc. The critical evaluation of the existing VFM

solutions is beneficial for both operators and software vendors. The op-
erators might understand the applicability of VFM systems for a parti-
cular case and/or a necessity for installing the required instrumentation
to improve the accuracy of the flowrate estimates. The vendors in turn
could understand the direction for further improvements of the software.

In the literature, there are several evaluations of the commercial
first principles VFM systems. Among the others, the evaluations by
Toskey (2011) and Amin (2015) are of a particular interest. This is
because they compare several VFM systems and evaluate the relative
error depending on the input data. Even though the works are con-
ducted by the same company and within a similar strategy, some major
differences exist. Toskey (2011) used OLGA to simulate the field data
while Amin (2015) used real field data. For tuning purposes, the ven-
dors in Toskey (2011) were provided with phase flowrates, while in
Amin (2015) the vendors were given Water-Liquid-Ratio at first and
total mass flowrates with Gas-Volume Fractions later. Last but not least,
Amin (2015) also included a short but important study of the VFM
products sensitivity to the PVT data. In addition to the mentioned
studies, a smaller but similar work was performed by Varyan et al.
(2015). They evaluated the performance of FlowManager software
using a similar approach, so that some conclusions may be compared
with the ones by Toskey (2011) and Amin (2015).

As the studies are extensive, we will not give a thorough description
of them here. Instead, we will summarize the main common conclu-
sions and disagreements. From the studies, the following common
conclusions can be made:

• VFM tuning is required for accurate estimations.
• Tuning frequency depends on the local field conditions.
• Tuning is essential when the pressure drops below the bubble point
at well conditions.
• When GOR increases, more attention must be paid to carefully tune
the VFM system
• Total mass flowrate is a reliable tuning parameter.
• Increase in choke opening decreases the estimates accuracy.
• Additional devices such as Venturi, densitometer or partly working
MPFM may help to improve the VFM system accuracy.
• Importance of adding measurements to the model depends on the
VFM strategy.

At first, the last conclusion may seem not very clear. This is because it
comes from a disagreement between the studies. Toskey (2011) con-
cluded that adding bottomhole sensors data to the VFM system does not
improve the flowrate predictions while the results from Amin (2015) and
Varyan et al. (2015) state opposite conclusions. Comparing these state-
ments and looking at the results, it can be said that the importance of
adding the measurements depends on the strategy used for Virtual Flow
Metering. This means that if the VFM strategy initially relies on the choke
model, then adding the bottomhole measurements will not add much
value because the final estimates still rely on the choke model. On the
other hand, if adding the measurement adds a separate model into the
VFM and the estimates are made based on both the choke and tubing
models (e.g. weighted average value), the results might improve.

Another important point is that using the total mass flowrate and
mixture densities as tuning parameters may allow some errors in PVT
data while still maintaining a high accuracy of the flowrate estimates
(Amin, 2015). This is a very important conclusion since it may be the
case that the PVT data is tuned with some errors or not being tuned
continuously. However, this conclusion is made based only on the case
considered in one study and may not be generalized for other cases.
Definitely, more studies are needed on this topic.

Finally, an attempt was made to evaluate the sensitivity of the VFM
systems to the errors in pressure and temperature readings. Amin
(2015) showed that with the measurement error the VFM systems were
unable to estimate the flowrate within a high accuracy. Toskey (2011)
found that the VFM suppliers were able to eliminate the measurement
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error and provide accurate estimates. However, both authors concluded
that more investigation on this topic is required because these results
were highly dependent on the studies conditions.

Additional investigations on the measurement errors influence were
conducted by Tangen et al. (2017) and Lansagan (2012). Tangen et al.
(2017) used K-Spice meter to test the sensitivity of the VFM software to the
errors in the pressure and choke opening measurements as well as in GOR
and WC. To do that, a digital twin approach was used where one model
represented a plant while the second one represented the VFM model.
Lansagan (2012) used two different approaches to test the sensitivity of a
VFM system. The first one relies on the intersection method between the
inflow and outflow performance of the well while the second one is the
same as in Tangen et al. (2017): using a transient multiphase flow simulator.
From the studies, some common and distinct conclusions can be drawn:

• Redundant measurements are preferable to improve VFM accuracy.
• Wellhead pressure measurements are more important than bot-
tomhole ones.
• Validated choke model makes the predictions more accurate.
• Oil wells are more sensitive to WC input.
• Gas wells are more sensitive to GOR input.
• Increase in choke opening decreases the estimates accuracy.
• If the intersection method is used, reservoir and bottomhole pres-
sures are more sensitive parameters than wellhead pressures.

Considering all the aforementioned studies on the VFM systems
sensitivity, the following general conclusions can be made. First princi-
ples VFM is a sophisticated system which aims to simulate complex non-
linear multiphase flow phenomena by combining several computational
approaches. This leads to the difficulty of a comprehensive VFM eva-
luation since it highly depends on the selected strategy and applied
computational methods. From the studies we see that some conclusions
agree with each other while the others may be totally contradictive.
Hence, we conclude that more studies on this topic are required in order
to better understand the behavior of the VFM under different conditions.
Future studies can take the discussed works into account and go deeper
in terms of the evaluation of critical system parameters such as mea-
surements and PVT data. An attempt to address some of these points was
done by Bikmukhametov et al. (2018). They conducted a statistical
analysis of the sensor degradation effect on a first principles VFM system
and revealed that drift errors in pressure and temperature measurements
may lead to a big systematic error in flowrate estimated from a VFM
system. They also conducted a sensitivity study on heat transfer modeling
approaches of the wellbore and found that the detailed heat transfer
modeling is not necessary for VFM in oil wells with middle range values
of GOR. Despite this attempt, further sensitivities studies are required for
a deeper understanding of first principles VFM systems and suggestions
for the future work are discussed later in the respective section.

4. Data-driven VFM systems

4.1. An overview of the concept

Data-driven modeling is a technique which is based on analyzing
the system data and finding relationships between the system state
input and output variables without exact knowledge about the physical
behavior of the system (Solomatine et al., 2009). The main advantage of
this approach is that it allows to skip the detailed physical modeling of

systems or processes for which the exact solution can be difficult to find
numerically, for example, multiphase flows in pipes. Data-driven
methods rely on the fact that experimental or industrial data represent
the system well and attempt to learn the physics relationship which
describe the system directly from data. A typical workflow process of
data-driven modeling is shown in Fig. 3.

In order to start the modeling process, first, the data must be col-
lected. Any data related to the process can be relevant, for instance,
historical system data, current system data or even historical data from
a similar system. In the next step, the data must be pre-processed. This
may include different operations. First, we ensure that the collected
data is suited for modeling by removing outliers, treating missing va-
lues or removing noise. Also, additional insights about the information
contained in data can be obtained through data transformation and
feature engineering. Feature engineering get its name from the fact that
in the machine learning community the input data are often called
features, so that feature engineering is the process of manipulating the
input data to reveal useful information which can help in the model
training process.

When the data is pre-processed, the model development is per-
formed. At this step, a data-driven model is developed and trained on
the pre-processed data. The training process is basically fitting a
mathematical function which describes the data well. In some cases,
this function has an analytical form, for instance, in a linear regression
model, but it can also be a black-box model, for instance, a neural
network (NN). The obtained model must be validated on a separate
dataset to ensure the capability of the model of making accurate pre-
dictions on the new data. After the model has been validated, it can be
used to make predictions on newly obtained data.

In Fig. 4, a schematic overview of the data-driven modeling appli-
cation for Virtual Flow Metering is shown for the production system
shown in Fig. 1. In a data-driven VFM system, the collected data typi-
cally includes the pressures and temperatures at the bottomhole and
wellhead, the choke opening values as well as the parameters of the ESP
and the corresponding measurements of oil, gas and water flowrates.
The measurements of the flowrates can come from different sources.
One possibility is to use well test data and another possibility is to use
the data from hardware multiphase flow meters. In the latter case, if
MPFMs are installed at each wellhead, the data-driven model becomes a
back-up metering system for each well. However, if one MPFM is in-
stalled for a cluster of wells, its data can be used similar to well test and
separator data, so that the flowrate measurements from each well are
collected according to the well testing schedule. In this case, after
training and validation, the data-driven model can be used as a stan-
dalone VFM system. In the next section, we will describe the data-
driven workflow process in more detail.

4.2. Description of the data-driven VFM components and applied methods

4.2.1. Data collection and pre-processing
Before developing any data-driven model, the data must be col-

lected and pre-processed. In Virtual Flow Metering systems, the data
may include sensor readings from wells and processing facilities. In
addition, historical data from similar wells or fields can potentially be
used for model development. In the next step, the data is pre-processed
prior to training. Typically, the collected data are noisy, corrupted, may
include missing values, outliers and irrelevant inputs (Famili et al.,
1997). As such, the data needs to be cleaned and validated before

Fig. 3. A typical workflow of data-driven
model development.
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further usage. In principle, this is the same validation process as in the
data validation and reconciliation algorithm which is used in the first
principles VFM systems discussed before.

In the pre-processing step, data may also be transformed and ad-
ditional insights about the information contained in the data can be
obtained. This process is usually called feature engineering. Typical raw
features in VFM are shown in Fig. 4, i.e. pressures and temperatures
along the production system, choke openings and the information from
the ESP. There are many techniques which are used in feature en-
gineering, for instance, dimensionality reduction algorithms by Prin-
cipal Component Analysis (PCA), feature selection methods or linear
and non-linear combination of the raw features. A good overview of the
feature engineering methods is provided by Cunningham (2008). In
general, feature engineering may help the data-driven algorithm to find
complex relationships between the original data and the output vari-
able or remove redundant features which leads to lower computational
cost during training and prediction steps. In most of the cases, domain
knowledge of the field of interest is important to construct informative
features for further algorithm training and Virtual Flow Metering is not
an exception. Creating good features using the input data which can
describe the multiphase flow transport process may help to obtain
better predictions. However, as we will see in the next sections, in most
of the literature resources the production system sensor data are often
used as it is and the potential of good feature engineering for VFM
applications is not explored yet.

4.2.2. Model development
Model development is the process of developing an algorithm which

is able to map input features and output (target) variables. The mapping
process is also called training or learning during which the algorithm
adjusts the parameters in such a way that it estimates the target vari-
ables accurately. The adjusted parameters depend on the algorithm in
use. For instance, in case of a neural network, the parameters are

typically weights, which connect the neurons, while in case of regres-
sion trees the parameter can be the tree depth. The process of training is
achieved by minimizing a cost function which is formulated as the
difference between the algorithm predictions and true (measured) va-
lues. For regression problems as Virtual Flow Metering, the mean
squared error (MSE) is often used as a cost function which has the
following form:

=
=

MSE
N

y y1 ( )
i

N

meas i predicted i
1

2

(23)

where MSE denotes the mean squared error (cost function), ymeas i – the
measured (true) value of the i-th training example, ypredicted i – the pre-
dicted value of the i-th training example, N – the number of training
examples, i – the index of the training example.

This expression resembles Eq. (19) for the data reconciliation al-
gorithm in the first principles VFM systems except for the fact that the
data-driven model training is typically an unconstrained optimization
problem while in data reconciliation the problem includes constrains as
well as uncertainty in the cost function. As such, the main idea behind
the first principles and data-driven VFM systems is the same – adjust the
model parameters such that the difference between the predictions
produced by the mathematical model and the measurement data is
small. However, the major difference is the mathematical formulation
of the model where the first principles models try to explain the mul-
tiphase flow transport using the physics behind the phenomenon while
the data-driven models try to learn the multiphase flow behavior di-
rectly from data.

After the model is trained, it must be validated and tested on a
different dataset to ensure that the trained model will perform well on
the data which the model has not seen during the training. The model
ability of producing accurate predictions on new data is called model
generalization (Abrahart et al., 2008). Another purpose of validation is

Fig. 4. A schematic overview of a data-driven Virtual Flow Meter. First, the production system data is collected and pre-processed. Then, the pre-processed data is
used for model development and validation. When new measurement data is obtained, the validated model is used to estimate the well flowrates of oil, gas and water.
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to select accurate hyperparameters of the model to fit the data well.
Hyperparameters are the model parameters which are set prior to
training and are not learned during the training process. For instance, in
case of neural networks, the hyperparameters are the number of layers,
number of nodes in the hidden layers, regularization parameters, etc.
The regularization parameters are the hyperparameters which allow to
reduce the effect of noise and outliers on the final algorithm predic-
tions, so that the algorithm does not overfit the data. Bishop (2006)
provides a rigorous discussion on the influence of hyperparameters on
the model performance including its more detailed definitions.

There are different methods for validation. One of the most widely
used approach is standard K-fold cross-validation (Hastie et al., 2009)
which is shown in Fig. 5 (left). In this method, the available data is
divided into training and test parts. Then, the training set is again di-
vided into K-folds. Prior to training, a set of hyperparameters is selected
and then the model is trained with these parameters on K-1 folds and
the error between the actual values and the algorithm predictions is
checked on the remaining fold. This process is repeated K times and the
error is averaged over K folds. The obtained error corresponds to the
model error with the selected hyperparameters. Then, the hyperpara-
meters can be changed and the averaged error over K folds is computed
again. The best set of hyperparameters is the one which corresponds to
the lowest obtained error over K folds. The model with the best hy-
perparameters set can be re-trained on the entire training set to utilize
all the available data.

One of the main assumptions behind the K-fold cross-validation is
that the data points are independent from each other. However, in case
of Virtual Flow Metering this is an inadequate assumption because, for
instance, the bottomhole pressures at time instance t are dependent on
conditions at time instance t-1 unless the time difference between the
instances is large or during steady state operation with no pressure
variations. However, in most of the reported applications of data-driven
models in VFM, this fact has not been considered and the standard K-
fold cross-validation was performed as shown in Fig. 5 (left), see, for
instance, the works by Al-Qutami et al. (2017c, 2017a).

An alternative to the standard K-fold cross-validation can be nested
K-fold cross-validation, see Fig. 5 (right). In this case, the training set is
again divided into K-folds, however, the model is trained and validated
in a nested manner, for instance, trained on fold 1 and validated on fold
2, trained on folds 1 and 2 combined and validated on fold 3. In this
case, the algorithm does not use the future data in order to predict the
past outputs and misleading conclusions about the model performance
can be avoided. An application of the nested K-fold cross-validation in
data-driven VFM is described by Bikmukhametov and Jäschke (2019).

Ideally, the performance of the obtained validated model is checked
on a separate test dataset to make conclusions about the model gen-
eralization. Typically, two situations can happen when testing the
model performance:

• The errors on the training and test sets are large.
• The error on the training set is small but large on the test set.
The first situation is called underfitting and often referred as the fact

that the trained algorithm has high bias. The second situation is called
overfitting and often referred as the fact that the trained algorithm has
high variance. In fact, finding an optimum value of both bias and
variance is the overall goal of the data-driven algorithm training and
called a bias-variance trade-off (Hastie et al., 2009). So, in summary, the
validation and testing are conducted in order to find the best set of hy-
perparameters which provides an optimal value of bias and variance. In this
case, the algorithm has good generalization and can be used for future
predictions with greater confidence. For a more detailed explanation
and the rigorous mathematical formulation of the data-driven model
assessment, we recommend the book by Hastie et al. (2009).

An alternative to K-fold cross-validation is early stopping approach
which has been extensively used for data-driven models training in-
cluding VFM applications (Al-Qutami et al., 2017b; Bikmukhametov
and Jäschke, 2019; Prechelt, 2012). In this case, the dataset is divided
into training, validation and test sets. During training, the error is
monitored on the training and validation sets. The training continues
until the error on the validation set keeps increasing a specified number
of training steps. The model can be further re-trained on the combi-
nation of the training and validation sets and evaluated on the test set.
Prechelt (2012) provides a thorough explanation of this approach and
the methodology for selecting the stopping criteria.

4.2.3. Applied methods for data-driven VFM systems
Having considered how data-driven model can be developed, in this

section, we will discuss data-driven methods which have been reported
to be used for VFM systems. Because VFM is a non-linear regression
problem, most of the data-driven VFM approaches are based on artifi-
cial neural networks alone or with some modifications, for instance,
ensemble algorithms. As such, we will separate the ANNs applications
from the other used methods. In addition, we distinguish recurrent
neural networks which are able to model dynamic problems.

4.2.3.1. Steady state artificial neural network VFM solutions. Feed-
forward neural networks (also often referred as Multilayer
Perceptrons (MLPs)) are a type of artificial neural networks which
aims to approximate a function based on a certain number of input
features without any recursive feedback connection between the
network outputs and inputs. They are inspired by cognitive abilities
of biological neural networks. The network is constructed using
interconnected cells (neurons). These neurons are structured in a
layered manner, so that the network usually consists of an input,
hidden and output layers (Goodfellow et al., 2016). The input layer is
required to read the variable (feature) values which are used for

Fig. 5. Standard (left) and nested (right) K-fold cross-validation schemes for data-driven models.
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training and for future predictions after training. In a VFM case, this can
be pressure and temperature measurements, choke opening or other
production system parameters. The hidden layers are used to produce
non-linear relationships between the input parameters and approximate
the function which describes the system behavior. In the output layer,
the values produced in the hidden layer go through an activation
function and then the network estimates the output variables (e.g.
flowrates). This type of neural networks has been a popular choice for
VFM technology because its key advantage is that it can approximate
any relationships and patterns between variables, so that it can be
considered as a universal approximator (Hornik et al., 1989). However,
in case of transient flow behavior, steady state solution provided by a
feed-forward neural network may not be accurate (Omrani et al., 2018).

One of the earliest attempts to estimate the multiphase flowrates
based on pressure sensor data using neural network models was done by
Qiu and Toral (1993). They used laboratory pressure transducers data as
an input to the neural network and predicted gas-liquid rates as outputs.
Since then, several examples of neural networks for VFM were reported.

A noticeable effort in applying neural networks for Virtual Flow
Metering systems is done by Al-Qutami et al. (2018, 2017a, 2017c,
2017b). Al-Qutami et al. (2017b) used a neural network trained by
Levenberg-Marquardt optimization algorithm. K-fold cross validation
technique was used to select the number of neurons. The model was
validated over 1.5 years of well test data. In order to avoid problems
with overfitting, the early stopping technique was utilized. In addition
to the evaluation of the trained model on the test data set, a sensitivity
study was performed. The study revealed that the estimated gas flow-
rate is the most sensitive to the choke position value while bottomhole
pressure is the most critical parameter for the oil flowrate predictions.

Al-Qutami et al. (2017a) discussed a hybrid ensemble learning by
combining the neural network and regression tree (RT) approaches
(NN-RTE). The idea behind the method is to generate a certain number
of learners using different algorithms (in this case NN and RT), use a
pruning technique to optimize this number (in this case simulated an-
nealing (SA)) and then use a combining strategy (in this case simple
averaging) to produce the final output. The paper compared the hybrid
approach (NN-RTE) with homogeneous ensemble approaches (NN and
RTE) and revealed a more accurate performance of the hybrid one.

Al-Qutami et al. (2017c) implemented a radial basis function network
(RBFN) which uses a Gaussian transfer function in the hidden layer in-
stead of a sigmoid function used in Al-Qutami et al. (2017a). The ad-
vantage of this method is the fact that it generally results in a faster
training. In order to train the RBFN, Orthogonal Least Squares algorithm
was used which is a common technique applied for RBFNs. A sensitivity
study was carried out by excluding bottomhole pressure and choke
opening form the model inputs. The results showed that the bottomhole
pressure did not change much the resulting estimates while the choke
opening was crucial for the network performance. This is a similar
conclusion to the one in Al-Qutami et al. (2017b) for the gas rate. The
authors concluded that further investigations in neural network sensi-
tivity are required to make a solid argument on robustness of the method.

Al-Qutami et al. (2018) considered a modified version of the en-
semble learning if compare to Al-Qutami et al. (2017b). In this case, the
homogeneous approach with neural network ensemble was used. Instead
of using another algorithm for learners, the diversity was achieved by
implemented different regularization criteria such as scaled conjugate
gradient and Bayesian regulation. In addition to the simple averaging,
weighted average and NN meta-learner combining strategies were used.
The results were compared before and after adaptive simulated an-
nealing with bagging and stacking ensemble methods.

Omrani et al. (2018) performed a rigorous study of applying feed-
forward neural networks to simulated and real field data. First, they
considered a NN for predicting oil and gas flowrates in steady state op-
eration and showed that the algorithm produces a good performance
while during transient operation the NN may give inaccurate results. In
addition, they considered sensitivity studies of the target variables with

respect to uncertainty of the input data and revealed that in general NNs
are capable to produce accurate flowrate predictions even under noisy
input features unless the uncertainty increases dramatically. Finally, they
proposed a method for back-allocation of well flowrates using total flow
measurements from a separator, and the method showed a reasonable
performance and can be addressed in future research.

AlAjmi et al. (2015) used a neural network to predict the oil flowrate
through the choke. In addition to pressure, temperature, choke size and
WC data, they used some additional parameters for inputs including an
empirical correlation for the critical choke flow. When compared with
flowrate estimations obtained by using the choke empirical correlations,
the NN showed a reasonably better performance. It has to be noted that
the choke models used in the study were purely empirical and not me-
chanistic which usually make better flowrate predictions.

Berneti and Shahbazian (2011) and Ahmadi et al. (2013) compared
a conventional neural network approach with a hybrid approach by
introducing Imperialist Competitive Algorithm (ICA) to optimize the
initial values of weights in the network. Ahmadi et al. (2013) compared
also considered Particle Swarm Optimization (PSO) and Genetic Algo-
rithm for this purpose as well as utilized Fuzzy Logic approach to es-
timate the flows. Based on the study, superior capabilities of NN with
ICA were revealed compared to other hybrid methods and the con-
ventional NN training approach.

Zangl et al. (2014) constructed a neural network to estimate oil and
water rates by the use of multi-rate well tests. They trained the network
with a gradient descent method and the resulted network produced
good predictions on a test dataset. A similar work by Hasanvand and
Berneti (2015) shows a successful application of a three layers feed-
forward neural network trained by Levenberg-Marquardt algorithm to
predict oil flowrates using real field well test data from 31 wells col-
lected over 8 years of production.

Xu et al. (2011) and Shaban and Tavoularis (2014) used Principal
Component Analysis (PCA) in order to extract features from the ex-
periemntal data sets to produce input variables to neural networks. The
output flowrate estimates from the networks were in a good agreement
with the measured values.

In addition to the research oriented neural network VFM applications,
Baker Hughes has developed NeuraFlow software which is based on the
neural network model (Baker Huges, 2014; Denney et al., 2013). This
software is used to estimate the flowrates in systems with electric sub-
mersible pumps by applying the neural network approach. Similar to the
previously discussed NNs, this system takes pump intake and discharge
pressures as well as other measured parameters such as pump frequency as
an input and produces the flowrate estimates as the network output.

4.2.3.2. Dynamic artificial neural network VFM solutions. In addition to
the steady state feed-forward neural networks discussed above, there
are different NN modifications which are capable to model transient
phenomena. One example are recurrent neural networks (RNN) which
are extensively used in many applications such as speech recognition
and machine translation (Graves et al., 2013). The main idea behind
this approach is to use the data from the past to predict the current
target variable. For instance, in case of VFM, it takes the pressure and
temperature measurements from the previous time step in order to
estimate the flow at the current time step. In contrast, the feed-forward
neural networks typically consider the data from the current time step
only, so it performs steady state mapping only. In principle, it is
possible to also include the past data into the feed-forward neural
network, however, this approach has not been considered in the
literature so far. At the same time, the RNN approach has been used
in Virtual Flow Metering for transient flow estimation, and it is
important to emphasize this in a separate section.

One example of utilizing RNNs for VFM is the work by Andrianov
(2018). He used Long-Short Term Memory (LSTM) model which is a
type of recurrent neural networks. Using synthetic well test data, he
showed the capabilities of the LSTM method not only for estimating but
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also forecasting the flowrates in the future time. In addition, he also
considered the LSTM model for severe slugging prediction which is a
highly dynamic multiphase flow phenomenon which typically occurs in
risers. The results showed that the model was able to make accurate
predictions of the volumetric flowrate of the periodic slugging flow in
the riser.

Another example of RNN VFM system is the work by Loh et al.
(2018). They also used an LSTM model for gas rate predictions for two
natural gas wells. They trained the algorithm on the data of one well
and made predictions on the new data for both wells. The results
showed that the model is capable to predict the gas flowrates well in
general, however, for the well whose data was not used in training, the
predictions sometimes were not accurate. In addition to this analysis,
they also combined the LSTM model with ensamble Kalman filter which
we will discuss in the next chapter, and showed that adding the method
of combining the two approaches allows to obtain more accurate flow
estimates for both wells.

Omrani et al. (2018) compared performance of an LSTM neural
network with a feed-forward NN and showed that under dynamic
conditions such as shut-in and start-up of the well, the LSTM model has
a better performance and even able to track changes of liquid-gas ratio
during production.

Sun et al. (2018) used an LSTM NN for predicting oil, gas and water
flowrates from shale wells. Such an application is very promising be-
cause, in general, shale wells have highly transient behavior which can
be difficult to capture with feed-forward NNs and other steady state
data-driven algorithms. The authors showed that the LSTM model is
capable not only to predict the flowrates for the well whose historical
data was used for training but also it is possible to predict the flow for a
new well using the historical data from neighboring wells.

4.2.3.3. Other data-driven VFM solutions. In addition to the neural
networks, some other methods were used to estimate multiphase
flowrates from the collected measurements. One of the methods has
been developed and applied in actual oil and gas production systems.
FieldWare Production Universe (FW PU) is a data-driven VFM software
which is used in Shell's fields around the world. The idea for the
development of this software came from the Smart Fields initiative
which aimed to use smart equipment, technologies and processes to
optimize field production in Shell's fields (Bogaert et al., 2004; Poulisse
et al., 2006). By 2011, the system had been running on around 60% of
Shell's producing fields covering America, Europe, Africa, the Middle
and Far East (Cramer and Goh, 2009; Dolle et al., 2007; Gerrard et al.,
2007; Goh et al., 2008).

The data required for FW PU data-driven model is collected during
Deliberately Disturbed Well Test (DDWT). DDWT is a well test proce-
dure in which a well is routed to a test separator and then an operator
deliberately changes the parameters in a stepwise manner, track it with
the equipment and measures the single-phase flow at the test separator.
By testing the well at various conditions, it is possible to construct a
function which describes a well model. The function may have a gen-
eral form as the following (Poulisse, 2009):

=q t f g t g t g t( ) ( ( ), ( ), .. ( ))i i i i Ni1 2 (24)

where i – well number, q t( )i – flowrate, gNi – system parameter (e.g.
wellhead pressure).

By performing DDWTs for each well, the well models can be con-
structed for each well and then combined in the estimation of the total
field flowrate as:

=
q t g t( ) ( )estimated

i

N

i i
1 (25)

In this expression, i is an unknown weight coefficient which must
be iteratively found from the fact that the estimated and monitored
(measured) flowrates should be substantially equal (Poulisse, 2009).

In order to apply the FW PU data-driven models for a field start-up
phase, multiple runs of physical multiphase flow models can also be
used. These pre-generated synthetic production data are then used to
create the data-driven models (Poulisse et al., 2006). These models can
then be re-trained when actual production data become available.

Apart from the widely used method applied in FW PU, some other
data-driven methods have been used for VFM, mostly for research
purposes. For instance, Xu et al. (2011) utilized Support Vector Ma-
chine approach to predict the flowrates based on the Venturi pressure
difference values from the experiments which outperformed the neural
network approach.

Zangl et al. (2014) considered linear regression (LR) and random
forest (RF) for flowrate estimation, in addition to the backpropagation
neural network. All the methods showed a reasonable performance with
low average errors. The authors also used the models to perform Monte
Carlo analysis in order to test the sensitivity of the model to input
parameters. This study showed an advantage of using data-driven
models for flowrate predictions as the run time is quick which makes it
possible to perform many simulations for a reasonable time period.
Bello et al. (2014) also used a linear regression model with a pre-
liminary extraction of the training features using PCA. The resulted
hybrid intelligence system produced good oil and gas rate predictions.

Grimstad et al. (2015) applied B-spline surrogate models for the
flowrate estimation. In order to obtain the data for the algorithm, they
used the pressure drop, choke and inflow performance models from
Prosper and then fitted the results with the cubic spline interpolation
function. The estimation results were compared to OLGA and showed a
good performance.

Bikmukhametov and Jäschke (2019) applied gradient boosting al-
gorithm with regression trees as a VFM system to predict oil flowrates
in different field development cases. They considered the cases when
VFM is used as a back-up system for a MPFM and as a standalone so-
lution. The algorithm was trained on the data generated by OLGA
software. The results showed that the algorithm has a good potential for
multiphase flowrate predictions even having relatively small datasets
from the well tests and the measurements from the MPFM. In addition,
the algorithm can further be combined with neural networks within
ensembles to improve the flowrate prediction accuracy.

4.3. Field experience with data-driven VFM systems

In this section, we describe the real operational experience reported
in the literature using the data-driven models discussed in the previous
section. The number of field applications with data-driven models is
lower than with the first principles methods. The main reason for this is
the fact that the industry effort over the past 50 years was mostly fo-
cused on the development of the first principles models, so that many
vendors offer the products based on this approach. However, currently
the industry is also trying to utilize the enormous amount of data col-
lected in the fields every day and the research effort in this area has also
increased over the past several years as we observed in the previous
section.

Regarding the actual applications of data-driven methods in oil and
gas production, the FW PU showed a robust and accurate performance
for conventional and multizone wells and capable to track the dynamic
changes in production systems. The estimates produced by the software
can further be used for optimization and forecasting purposes (Cramer
et al., 2011; Goh et al., 2008; Poulisse et al., 2006). Law et al. (2018)
used FW PU Virtual Flow Meter for chemical injection optimization.

Denney et al. (2013) showed performance of NeuralFlow in a field
over nine months period without a need to be re-calibrated. There are
also some examples of applying data-driven VFM systems in fields
which were developed for a specific field case. Garcia et al. (2010)
developed a neural network to estimate the production and injection
rates in fields in Brazil using a typical set of pressure, temperature and
choke measurements for the network input and obtained the error level
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of 4–7%. Olivarez et al. (2012) overcame problems with empirical
choke flowrate estimations by developing a neural network solution
which improved reliability of the field metering system. Ziegel et al.
(2014) used a VFM system based on a neural network to predict oil and
gas flowrates in a field with gas coning in the North Sea using the data
from well tests. Al-Jasmi et al. (2013) developed a radial basis neural
network able to predict the flowrates 30 days ahead with 90% con-
fidence in wells with ESPs.

4.4. Summary of data-driven VFM applications

In Table 2, we give an overview of the discussed applications of
data-driven modeling in Virtual Flow Metering systems. The table
emphasizes the models features used in the works, the predicted vari-
ables, the input data for the training and the respective paper. In ad-
dition, we point out the origin of the training and test data and the fact
if the sensitivity analysis to the input data was conducted.

5. Application of state estimation for transient modeling in VFM
systems

5.1. Introduction

So far, we have discussed the first principles and data-driven mod-
eling methods applied for Virtual Flow Metering. Most of the discussed
methods describe steady state solutions meaning that they do not accu-
rately estimate transient flows. In order to estimate flows under transient
conditions, the time dependency of the system must be considered. This
requires two necessary conditions: (1) dynamic models that accurately
describe the transient behavior of the production system that may be
based on the first principles or data-driven approach; (2) dynamic for-
mulation of the training/optimization algorithm which considers the past
states of the system. As we saw in the description of the first principles
VFM systems, requirement (1) is typically satisfied, however, the re-
quirement (2) is not, because typically the data validation and re-
conciliation algorithm has a steady state formulation. In the data-driven
VFM systems, most of the methods do not satisfy both requirements.

One solution to this problem is using state estimation approach
together with first principles or data-driven models to estimate the
transient flows. In the literature, several application examples of state
estimation for Virtual Flow Metering are described, in which the au-
thors use first principles models and data-driven models together with
state estimation techniques to estimate the oil and gas flowrates under
transient conditions using the available measurement data. In this
section, we will describe the main idea behind the most often used state
estimation techniques for VFM such as Kalman filter modifications and
then consider its applications in Virtual Flow Metering.

5.2. Description of the state estimation techniques applied for dynamic VFM
systems

One of the most common state estimation techniques is the Kalman
filter (Kalman, 1960). The Kalman filter is an optimal estimator meaning
that, under some assumptions, the mean value of the estimation errors
sum goes to a minimum value (Singh and Mehra, 2015). Despite the fact
that the Kalman filter is extensively used in various applications, it is not
widely spread in the petroleum industry. This is because most of the
systems in this industry have non-linear behavior which restricts the
usage of the Kalman filter. To overcome this, several extensions were
developed to apply the Kalman filter concepts to non-linear systems.
Some of the most common extensions are extended Kalman filter (EKF)
(Jazwinski, 1970), ensemble Kalman filter (EnKF) (Eversen, 2003) and
unscented Kalman filter (UKF) (Julier et al., 2000). For estimation of
multiphase flowrates, the first two options have been considered.

The Kalman filter and its variants are algorithms that use a dynamic
model to propagate estimates of the states together with the variance-

covariance matrices in time. While the original Kalman filter was de-
veloped for linear systems, the extended Kalman filter uses a linear-
ization of the non-linear model around the current estimate. Given the
system with available measurements, the idea behind the state esti-
mator is to predict the state values based on the noisy measurements
obtained from the system. To construct the EKF, we need to discretize a
state-space model of a non-linear system in time. The states of the
system typically include variables which we would like to estimate, for
example, in case of VFM, pressure, holdup or flowrates. The EKF will
integrate the discretized model over time considering the process noise
and the measurements. A good example of the adaptation of the con-
servation equations in the context of flow estimation to the state space
form is described by (Gryzlov et al., 2013).

The Ensemble Kalman filter allows to avoid linearization but gen-
erate the estimates of the state vector and the covariance using so-called
ensembles. The EnKF is able to solve highly non-linear problems more
accurately compared to the EKF, while for problems with small non-
linearities their performance is approximately the same. The compu-
tational time depends on the order of the system under consideration.
For higher order systems, the EnKF is usually the fastest option (Leskens
et al., 2008). More discussions about the comparison of the EKF and
EnKF can be found in Leskens et al. (2008) and Reichle et al. (2002).

Another estimation technique which has been used for VFM is
Moving Horizon Estimation (MHE). This approach is based on for-
mulating an optimization problem to find the states of a dynamic model
that best match measurement data during a specified time period
(horizon) in the past. When new measurement data become available.
The horizon is shifted, such that the oldest data point is discarded and
the newest point is included. This procedure is repeated at given sample
times. MHE is becoming a popular estimation technique for many in-
dustrial applications and a vast amount of literature is available on this
method. For a more detailed description about the method, please see
Rao et al. (2001).

5.3. Reported research on state estimation methods applied for dynamic
VFM systems

Despite the fact that state estimation methods for VFM applications
are not widely used in industry, there have been several research efforts
in this area. Bloemen et al. (2006) considered the extended Kalman
filter to predict the flowrates in gas-lift wells. To estimate the flowrates
of a two-phase flow, they assumed that noisy pressure measurements
are taken along the wellbore. For the model part, the drift-flux for-
mulation was considered. It was shown that under dynamic conditions
caused by the choke opening, the model was able to estimate the gas
and liquid flows accurately.

Leskens et al. (2008) considered a three-phase flow in a unilateral
horizontal well and applied the EKF for flowrate estimation. It was
assumed that five downhole pressure and four temperature sensors
were available for the EKF. The wellhead measurements were not
considered. The authors showed that without the noise the model
worked well while with the noise the method was unable to track the
flowrate changes.

To extend the work by Leskens et al. (2008), De Kruif et al. (2008)
considered both two and three-phase flows in unilateral and multi-
lateral wells using the EKF. In the two-phase case in the unilateral well,
six downhole pressure and temperature measurements were sufficient
to estimate the flow accurately. For the three-phase case, downhole
data were not enough for good estimations. However, wellhead pres-
sure sensors helped to improve the predictions. Another interesting
finding was the fact that using only wellhead data was sufficient to
predict the flowrates. However, the model was not able to track the
changes of the inflow in time. Instead, the time delay response was
observed. This led to the conclusion that the downhole sensors are
necessary in order to track flowrate changes accurately. As for the
multilateral case, the authors showed that even with the downhole and
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wellhead sensors, the model was not good enough to estimate the flow
correctly. This is because the model needs correction for the specific
branch of the multilateral well at the wellhead which is not possible as
the flows from all the branches commingle inside the wellbore.

Lorentzen et al. (2010a) used the ensemble Kalman filter to predict
the gas inflow at four different zones in the wellbore. To do this,
downhole temperature sensors were used together with the transient
drift-flux model. The model showed promising results by estimating the
flows accurately. In a similar work, Lorentzen et al. (2010b) considered
a well with two branches and used temperature measurements with and
without pressure sensor data to estimate the flow by use of the EnKF.
They showed that using only temperature sensors can be sufficient to
estimate the gas flowrate from a particular well branch.

Gryzlov et al. (2013) utilized the extended Kalman filter for the
flowrate estimation problem. Several cases were considered including
flowrate and holdup estimation. At first, it was assumed that in each of
50 discretization blocks the pressure measurements were available.
Then, the number of sensors were reduced by a factor of three and six.
The results showed that by reducing the number of sensors, the esti-
mation error increases. The conclusion was that each inflow point must
be equipped with at least two pressure sensors, however, this requires a
closer investigation.

Muradov and Davies (2009) applied the extended Kalman filter for
zonal rate allocation in synthetic and real multizone wells and com-
pared its performance with optimization techniques. The results
showed that even though all the methods were suitable for the appli-
cation, the EKF was the most suitable for noisy measurement data.

Binder et al. (2015) consider Moving Horizon Estimator for flowrate
estimation in a well with an ESP. For the input, bottomhole, downhole
and pump pressure sensors were considered together with pump
parameters. The method showed an accurate performance and was
suggested to be used for industrial applications.

In the works described above, the state estimation methods are
applied to the first principles models. However, it can also be applied to
the data-driven model if the model is dynamic, for instance, a recurrent
neural network. Loh et al. (2018) applied the ensemble Kalman filter
together with an LSTM network and compared the performance with a
pure LSTM model. The results showed that the ensemble Kalman filter
gives an opportunity for the LSTM model to better capture the flow
behavior and preform more accurate multiphase flowrate estimation.

In addition to the aforementioned studies, there are several works
which do not consider estimation methods for VFM directly but de-
scribe models which can be suitable for this purpose. Aarsnes et al.
(2016) conducted a review work on multiphase flow models which can
be used for estimation algorithms. Some aspects of implementing the
Kalman filter variations for drilling applications can be also accounted
when constructing a state estimator for VFM purpose. For such ex-
amples, please see Aarsnes et al. (2014a, 2014b) and Nikoofard et al.
(2017). The state estimation techniques can also be used to estimate the
multiphase flow model parameters such as slip and friction coefficients
(Lorentzen et al., 2003, 2001).

5.4. Discussion on using state estimation in dynamic VFM systems

State estimation methods can be a promising tool for dynamic es-
timation of multiphase flowrates in VFM systems. These methods have
the following advantages for VFM applications:

• Have a potential to use additional data from the production to im-
prove estimates in a simple manner
• Filter noisy measurements and solve the estimation problem within
one algorithm
• Have a potential in accurate flow estimation using MHE and data-
driven models that are fast to evaluate
• Can be used to estimate unmeasured variables

However, apart from the positive sides, there are disadvantages
which make application of these methods in VFM systems challenging:

• The methods have not been used in the industrial VFM applications,
so that operational experience is absent
• It is a complex approach which includes physical and statistical
modeling, so the model development cost is high
• Difficult tuning
Taking the aforementioned points into account, we conclude that

the state estimation methods are a promising approach for VFM, but the
challenges with its construction complexity have to be overcome in
order to make these methods applied for VFM more often.

6. Comparison of VFM methods

In the previous sections, we described the VFM methods which have
been developed for industrial and academic applications. In this sec-
tion, we would like to emphasize the advantages and disadvantages of
using a particular VFM solution and also compare it with physical
multiphase flow meter. Marshall and Thomas (2015) compared VFM in
general with MPFM and test separators but did not distinguished the
difference between the VFM methods. In this section, we add the
comparison between the VFM methods and also specify other additional
points of interest. Table 3 shows the methods comparison. In addition
to this table, please see Bringedal and Phillips (2006) and Varyan
(2016) for more detailed discussions about potential savings and cost
reduction using VFM.

7. VFM literature summary

In this section, we give an overview of the available contributions
on Virtual Flow Metering. In Table 4, the material summary is struc-
tured in such a way that all the relevant papers can be found based on a
topic of interest. Here we aim to include all the works which con-
tributed to the VFM development. The works under each sub-section of
the table is presented by the published date order.

8. Challenges and opportunities for VFM development

Even though a vast research effort in the development of Virtual
Flow Metering systems has been conducted, there are still many op-
portunities for this technology to improve and become a more reliable
source of multiphase flowrates estimates. Based on the revised litera-
ture, in this section we propose several possible directions for the re-
search and development of first principles and data-driven VFM sys-
tems.

8.1. First principles VFM systems

A further evaluation of the VFM sensitivity to the input parameters
is required. As a starting point, one can take the evaluation by Amin
(2015), Toskey (2011), Varyan et al. (2015), Tangen et al. (2017) and
Lansagan (2012) and address the revealed contradictive points from the
studies which we emphasized before. In addition, a systematic eva-
luation of the accuracy of sub-models under various conditions can be
conducted. It can useful to see how separate models perform (e.g. choke
and thermal-hydraulic models) with changing GORs and sensor accu-
racy. This can lead to selecting a correct VFM strategy at different
stages of the field life cycle.

Another question is how accurate the models must be in order to
construct an accurate VFM system? Can the required accuracy of the
models be reduced by robust data validation and reconciliation tech-
niques? We saw that there are several commercial VFM systems avail-
able and each has its own accuracy level of the used models. Some
systems mostly rely on high fidelity multiphase models (e.g. OLGA and
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K-Spice VFM systems) while the others on the reconciliation techniques
(e.g. ValiPerformance). By answering these questions, we could un-
derstand what we should focus on in the future VFM development: an
accurate tuning and optimization strategy or accurate system models,
for instance, tubing and choke models.

Even when the VFM is tuned well, it will be necessary to re-tune the
model after some production time. The tuning requires the knowledge
about both operational and software features which make the process
complicated. As such, an auto-tuning strategy would be a valuable asset in
order to make VFM to be a standalone flow metering solution in the fields.

One of the issues influencing the VFM performance is the accuracy of
PVT data which has to be continuously updated. This is linked to the
tuning strategy discussed above. As such, one could also think of a more
robust implementation of the VFM system in terms of the PVT change. If
the system becomes less sensitive to the PVT error, this will result in less
frequent well testing for model tuning and the tuning in general. One
possible way may be measuring total mass flowrate, mixture densities
and water cut at wellhead conditions and using it as a tuning parameter.

We saw that state estimation methods can be a promising tool for
constructing an accurate dynamic first principles VFM system. The
methods may be useful in solving the following problems: flowrate es-
timation under transient conditions; removing the influence of noise and
even drift of measurement data on the VFM estimates; estimation of
zonal well inflow and flow from multilateral wells. However, to proceed
in incorporating these methods into the first principles VFM systems, the
following questions have to be answered first: how to perform a robust
tuning of the estimation methods; is the typical well configuration with
downhole and wellhead sensors enough for accurate estimation or more
sensors are needed; can the models be easily recalibrated for new field
conditions. In addition, more investigations using real field data are

required. In this way, the potential of utilizing the state estimation
methods for the first principles VFM systems will actually be revealed.

In order to proceed in developing accurate transient flow estimation
using first principles VFM systems, it can be promising to develop
methods for numerical optimization of large-scale complex high-fidelity
dynamic models that provide real-time derivatives that can be used by
an optimization solver.

8.2. Data-driven VFM systems

Various data-driven models are considered in this work. One of the
emerging data-driven models in VFM is based on neural networks
which seems to have a big application potential. Despite the fact that
the academic results are promising, a lot of work has to be done in order
to make NNs to be widely applicable as an industrial VFM solution. In
addition to consideration of neural networks applications, other more
general research directions are given below.

Performance of data-driven models in general and neural networks
in particular is highly dependent on feature engineering. Oil and gas
productions systems include many parameters which influence a par-
ticular well, so may be potentially used as input features to the neural
network. At the same time, finding an optimal set of features as well as
hyperparameters of the neural network is a challenging task which is an
ongoing research in the field of machine learning. As such, develop-
ment of the approach which could identify the most informative fea-
tures and optimal set of neural network hyperparameters at the same
time will be a strong contribution towards accurate and robust flowrate
estimates from a data-driven VFM model.

So far, only maximum likelihood estimation approach has been used
for VFM modeling meaning that only the most likely value of the

Table 3
Comparison of VFM methods, MPFM and test separators.

Metering method Advantages Disadvantages

Virtual Flow
Metering

VFM in
general

- Real-time or near-real-time monitoring
- Low cost solution
- Does not require physical intervention to fix the problem
unless most of the sensors fail

- May be well integrated with other software to maximize
production

- Depends on the sensor accuracy
- Requires periodical tuning
- Depends on the model accuracy

First principles
VFM

- Uses well-proven and known modeling methods
- Operational experience is relatively long
- Well suited for steady state or near-steady state situations
- Many vendors available
- Can be used to model other operational problems such as
slugging, erosion, hydrates occurrence

- Can be used to estimate unmeasured variables

- Require deep knowledge about the physics which describes
the system

- Quasi-steady state. Fit parameters in a certain point in time
having the previous solution, hence might have a delay to
capture dynamic situations

- Highly depends on PVT data accuracy
- Tuning process is not straightforward
- High computational cost compared to data-driven VFM

Data-driven
VFM

- Does not require deep knowledge about the physics which
describes the system

- When the model is trained, it has low computational cost for
flowrate predictions compared to other VFM methods

- Easy to update continuously with newly obtained data
- Easy to combine different parameters from different parts of
the production system without constructing a complex
physical model

- Not suitable when limited historical data is available
- Most of the methods are steady state. Research on using this
VFM approach for dynamic situations is required.

- Limited operational experience
- Can be applied to data within or near the training data range,
otherwise calibration and re-training is required

- Advanced feature engineering requires process insights

Physical Flow
Metering

MPFM - Vast operational experience because widely used in the
industry

- Real-time monitoring
- Handles dynamic multiphase flow metering
- Many vendors are available

- High cost technology
- Requires periodical calibration and accurate PVT data
- Exposed to failures, erosion and blockage
- Requires expensive physical intervention to fix problems
- May produce inaccurate measurements if conditions are out of
the operational range

Test separator - Accurate flowrate estimation
- Can be used as the reference with high confidence
- Allows to estimate other important parameters such as fluid
and reservoir properties

- No real-time monitoring
- Loss of production which leads to high cost of operation
- Requires vast experience of operators to make accurate well tests
- Performance of other wells may be affected during the well test
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Table 4
Summary of VFM manuals and literature contributions.

First principles VFM systems

Commercial VFM systems (description of models and field experience)

OLGA Online:
(Schlumberger Limited., 2014) – description of models used in OLGA Online VFM (manual)
K-Spice:
(Patel et al., 2014) – implementation of K-Spice VFM in Alta field which showed a good performance during the tests
(Kongsberg, 2016) – description of models used in K-Spice VFM system (manual)
(Tangen et al., 2017) – sensitivity analysis of K-Spice VFM system under various conditions with a digital twin approach
(Couput et al., 2017) – summary of Total experience with K-Spice VFM. Emphasized that despite the advantages of the VFM costs, it still needs skilled people to tune and
calibrate the software which can be a challenge for operator companies
FlowManager:
(Rasmussen, 2004) – discusses principles and possible applications of VFM as well as field experience with FlowManager
(Holmås and Løvli, 2011) – describes models and numerical schemes used in FlowManager as well as field applications
(Holmås et al., 2013) – discusses applications of FlowManager as a flow assurance system in Ormen Lange and Vega fields in the North Sea and used as a back-up system to the
MPFMs
(Varyan et al., 2015) – performed several sensitivities studies with FlowManager and compared performance with MPFMs
(Løvli and Amaya, 2016) – shows six cases of FlowManager VFM applications including gas condensate and oil fields during normal conditions as well as start-up operations.
WMS:
(van der Geest et al., 2000) – describes the models used in WMS and its performance on synthetic data
(van der Geest et al., 2001) – discusses successful WMS applications in Troika field in the Gulf of Mexico
(Melbø et al., 2003) – discusses application of WMS in the North Sea including cases with unreliable sensor information
(ABB, 2004) – application of WMS VFM in Bonga field, Nigeria.
(Bringedal et al., 2006) – application of WMS VFM in Bonga field, Nigeria.
Virtuoso:
(Haldipur, 2011; Haldipur and Metcalf, 2008) – describes models and computational methods used in Virtuoso as well as various field applications
(Parthasarathy and Mai, 2006) – presents Virtuoso applications as a back-up, monitoring and substitute system for MPFMs
ValiPerformance:
(Couput et al., 2008) – discusses examples of the software installation in an onshore field in France and a complex subsea field as a back-up and reduction uncertainty system
(Wising et al., 2009) – discusses the models used in ValiPerformance and its implementation with DVR algorithm
(Couput and Renaud, 2010) – describes an example of the software performance in the Middle East operated by Total with 16 wells with ESPs
(Petukhov et al., 2011) – describes the software models and successful testing in Ceiba oil field in Equatorial Guinea
(Haouche et al., 2012a; 2012b) – describe the software models including ESP with density correction factor as well as field tests and operation
(Couput et al., 2017) – summary of Total experience with ValiPerformance VFM.
Rate&Phase:
(Foot et al., 2006; Heddle et al., 2012) – describe types of software models and its performance on more than 300 production and injection wells
FieldWatch:
(Roxar, 2015) – description of models used in FieldWatch VFM (manual)
Prosper:
(Acuna, 2016;Ma et al., 2016; Omole et al., 2011) – used Prosper as an engine for VFM in real field cases and then combined it with external optimization techniques to estimate
the flowrates continuously and optimize field production
(PETEX, 2017) – description of models used in Prosper (manual)
Sensitivity, comparative and economic studies:
(Bringedal and Phillips, 2006) – compares VFM with test separator and MPFM solutions from technological and economic points of view
(Toskey, 2011) – performs comparison of several VFM software based on synthetic data from OLGA which included several case studies with different set of parameters for
flowrate estimation. In addition, conducted a survey of vendors about the VFM product features
(Lansagan, 2012) – considers sensitivity study on influence of measurement degradation, input uncertainty and availability on VFM estimates
(Amin, 2015) – describes comparison of several VFM software based on real field data. In addition, performs a sensitivity study of VFM to the input PVT data
(Varyan et al., 2015) – describes a sensitivity study of FlowManager VFM with respect to the input parameters
(Mokhtari and Waltrich, 2016) – compares different wellbore and choke models for VFM
(Varyan, 2016) – discusses potential cost savings using VFM compared to test separators and MPFMs
(Tangen et al., 2017) – sensitivity analysis of K-Spice VFM under various conditions with a digital twin approach
(Bikmukhametov et al., 2018) – describes statistical analysis of effect of sensor degradation and failure as well as heat transfer modeling methods on VFM flowrate estimates

Choke model VFM

(Delarolle et al., 2005; Faluomi et al., 2006) – developed a choke model, validated it with experimental data and CFD analysis and applied the model at field conditions in Italy,
North and West Africa and the Gulf of Mexico
(Campos et al., 2010) – used a choke model as a VFM tool in an integrated production model of Urucu field
(Loseto et al., 2010) – used a choke model as a VFM tool in an integrated production model of Don fields
(Ajayi et al., 2012; Allen and Smith, 2012) – used models of downhole inflow control valves to construct a VFM system
(Moreno et al., 2014) – used a choke model as a VFM tool together with an optimization algorithm to optimize field production
(Espinoza et al., 2017; Hussain et al., 2016) – used empirical choke models to estimate the flowrate at field conditions
(Cheng et al., 2018) – combined choke model with thermal-hydraulic and IPR models for creating a VFM system which used in real field application in an offshore field

ESP model VFM

(Camilleri et al., 2016b; 2016c; 2016a; 2015; Camilleri and Zhou, 2011) – consider ESP models with various modifications and field case studies in which ESP first principles models
act as Virtual Flow Meters
(Haouche et al., 2012a; 2012b) – describe the software models including ESP with density correction factor as well as field tests and operation

(continued on next page)
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flowrates is estimated by a data-driven algorithm. However, these es-
timates will always have uncertainty due to different distributions of
training and actual production data, noise in data, errors in reference
measurements of flowrates from well tests and sensors, etc. Accurate
estimation of these uncertainties in VFM applications may be valuable.
It will allow using reconciliation techniques for better flowrate esti-
mates using separator measurements as well as incorporating these
uncertainties into daily and long-term production optimization.

Most of the data-driven algorithms described in this paper are able to
model steady state systems and might fail to model transient fluid flow
accurately. As Andrianov (2018), Loh et al. (2018) and Omrani et al.
(2018) showed, there are neural network architectures which are able to

capture the dynamic systems behavior. However, it is likely to happen
that recurrent neural networks will not always outperform other data-
driven methods even under transient conditions. As such, more work
should be done in this direction to reveal the full potential of recurrent
neural network architectures for making more accurate multiphase
flowrate estimations, especially under transient conditions. For instance,
identifying the required time frequency of the measurements and
strategy for tuning the time window size can be a valuable asset.

As the industry has good knowledge of the first principles models for
multiphase flow, it can also be valuable utilize this knowledge for
making hybrid solutions together with data-driven models. There are
different research directions to investigate. First, ensemble learning with

Table 4 (continued)

First principles VFM systems

Commercial VFM systems (description of models and field experience)

Data-driven VFM systems

Industrial applications (neural networks)
NeuraFlow:
(Denney et al., 2013) – describes the performance of NeuraFlow in field conditions
(Baker Huges, 2014) – describes the approach used for NeuraFlow software
Patchwork applications:
(Garcia et al., 2010)– describes a neural network application for production and injection rates estimation in fields of Brazil using a typical set of pressure, temperature and choke
opening measurements
(Olivarez et al., 2012) – describes a neural network for production estimation when choke models showed unsatisfying performance
(Al-Jasmi et al., 2013) – used a radial basis neural network to forecast oil production 30 days ahead in wells with ESPs
(Ziegel et al., 2014) – used a neural network as a VFM system to predict oil and gas flowrates in a field in the North Sea
Industrial applications (other methods)
FieldWare Production Universe:
(Bogaert et al., 2004; Poulisse et al., 2006) – discuss the first ideas of developing a data-driven VFM system as a part of Smart Fields production technologies
(Cramer et al., 2011; Cramer and Goh, 2009; Dolle et al., 2007; Gerrard et al., 2007; Goh et al., 2008; Law et al., 2018; Poulisse, 2009; van Den Berg et al., 2010) – describe FieldWare
application in many production examples from America, Europe, Africa and the Middle East to estimate the flowrates and optimize production
Research works (neural networks)
Feed-forward neural networks
(Qiu and Toral, 1993) – considers a neural network for oil and gas flowrates estimation using experimental data with pressure transducers
(Berneti and Shahbazian, 2011) – describes application of Imperialist Competitive Algorithm for initial weights optimization in a neural network for estimation of oil production
(Hasanvand and Berneti, 2015) – trained a neural network by Levenberg-Marquardt algorithm for oil rate predictions
(Xu et al., 2011) – used Principal Component Analysis in order to reduce dimensionality of the feature space from the experiemntal data sets to produce input variables for neural
networks
(Ahmadi et al., 2013) – describes application of various derivative free algorithms for weights optimization of a neural network to make accurate estimates of oil production
(Zangl et al., 2014) – constructed a neural network to estimate oil and water rates by the use of multi-rate well tests
(Shaban and Tavoularis, 2014) – used Principal Component Analysis in order to extract features from the experiemntal data sets to produce input variables for neural networks
(AlAjmi et al., 2015) – describes application of a neural network to predict the flow through a choke by including not only pressure and temperature measurements but also WC
and a choke model for critical flow
(Al-Qutami et al., 2017a) – describes ensemble learning by combining neural networks and regression trees to estimate oil production and compares the model performance with
homogeneous neural networks
(Al-Qutami et al., 2017b) – developed a neural network to estimate the flowrates based on real production data as well as performed sensitivity studies of input parameters
(Al-Qutami et al., 2017c) – used a radial basis neural network for the flowrate estimates as well as performed sensitivity studies of input parameters
(Al-Qutami et al., 2018) – considers different methods for ensemble learning with neural networks for production estimation
Recurrent neural networks
(Andrianov, 2018) – used LSTM recurrent neural networks on synthetic well test data to estimate and forecast oil production
(Loh et al., 2018) – compared performance of LSTM NN and LSTM NN combined with ensemble Kalman filter to predict transient oil flowrates
(Omrani et al., 2018) – compared LSTM with feed-forward NN under transient conditions, performed sensitivity analysis of NN predictions with respect to data uncertainty and
proposed a method for back-allocation of well flowrates using total flowrate measurements from a separator
(Sun et al., 2018) – used LSTM models for predicting oil, gas and water flowrates from unconventional shale production
Research works (other methods)
(Xu et al., 2011) – describes application of Support Vector Machine for flowrate estimation based on Venturi pressure difference from experiments
(Zangl et al., 2014) – describes comparison of neural networks with linear regression and random forest methods
(Bello et al., 2014) – describes a linear regression model with a preliminary extraction of the training features using PCA for flowrate estimation
(Grimstad et al., 2015) – used B-spline models to approximate models from a commercial simulator which are then used for VFM purposes
(Bikmukhametov and Jäschke, 2019) – used gradient boosting with regression trees to estimate oil flowrates for different field development cases

Application of state estimation methods for VFM

(Bloemen et al., 2006) – describes application of extended Kalman filter (EKF) for flowrate prediction in gas-lift wells
(Leskens et al., 2008) – shows application of EKF for three-phase flowrate estimation in a unilateral horizontal well
(De Kruif et al., 2008) – discusses EKF for two and three-phase flow estimation in unilateral and multilateral wells using different number and placement of measurements
(Muradov and Davies, 2009) – considers EKF for zonal rate allocation in synthetic and real multizone wells and compared its performance with optimization techniques
(Lorentzen et al., 2010a) – discusses application of EKF to predict the gas inflow at four different zones in the wellbore
(Lorentzen et al., 2010b) – considers a well with two branches and used temperature measurements with and without pressure sensor data to estimate the flow by use of the
ensemble Kalman filter
(Gryzlov et al., 2013) – considers different cases including flowrate and holdup estimation using EKF
(Binder et al., 2015) – consider Moving Horizon Estimation for flowrate estimation in a well with an ESP
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data-driven and first principles models can be used. Another possibility
may be applying physical models for training purposes, for example, in
transient or lack of data situations. In addition, creating input features
based on the first principles of multiphase flowmay help the algorithm to
map the input with output variables and produce better predictions.

Only a few works have been done on the ensemble learning of data-
driven algorithms for VFM, while it has been well investigated for many
other applications. With ensemble learning the model the behavior of
the model becomes less explainable, but it may produce better esti-
mates. At the same time, the model explanation may not always be
necessary for flow monitoring. The potential of ensemble learning for
VFM applications is certainly unrevealed and can be addressed in the
future research work in this area.

As Loh et al. (2018) showed, the state estimation methods can be
used not only with the first principle models but also with dynamic
data-driven models, for instance, an LSTM neural network. Using the
state estimation methods in this case can help the data-driven model
produce accurate flowrate estimates having even a small training da-
taset or noisy input data. However, since only one attempt has been
made in incorporating the state estimation methods in data-driven
models, this research direction has many opportunities for revealing
additional advantages of utilizing this approach.

9. Conclusions

Virtual Flow Metering is a promising approach for flowrate estimation
due to its low cost, real-time monitoring capabilities and an easy integra-
tion with other software solutions. There are different approaches to esti-
mate multiphase flowrates which are used in the industry or are at the
research phase. Currently, the first principles approach is the most often
used Virtual Flow Metering tool in operation as a standalone solution or as
a back-up system for physical multiphase flowmeters. Despite an active use
of the first principles VFM systems, this approach still has many challenges
to solve, such as model and PVT data tuning and handing transient flow
behavior using dynamic optimization or state estimation techniques.

Data-driven methods are becoming more and more popular due to
an increasing amount of field data and recent advances in development
and understanding of data-driven algorithms as well as increase of
computational power used for algorithm training. State estimation
methods are still not often used in the industry and have mostly aca-
demic applications, however, the methods have several strong ad-
vantages, for instance, transient flow modeling integrated with noisy
measurement data. The main challenge associated with this method is
that it typically requires good models and is difficult to tune and these
points have to be addressed on the future research. In addition, there is
a potential in combining state estimation methods with data-driven
models where a detailed physical model is not required, while the ad-
vantage of incorporating noisy measurement data still holds.

Independently on the applied VFM approach, systematic model tuning is
one of the main reasons why VFM is not the main multiphase flowmetering
solution. The first reason for this is the fact that obtaining accurate flowrate
measurements for tuning is difficult, especially in subsea fields, so it is
challenging to establish a robust procedure for VFM tuning. Also, the model
tuning itself is a hard task and requires a deep understanding of the models
and other underlying principles. As such, developing auto-tuning strategies
is an important task which has to be solved by VFM vendors to increase
popularity of VFM solutions for multiphase flow metering.

Another problem is estimating uncertainty of VFM predictions and
taking it into account to make accurate predictions. Depending on the
applied method, this includes uncertainty of models, measurements,
PVT data and reference flowrates. Accurate estimating and reducing
these uncertainties is an important issue which has to be addressed in
the future research for all the VFM methods.

A promising direction for research can be development of a VFM
system which uses approaches of first principles and data-driven mod-
eling together and takes advantages of each method. This approach can

be called a hybrid VFM system. A hybrid model should be able to adapt
to conditions of a particular field such as measurement data availability,
stage of the field development, frequency of well tests for model tuning,
uncertainty of the measurements, etc. In addition, by combining several
VFM methods it will be possible to obtain several estimates of the same
quantity which can increase the estimation confidence.

Irrespectively of the method, VFM is one of the steps towards low
cost field development solutions which is steadily being integrated in
subsea oil and gas fields around the world. The trend of an efficient data
use in the industry also supports the concept of VFM. We believe that
the future research and pilot tests may strengthen capabilities of VFM
methods which will provide more trust for the operators to utilize VFM
technology in a reliable and effective manner.
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Abbreviations

ANN: Artificial Neural Network
BOM: Black Oil Model
CAPEX: Capital Expenditure
DDWT: Deliberately Disturbed Well Test
DVR: Data Validation and Reconciliation
EKF: Extended Kalman Filter
EnKF: Ensemble Kalman Filter
EoS: Equation of State
ESP: Electric Submersible Pump
FL: Fuzzy Logic
FW PU: FieldWare Production Universe
GOR: Gas-Oil Ratio
GA: Generic Algorithm
ICA: Imperialist Competitive Algorithm
IPR: Inflow Performance Relationship
L-M: Levenberg-Marquardt
LR: Linear Regression
LSTM: Long-Short Term Memory
MHE: Moving Horizon Estimation
MPFM: Multiphase Flow Meter
MSE: Mean Squared Error
NN: Neural Network
NNE: Neural Network Ensemble
OPEX: Operating Expenditure
PCA: Principle Component Analysis
PCR: Principle Component Regression
PR: Peng-Robinson
PSO: Particle Swarm Optimization
PVT: Pressure Volume Temperature
RBFN: Radial Basis Function Network
RDP: Rotameter Pressure Drop
RF: Random Forest
RK: Redlich-Kwong
RNN: Recurrent Neural Network
RT: Regression Tree
RTE: Regression Tree Ensemble
SA: Simulated Annealing
SQP: Sequential Quadratic Programming
SRK: Soave-Redlich-Kwong
SVM: Support Vector Machine
UKF: unscented Kalman filter
VDP: Venturi Pressure Drop
VFM: Virtual Flow Meter/Virtual Flow Metering
WC: Water Cut
WMS: Well Monitoring System

Nomenclature

A1: cross-sectional area upstream the choke, m2

A2: cross-sectional area at the choke throat, m2

Bf : linear Forchheimer equation constant
C0: profile parameter
Cb: backpressure equation constant
CD: choke discharge coefficient
Cf : quadratic Forchheimer equation constant
Cop: choke opening
D: pipe diameter, m
e: specific heat exchange with the environment, m2/s2

Ek : total energy, m2/s2

f fric : friction factor
Fki: interphase friction, kg/(m2·s2)
Fkw: wall friction term, kg/(m2·s2)
Ftot : total wall friction, kg/(m2·s2)
g : gravitational constant, m/s2
gi: system parameter
h: fluid specific enthalpy, m2/s2

hk : k-phase specific enthalpy, m2/s2

i: index of the training example/well number
kk : effective phase thermal conductivity, kg·m/(s3·K)
m. : mass flow rate, kg/s
n: power constant
N : ensemble/training dataset size
Ok : additional momentum exchange terms, kg/(m2·s2)
Otot : total source term, kg/(m2·s2)
p: system pressure, Pa
PB: bubble point pressure, Pa
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PBH : bottomhole pressure, Pa
PFL: flowline pressure, Pa
PR: reservoir pressure, Pa
PWHCU : wellhead upstream choke pressure, Pa
PWHCD: wellhead downstream choke pressure, Pa
PI : productivity index, Pa·s/ m3

qestimated : estimated volumetric flowrate, m
3/s

qi: volumetric flowrate of i-well, m
3/s

qg : gas volumetric flowrate, m
3/s

qo: oil volumetric flowrate, m
3/s

qo,max : maximum oil volumetric flowrate, m3/s
Qext : additional net external heat transfer sources, kg/(s3·K)
Qki: interfacial heat transfer rate of k-phase with other fields, kg/(s3·K)
Qkw: phase transfer rate at pipe wall, kg/(s3·K)
si : unmeasured variable
smax : minimum unmeasured value constraint
smin : minimum unmeasured value constraint
t : time, s
T : system temperature, K
TBH : bottomhole temperature, K
Tk : k-phase temperature, K
TWHCU : wellhead upstream choke temperature, K
TWHCD: wellhead downstream choke temperature, K

ud: drift velocity, m/s
ug : gas velocity, m/s
uk : k-phase velocity, m/s
um: mixture velocity, m/s
U : total heat source term, kg/(m·s2)
Utot : total source term including wall heat transfer, mass transfer and sources, kg2/(s2· m4)
w: specific work done on the system, m2/s2

wt : measurement noise
x : pipe axial coordinate, m
ymeas i: measured value
ypredicted i: predicted value
ymin : minimum measured value constraint
ymax : maximum measured value constraint

k : k-phase volume fraction
i: weight coefficient
p: pressure drop across the choke/electric submersible pump, Pa
: pipe/wellbore inclination angle
: fluid density, kg/m3

k : k-phase density, kg/m
3

m: mixture density, kg/m
3

i: measurement uncertainty
: mass transfer source, kg/(m3·s)
: pump speed, rpm
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2.1 Discussion on fluid properties influence in multiphase flow
estimation problems

Despite the fact that we have tried to deliver a thorough overview on Virtual Flow
Metering in Paper I, there is one important point that has not been sufficiently dis-
cussed in the paper but rather briefly mentioned. This point concerns the influence
of phase properties (also referred as PVT properties) accuracy on estimation res-
ults of multiphase flowrates using Virtual Flow Meters and its comparison with
physical multiphase flow meters (MPFMs). In this section, we would like to dis-
cuss this topic in more detail because it will also appear in the rest of the PhD
thesis.

As we mentioned in Section 3.3.1.4 of the paper, both VFMs and MPFMs rely on
fluid properties when computing the phase flowrates and converting it from local
to standard conditions, and we have seen such discussions both in the literature
and in personal discussions with petroleum engineers who use multiphase flow
estimation methods in daily work. However, what we miss to discuss is the way
how these properties are used in VFMs and MPFMs, and the possible differences
and inaccuracies that fluid characterization uncertainties might introduce to the
flow estimation problem.

2.1.1 Multiphase flow meter estimation approach

First, let us consider the general framework of MPFMs that is used for flowrate
computing, because it has not been sufficiently described in Paper I. Multiphase
flow meters typically consist of two major parts: devices that measure gas, oil and
water fractions and devices that compute phase velocities. The gas, oil and water
fractions can be measured by various methods such as gamma-rays attenuation
and electrical impedance (Thorn et al. (2012)). The phase velocities might not
be necessarily measured but instead computed from results of other measurements
and the relationships that link the velocities and the measured variables. One of the
most frequently used approaches is using Venturi meters that measure the pressure
difference between upstream and Venturi throat locations (Falcone (2009)). From
the pressure difference, the phase velocities are computed that are used to compute
phase volumetric flowrates.

To better understand the entire computation procedure, let us setup the main equa-
tions that are used within multiphase flow meters based on a Venturi meter ex-
ample. First, inlet pressure P , temperature T and pressure drop between the inlet
and the Venturi throat ∆P are measured. Then, gas, oil and water fractions (αg,
αo and αw respectively) are measured by densitometers using, for example, the
gamma-rays attenuation method.
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In the next step, PVT model is used to determine gas, oil and water densities (ρg, ρo
and ρw respectively), that are computed at the inlet pressure (P ) and temperature
(T ) conditions. As discussed in Paper I, the PVT model can be represented as a
Black Oil model or a compositional model, depending on the information and data
available for production engineers. Ideally, these models are tuned to separator
well tests as often as possible. When untuned, the uncertainty into the flowrate
computation enters at this stage.

Having computed the phase densities and the phase volume fractions, liquid dens-
ity can be computed based on the volumetric basis as the following:

ρl =
αoρo + αwρw

αl
(2.1)

where ρl denotes the liquid density and αl - the liquid volume fraction (αl = αo +
αw).

The next thing to be done is to determine the phase velocities. As we consider
a Venturi meter example, the phase velocities and consequently the volumetric
flowrates are computed from the mixture mass flowrate mmix that can be calcu-
lated using the following equation:

mmix = C
π

4

β2D2

√
1− β4

√
2ρmix∆P (2.2)

where C denotes the tuning coefficient, β - the ratio between the throat diameter
dth and the pipe diameter upstream of the Venturi D computed as dth

D , ρmix - the
mixture density.

The only variable that is missed in Eq. 2.2 is the mixture density. If we would
have a homogeneous flow, we could compute the mixture density directly based
on the known phase densities and volume fractions. However, the assumption
about homogeneity of multiphase flow is usually strong for Venturi meters, even if
a homogenizer device is installed at upstream of the meter. In most cases, we have
slip in the flow, meaning that the gas phase moves faster than the liquid phase. The
slip ratio S is defined as follows:

S =
Ug
Ul

(2.3)

where Ug denotes the gas phase velocity and Ul denotes the liquid phase velocity.
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To take into account the slip effect in the mixture density, we first need to determine
the gas quality (or gas mass fraction) xg assuming that the slip is present in the
flow. The gas quality relation can be derived from Eq. 2.3, and the resulting form
is as follows:

xg =
ρgαgS

ρgαgS + ρlαl
(2.4)

Assuming that we can compute the gas quality that considers the slip effect, the
mixture density can be computed as follows:

1

ρmix
=

1− xg
ρl

+
xg
ρg

(2.5)

The problem now is that we have two unknown variables xg and S that must be
determined to close the system of equations. One of the most common approaches
to deal with this situation is to use a void (gas) fraction correlation that links
the gas volume fraction (we measure that), the gas quality and the fluid densities
(Thorn et al. (2012)). As an example, we write the Chisholm correlation (Chisholm
(1985)), but other correlations can be used too. The Chisholm correlation has the
following form:

αg Ch =

[
1 +

(
ρl
ρmix

)0.5(1− xg
xg

)(
ρg
ρl

)]−1

(2.6)

Combining Eq. 2.5 and Eq. 2.6 and stating that αg Ch = αg, we can determine the
gas quality value xg and ρmix. Then, using the computed values and the pressure
drop measurement in Venturi (∆P ) , we can compute the mixture mass flowrate
using Eq. 2.2.

Having computed the mixture mass flowrate and the gas quality, we then can de-
termine the gas and liquid mass flowrates respectively as follows:

mg = xgmmix (2.7)

ml = (1− xg)mmix (2.8)

Then, the gas, oil and water volumetric flowrates can be computed as:



2.1. Discussion on fluid properties influence in multiphase flow estimation problems 37

qg =
mg

ρg
(2.9)

qo = αo
ml

ρl
(2.10)

qw = αw
ml

ρl
(2.11)

The described above calculation procedure will be further used to evaluate sensit-
ivity of multiphase flow meters accuracy with respect to fluid properties. Looking
at the equations above, it is very hard to derive an analytical expression for a volu-
metric flowrate with respect to only fluid properties and the pressure difference
across the meter. For instance, when trying to solve the Chisholm’s correlation for
xg and eliminating the mixture density, we end up with:

αg Ch =

[
1 +

((
1− xg + xg

ρl
ρg

)(
1− x2

g

)

x2
g

)0.5(
ρg
ρl

)]−1

(2.12)

Further "simplifications" obviously do not make the relationship easier, as such
we will evaluate a magnitude of the fluid properties influence based on simulation
results.

2.1.2 Virtual Flow Metering estimation approach

In Paper I, we described the most common approaches and equations that are used
in Virtual Flow Metering to estimate multiphase flow rates. To evaluate sensitivity
of VFM accuracy with respect to fluid properties, we will use a well tubing model
only. The main reason for this is the fact that choke models that are used for VFM
are generally similar the model of a Venturi meter and have the form of Eq. 2.2.
The main difference is that in MPFM the phase fractions are measured while in
the choke model-based VFMs they are computed. In the tubing model, however,
the fluid properties are used in each control volume when solving a system of
non-linear equations, so that the influence of fluid properties are harder to evaluate
without the problem simulations.

To estimate the fluid properties sensitivity, we use a steady state drift-flux model
whose details are described in Paper V of this thesis. In terms of fluid properties,
the model considers the Black Oil formulation and mass transfer of gas from the
oil phase to the gas phase. Mass balance equations are written for gas and liquid
phases while the momentum balance is written for a flow with mixture properties.
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As for deriving an analytical dependency of the flowrates with respect to fluid
properties, this is also a non-trivial problem. This is because, despite the fact that
the mass and momentum balances seem to depend on the fluid densities linearly,
the relations that compute friction factors, the phase fractions and the slip effect
are highly non-linear. The details of the gas fraction correlation with slip used in
the model can be found in Bhagwat and Ghajar (2014). The friction correlation
can be found in Eq. 20 in Paper V.

2.1.3 Evaluation procedure

Evaluation of density influence on flowrate estimates.

As an example, for both metering approaches, we will consider the potential effect
of wrong density computation by a PVT model. This choice is made because, in
the equations provided in the sections above and in Paper I and V, we see that it
is the major parameter that influences the flowrate estimates. For a tubing-based
Virtual Flow Meter that uses the Black Oil model, it is also highly dependent on
the Black Oil properties such as solution gas-oil ratio (Rs) and formation volume
factors (Bo, Bg and Bw), and less dependent on phase viscosities.

In practice, if a PVT model is not well-tuned to the actual properties of the pro-
duced fluid, errors will exist in the Black Oil properties as well as in densities
and viscosities. It is potentially possible to perform a thorough evaluation of
MPFM/VFM accuracy on all the properties. We will, however, consider a dif-
ferent approach. First, we will assume that the local phase densities (ρg,o,w) are
computed with the reference to the densities at standard conditions as follows:

ρg,o,w =
ρḡ,ō,w̄
Bg,o,w

(2.13)

where ρḡ,ō,w̄ denotes gas, oil and water densities respectively at standard condi-
tions, Bg,o,w - the formation volume factors of gas, oil and water respectively.

In this way, by assuming that the PVT model is biased by, for instance, 10%, we
can introduce the same error to both MPFMs and VFMs, such that in MPFMs
the densities will be wrong locally at the Venturi inlet, while for the tubing-based
VFM, the densities will be biased for each control volume computations. This al-
lows a more systematic comparison between the two flowrate estimation methods.
Also, in order to avoid additional estimation error for the tubing-based VFM, we
will not introduce error into the Black Oil properties. As such, we assume that
the bias in the PVT model mostly affects the accuracy of the density values. To
compute the flowrate errors with respect to the true values, we use Mean Absolute
Percentage Error (MAPE) with the following form:
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MAPE =
1

N

N∑

n=1

∣∣∣∣
qtrue − qest

qtrue

∣∣∣∣ (2.14)

where N denotes the number of sample points, qtrue - the true phase flowrate and
qest - the estimated phase flowrate.

Notes on influence of Black Oil properties on flowrate converting. It is im-
portant to note that it is a common practice in the oil and gas industry to report
the flowrates at standard conditions. However, when computing the flowrates us-
ing the aforementioned methods, we refer to the local flowrates. As such, if the
Black Oil properties are biased, there will be inevitable errors when converting the
local flowrates to standard conditions. The dependency is, however, easy to evalu-
ate because it is linear. For instance, when computing the gas flowrate at standard
conditions from the rate at local conditions, the following relation is typically used:

qḡ =
qg
Bg

+
qoRs
Bo

(2.15)

where qḡ denotes the gas flowrate at standard conditions, qg - the gas flowrate at
local conditions, qg - the oil rate at local conditions , Rs - the solution gas-oil ratio,
Bg and Bo - the gas and oil formation volume factors respectively.

As such, the Black Oil properties are critical when reporting the flowrates at stand-
ard conditions and the flowrate estimation error will be as large as the error in the
properties. Also notice that the principle in converting the rates form local to stand-
ard conditions is the same for both MPFMs and VFMs, as such we will not make
such a comparative evaluation.

Multiphase flow meter conditions. To compute the sensitivity of a multiphase
flow meter on a bias in density values, we introduce a uniformly distributed error
of ±10% into the standard density values. This procedure will be the same for a
Virtual Flow Meter. As such, when converting to local conditions, the magnitude
of the error will hold. Then, for each sample of the biased densities, the local
gas, oil and water flowrates are computed using Eq. 2.1-2.11. We perform 2500
simulations using the samples from density distributions. We also assume that we
have measurements of the phase fractions αg, αo and αw and keep the water-oil
ratio constant. All the required parameters that are used for estimation are listed in
Table 2.1.

Virtual Flow Meter conditions. As discussed, we use the steady state drift-flux
model for a tubing-based first principles VFM. For the tubing configuration, we
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Parameter/Variable Value
Density error 10%
Upstream diameter (D) 0.3 m
Throat diameter (dth) 0.15 m
Venturi pressure drop (∆P ) 1 bar
Wellhead pressure (PWH ) 20 bar
Wellhead temperature (TWH ) 20◦C
Measured gas volume fraction (αg) 0.6
Measured oil volume fraction (αo) 0.17
Measured water volume fraction (αw) 0.23
Water cut (WC) 0.3
Gas density at standard conditions (ρḡ) 0.8 kg

m3

Oil density at standard conditions (ρō) 750 kg
m3

Water density at standard conditions (ρw̄) 1000 kg
m3

Table 2.1: Venturi geometry, measured parameters and standard fluid properties used for
MPFM flowrate estimation

consider a vertical pipe with the height of 1000 m and the diameter of 0.2 m. The
phase densities at standard conditions are the same as in Table 2.1. To tune the
VFM to the data, we use the bottomhole volumetric flowrates as the manipulated
variables. We assume that we have measured and fixed pressure boundary and
temperature boundary conditions at the wellhead as well as the temperature at
the bottomhole. Also, we assume that we have a pressure measurement at the
bottomhole, and this pressure value is used in the objective function, such that we
minimize the difference between the measured and the computed (VFM-estimated)
pressure by an optimization solver. The pressure and temperature conditions are:

• Wellhead pressure (PWH ) - 20 bar (fixed boundary condition)

• Wellhead temperature (TWH ) - 20◦C (fixed boundary condition)

• Bottomhole temperature (TBH ) - 70◦C (fixed boundary condition)

• Bottomhole pressure (PBH ) - 100 bar (fixed reference measurement for tun-
ing)

2.1.4 Estimation results

Before comparing the simulation results, we would like to emphasize that match-
ing the absolute values of the flowrate estimates between MPFM and VFM is not
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Figure 2.1: Sensitivity estimation results for a Venturi MPFM assuming ±10% error in
densities

the goal of the simulations. The main idea is to compare the error for each es-
timation method relative to unbiased (true) flowrates. As such, some deviations
between the values obtained with a MPFM and a VFM can exists, because it is
a bit hard to find the exact values of pressure difference, Venturi dimensions and
tubing geometry such that the phase flowrate values match perfectly, even using
the same PVT model. However, we have tried to achieve similar flowrate values
and the results are comparable.

First, consider the estimation results for a MPFM. Figure 2.1 shows the obtained
distributions of flowrates and MAPEs for the uniformly distributed phase densities
with the error of ±10%. We see that due to a high non-linearity of the relations,
the resulting flowrate distribution is non-uniformly distributed. The MAPE distri-
butions are right-skewed because it computes absolute error values. The obtained
mean MAPE errors are:

• Mean MAPE for gas flowrate: 1.60%
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Figure 2.2: Sensitivity estimation results for a tubing model-based VFM assuming±10%
error in densities

• Mean MAPE for oil flowrate: 1.73%

• Mean MAPE for water flowrate: 1.73%

We see that despite the MAPE error might reach up to 5%, the mean error is smal-
ler by a factor of 6 with respect to the error in phase densities. The median error
values are around 1.5%. The values of the errors can be slightly different for differ-
ent phase fractions, but additional simulations showed that the mean MAPEs are
within 2%. As such, the simulations show that multiphase flow meters are not very
sensitive to a relatively high errors in PVT-computed densities. However, we have
to notice that in these simulations we assume that the phase fractions are perfectly
measured. This is done intentionally because we want to evaluate the PVT-related
inaccuracies. In a real scenario, imperfect phase fraction measurements will lead
to higher flowrate estimation errors. Also, no noise is considered in pressure and
temperature measurements that can also influence the accuracy of the computed
phase densities. On the other hand, if we assume that the noise level is included
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in the 10% error that we used for simulations, then we might not need additional
evaluation.

Now, we consider the estimation results from a Virtual Flow Meter shown in Fig-
ure 2.2. From the figure we see that the MAPE values are larger than the ones
obtained for the MPFM. The mean MAPE values are:

• Mean MAPE for gas flowrate: 7.18%

• Mean MAPE for oil flowrate: 7.83%

• Mean MAPE for water flowrate: 7.72%

The error in the flowrate values can be different for different conditions, however,
we can generally conclude that PVT-related errors for a physics-based Virtual Flow
Meter are larger and more critical than for a multiphase flow meter. We believe that
it is caused by the fact that the distributions of the phase volume fractions along the
well are dependent on the accuracy of phase densities. A small deviation in phase
densities can cause deviations in phase volume fraction that, overall, can lead to a
noticeably different pressure distribution along the well. This, in turn, results in an
error of a Virtual Flow Meter which minimizes the error between the computed and
the measured pressure drop along the well. In a multiphase flow meter, however,
the fractions are typically measured, as such, the phase densities do not influence
the accuracy of the phase volume fractions, at least directly. Please note, that we
did not assume errors in viscosity values that can also introduce additional errors.
As such, before applying a VFM to a flow estimation system in an oil and gas
field, it is very important to take care of the PVT-model accuracy, especially if
multiphase flow meters are not installed in the field.
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Chapter 3

Machine Learning Applications
to Multiphase Flow Estimation
Including Hybrid Approaches
(Paper II and III)

This chapter consists of two papers. Paper II describes application of gradient
boosting algorithm for the task of estimation of multiphase flow rates. Paper III
describes in detail how to combine various machine learning algorithms with pro-
cess engineering physics to accurately estimate produced multiphase flowrates. A
short overview of each paper is given at the beginning of each paper’s section.
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3.1 Oil Production Monitoring Using Gradient Boosting Machine
Learning Algorithm (Paper II)

Paper II describes application of gradient boosting algorithm for the task of estima-
tion of multiphase flow rates using readily available measurements in the field such
as pressure, temperature and choke opening. The main motivation for this paper
was the fact that in most of the previously published work on the topic of mul-
tiphase flowrate estimation, neural networks have been used. As such, the authors
wanted to check capabilities of another powerful algorithm for this task which is,
in general, able to make accurate predictions for non-linear regression tasks. Vari-
ous case studies have been considered including different validation schemes and
dataset sizes to fully investigate the algorithms capabilities. Another motivation
was to see if it is potentially possible to substitute a multiphase flow meter by a
machine learning model using test separator flow measurements for tuning. The
results of such simulations are compared to the cases where a Virtual Flow Meter
is used as a back-up system to a multiphase flow meter.

Bikmukhametov, T., and Jäschke, J. (2019). Oil Production Monitoring using
Gradient Boosting Machine Learning Algorithm. IFAC-PapersOnLine, Volume
52(1), 514-519, doi.org/10.1016/j.ifacol.2019.06.114
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Abstract: Data-driven solutions for multiphase flowrate estimation in oil and gas production
systems are among the alternatives to first principles virtual flow metering systems and hardware
flow metering installations. Some of the most popular data-driven methods in this area are based
on artificial neural networks which have been proven to be good virtual flow metering tools.
However, neural networks are known to be sensitive to the scaling of input data, difficult to
tune and provide a black-box solution with occasionally unexplainable behavior under certain
conditions. As an alternative, in this paper, we explore capabilities of the Gradient Boosting
algorithm in predicting oil flowrates using available field measurements. To do this, we use an
efficient implementation of the algorithm named XGBoost. In contrast to neural networks, this
algorithm is insensible to data scaling, can be more intuitive in tuning as well as it provides
an opportunity to analyze feature influence which is embedded in algorithm learning. We show
that the algorithm provides accurate flowrate predictions under various conditions and can be
used as a back-up as well as a standalone multiphase flow metering solution.

Keywords: Virtual flow metering, machine learning, production monitoring, gradient boosting,
soft sensing.

1. INTRODUCTION

Accurate measurements of oil, gas and water flowrates
are a critical part in production optimization, reservoir
management and flow assurance of petroleum production
systems (Falcone et al. (2001)). A traditional method for
measuring these flowrates is well testing which can be
conducted by re-routing a well stream into a test separator,
or by changing wellhead choke opening and tracking the
change of the rates at an inlet separator. Another alter-
native are multiphase flow meters (MPFMs) which allow
to avoid separating the multiphase flow streams while
measuring the flowrates from single wells or a cluster of
wells in real time. Despite this advantage, MPFMs are
expensive and can be a subject to degradation and costly
repair (Patel et al. (2014)).

Another possible way to estimate the multiphase flowrates
is to combine field measurements such as pressure and tem-
perature with first principles mathematical models which
accurately represent specific system parts or the system
as a whole. Some measurements are used as inputs to
the model (as model boundary conditions) together with
tuning variables such as flowrate or choke discharge coef-
ficient. The remaining measurement values are estimated
by the models. The differences between the estimated and
actual measurement values are minimized by an optimiza-
tion solver. This approach is called Virtual Flow Metering

� The authors gratefully acknowledge the financial support from the
center for research-based innovation SUBPRO, which is financed
by the Research Council of Norway, major industry partners, and
NTNU.

(VFM) and can be used as a back-up to MPFMs as well
as a standalone metering solution.

As an alternative to the first principles models, one can use
a data-driven approach in order to estimate the flowrates.
In this case, the specifics of the production system such as
geometry of the well tubing or choke are not considered
and only field measurements are used to identify the sys-
tem model. The advantage of using these models is a low
computational cost and relative simplicity in comparison
to the first principles VFM methods that typically solve
complex PDE conservation equation systems. These facts
are especially of advantage if one does not have full access
to the first principles model equations, for instance, in
a commercial multiphase flow solver. In this case, com-
puting gradients for optimization is computationally very
expensive, while the data-driven models can provide the
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data-driven model to predict the flowrates in real time
with a sampling time of seconds, while VFM based on first
principles models may have a significant time delay due to
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The most popular data-driven approach in VFM is based
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them. First, it is difficult to establish good rules for NN
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management and flow assurance of petroleum production
systems (Falcone et al. (2001)). A traditional method for
measuring these flowrates is well testing which can be
conducted by re-routing a well stream into a test separator,
or by changing wellhead choke opening and tracking the
change of the rates at an inlet separator. Another alter-
native are multiphase flow meters (MPFMs) which allow
to avoid separating the multiphase flow streams while
measuring the flowrates from single wells or a cluster of
wells in real time. Despite this advantage, MPFMs are
expensive and can be a subject to degradation and costly
repair (Patel et al. (2014)).

Another possible way to estimate the multiphase flowrates
is to combine field measurements such as pressure and tem-
perature with first principles mathematical models which
accurately represent specific system parts or the system
as a whole. Some measurements are used as inputs to
the model (as model boundary conditions) together with
tuning variables such as flowrate or choke discharge coef-
ficient. The remaining measurement values are estimated
by the models. The differences between the estimated and
actual measurement values are minimized by an optimiza-
tion solver. This approach is called Virtual Flow Metering
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dependent on the scale of the input features and target
variables, such that NNs require data normalization (Sola
and Sevilla, 1997). This is especially the case in VFM
since the scale of the features varies widely. Also, the
resulting NN is used as a black-box model and sometimes
it is difficult to understand the reason behind its behavior.
Hyperparameters tuning to avoid model overfitting is also
often a challenge in NNs training.

Gradient Boosting (GB) is another efficient method for
solving non-linear classification and regression problems.
Here we construct an ensemble of weak learners (simple
algorithms) into a strong learner which is used to solve
a particular problem (Friedman (2001)). One of the most
popular modifications of GB is applying regression trees
as weak learners which is called Tree Gradient Boosting.
Among various implementations of Tree Gradient Boost-
ing, eXtreme Gradient Boosting (XGBoost) by Chen and
Guestrin (2016) is a popular algorithm for solving machine
learning problems. In this work, we apply this algorithm
implementation. In contrast to NNs, GB does not require
scaling of the features which makes it more convenient
for VFM applications. In addition, despite many hyper-
parameters, the tuning process of GB can be considered
more intuitive and flexible compared to NN’s tuning. For
instance, increasing the number of trees by one allows a
careful model adjustment while increasing the number of
nodes in NNs by one may lead to a large change of the
model performance and possible overfitting, especially in
small datasets. Another advantage of GB is the feature
importance analysis which can be performed directly in al-
gorithm training without additional manipulations which
gives an opportunity to better understand the algorithm
behavior and get additional insights of the system param-
eters.

In this paper, we analyze capabilities of XGBoost in
predicting oil flowrates from a subsea well under realistic
conditions. We show how the algorithm can be used in
different field development strategies as a back-up system
for a multiphase flow meter or a standalone solution using
the information from well tests. In addition, we analyze the
performance of K-Fold and early stopping cross-validation
schemes together with a tuning procedure for selecting
an accurate set of XGBoost hyperparameters for VFM
applications. The implementation of the algorithm for this
paper can be found on https://github.com/NRT23.

2. XGBOOST ALGORITHM

In this section, we give an overview of basic principles of
Gradient Boosting and its implementation in XGBoost
algorithm based on the paper by Chen and Guestrin
(2016).

Consider a dataset D = {(xi, yi)} (i = 1...n, xi ∈
Rm, yi ∈ R), meaning that we have m features for
each of n observation examples which correspond to the
target variable y. A tree ensemble prediction for a given
observation i is produced as a sum of predictions from K
additive functions

ŷi = φ(xi) =

K∑

k=1

fk(xi) (1)

Cop < 0:5

Cop P

1

2

3

4

P < 10
0:3

0:6

0:3

0:7

5

10

12

14

I

I3 = f2; 4g

I1 = f1g I2 = f3g

G1 = g1

H1 = h1

G;H

g1; h1

g2; h2

g3; h3

g4; h4

G2 = g3

H2 = h3

G3 = g2 + g4

H3 = h2 + h4

w1 = 5 w2 = 5:2

Z = 3

leaf

w3 = 6

Dataset

(bar)

Fig. 1. Example of a regression tree in XGBoost for VFM

where fk is a regression tree predicting the value fk(xi)
for the i-th example. By training an ensemble of regression
trees, we want to minimize the objective function with loss
terms (l) and regularization terms (Ω)

L(φ) =
∑

i

l(yi, ŷi) +
∑

k

Ω(fk) (2)

with

Ω(f) = γZ +
1

2
λ ‖w‖2 , (3)

where γ and λ are hyperparameters to penalize the model
complexity defined by the number of leaves Z and leaf
weight values w. The loss term (l) can be expressed in
a form of the user’s interest, for instance, as the mean
squared error for regression problems.

The objective in (2) is minimized in an iterative manner
by adding a regression tree at each iteration. This leads us
to the following objective function at t-th iteration

Lt =

n∑

i=1

l(yi, ŷi
t−1 + ft(xi)) + Ω(ft) (4)

Applying a second order Taylor expansion and removing
the terms independent of ft, it can be shown that the
following approximation of (4) can be obtained (Chen and
Guestrin, 2016)

L̃t =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (5)

where gi and hi are the first and second order derivatives

of l(yi, ŷi
(t−1)) w.r.t. ŷi

(t−1). Defining Ij as a group of
observations in the j-th leaf in a particular tree structure
and taking into account that the tree produces the same
weights score for the observations in one leaf, we can com-
pute the optimal leaf weights w∗

j and the corresponding

optimal value of the objective approximation L̃t (Chen
and Guestrin, 2016)

w∗
j =

∑
i∈Ij

gi∑
i∈Ij

hi + λ
(6)

L̃t(q) = −1

2

T∑

j=1

(
∑

i∈Ij
gi)

2

∑
i∈Ij

hi + λ
+ γZ (7)

where q denotes a particular tree structure. Equation
(7) is used as an evaluation criteria to find an optimal
split of the tree. The tree is grown greedily to avoid
enumerating all possible structures q meaning that the
algorithm starts splitting from a single leaf and adds
branches according to (7). Fig. 1 shows a simple example of
an XGBoost regression tree with the algorithm notations
and measurement data of pressure and choke opening used
in VFM. To get a better understanding of the splitting
procedure, consider IL and IR to be the left and right
groups of observations after the tree node split. Having
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resulting NN is used as a black-box model and sometimes
it is difficult to understand the reason behind its behavior.
Hyperparameters tuning to avoid model overfitting is also
often a challenge in NNs training.

Gradient Boosting (GB) is another efficient method for
solving non-linear classification and regression problems.
Here we construct an ensemble of weak learners (simple
algorithms) into a strong learner which is used to solve
a particular problem (Friedman (2001)). One of the most
popular modifications of GB is applying regression trees
as weak learners which is called Tree Gradient Boosting.
Among various implementations of Tree Gradient Boost-
ing, eXtreme Gradient Boosting (XGBoost) by Chen and
Guestrin (2016) is a popular algorithm for solving machine
learning problems. In this work, we apply this algorithm
implementation. In contrast to NNs, GB does not require
scaling of the features which makes it more convenient
for VFM applications. In addition, despite many hyper-
parameters, the tuning process of GB can be considered
more intuitive and flexible compared to NN’s tuning. For
instance, increasing the number of trees by one allows a
careful model adjustment while increasing the number of
nodes in NNs by one may lead to a large change of the
model performance and possible overfitting, especially in
small datasets. Another advantage of GB is the feature
importance analysis which can be performed directly in al-
gorithm training without additional manipulations which
gives an opportunity to better understand the algorithm
behavior and get additional insights of the system param-
eters.

In this paper, we analyze capabilities of XGBoost in
predicting oil flowrates from a subsea well under realistic
conditions. We show how the algorithm can be used in
different field development strategies as a back-up system
for a multiphase flow meter or a standalone solution using
the information from well tests. In addition, we analyze the
performance of K-Fold and early stopping cross-validation
schemes together with a tuning procedure for selecting
an accurate set of XGBoost hyperparameters for VFM
applications. The implementation of the algorithm for this
paper can be found on https://github.com/NRT23.

2. XGBOOST ALGORITHM

In this section, we give an overview of basic principles of
Gradient Boosting and its implementation in XGBoost
algorithm based on the paper by Chen and Guestrin
(2016).

Consider a dataset D = {(xi, yi)} (i = 1...n, xi ∈
Rm, yi ∈ R), meaning that we have m features for
each of n observation examples which correspond to the
target variable y. A tree ensemble prediction for a given
observation i is produced as a sum of predictions from K
additive functions

ŷi = φ(xi) =

K∑

k=1

fk(xi) (1)
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Fig. 1. Example of a regression tree in XGBoost for VFM

where fk is a regression tree predicting the value fk(xi)
for the i-th example. By training an ensemble of regression
trees, we want to minimize the objective function with loss
terms (l) and regularization terms (Ω)

L(φ) =
∑

i

l(yi, ŷi) +
∑

k

Ω(fk) (2)

with

Ω(f) = γZ +
1

2
λ ‖w‖2 , (3)

where γ and λ are hyperparameters to penalize the model
complexity defined by the number of leaves Z and leaf
weight values w. The loss term (l) can be expressed in
a form of the user’s interest, for instance, as the mean
squared error for regression problems.

The objective in (2) is minimized in an iterative manner
by adding a regression tree at each iteration. This leads us
to the following objective function at t-th iteration

Lt =

n∑

i=1

l(yi, ŷi
t−1 + ft(xi)) + Ω(ft) (4)

Applying a second order Taylor expansion and removing
the terms independent of ft, it can be shown that the
following approximation of (4) can be obtained (Chen and
Guestrin, 2016)

L̃t =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (5)

where gi and hi are the first and second order derivatives

of l(yi, ŷi
(t−1)) w.r.t. ŷi

(t−1). Defining Ij as a group of
observations in the j-th leaf in a particular tree structure
and taking into account that the tree produces the same
weights score for the observations in one leaf, we can com-
pute the optimal leaf weights w∗

j and the corresponding

optimal value of the objective approximation L̃t (Chen
and Guestrin, 2016)

w∗
j =

∑
i∈Ij

gi∑
i∈Ij

hi + λ
(6)

L̃t(q) = −1

2

T∑

j=1

(
∑

i∈Ij
gi)

2

∑
i∈Ij

hi + λ
+ γZ (7)

where q denotes a particular tree structure. Equation
(7) is used as an evaluation criteria to find an optimal
split of the tree. The tree is grown greedily to avoid
enumerating all possible structures q meaning that the
algorithm starts splitting from a single leaf and adds
branches according to (7). Fig. 1 shows a simple example of
an XGBoost regression tree with the algorithm notations
and measurement data of pressure and choke opening used
in VFM. To get a better understanding of the splitting
procedure, consider IL and IR to be the left and right
groups of observations after the tree node split. Having
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this information, we can calculate a loss reduction caused
by the split

Lsplit =
1

2

[
( ∑

i∈IL

gi

)2

∑
i∈IL

hi + λ
+

( ∑
i∈IR

gi

)2

∑
i∈IR

hi + λ
−

( ∑
i∈I

gi

)2

∑
i∈I

hi + λ

]
−γ (8)

The loss reduction (8) is used to evaluate each possible
split by linear scanning of sorted values for each feature
in each node. The best split is the one which gives the
maximum value of the loss reduction. When the splitting
is finished, the leaf values are assigned according to (6).

For a more detailed explanation of XGBoost algorithm
derivation and its additional features such as shrinking
tree outputs the interested reader is referred to the original
paper by Chen and Guestrin (2016).

3. PRODUCTION SYSTEM MODELING

We consider a simple subsea production system which con-
sists of an oil well, a flowline, a riser and an inlet separator
with a constant pressure, see Fig. 2. The parameters of
the system are shown in Table 1. The well is equipped
with a multiphase flow meter (MPFM), choke, pressure
(P) and temperature (T) sensors which are installed at
the bottomhole, upstream and downstream of the choke.
In addition, information about the choke opening (Cop) is
available. The system performance is simulated in OLGA
which is one of the leading simulation tools for multiphase
flow transport in oil and gas production systems (Bendik-
sen et al. (1991)). To manipulate the choke opening and
inflow sources as well as collect simulation results, we
use MATLAB together with an OPC (Open Platform
Communication) server.

MPFM

Separator

P,T

Sea level

P,T

P,T

Seabed

Reservoir

IPR

Additional gas source

Cop

Fig. 2. Schematic representation of the production system

To model the reservoir inflow, we use the Inflow Perfor-
mance Relationship (IPR) formulated by Vogel’s equation
(Vogel et al. (1968)). To mimic the reservoir depletion
effect, we introduce a linear reservoir pressure decline with
respect to the production time. The IPR does not consider
transient effects in the near-wellbore region. Therefore, to
simulate dynamic effects related to the change of the bot-
tomhole pressure caused by the choke position change, oc-
casional gas breakthroughs from injection wells and other
possible disturbances such as production wells interaction,
we include an additional gas source which has a periodic
form represented by the following relationship

ṁSource = ṁmax · Cop ·
[
1 + a · sin

(
π · s

Tsource

)]
(9)

Table 1. System and simulation parameters

Parameter Value Parameter Value

True vertical depth 2010 m ṁmax 0.35 kg/s
Measured depth 3110 m TMPFM 72
Flowline length 1000 m TSource 144
Riser length 100 m a 0.5

where ṁmax denotes the maximum mass gas source value,
Cop - the choke opening, s - the time step, a and Tsource

- the amplitude and the period of the sin function re-
spectively. In this relationship, we assume that the distur-
bance gas flow is proportional to the choke opening, such
that when the choke is closed the effect vanishes. At the
same time, by introducing a periodic function, we mimic
dynamic reservoir responses and possible disturbances on
the well without introducing random behavior. This trick
together with the reservoir pressure decline is done in order
to mimic a realistic system behavior, and to challenge
the VFM to predict the varying flowrates. Otherwise, a
steady state behavior of the IPR would produce a specific
flowrate value to a specific choke position which makes
the case unrealistic as well as simplifies the training and
predicting process for the machine learning algorithm. A
more advanced approach could be to couple OLGA with
a reservoir simulator which would describe the reservoir
response in a more precise way. This will be considered in
future work.

To calculate the multiphase flowrate meter predictions, we
assume that 100% flowrate measurements by the MPFM
are within ±5% accuracy with respect to the true value
and model the predictions by the following relationship

QMPFM = QTrue

[
1 + 0.05 · sin

(
π · s

TMPFM

)]
(10)

where TMPFM denotes the period of the sin function.
The periodic function with a large period value allows to
model the measurement error with a certain accuracy and
at the same time avoid unrealistic random fluctuations
under stable flow conditions which we would obtain by
introducing simply a random measurement error.

4. CASE STUDIES

We perform several case studies which represent differ-
ent situations of oil production monitoring and for each
case consider two different cross-validation schemes: K-
Fold and early stopping. As the flowrate prediction from
an oil reservoir is time dependent, it can be considered
as a time series problem. In this case, the K-fold cross-
validation should be applied in a nested manner (Fig. 3,
left) which is different from the traditional K-fold cross-
validation approach. First, the available data is divided
into training and test datasets. The training set is again
divided in K-folds. No shuffling is involved in the splitting
process. Then the model is trained on (1, 2, .., K-1) folds
combined (starting from fold 1 only) and validated on (2,
3, .., K)th fold. The obtained errors on K-1 test folds are
averaged to make conclusions about the model accuracy
and generalization. In this manner, the algorithm is not
trained on the future data and tested on the past data
as would happen in non-nested cross-validation. Finally,
the algorithm is re-trained on the entire training data and
tested on the test dataset to evaluate the model gener-
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Fig. 3. Schematic representation of validation schemes

alization. In early stopping (Fig. 3, right), the available
data set is divided into 3 subsets: training, validation and
test. The algorithm is trained on the training set while
the error is also monitored on the validation set. The
training is stopped when the error on the validation set
stops decreasing after adding a specified number of new
trees. The performance of the obtained model is checked
using the test dataset.

In this work, the test datasets are selected to be 15% of the
available training data for both K-Fold and early stopping.
In early stopping, another 15% of the data is dedicated for
the validation dataset. For K-fold validation the number
of folds is 5.

The data are generated using the production system
architecture shown in Fig. 2. The performance of the
system is simulated for a period of 2 years. The obtained
production profile without the well tests performance is
shown in Fig. 4 (top). The period is divided into 4 quarters
180 days each. At the beginning of each quarter, a well
test is conducted to obtain reliable information about the
well performance. We collect the measurements every 8
hours during the normal production time and every 30
mins during the well tests. The following measurements
are collected for the algorithm training and predicting the
flowrates in the future time period:

• Pressure and temperature at the bottomhole, up-
stream and downstream of the choke

• Choke opening and oil flowrates from the MPFM or
well tests

We analyze 3 case studies which have several sub-cases
each. For 2 case studies we also compare the performance
of K-Fold and early stopping cross-validation approaches.
Each case considers a separate field development strategy,
so we analyze the performance of GB VFM for various sit-
uations of production operation. The detailed description
of each case study is discussed below.

4.1 Case 1 - MPFM data

In this case, we assume that we do not have information
from the well tests and use the flowrate measurements
from the MPFM only. This case is possible when well
testing is expensive and rarely performed. For this case,
we perform 3 cases studies by extending the training
datasets as the production time evolves. For instance, in
the first study (Case 1.1) we assume that the data from
the first half a year is available for training (Q1 in Fig. 4)
and we would like to predict the flowrates for Q2. As
the time evolves and we obtain more training data, in
Case 1.2 we use the data from Q1 and Q2 for training
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Fig. 4. Production profile with data splitting schemes

and testing the model and perform predictions on Q3.
This procedure is done for K-Fold and early stopping
approaches. Fig. 4 (bottom) visualizes the dataset splitting
for training, validation, testing and predicting for each case
and each cross-validation method.

4.2 Case 2 - MPFM and well test data

In this case, we combine the well tests and MPFM data
for training. Well tests can be conducted even if MPFMs
are installed in order to calibrate these devices as well as
update information about reservoir properties and the well
performance. Similarly to Case 1, we extend the training
datasets as the time evolves. The well testing procedure
is explained in more details in Case 3 description. As
in Case 1, we conduct the studies for K-Fold and early
stopping cross-validation. Fig. 4 shows the dataset splits
for training, validation, testing and predicting for the sub-
cases of Case 2.

4.3 Case 3 - Well test data

In this case, we assume that the MPFM is not installed at
the wellhead and training data is available only from the
well tests. This situation can happen when MPFMs are not
economically or operationally feasible to install because of
high cost or flow assurance challenges and instead well
tests are performed to track the production rates. To
generate data for GB VFM, we propose well testing with
step-wise changes of the choke opening over the possible
operating range. In this case, we assume the choke opening
to be within the range of 0.05 and 0.7 and we perform the
well test with a choke opening increment of 0.05. Also, we
perform a few additional tests around the expected well
operating point. In this case, we expect the operating point
to be within the range of 0.10 and 0.4 and perform several
additional step changes over this range. More information
on the well testing procedure including visualization can
be found under https://github.com/NRT23.

The problem in this situation is the fact that the amount
of data is limited, so that obtaining a validation and test
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alization. In early stopping (Fig. 3, right), the available
data set is divided into 3 subsets: training, validation and
test. The algorithm is trained on the training set while
the error is also monitored on the validation set. The
training is stopped when the error on the validation set
stops decreasing after adding a specified number of new
trees. The performance of the obtained model is checked
using the test dataset.

In this work, the test datasets are selected to be 15% of the
available training data for both K-Fold and early stopping.
In early stopping, another 15% of the data is dedicated for
the validation dataset. For K-fold validation the number
of folds is 5.

The data are generated using the production system
architecture shown in Fig. 2. The performance of the
system is simulated for a period of 2 years. The obtained
production profile without the well tests performance is
shown in Fig. 4 (top). The period is divided into 4 quarters
180 days each. At the beginning of each quarter, a well
test is conducted to obtain reliable information about the
well performance. We collect the measurements every 8
hours during the normal production time and every 30
mins during the well tests. The following measurements
are collected for the algorithm training and predicting the
flowrates in the future time period:

• Pressure and temperature at the bottomhole, up-
stream and downstream of the choke

• Choke opening and oil flowrates from the MPFM or
well tests

We analyze 3 case studies which have several sub-cases
each. For 2 case studies we also compare the performance
of K-Fold and early stopping cross-validation approaches.
Each case considers a separate field development strategy,
so we analyze the performance of GB VFM for various sit-
uations of production operation. The detailed description
of each case study is discussed below.

4.1 Case 1 - MPFM data

In this case, we assume that we do not have information
from the well tests and use the flowrate measurements
from the MPFM only. This case is possible when well
testing is expensive and rarely performed. For this case,
we perform 3 cases studies by extending the training
datasets as the production time evolves. For instance, in
the first study (Case 1.1) we assume that the data from
the first half a year is available for training (Q1 in Fig. 4)
and we would like to predict the flowrates for Q2. As
the time evolves and we obtain more training data, in
Case 1.2 we use the data from Q1 and Q2 for training
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and testing the model and perform predictions on Q3.
This procedure is done for K-Fold and early stopping
approaches. Fig. 4 (bottom) visualizes the dataset splitting
for training, validation, testing and predicting for each case
and each cross-validation method.

4.2 Case 2 - MPFM and well test data

In this case, we combine the well tests and MPFM data
for training. Well tests can be conducted even if MPFMs
are installed in order to calibrate these devices as well as
update information about reservoir properties and the well
performance. Similarly to Case 1, we extend the training
datasets as the time evolves. The well testing procedure
is explained in more details in Case 3 description. As
in Case 1, we conduct the studies for K-Fold and early
stopping cross-validation. Fig. 4 shows the dataset splits
for training, validation, testing and predicting for the sub-
cases of Case 2.

4.3 Case 3 - Well test data

In this case, we assume that the MPFM is not installed at
the wellhead and training data is available only from the
well tests. This situation can happen when MPFMs are not
economically or operationally feasible to install because of
high cost or flow assurance challenges and instead well
tests are performed to track the production rates. To
generate data for GB VFM, we propose well testing with
step-wise changes of the choke opening over the possible
operating range. In this case, we assume the choke opening
to be within the range of 0.05 and 0.7 and we perform the
well test with a choke opening increment of 0.05. Also, we
perform a few additional tests around the expected well
operating point. In this case, we expect the operating point
to be within the range of 0.10 and 0.4 and perform several
additional step changes over this range. More information
on the well testing procedure including visualization can
be found under https://github.com/NRT23.

The problem in this situation is the fact that the amount
of data is limited, so that obtaining a validation and test
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datasets for model evaluation and overfitting control is
difficult. Even K-Fold cross-validation may not help in this
case, since there are only a few measurements for each
point of the gradually changing choke opening. In this
work, we assume that there is no available data for model
testing and train the model until the training dataset is
well fitted. Table 2 shows the matrix of the datasets usage
in Case 3.

Table 2. Matrix of datasets for Case 3

Case Train Validation Test Prediction

Case 3.1 WT1 - - Q1

Case 3.2 WT1,WT2 - - Q2

Case 3.3 WT1,WT2,WT3 - - Q3

Case 3.4
WT1,WT2

WT3,WT4
- - Q4

4.4 XGBoost application and tuning

In this work, we use Python implementation of XGBoost.
To select hyperparameters, we use random search ap-
proach. To explore a large subspace of the hyperparame-
ters, we perform 10 random searches 10 iterations each for
both K-Fold and early stopping in each sub-case study.

5. RESULTS AND DISCUSSION

In this section, we analyze the simulation results for each
simulation case separately and afterwards make general re-
marks about the performance of XGBoost for Virtual Flow
Metering. To evaluate the performance on the predicting
datasets, we use Mean Absolute Percentage Error (MAPE)
which shows the average absolute percentage deviation of
the predictions from the true value

MAPE =
1

m

m∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣·100 (11)

To compare the XGBoost performance for Case 1 and
Case 2, we also calculate MAPE between the multiphase
flow meter measurements and the true rate.

Table 3 summarizes the simulations results from all the
cases. For the sub-cases of Case 1, we see that with the
increase of the dataset size, the performance of both vali-
dation methods improves, however, for the early stopping
cases this improvement is negligible. Another observation
is that early stopping outperforms K-folds in Case 1.1 and
Case 1.2 while in Case 1.3 K-Fold method outperforms

Table 3. MAPE of GB VFM and MPFM

Method
MAPE

Case 1.1 Case 1.2 Case 1.3

GB VFM1 KF2 ES3 KF ES KF ES
6.49% 5.21% 6.50% 5.17% 4.88% 5.11%

Case 2.1 Case 2.2 Case 2.3

GB VFM
KF ES KF ES KF ES

2.08% 2.09% 3.39% 3.68% 2.02% 2.13%

Case 1.1/2.1 Case 1.2/2.2 Case 1.3/2.3
MPFM4 3.15% 3.09% 3.14%

Case 3.1 Case 3.2 Case 3.3 Case 3.4
GB VFM 5.85% 3.29% 3.26% 3.88%

1 - Gradient Boosting Virtual Flow Meter
2 - K-Fold cross-validation
3 - Early stopping cross-validation
4 - Multiphase Flow Meter

early stopping. The reason for this can be the fact that K-
fold validation is performed in a nested manner, so that in
the first two cases the model is constructed in a relatively
small datasets, especially when the number of training
folds is small. However, in Case 1.3 the data becomes large
enough even in 1 fold to construct a model which well
represents the data. However, one should notice that this
situation might not always be the case. For instance, if the
validation dataset was very different from the prediction
one, early stopping would potentially show less accurate
performance than K-Fold method in all the cases.

Another important observation from Table 3 is the fact
in all the sub-cases of Case 2 the error is lower both for
K-Fold and early stopping than in the corresponding sub-
cases of Case 1. This shows that adding the information
from the well tests helps to improve flowrate predictions
with GB VFM. Another observation for Case 2 is that
K-Fold outperforms early stopping in each sub-case. This
shows that for the data with higher variability added by
the well tests, K-Fold cross-validation can be a more robust
way of the algorithm training. Potentially, the performance
of early stopping in cases with well testing data can
be improved by a better selection of the data splitting
strategy. For instance, a part of the well test dataset can
be included into the validation set while in our work we
used well test data in the training dataset only.

Overall, we observe that the MAPE from GB VFM is
comparable with the error from the MPFM, especially
in Case 1.3 and Case 2. An example of the flowrate
predictions by GB VFM is shown in Fig. 5. The figure
shows that during some production time the constant
piecewise approximations by the regression trees is good
enough and have values closer to the true rate than the
simulated MPFM rate predictions while in some parts
constant piecewise predictions can be relatively inaccurate.
Potentially, the performance of GB VFM can be further
improved by applying linear function approximations in-
stead of constant piecewise ones which may have a better
ability to interpolate the flowrate predictions.

Another interesting observation from Table 3 is that a very
small error is achieved in Case 2.1 even though this case
does not have the largest training dataset. The reason
for this is the fact that the choke opening values in Q2

(prediction dataset for Case 2.1) coincidentally matched
the values considered during the well tests multiple times.
Since the flowrate estimates from the well tests does not
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include the MPFM uncertainty, the resulted error is even
lower than the error from the MPFM. This result is
promising meaning that by performing a well-planned well
testing around the expected operating point can lead to
very accurate flowrate predictions by GB VFM.

As for the sub-cases of Case 3, we see the tendency of the
error decline as the training set increases. An additional
sub-case (Case 3.1) in Case 3 was included to see if we can
use well tests from the beginning of the field operation
for VFM purposes without a need of MPFM installation.
As we can see from Table 3 the error in Case 3.1 is
relatively large in comparison with the MPFM while with
the new data obtained the error becomes comparable.
Thus, potentially the combination of the well testing
performed in a step-wise choke opening manner with GB
VFM can be used as a standalone solution. However, at
the initial production phase the accuracy can be low. One
solution for this problem can be performing longer and
more rigorous well tests for the initial stage with reducing
well test complexity as the time evolves.

Even though we observed that the errors in Case 3 are
comparable with MPFM, one should notice that the train-
ing was done without validation and test datasets, so that
even well a fitted algorithm produced good results. In a
real case, the well tests measurements may not have such
a good accuracy as in the considered case and may have
more noise both in variables (pressure and temperature
measurements) and flowrate measurements, so that an
overfitted model will most likely give worse predictions
than the presented ones. In this case, obtaining more data
from well testing and using it as a validation/test datasets
can be a solution to control model overfitting.

In addition to the performance analysis, it is worth to
emphasize limitations and possible challenges of GB VFM
implementations in real systems. First of all, in this
work we assumed that the measurements are free of
noise. In reality, the measurements will always contain
random and possibly drift errors which would make the
implementation of the algorithm more challenging. In
addition, the used constant piecewise regression trees have
limited capabilities in extrapolating the target variable
which can be important in real systems when new data
goes outside the range of training data. This problem can
be addressed by implementing linear regression trees as
weak learners in GB.

6. CONCLUSIONS AND FUTURE WORK

In this work, the XGBoost implementation of Gradient
Boosting algorithm was used to predict oil flowrates from
a simple subsea production system under various field de-
velopment strategies. The algorithm showed a performance
comparable with a hardware multiphase flow meter and
has a potential to be used as a back-up as well as a stan-
dalone solution for Virtual Flow Metering even provided
with a small training dataset. Depending on the available
dataset size and variability, K-Fold or early stopping cross-
validation strategies can be used to obtain a good algo-
rithm performance. Random search strategy of the algo-
rithm selection combined with a careful parameter tuning
produces good results of the flowrate predictions. The
simulation results showed that by combining GB algorithm

with the flowrate measurements from well testing over a
wide operating range of the well, it is possible to make
accurate flowrate predictions starting from an early pro-
duction stage. The future work can address improvements
of GB application for VFM by using linear regression tree
models as weak learners. as well as challenges associated
with the uncertainty of the flowrate measurements and
limited data availability from the well tests.

Apart from improving the algorithm using more advanced
learners, the future work may also address utilizing GB
together with artificial neural networks within ensem-
ble learning to make even better predictions. However,
one should be careful when implementing this approach
because it inevitably leads to a less explainable model.
In addition, adding pressure and temperature data from
other parts of production systems may also boost the
performance. Potentially, installing more sensors for gath-
ering algorithm training data and conducting rigorous well
tests as proposed in this work can be less costly than
investing into experiments for tuning first principle models
or installing expensive hardware devices such as multi-
phase flow meters. This question should be addressed by
companies when developing flowrate monitoring systems
in existing and especially new fields.
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include the MPFM uncertainty, the resulted error is even
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can be a solution to control model overfitting.
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noise. In reality, the measurements will always contain
random and possibly drift errors which would make the
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rithm performance. Random search strategy of the algo-
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produces good results of the flowrate predictions. The
simulation results showed that by combining GB algorithm

with the flowrate measurements from well testing over a
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accurate flowrate predictions starting from an early pro-
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with the uncertainty of the flowrate measurements and
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ble learning to make even better predictions. However,
one should be careful when implementing this approach
because it inevitably leads to a less explainable model.
In addition, adding pressure and temperature data from
other parts of production systems may also boost the
performance. Potentially, installing more sensors for gath-
ering algorithm training data and conducting rigorous well
tests as proposed in this work can be less costly than
investing into experiments for tuning first principle models
or installing expensive hardware devices such as multi-
phase flow meters. This question should be addressed by
companies when developing flowrate monitoring systems
in existing and especially new fields.
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3.2 Discussion of Paper II - Oil Production Monitoring Using
Gradient Boosting Machine Learning Algorithm

Due to the page limitations of the publication, it was not possible to discuss all
the details and motivation of the assumptions used in the paper, so this section is
intended to make additional clarifications and discussions for Paper II.

3.2.1 Remarks on production system setup

First of all, it is important to discuss the process of data generating. All the
data used in this paper is synthetic meaning that it is generated using a commer-
cial multiphase flow simulator. The well setup and profile used in these simu-
lations are taken from a real well example with a three-phase fluid with GOR
of 153 Sm3/Sm3 and WC of 0.3 (30 %). Despite the fact that the three-phase
flow is considered, only oil production monitoring case is discussed. The main
reason is that in this paper, we are more interested in understanding the capabilit-
ies of Gradient Boosting in performing the Virtual Flow Metering task in general
and difference scenarios of its possible usage rather than expanding this task to all
three phases. Another reason is the page limitation of the paper. However, it would
have been interesting to see the performance of the algorithm for the gas and water
phases.

As pointed out in the paper, during the well tests the noise is not introduced into
the flow measurements and this fact can be addressed in future work. The reason
for choosing these conditions is the fact that typically well tests are considered to
be more accurate that the estimates produced by a multiphase flow meter and, in
fact, used to calibrate these devices. Since we artificially introduced an error into
the estimates generated by a multiphase flow meter, we decided not to include a
measurement error into well tests in order to reflect the fact that the results from
well tests are more accurate and can be confidently used for model tuning. If we
have had real data for the analysis, this would not have been an assumption, but
due to the artificial nature of the data, such an assumption is made. In addition, we
would like to point out that we do not assume any PVT-related errors for both the
multiphase flow meter and the Virtual Flow Meter.

3.2.2 Remarks on manipulated and independent variables and their time
scales

Despite the fact that the example of the well setup is close to real, the production
scenarios are synthetic and generated to test different cases that can be met when
operating an oil and gas field. There are several manipulated and independent
variables that are used in these simulations. The first and the main variable is the
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choke opening that is responsible for all high flow changes during the production
period. Changes of the choke opening initially influence the short time scale flow
behavior such as sudden local flow fluctuations, change of the pressures across the
choke, the downhole pressure and, as the result, the pressure fluctuations along the
well tubing. In a slightly longer time scale, the choke opening defines magnitude
of the flowrate value which will be achieved when the system reaches steady state
conditions.

Secondly, the gas inflow source at the downhole is introduced. This is an "artifi-
cial" independent variable meaning that it is not available to production engineers
in real field operation. This variable is introduced with the aim to simulate a po-
tential slow dynamic reservoir response to the changes of the production choke
settings, that is why it is assumed that the amount of the injected gas flow disturb-
ance is proportional to the choke opening value. As shown in Eq. 9 in the paper,
the form of the source is periodic. Such a form is an assumption and in a real field
operation scenario it may not necessarily be the case. However, this assumption
simplifies the simulation process and also make it more consistent and reprodu-
cible. It is also important to point out that even if the choke position is constant,
such a form of the disturbance imitates a slowly changing dynamic response of
the reservoir and/or often existing mutual wells’ interaction behavior that has a
longer time scale than the short time scale transients caused by the choke position
changes. There can be, of course, other possibilities to simulate the middle/long
time scale response of the reservoir and the reader can approach this problem with
another more realistic case. The best possibility to do so can be to link OLGA’s
well simulations with OLGA-ROCX which is OLGA’s module that can be used
to simulate the near-wellbore reservoir behavior together with the multiphase flow
physics occurring in the well tubing.

The last independent variable is the reservoir pressure that is assumed to have a
linear decline trend over the production period to simulate the reservoir depletion
phenomenon. In addition to mimicking a more realistic production situation, it is
also introduced into the simulations to create a slow time dependency in the pro-
duction setup. In real case scenarios, other slow production changes might occur
over time, for instance, fluid properties changes, however, it is not considered in
this work.

3.2.3 Time scales of the phenomena considered for machine learning model
training and testing

Having the manipulated and independent variables discussed in detail, we can no-
tice that they are responsible for different time scale phenomena occurring in the
system. In this work, even though the simulations were performed in the transient
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mode in OLGA, they are done in such a way that the short time scale transient
phenomena are not captured in the training, validation and test data. This is be-
cause when the new manipulated/independent variables’ values (choke position
and downhole gas source) are introduced into the system, the data are not gathered
until the system reaches steady state conditions in terms of the short time scale be-
havior. In this case, the steady state conditions are defined when, after the changes
of the manipulated variables, the system states such as flowrate, pressures and
temperatures stop changing over time. As such, no averaging is involved in the
sampling process. Despite the fact that the level of the choke position change can
be different between the points in time, it is observed that the system reaches steady
state at maximum of 10 min after the changes in variables, so that the sample point
is taken at least in 10 min since the changes are introduced. As such, the different
levels of the choke position are introduced to better test interpolation capabilit-
ies of the Gradient Boosting algorithm in estimating the oil flowrate. The choke
openings are constructed nearly under random value assumption in the range of
[0.1-0.4] when performing simulations for the production scenarios. The choke
openings used in this work are in the range of [0.05-0.7] when simulating well
tests.

As the result of excluding the short time scale transient phenomena, the dynamic
processes that are considered in the simulations and included for evaluation of the
machine learning model are the slow dynamic responses introduced through the
downhole gas disturbance and the linear reservoir pressure decline.

As such, all the manipulated/independent variables used in the simulations in Paper
II are related to different time scales of the system. A potential influence of these
time scales on the model performance and its existence in the training, validation
and test sets is discussed in the next section.

3.2.4 Time dependency and its potential influence on Virtual Flow Metering
model accuracy

As discussed above, even though the short time scale phenomena are not included
in the model training, because the gas disturbance has the time-periodic form and
the reservoir pressure has a linear decline, it introduces the time dependency into
sensor measurements and the flowrate with respect to the longer time scale. This
can be very well seen in Figure 3.1, where the oil rate during the production is
depicted together with the rates obtained during the well tests, while in the paper
the tests rates are excluded from the figure. First, we can notice the generally
decreasing trend over the production period. But secondly and more importantly,
we observe that for the same choke openings applied during the well tests, the
computed rates are different, that again emphasizes the slow time dependency in
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Figure 3.1: Well production with well tests

the data.

Despite the fact that in most cases Gradient Boosting is considered as an algorithm
that is trained for independent data points without taking the time dependency into
account, it is in general possible to include the past data into algorithm. This
can be done by simply introducing the time-lag features, such that the algorithm
sees what happened before the current time step. In this paper, however, such
an approach is not considered and only the current measurements are taken into
account. It could potentially be beneficial consider the past measurements, but,
most likely, the performance would improve only slightly, especially for the cases
with a small training set, because the changes in the production behavior would
be rather small. Moreover, when increasing the dataset size, the slowly changing
dynamic behavior of the system becomes included into the training data, such
that the algorithm becomes more and more capable to capture this trend. For this
reason, the nested cross-validation is introduced in the paper in order to prevent
the algorithm from better capturing this trends when knowing the future training
data.

For an additional discussion on how including data from the future in a time-
dependent problem might lead to wrongly estimated model capabilities, let us con-
sider the following example which is simple and intuitive but is still illustrative. In
this example, we will not even select hyperparameters based on cross-validation,
but use the same linear regression algorithm for all the validation schemes. We
will then observe how the error varies between the validation sets and how it is
different from the test set.
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Figure 3.2: Non-linear time dependent data used for testing cross-validation schemes
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Figure 3.3: Predictions of the linear model with simple and nested cross-validation
schemes

Let us assume that the data follows a decreasing non-linear behavior which be-
comes more and more linear with time, and has some random noise with zero
mean and a small variance, as shown in Figure 3.2. In the figure, the data follows
the function of the form f(t) = 70 − 2

√
t with a white noise around it. Note

that the function value at a certain time step is dependent on this time step value
and not dependent on the previous time step values, so that we can say that the
data points are independent on each other, as in the case with steady state flow
in a well. To check potential differences between simple (conventional) and nes-
ted cross-validation schemes, we fit a linear model to this data and validate it using
these two strategies. To do it, the data of 500 time points is spitted into 4 validation
folds of 100 points each and 1 test set that also consists of 100 points. When the
model is checked on the validation sets, it is re-trained based on the entire training
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set and tested on the test set.

Within the simple cross-validation scheme, one fold is assumed to be the validation
set and the rest three folds are used for training. As such, the following training-
validation sets are considered:

• Training: Fold 1, 2, 3 | Validation: Fold 4;

• Training: Fold 1, 2, 4 | Validation: Fold 3;

• Training: Fold 1, 3, 4 | Validation: Fold 2;

• Training: Fold 2, 3, 4 | Validation: Fold 1;

Within the nested cross-validation scheme, only subsequent folds can be used for
validation, and for each validation step one fold is appended to the previously used
set. As such, the following training-validation sets are considered:

• Training: Fold 1 | Validation: Fold 2;

• Training: Fold 1, 2 | Validation: Fold 3;

• Training: Fold 1, 2, 3 | Validation: Fold 4;

In Figure 3.3, the regression results of the linear model for each fold and test set
using two cross-validation schemes are shown. For Fold 1, the nested-validated
model is not used because there is no prior fold to be trained on. For Fold 4, both
models produce the same result because they are trained on the same folds (1, 2
and 3). From the results we see that the nested model continuously improves the
prediction (RMSE decreases) when more and more training data is used, and the
validation RMSE on Fold 4 is very close to the RMSE on the test set. The mean
RMSE of the nested model is 4.73 which is close to the RMSE on the test set which
is 4.32. Also, it is very logical that the error on the test data set is smaller than the
mean error on the validation sets because the number of data points is small and
the trend of the data is well-predicted. This leads to the fact that when the model
is trained on the entire training set, its predictive capabilities should increase. As
such, we conclude that by applying the nested cross-validation scheme on a slowly
time-dependent dataset, we can generally make a representative assessment of the
model performance.

When considering the results using the conventional cross-validation scheme, we
see that by introducing the "future" data into the training, for instance, Folds 3 and
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4 when validated on Fold 2, we definitely overestimate the model performance
such that the estimated error is low (RMSE=1.48). This obviously happens be-
cause for the model it becomes much easier to interpolate the results between the
prior fold (Fold 1) and subsequent folds (Folds 3 and 4). As such, it leads to the
misleading results about the overall model performance because the mean RMSE
for the simple cross-validation scheme is 3.46, which, in this case, is contradict-
ive because with the presented data the predictive capabilities of the model should
increase when more and more data come due to a near-linear origin.

It is also important to note that when new data come, we will not have access to
the "future" data for this new data set, as such we will not be able to perform in-
terpolation for such a time dependent case. This additionally confirms the point of
using nested cross-validation scheme for the time dependent problem. The results
from this example ca be easily related to higher dimensional space and non-linear
models, such as the one considered in the paper.

Coming back to the Virtual Flow Metering problem, it is in general true that mul-
tiphase flow production depends on time, both in short and long time scales. In
the case considered in the paper, it is a long time scale while in real operation it
can be both scales. As such, to contribute to the correct treatment of the problem
using machine learning approaches in future research in this topic, we suggested
using the nested cross-validation scheme to avoid misleading results that can be
produced by a biased model, as shown in the example above.
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3.3 Combining Machine Learning and Process Engineering
Physics Towards Enhanced Accuracy and Explainability
of Data-Driven Models (Paper III)

Paper III describes applications of hybrid (physics combined with machine learn-
ing) approaches applied to multiphase flowrate estimation case study where a Vir-
tual Flow Meter used as a back-up system to a multiphase flow meter. In this paper,
the authors consider different methods for combining machine learning and phys-
ics of process engineering systems and show how these approaches make the sim-
ulations outcomes more accurate and explainable compared to purely data-driven
modeling approaches. The main motivation behind this paper was the fact that
in the vast majority of previous studies of using machine learning techniques for
multiphase flowrate estimation purposes, prior knowledge about physical behavior
of the system was avoided. As such, the authors wanted to investigate the potential
of using combined approaches based on real oil well data.

Bikmukhametov, T., and Jäschke, J. (2020). Combining Machine Learning and
Process Engineering Physics Towards Enhanced Accuracy and Explainability of
Data-Driven Models. Computers and Chemical Engineering, Volume 138, 10683,
doi.org/10.1016/j.compchemeng.2020.106834
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1. Introduction 

Over the past several years, machine learning risen popularity 

due to advances in the development of deep neural networks and 

computational power of hardware which allows training of such 

networks with millions of parameters. Major advances of machine 

learning applications and research are mainly related to computer 

vision and natural language processing, and, in some cases, the 

performance of the developed algorithms reaches or even exceeds 

the human performance ( Liu et al., 2019 ). The success of deep 

learning also attracted attention of the process industry towards 

various machine learning models ( Qin and Chiang, 2019; Shang 

and You, 2019 ) where historically models are constructed based on 

the first principles of physics resulting in mass, momentum and 

energy balances written for a system under consideration. These 

models are usually ”transparent” meaning that the change of the 

model input leads to the expected change of model output because 

the relations between the input and output are written explicitly. 
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However, the construction cost of these models may be high, espe- 

cially if the process system is large and has a complex non-linear 

behavior. Also, deep understanding of the system is required to 

create an accurate model with a correct physical behavior. In ad- 

dition, these models are often required to be tuned to the process 

under consideration to make accurate predictions of the estimated 

variable ( Matzopoulos, 2011 ). 

In contrast to first principles models, machine learning mod- 

els in process engineering systems estimate variables directly from 

data by exploiting the ability of finding complex patterns with- 

out providing an explicit form of it. This makes machine learn- 

ing models easier to construct in comparison to first principles 

models. However, in addition to data requirements, a major draw- 

back of these models is their black-box nature, and making ma- 

chine learning algorithms transparent is currently an active field 

of research ( Roscher et al., 2019 ). In the recent review of oppor- 

tunities of machine learning for process data analytics, Qin and 

Chiang (2019) emphasized that in order to make machine learn- 

ing algorithms widely applicable for process systems, we need 

to incorporate first principles knowledge into machine learn- 

ing algorithms, consider uncertainties and produce interpretable 

solutions. 

In this paper, we address the issue of explainability of ma- 

chine learning models through combining them with first princi- 

ples models. In addition, we show how combining machine learn- 

ing models with first principles can improve their accuracy. To 

demonstrate the performance of the proposed methods, we use a 

https://doi.org/10.1016/j.compchemeng.2020.106834 
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multiphase flow estimation problem in oil and gas production sys- 

tems. This case is well-suited for this purpose because multiphase 

flow is a complex phenomenon which is usually modeled as using 

first principles but can also be approached using machine learning 

models for some applications. In the literature, most attempts for 

combining first principles and machine learning models for pro- 

cess engineering systems in general, and oil and gas applications in 

particular, lead to estimation of first principles models parameters 

using machine learning algorithms. The history of such methods 

is relatively long. For instance, Psichogios and Ungar (1992) used 

a neural network to estimate unmeasured cell growth rate in a 

bioreactor process back in 90 ′ s. For the oil and gas applications, 

a similar approach has been applied many times to estimate prop- 

erties of an oil reservoir and multiphase flows in pipes such as per- 

meability, porosity, rock type, reservoir fluid properties and liquid 

hold-up ( Ahmadi and Chen, 2018; Anifowose et al., 2017; Klyuch- 

nikov et al., 2019; Onwuchekwa et al., 2018; Kanin et al., 2019 ). 

In this work, we do not use machine learning for estimation 

of first principles model parameters. Instead, we propose several 

other approaches to combine machine learning algorithms and 

first principles models. These approaches are much less investi- 

gated in the literature and there is a need to address this impor- 

tant issue. One example of such an approach, where, in addition 

to parameter estimation using a machine learning model, an ap- 

proach of parallel combination of first principles models and ma- 

chine learning model for a industrial hydrocracking unit was dis- 

cussed by Bhutani et al. (2006) . In this work, however, we en- 

hance this approach proposing its several formulations and test- 

ing them at different system behavior and provide guidelines on 

which selecting the proper formulation depending on the system 

conditions. 

As such, the main contributions of this paper are the following: 

1. We propose new and enhance some of the previously re- 

ported methods of combining first principles and machine 

learning models and discuss advantages and disadvantages of 

each method ( Section 2 ). In addition, we propose heuristic step- 

by-step guidelines on selecting a method for combining physics 

and machine learning for specific system conditions and de- 

sired accuracy ( Section 6 ). 

2. We investigate how physics-aware machine learning algorithms 

improve accuracy and explainability over pure data-driven es- 

timation approaches via qualitative modeling of physical phe- 

nomena and model-agnostic feature analysis. In our case study, 

the analysis also shows how physics-aware machine learning 

models become able to reveal complex pattern behavior of 

the system, for instance, transient multiphase flow behavior 

in wells, gas condensation and release of gas from a hydro- 

carbon mixture ( Section 5 ). However, we do not create a for- 

mal mathematical framework to get fully explainable machine 

learning models. Instead, via case study we make one step to- 

wards more transparent machine learning models by combining 

formal interpretability approach, machine learning and physics 

via a complex case study. 

3. We show how consistent tuning using Bayesian optimization 

techniques contributes to consistent comparison of structurally 

different combinations of first principles and machine learning 

models ( Sections 2.3.1 and 5 ). 

In general, the problem of creating fully explainable machine 

learning is difficult, because it requires a rigorous definition of ex- 

plainability, which is an ill-defined problem, because what is obvi- 

ous to one person may be difficult to understand to another. There- 

fore, we adopt an engineering approach here in this paper, where 

we present different approaches for combining machine learning 

and simplified first principles models, and then analyze the re- 

sults in terms of accuracy and feature influence. This feature im- 

portance is then analyzed and interpreted with physical systems 

understanding. In our case, the feature importance analysis give us 

new insights into the system, that are not obvious when setting up 

the model, as discussed in Section 5.1.2 . 

We believe that the results in this paper are a contribution 

towards the overall goal of better machine learning models. The 

overview of modelling approaches and the heuristic guidelines can 

be useful for practitioners. At the same time, it can be valuable for 

the research community to further test and develop methods and 

analyze the approaches. 

The case study used in this work considers oil and gas produc- 

tion from a well which is a part of a petroleum production system. 

A typical petroleum production system consists of several main 

parts: a reservoir, production wells, flowlines, a processing facility, 

injection wells and transportation pipelines ( Fig. 1 ). In the major- 

ity of cases, oil and gas is extracted from a reservoir in a form of 

a mixture and not as a single phase fluid. Often, in addition to oil 

and gas, formation water is present as another mixture phase. This 

mixture goes through production wells and flowlines to a process- 

ing facility where the phases are separated and processed. Then, 

water can be re-injected into the reservoir to enhance oil recovery 

or disposed to the environment if sufficiently cleaned. A part of the 

gas may also be re-injected and the remaining gas is transported 

together with oil for either further processing or usage as raw sub- 

stances ( Falcone et al., 2001 ). In case of an offshore platform, oil is 

typically transported by tankers. 

Having good estimates of the produced volume of each phase 

(oil, gas and water) for each well allows to efficiently perform 

production optimization and reservoir management ( Falcone et al., 

2001 ). For instance, the reservoir model can be updated, so that 

water and gas re-injection strategies can be adjusted to increase 

overall oil production. In addition, insights about flow assurance 

issues can be obtained such as hydrate formation, erosion and (se- 

vere) slugging ( Falcone et al., 2001; Patel et al., 2014 ). 

A simple method to obtain the multiphase flowrates is to use 

test separators at the processing facility, shown in Fig. 1 , by per- 

forming well testing. Here, single phase flowrates are estimated us- 

ing a separator and flow meters at the separator outlets. By chang- 

ing openings of a production choke of the well of interest and 

recording the changes of the total phase flowrate at the separa- 

tor outlet, it becomes possible to estimate the rates of the well 

( Idso et al., 2014 ). This method typically produces quite accurate 

estimates of the flow. However, it has high operational expenses 

due to the production loss during the tests and requires high ex- 

pertise from operating engineers. As such, such tests cannot be 

performed very often and usually the rates between the test are 

assumed to be constant which is generally not the case in prac- 

tice. In addition, manipulating the production choke can often af- 

fect operation of surrounding wells which can lead to the drift of 

the operating points of these wells ( Idso et al., 2014 ). 

An alternative estimation method is the use of multiphase flow 

meters (MPFM) - hardware installations capable of estimating the 

flow in real time without separating the phases ( Falcone et al., 

2009 ). However, despite the ability to estimate the flow in real 

time, these devices are expensive and exposed to failure which 

introduces costly interventions, especially in offshore and subsea 

fields. In addition, MPFMs need to be re-calibrated by well testing 

from time to time due to changes of fluid properties ( Falcone et al., 

2001; Patel et al., 2014 ). 

Another alternative is to create a mathematical model of the 

production system and estimate the flowrates by combining this 

model and readily available field measurements such as pres- 

sure, temperature and choke opening. This approach is called Vir- 

tual Flow Metering (VFM) and shown as a flow metering alter- 

native in Fig. 1 . A Virtual Flow Meter can work as a standalone 

metering solution or as a back-up system for a multiphase flow 
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Fig. 1. Schematic representation of a typical production system with a multiphase flow meter (MPFM) and a Virtual Flow Meter (VFM) together with available measurements 

and typical production and processing stages. In the measurements, P denotes the pressure, T- the temperature, BH - bottomhole, WHCU - wellhead choke upstream, WHCD 

- wellhead choke downstream, C op - the choke opening. 

Table 1 

Recent research work on machine learning applications for Virtual Flow Metering. 

Applied algorithm Short Summary Reference 

MLP neural network Estimated liquid and gas rates using a neural networkensemble trained with scaled conjugate gradient and 

Bayesianregulation. Explored usage of meta-learners for the output layer. 

AL-Qutami et al. (2018) 

Estimated gas rate with Gaussian radial basis function neuralnetwork to speed-up learning keeping good 

accuracy. 

AL-Qutami et al. (2017) 

Estimated gas and liquid rates using multi-rate welltest data. Compared neural network with random forest. Zangl et al. (2014) 

LSTM Estimated dynamic oil, gas and water rates for productionand severe slugging cases based on synthetic 

data. UsedLSTM to forecast the rates into the future. 

Andrianov (2018) 

Compared LSTM with MLP neural network at steady state anddynamic conditions and showed advantages 

of using LSTM. 

Shoeibi Om- 

rani et al. (2018) 

Used LSTM as a model in the Kalman filter to correct biasprediction of a vanilla LSTM. Loh et al. (2018) 

Used LSTM for multiphase flowrate estimation of transientunconventional wells data. Sun et al. (2018) 

Gradient boosting Used gradient boosting to create a VFM as a back-up system fora MPFM. Showed how to combine the 

algorithm with welltest to replace MPFM. Performed sensitivity studies withrespect to the dataset size and 

validation methods. 

Bikmukhametov and 

Jäschke (2019b) 

meter ( Lunde et al., 2013 ). There are two main alternatives for 

VFM modeling: first principles models and machine learning mod- 

els ( Bikmukhametov and Jäschke, 2019a ). In case of first princi- 

ples models, the mathematical model is constructed using laws of 

physics which describe the production system such as mass, mo- 

mentum and energy conservation equations of the multiphase flow 

mixture though pipes and production choke valves. This approach 

requires deep domain knowledge, and the accurate models are of- 

ten difficult to construct and solve numerically. In addition, due 

to the embedded optimization problem for parameter tuning, first 

principles VFM systems can perform very slowly for large produc- 

tion systems. However, such models are transparent and provide 

good overview of the processes in the production systems and the 

results can further be used to describe system behavior at different 

conditions. 

In case of a machine learning model, as discussed above, deep 

understanding of the system behavior is not required and of- 

ten the flow is estimated directly from data with no or little 

pre-processing. Different algorithms have been applied for ma- 

chine learning Virtual Flow Metering including feed-forward neural 

network, gradient boosting and Long-Short-Term-Memory (LSTM) 

neural network. The most recent and relevant publications are 

summarized in Table 1 . A comprehensive summary of the avail- 

able literature and aspects of first principles and machine learning 

VFM systems is provided by Bikmukhametov and Jäschke (2019a) . 

Despite a reasonable accuracy of machine learning in VFM re- 

ported by the authors listed in Table 1 , machine learning VFM sys- 

tems, as other data-driven process engineering systems, typically 

provide a black-box solution which is hard to interpret. In fact, 

in all the mentioned works in Table 1 , the authors introduce raw 

measurements directly into machine learning algorithms without 

implementing knowledge of multiphase flow physics. This is one 

of the main reasons why machine learning VFM systems are still 

rarely used in practice ( Bikmukhametov and Jäschke, 2019a ). To 

overcome this problem, we will investigate how different combina- 

tions of machine learning algorithms with first principles may im- 

prove accuracy and explainability of data-driven Virtual Flow Me- 

tering models. 

This paper is organized as follows. In Section 2 , we start with 

descriptions of the proposed methods, continue with machine 

learning algorithms description and the procedure for its tuning. In 

Section 3 , we describe the system which is modeled by the meth- 

ods investigated in this work as well as show how exactly these 

methods are adopted to Virtual Flow Metering. In Section 4 , we de- 

scribe case studies selected for investigation. In Section 5 , we dis- 

cuss the obtained results using the proposed methods. In Section 6 , 

we summarize the most important points from Section 5 and pro- 

pose a step-by-step procedure for selecting a method to combine 

first principles and machine learning depending on different con- 

ditions. Finally, in Section 7 , we make conclusions from our work. 
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Fig. 2. Overview of the proposed combinations of first principles and machine learning models and main steps of their development for any process engineering system. 

2. Methods 

In this section, we describe the proposed methods for combin- 

ing machine learning with first principles models and the machine 

learning algorithms which are used to implement the methods. We 

also discuss which parameters of the algorithms are tuned as well 

as the tuning procedure which is implemented using Bayesian Op- 

timization approach. 

2.1. Proposed methods for combining first principles and machine 

learning 

2.1.1. Introduction to the proposed methods 

Up to now, in machine learning Virtual Flow Metering solutions 

reported in the literature, the measurements of pressures and tem- 

peratures available in the system have been used directly as input 

features without advanced transformations ( Zangl et al., 2014; AL- 

Qutami et al., 2017; 2018 ). Apart from that, in some cases, com- 

plex structures have been used in order to create a model, for 

instance, simulated annealing combined with different types of 

learners within one algorithm ( AL-Qutami et al., 2018 ). This makes 

the results from the obtained model even more unexplainable than 

a plain neural network. 

To contribute to the improved explainability and accuracy of 

machine learning models for process engineering systems in gen- 

eral and petroleum production systems in particular, we propose 

and test several different methods. The short summary of the 

methods is shown in Fig. 2 . 

First, we propose to partition a big system under consideration 

into small physically meaningful parts. In this context, it means 

that the part may represent a part of the system, process or equip- 

ment whose parameters influence the target variable. Please note, 

that this action makes sense when it is viable physically and the 

number and existence of sensors allow doing this. Then, physically 

meaningful features should be developed which may include com- 

binations of the original raw measurements alone or with external 

data which can be generated based on the process knowledge. In 

addition, simple first principles models may be constructed which 

are able to estimate the target variable at least qualitatively. In 

this work we do not assume that the first principles models can 

be build easily for the system under consideration. In many cases 

it is difficult or impossible to do due to the complexity. However, 

we do assume that the first principles models can be simplified to 

the level of abstraction which is enough for the machine learning 

model to understand the qualitative behavior of the system, when 

combined with the simplified first principles model. Then, the ob- 

tained features and models are used in several proposed methods. 

In Section 2.1.2 , we describe each method in more detail, but in 

general, all of proposed methods give an opportunity to evaluate 

each model separately, which makes it easier to interpret the sim- 

ulation result and the model behavior. In addition to the explain- 

ability advantages, it helps to create more accurate solutions than 

using raw data directly. This is because the main task for a ma- 

chine learning model is to reveal how to combine the given fea- 

tures using the model parameters, for instance, weights of a neural 

network, to accurately estimate the target. However, if we directly 

introduce the way how original raw measurements should be com- 

bined based on known physics of a process, we reduce the feature 

space and possibly create features which contain more informa- 

tion about the target variable. Below, we provide the description 

of each method. 

2.1.2. Detailed description of the proposed methods 

Method 1 - Feature engineering. Feature engineering is a well- 

known method for constricting machine learning models, so, in 

this work, we propose the guidelines on how this method may 

be applied to get accurate and explainable results in physical pro- 

cess systems. The proposed approach includes creating physically 

meaningful features instead of using raw measurements directly. 

By physically meaningful features we mean combinations of the 

original raw measurements alone or with external data which can 

be generated based on the process knowledge. Preferably, the de- 

signed features should be well-interpretable, self-explanatory and 

related to a particular system part. At the same time, the fea- 
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Fig. 3. Training and test procedures for Method 1 - feature engineering. 

Fig. 4. Training and test procedures for Method 2 - first principles model solutions and feature engineering. 

tures should not necessarily be complex, but must contain some 

information about the target variable. The form and parameters in- 

cluded in the features will be case dependent and rely on expert 

domain knowledge. The general schematic representation of the 

training and test phases for feature engineering method is shown 

in Fig. 3 . 

Physically meaningful features may be further divided into sim- 

ple features and complex first principles features. Simple features 

are the ones which are linear or non-linear combinations of the 

raw measurements. The complex first principles features may be, 

for instance, features represented as a solution of the equation 

which aims to model the target variable using the raw measure- 

ments and external data extracted using the process knowledge. 

In Section 3.3 , we provide examples of features of the oil and gas 

production system. 

Method 2 - First principles model solutions and feature en- 

gineering. In this method, we use solutions from the developed 

first principles models for each part of the process system. The 

obtained solutions are then subtracted from the true value of the 

target variable, such that we obtain the mismatch between the de- 

veloped model and the actual value of the target. Then, this error 

is used as a target variable for a machine learning model. In this 

method, we again use created features as the input to the machine 

learning model to train the model to cover the mismatch. 

The hypothesis here is that the obtained solution from the first 

principles model does not explain the system behavior, so that the 

created features are still well-correlated with the target variable 

(mismatch). As a result, by using them as the input machine learn- 

ing features, we aim to learn the residual pattern of the system 

behavior. Fig. 4 summarizes the details of Method 2. 

Method 3 - First principles model solution and raw measure- 

ments. This method is similar to Method 2. The major difference 

is that we use raw measurements from the system as the input 

to the machine learning models with the aim to explain the mis- 

match between the first principles model solution and the true tar- 

get value. 

The hypothesis in this method is that the obtained mismatch 

between the first principles model solution and the target does not 

contain the information which can be described by simple or com- 

plex first engineered features. For instance, it can be the case when 

some hidden patterns/disturbances exist in the system and is not 

covered by the proposed physical relationships implemented. If so, 

this method might work better than Method 2, in which we use 

the first principles features as the input to the algorithm aiming to 

cover the mismatch. Fig. 5 shows the details of Method 3. 

Method 4 - Linear meta-model of models with created fea- 

tures. In this method, we combine solutions from models created 

in Method 1 using a linear meta-model. The idea here is to give 

a weight to the prediction from each model of a particular system 

part, for instance, choke and tubing, and then sum the weighted 

predictions to get the final outcome. The weights for each sub- 

model are tuned using linear regression techniques, such that the 

weighted sum of the sub-models accurately describe the system. 

The hypothesis here is that at certain conditions a particular 

model can produce better results than another model. If so, the 

output from this model multiplied by the associated weight will 

have a closer value to the target than another model. By combining 

the solutions from several models, we can take the advantage each 

model and obtain the solution which is more accurate then the 

solution from a single model. The schematic representation of the 

training and test phases for Method 4 is shown in Fig. 6 . 

Method 5 - Linear meta-model of the selected model with 

created features and model with raw data. In this method, we 

combine the solution of any of the models obtained using Method 

1, i.e. the model with the created features, with the model which 

uses the raw data as features. 

The hypothesis here is that even by obtaining the best model 

using the created features, there is still some unrevealed data 

structure which cannot be described by the model while the raw 

data model can do it, at least partially. As such, the combined so- 

lution will be more accurate than both the best feature engineered 

model and the model with raw input data. Fig. 7 shows the details 

of Method 5. 

In some cases, one may argue that one specific model will be 

more accurate and another model will make the overall prediction 

worse. However, we do not give these weights just by assigning 

them, they are learned from the data which means, on average, 

the predictions from such a model will most likely be better on 

the new test set. This idea is similar to a normal linear regression 

case. For a particular point in space one value of weight can be 

better because then the line will go exactly thorough one partic- 

ular point. However, this mostly likely not be beneficial for other 

points. As such, the proposed method is simply linear regression, 

but instead of features, we are giving model values, which on av- 
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Fig. 5. Training and test procedures for Method 3 - first principles model solutions and raw measurements. 

Fig. 6. Training and test procedures for Method 4 - linear meta-model of models with created features. 

Fig. 7. Training and test procedures for Method 5 - linear meta-model of the selected model with created features and model with raw data. 

erage will produce more accurate predictions on the test set. In an 

ideal case, one would want to have adaptive weights which know 

that for this particular point it needs to use this particular model 

is better and we just need to choose that model. However, this is 

another direction of research and will not be covered in our paper. 

2.2. Applied machine learning algorithms 

In this section, we provide a brief overview of the machine 

learning algorithms used in this paper, namely Gradient boosting, 

Multilayer Perceptron and Long-Short Term Memory Neural Net- 

works. More specifically, we describe the selected hyperparameters 

and its tuning and the role in the model training and predictive ca- 

pabilities. 

2.2.1. Gradient boosting and tuned parameters 

The first algorithm used for machine learning VFM in this work 

is gradient boosting with regression trees implemented in XGBoost 

package ( Chen and Guestrin, 2016 ). Gradient boosting is based on 

sequential construction of shallow regression trees which form an 

ensemble and perform the final value estimate as a sum of the 

trees’ predictions ( Friedman, 2001 ). In XGBoost implementation, 

the algorithm minimizes the following objective function in an it- 

erative manner adding a regression tree at each iteration: 

J = 

N ∑ 

i =1 

(y i − [ ̂  y i 
(t−1) + f t (x i )]) 2 + �( f t ) (1) 

with 

�( f t ) = γ Z + 

1 

2 

λGB ‖ w ‖ 

2 
2 (2) 

where y i denotes the true value of the i − th example, i − the index 

of a training example, t− the number of the currently constructed 

regression tree, N− the number of examples in the training set, 

ˆ y i 
(t−1) − the sum of the t − 1 trees, f t − the prediction of the cur- 

rent tree on the i − th example, �( f t ) − the regularization term, 

γ − the penalty term for the model complexity expressed as the 

number of leaves Z , λGB − the penalty term of the weight values w . 
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Table 2 

Hyperparameter space and other parameters used for machine learning algorithms training. 

Algorithm Hyperparameter Range (oil rate) Range (gas rate) Other parameters/concepts Approach 

Gradient maximum tree depth [3:12] [3:9] Splitting algorithm Greedy linear search 

boosting regularization λ [0.001:0.1] [0.0001:0.1] Maximum number of trees 200 

regularization γ [0.001:0.1] [0.0001:0.1] Framework XGBoost 

minimum child weight [1:3] [1:4] 

MLP learning rate [0.0001:0.001] [0.0001:0.001] Activation function ReLU 

neural 

network 

regularization [0.00005:0.005] [0.00005:0.05] Optimization algorithm Adam 

number of layers [1:5] [1:5] Maximum number of epochs 1000 

number of nodes [5:25] [10:30] Framework Tensorflow 

LSTM learning rate [0.0001:0.01] [0.0001:0.01] Activation function tanh 

window size [1:15] [1:15] Optimization algorithm Adam 

dropout rate [0.05:0.2] [0.05:0.2] Maximum number of epochs 3 

number of LSTM units [10:40] [10:40] Framework Keras 

number of LSTM layers [1:3] [1:3] 

The algorithm minimizes the difference between the sum of all 

the previous predictions and the true value by adding a new tree. 

To manipulate the training of gradient boosting, we tune the max- 

imum depth of regression trees which is responsible for the com- 

plexity of the function which algorithm is able to approximate. 

In addition, we tune regularizing coefficients γ and λGB to pre- 

vent overfitting as well as the ”minimum child weight” parame- 

ter which identifies the minimum number of instances required 

in each node to become a split. The larger the ”minimum child 

weight”, the more conservative the algorithm becomes ( Chen and 

Guestrin, 2016 ). By adjusting these parameters, we try to find a 

good trade-off between the bias and variance of the model and 

strengthen generalizing capabilities on unseen data. Table 2 sum- 

marizes the hyperparameters and its ranges used for tuning. 

2.2.2. MLP Neural network and tuned parameters 

Feed-forward (Multilayer Perceptron (MLP)) neural networks 

are one of the most popular types of artificial neural networks in 

machine learning ( Goodfellow et al., 2016 ). They are constructed 

using neurons which are interconnected with weights and stacked 

in layers. The weights are used in order to fit the algorithm to 

the data which is typically done via backpropagation algorithm 

and gradient-based optimization method ( Rumelhart et al., 1988 ) 

which usually minimizes the following objective function: 

J = 

1 

N 

N ∑ 

i =1 

( ̂  y i − y i ) 
2 (3) 

where i denotes the index of a training example, N− the number 

of training examples in the training set, ˆ y i − the estimated value of 

the i − th example, y i − the true value of the i − th example. 

A feed-forward neural network is a universal approximator 

( Hornik et al., 1989 ) which means that it can approximate any 

function given sufficient structural complexity. To approximate 

nonlinear functions, neural networks use an activation function 

in each neuron. Among other alternatives, ReLU activation func- 

tion is a popular choice for feed-forward neural network regression 

( Agarap, 2018 ) because it does not suffer from exploding and van- 

ishing gradients, so we also use it in this work. Despite the advan- 

tage of strong approximating abilities, a neural network can easily 

overfit the training data which will create high variance on unseen 

data. As such, often the objective function in Eq. 3 is adjusted with 

a regularization term: 

J = 

1 

N 

N ∑ 

i =1 

( ̂  y i − y i ) 
2 + λNN ‖ w ‖ 

2 
2 (4) 

where λNN denotes the regularization coefficient, ‖ w ‖ 2 2 − the l 2 - 

norm of neural network weights. 

In this work, we use the objective function as shown in 

Eq. (4) and consider the regularization coefficient λNN as a hy- 

perparameter to be tuned. As in the case with gradient boosting, 

by tuning the regularization coefficient, we aim at finding a good 

trade-off between the bias and variance of the model and avoid 

overfitting to the data noise. 

To minimize the cost function J in Eq. (4) , we use the ”Adam”

gradient based optimization algorithm ( Kingma and Ba, 2014 ). De- 

spite the fact that the learning rate is proposed to be adaptive in 

Kingma and Ba (2014) , in this work, we use it as a tuning hyper- 

parameter to find a good initial guess of the learning rate for the 

algorithms. In addition, we also try to find the best architecture of 

the network, so we also tune the number of layers and neurons si- 

multaneously with the learning rate and regularization coefficient. 

Table 2 summarizes hyperparameters of neural networks and its 

ranges used for tuning. 

2.2.3. LSTM Neural network and tuned parameters 

Long-Short-Term-Memory is a special type of recurrent artificial 

neural networks which is designed for sequential type of data such 

as speech and text ( Hochreiter and Schmidhuber, 1997 ). In terms of 

regression for Virtual Flow Metering, the sequence of data is a se- 

ries of measurements in time. So, by using an LSTM for modeling 

of the time dependent target, we use past measurements of pres- 

sure and temperature in order to predict the flow at the current 

time step. As such, one of the goals in using LSTM in this study is 

to evaluate how the sliding window approach which considers the 

past data can help in improving the current time step estimates. In 

previous works on using LSTM for VFM, this important parameter 

has not been investigated ( Loh et al., 2018; Sun et al., 2018 ). 

There are different possible configurations of LSTM such as 

many(inputs)-to-many(outputs), many-to-one or one-to-many. In 

this work, we use many-to-one configuration, such that several in- 

put units (measurements back in time) are used in order to es- 

timate the oil and gas flowrates respectively, at the current time 

step. As such, one of the hyperparameters of the network is the 

time window that is the number of time steps in the past which 

are used for the current estimate. The number of time steps is then 

equal to the number of cells in a LSTM layer. 

An LSTM neural network may consist of several layers, which 

is also the case for this work, and the layers have many-to-many 

connections. We tune the number of LSTM layers because it di- 

rectly influences the possible complexity of the function which the 

network is able to approximate. 

Greff et al. (2016) showed that, in addition to the number 

of layers and cells in the LSTM layer, it is also important to 

tune the learning rate in LSTM networks to achieve good perfor- 

mance, so we include it as a tuning hyperparameter. To regular- 
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ize LSTM and prevent overfitting, in the extensive LSTM tuning 

by Greff et al. (2016) it was proposed to use input noise instead 

of using ridge regularization as we do in the feed-forward (MLP) 

neural network case ( Eq. 4 ). However, to experiment with more 

tuning parameters and regularization techniques, we use dropout 

( Cheng et al., 2017 ) on the weights which connect the last LSTM 

layer and one dense layer which computes the final estimates of 

the flowrate. The range of the LSTM hyperparameters and other 

parameters are shown in Table 2 . 

2.3. Hyperparameter tuning and comparison procedure of case 

studies 

To be successfully applied to any data, machine learning algo- 

rithms have to be well tuned. By this, we mean that a good algo- 

rithm architecture has to be selected as well as the values of these 

hyperparameters have to be tuned accurately. This is typically one 

of the most difficult and critical parts of machine learning model- 

ing. We need to find a good ”bias-variance trade-off” ( Hastie et al., 

2005 ) meaning that the model that has small bias and variance on 

the training set must have comparable bias and variance on the 

test set, so it has good generalizing capabilities. 

In general, it can be difficult to compare different algorithms 

in a fair manner, because it is possible to give one algorithm (or 

method) an advantage by making a more accurate tuning than 

for another one if desired. In our case, in addition to have 3 al- 

gorithms to compare, we also have 12 cases for each algorithm 

( Section 4 ). To produce accurate and trustworthy results, we de- 

veloped a pipeline for training and evaluation the methods which 

is designed not to give an advantage to any case or algorithm. This 

pipeline uses Bayesian optimization for algorithms tuning as a core 

and searches the hyperparameters over the same space for all the 

cases for the same machine learning algorithm. In the next sec- 

tions, we present the main concept behind Bayesian optimization 

and the developed tuning pipeline. 

2.3.1. Bayesian optimization 

Bayesian optimization is a suitable concept for optimiz- 

ing a function which is computationally expensive to evaluate 

( Frazier, 2018 ). Typically, this function does not have an analyt- 

ical expression and can be a black-box which gives output val- 

ues for a given input. The idea behind Bayesian optimization is 

to create a surrogate model of the objective function with corre- 

sponding uncertainties using Gaussian Processes regression. Gaus- 

sian Processes is a Bayesian machine learning method that is why 

this optimization approach is called Bayesian. Using this approach, 

the algorithm decides where to evaluate the function next, given 

the observed objective function values and corresponding uncer- 

tainties ( Frazier, 2018 ). This problem is known as the ”exploration- 

exploitation” trade-off ( Berger-Tal et al., 2014 ). 

To describe Bayesian optimization in more detail, let us define 

the function to be optimized as f ( x ). Here, x ∈ IR 

d is the function 

input where d is the dimension of the input space. In case of hy- 

perparameter optimization for a machine learning algorithm, f ( x ) 

can be an error function on a validation set and d is the num- 

ber of hyperparameters, for instance, d = 2 if we tune the learning 

rate and regularization coefficient. Let us further assume that we 

have already evaluated the objective function at x 1: n , where n is 

the number of evaluated points. Our goal is to find such x ∗, so that 

it gives the maximum (in case of hyperparameter optimization - 

minimum) of the function at x given x 1: n , i.e.: 

x ∗ = arg max 
x 

(− f (x | x 1: n )) (5) 

By solving Eq. (5) , we find the set of hyperparameters which 

minimizes the error on the validation set. However, the only way 

to evaluate f ( x ) is to give input x to the black-box function and ob- 

tain output, so that we cannot simply evaluate gradients for find- 

ing descent direction of the function. 

To solve this problem, we use the concept of Gaussian Processes 

regression. First, we specify a normal prior distribution (typically 

with zero mean) over the entire parameter space IR 

N × d , such 

that: 

f (x 1: N ) ∼ N (0 , K(x 1: N , x 1: N )) (6) 

where K ( x 1: N , x 1: N ) denotes the covariance between the points 

x 1: N and N− the number of parameter values. 

Then, given the observed values f ( x 1: n ), we compute the mean 

and variance of the posterior distribution of the function f ( x ) us- 

ing the following expression for Gaussian Processes regression 

( Rasmussen and Williams, 2017 ): 

μn (x ) = K (x, x 1: n ) K (x 1: n , x 1: n ) 
−1 f (x 1: n ) (7) 

σn (x ) 2 = K(x, x ) − K(x, x 1: n ) K(x 1: n , x 1: n ) 
−1 K(x 1: n , x ) (8) 

If at this point we were required to provide the best set of 

hyperparameters, we would say that this is x ∗ which gives f ∗n = 

max ( f (x 1: n )) . However, if we are allowed to take one more sam- 

ple anywhere in the hyperparameter space, we can check if we 

can find a better set. After the new sample, the highest value of 

the function can be f ( x ) in case f (x ) ≥ f ∗n or it is going to be still 

f ∗n . As such, the possible improvement of the function is f (x ) − f ∗n . 
Therefore, we want to make a new evaluation at x which produces 

the largest improvement. However, the challenge is that we do not 

know the value f ( x ) until we take a sample of it. In this case, the 

solution is the fact that we can take the expected value of this im- 

provement ( Frazier, 2018 ): 

EI n (x ) = E n [ f (x ) − f ∗n ] (9) 

where EI n ( x ) denotes the expectation of the posterior distribution 

given the values of f ( x 1: n ). 

Finally, we take a new sample where EI n ( x ): 

x n +1 = arg max 
x 

EI n (x ) (10) 

The sampling stops when the specified number of sampling 

steps is reached. This optimizing strategy (acquisition function) is 

called Expected Improvement and this is what we use in this work 

to find an optimal set of hyperparameters for the machine learning 

algorithms. Further details about how to compute the closed form 

of the acquisition function in Eq. (9) are provided by Frazier (2018) . 

2.3.2. Tuning pipeline 

To tune the algorithms, first, we need to split the data into 

training, validation and test parts. Since we have time depen- 

dency in the data, we perform k-fold cross-validation with mixed 

folds. Since we perform an extensive hyperparameter optimization 

search for many cases, we cannot use nested k-fold cross-validation 

because it is computationally too costly. As such, we split the data 

into 60% for training, 25% for validation and 15% for test sets and 

use only one set to validate the algorithms. 

Another challenge is to choose how to perform fine tuning of 

epochs and trees together with other hyperparameters. The proce- 

dure we propose is to fix a certain number of epochs/trees which 

corresponds to a relatively deep training. Then, for this fixed num- 

ber, we select hyperparameters using Bayesian optimization based 

on the validation set error. Then, using the obtained set of hyper- 

parameters for each algorithm, we perform fine tuning of the num- 

ber of epochs/trees using early stopping by monitoring the error on 

the validation set. The same hyperparameter space is used for all 

the cases within one algorithm. 

Having the algorithm ready, we re-train it on the combined 

training and validation sets by taking advantage of all the data 
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Fig. 8. Proposed pipeline for algorithms tuning and case comparison. 

available for training and finally evaluate it on the test set. A 

summary of the proposed tuning pipeline is shown in Fig. 8 . 

Table 2 shows hyperparameters and their range used in the tun- 

ing pipeline. 

Note that the procedure above is designed such that we: 

• Do not give any preference to any particular case and any par- 

ticular algorithm; 
• Select a good set of hyperparameters via extensive Bayesian op- 

timization search; 
• Avoid overfitting via early stopping and regularization; 
• Allow another possibility for overfitting control by changing the 

hyperparameter space boundaries. 

2.4. Feature analysis methods 

Machine learning algorithms are often treated as black-box so- 

lutions which are hard to interpret. In this work, we investigate if 

features which are based on physics principles can contribute to a 

better understanding of machine learning models behavior. 

There are several methods which can be used to interpret ma- 

chine learning models. A good review of these methods is provided 

by Molnar et al. (2018) . For non-linear models, the methods can be 

divided into model-specific and model-agnostic methods. For in- 

stance, tree-based algorithms such as gradient boosting and ran- 

dom forest have embedded model-specific methods which evalu- 

ate feature importance based on the selected criteria ( Chen and 

Guestrin, 2016; Genuer et al., 2010 ). However, sometimes, differ- 

ent criteria produce different feature importance for the same al- 

gorithm, which can make results confusing. 

As we compare different algorithms in this work and also aim 

to avoid misleading conclusions within each algorithm, we use 

model-agnostic approach for evaluation of feature importance. This 

means that such methods are applicable to any machine learning 

model and use the same principles independently of the algorithm 

under evaluation. This will allow us to compare different algorithm 

using the same principles, so the conclusions can be well general- 

ized. We use the feature importance and partial dependence plots 

implemented in Skater Python library ( Kramer et al., 2018 ). In this 

package, feature importance evaluation is based on the theoretic 

information criterion which estimates the entropy of the prediction 

change supplied by a perturbation of a feature. The partial depen- 

dence plots are adopted from Hastie et al. (2005) , and describe the 

global influence of a particular feature given that other features 

are kept constant. As such, both methods are global interpretation 

methods, so that they analyze the influence of features over the 

entire dataset, rather than explaining the local behavior as, for in- 

stance, LIME method does ( Ribeiro et al., 2016 ). We use global in- 

terpretation because, in this work, we are interested in the overall 

relationships between the features and the targets. However, lo- 

cal interpretations may also be useful for Virtual Flow Metering, 

for instance, when the flow pattern is changed and we are inter- 

ested in the analysis of the conditions at which it happens. We 

keep these local investigations for future work. 

We applied the methods discussed above to gradient boosting 

and feed-forward neural networks, but have not applied to the 

LSTM networks due to its dependency on a particular feature in 

time. Such analysis has not been implemented yet neither in the 

Fig. 9. Schematic representation of the investigated system with available measure- 

ments. 

package nor by us, so we also keep this analysis for future work 

too. 

3. Description of the system and data 

3.1. System and data 

3.1.1. Overview 

To test the proposed approaches, we use field data from one of 

the subsea fields on the Norwegian Continental Shelf. The system 

and the available measurements are shown in Fig. 9 . For the input 

to the algorithms, the following data is available: 

• Pressure and temperature at the bottomhole of the well ( P BH , 

T BH ); 
• Pressure and temperature upstream of the choke ( P WHCU , 

T WHCU ); 
• Pressure and temperature downstream of the choke ( P WHCD , 

T WHCD ); 
• Choke opening ( C op ); 
• Well tubing length ( L tubing ); 
• Well tubing diameter ( D tubing ); 
• Fluid composition. 

In this system, a multiphase flowmeter (MPFM) is installed at 

the wellhead which measures oil and gas flowrates, Q oil and Q gas 

respectively. The measurements of pressures, temperatures, choke 

opening and flowrates are available at every minute. The length 

and diameter of the tubing are fixed by the system design and do 

not change during operation. The data available for training is the 

historic production for 210 days and shown in Fig. 10 . As we see in 

Fig. 10 , the system has a very unstable behavior during the entire 

production time. The flowrates of oil and gas fluctuate a lot which 

makes difficult it for a machine learning algorithm to estimate it 

accurately. 

We will construct machine learning algorithms based on the 

flowrate measurements from the meter, so that the machine learn- 

ing model will work as a back-up system. If the multiphase 

flowmeter fails or starts producing unrealistic results, the VFM so- 

lution will infer the current flowrates. As such, the target variables 

for training are ( Fig. 10 ): 

• Oil flowrate ( Q oil ); 
• Gas flowrate ( Q gas ). 
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Fig. 10. Normalized oil and gas flowrates from the subsea well under consideration. 

In oil and gas production operation, the fluid composition is not 

always available. In the dataset used in this work, the fluid com- 

position is given, however, this information is assumed to be very 

unreliable, because it comes from measurements that were taken a 

long time ago, and the composition may have changed over time. 

As such, the fluid properties estimated using this composition can 

be misleading and give a noticeable estimation error. Therefore, we 

would like to avoid using estimates of fluid properties such as den- 

sity or viscosity as much as we can in the first principles models, 

while maintaining the qualitative physical behavior of the created 

models. 

In practice, there may be a possibility to re-estimate the fluid 

properties given a new Gas-Oil-Ratio (GOR) by performing a new 

well test, however, this information is not available in our setting. 

However, it is useful and interesting to investigate predictive capa- 

bilities of physics-aware machine learning algorithms under these 

realistic conditions. 

3.2. Applied first principles models 

In this section, we introduce the first principles models which 

are used in combinations with machine learning algorithms using 

the proposed methods discussed in Section 2.1 . To create a com- 

bined Virtual Flow Metering systems with machine learning and 

physics of the multiphase flow in petroleum systems, we propose 

to use two first principles models: Bernoulli model for choke and 

No-Pressure-Wave drift flux model for tubing. 

3.2.1. Choke model 

The Bernoulli equation is often used to describe single phase 

flow in hydraulic systems and it is the basis for the simplest model 

used to describe fluid flow over a choke. The equation describes 

the fluid momentum between two points: 

P 1 − P 2 = 

ρ

2 

(U 

2 
2 − U 

2 
1 ) (11) 

where P 1 denotes the pressure at point 1, P 2 - the pressure at point 

2, ρ - the fluid density, U 1 - the fluid velocity at point 1, U 2 - the 

fluid velocity at point 2. 

Typically, a choke is modeled as a sudden contraction which is 

called choke throat. In this case, Eq. (11) is applied between the 

point before the throat (point 1) and at the throat (point 2). Con- 

sidering the fact that the volumetric flowrate Q = A · U, we obtain: 

Q = C d A 2 

√ √ √ √ 

2(P 1 − P 2 ) 

ρ
(

1 −
(

A 2 
A 1 

)
2 

) (12) 

where C d denotes the discharge coefficient, A 1 − the pipe cross sec- 

tional area before the choke, A 2 −the area of the choke throat. 

The discharge coefficient C d is typically a function of the choke 

opening C op , and used to tune the model to the data at hand. Be- 

cause measuring pressure at the choke throat is difficult, pressure 

measurement after (downstream) the choke is often considered as 

P 2 . As such, according to the introduced notation in Figs. 1 and 9 , 

P 1 = P W HCU and P 2 = P W HCD . 

Eq. (12) is valid for single phase flow. To apply this to a mul- 

tiphase flow case, the single phase flowrate is usually multiplied 

by a two-phase multiplier, for instance, the Chisholm multiplier 

( Chisholm, 1983 ) which depends on the fluid properties at mea- 

sured conditions. Because the fluid properties may change over 

time, and a two-phase multiplier as well as mixture density may 

be inaccurate in this case, we will not introduce two-phase mul- 

tiplier into the choke model and will use the model outputs as 

computed below. 

In addition, the mixture density ρmix must be introduced in- 

stead of single phase density ρ . The ratio A 2 / A 1 can be consid- 

ered as the choke opening ( C op ) because A 1 is the constant area 

of the pipe and A 2 is changing depending on how open the choke 

is. As the discharge coefficient C d is a function of the choke open- 

ing which form we do not necessarily know, we simplify it by as- 

suming a linear relationship. Considering this, we obtain a simple 

expression for the mixture volumetric flowrate across the choke 

Q 

choke 
mix 

which is used in this work: 

Q 

choke 
mix = C op A 2 

√ 

2(P W HCU − P W HCD ) 

ρmix 

(
1 − C 2 op 

) (13) 

Finally, by multiplying Q 

choke 
mix 

with volumetric fraction of a 

fluid phase (for instance, oil), we can obtain the phase volumetric 

flowrate. The remarks on how the volumetric fractions are found 

are discussed in Section 3.2.3 . 

3.2.2. Tubing model 

For the tubing model, we use a ”No-Pressure-Wave” form of the 

drift flux multiphase flow model ( Masella et al., 1998 ) which is de- 

scribed by the following equation: 

dP 

dl 
= 

ξmix ρmix U 

2 
mix 

2 D tubing 

+ ρmix g sin (β) (14) 

where P denotes the fluid pressure, l− the pipe axial coordinate, 

ξmix − the friction factor coefficient, U mix − the mixture velocity, 

D pipe − the tubing diameter, ρmix − the mixture density, g− the 
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gravitational acceleration constant, β− the inclination angle of the 

pipe. 

This equation is a simplification of the transient drift flux model 

( Masella et al., 1998 ). Here, it is assumed that the flow is at steady 

state and that the effect of acoustic waves is negligible for the con- 

sidered time scale. We can solve this equation given the pressures 

at the bottomhole and the wellhead and the fluid properties for 

the mixture. The same as for the choke model, the fluid properties 

can be the bottleneck for accurate predictions of the flow due to it 

is potential inaccuracy. Moreover, the friction coefficient is also de- 

pendent on them. As such, to avoid additional source of inaccuracy, 

we keep the friction coefficient constant. 

Typically, Eq. (14) is solved numerically together with the mass 

balances for each phase in each discretization mesh point along 

the pipe axial coordinate. In this work, we test simplified first prin- 

ciples modeling approaches and want to use machine learning to 

take care of the model inaccuracies. As such, by averaging the fluid 

properties and the geometry over the pipe axial direction and inte- 

grating Eq. (14) , the solution for the multiphase mixture in tubing 

becomes: 

Q 

tubing 
mix 

= 

√ 

(P BH − P W H − ρ̄mix gH) π2 D 

5 
tubing 

8 ξmix L tubing ̄ρmix 

(15) 

with 

ρ̄mix = 

ρmix @ W H + ρmix @ BH 

2 

(16) 

where P BH and P WH denote bottomhole and wellhead pressure re- 

spectively, ρmix @ WH and ρmix @ BH − the mixture density at the well- 

head and bottomhole conditions respectively, H− the height (ele- 

vation) of the tubing, L tubing − the tubing length, ξmix − the friction 

factor coefficient, β− the inclination angle of the tubing. 

3.2.3. Remarks on fluid properties computation for first principles 

models 

We see that even the simplest process models require accurate 

measurements and fluid properties data to compute the flowrate 

accurately. As discussed, in our case, the fluid properties can be 

relatively inaccurate because the composition is provided at the 

beginning of production when the system was installed, while the 

production data is at the late stage. This is exactly the place where 

machine learning can enter and solve the problem with less ef- 

fort. As we still need some approximations of the fluid properties, 

we use the given (uncertain) fluid composition and Soave-Redlich- 

Kwong (SRK) Equation of State (EoS) ( Soave, 1972 ) implemented 

in a commercial thermodynamic package. To obtain the phase vol- 

umetric fractions and densities, we use simple flashing. We iter- 

ate over the pressure and temperature condition range met in the 

problem, save the results in look-up tables and then interpolate the 

properties for any given pressures and temperatures at any time 

step. This approach is commonly used in first principles simulators 

of multiphase flow. 

3.3. Adaptation of methods for combining machine learning and first 

principles for VFM 

In this section, we discuss how the developed first principles 

models and features are used within the methods proposed in 

Section 2.1 . The overall summary of the used features for the in- 

put in each method and case study can be found in Table 3 in 

Section 4 . 

Please note, that all the developed models in this work use 

a single output, such that we estimate only one target variable 

each time. As such, we constructed separate models for oil and gas 

rates. From our experience, making separate models for oil and gas 

(i.e. for different outputs) produces better results and allows much 

more flexible tuning. On the other hand, neural networks also al- 

low multiple output regression without any single problem. As for 

gradient boosting, in this case, two separate algorithms are always 

needed. 

3.3.1. Adaptation of method 1 - feature engineering 

As discussed, we partition the system into the tubing and choke 

parts and create the following features: 

• Pressure drop over the choke ( 
P choke = P W HCU − P W HCD ); 
• Pressure drop over the tubing ( 
P tubing = P BH − P W HCU ); 
• Temperature drop over the choke ( 
T choke = T W HCU − T W HCD ); 
• Temperature drop over the tubing ( 
T tubing = T BH − T W HCU ). 

Despite being simple, these features have direct relationships 

with the target variables - the oil and gas flowrates. This is because 

in any process system, pressure difference is the main driving force 

for the flow to go from one point to another. As such, pressure 

drop over the well tubing and choke can be a good indicator of the 

flow magnitude. At the same time, the flow magnitude and distur- 

bances is what define the temperature drop over the tubing and 

choke. In terms of explainability, these features make more sense 

than raw pressure and temperature measurements which can be 

hard to interpret with respect to the change of the target variable 

(flowrate). 

As we propose in Fig. 2 , we can also use outputs from the cre- 

ated first principles models as input features to machine learning 

models. As such, we use the following additional features: 

• Choke mixture volumetric flow ( Q 

choke 
mix 

) ( Eq. (13) ); 

• Tubing mixture volumetric flow ( Q 

tubing 
mix 

) ( Eq. (15) ). 

The reason why we use mixture volumetric flow and not the 

separate oil and gas volumetric flows is the fact that we know 

that the fluid properties are inaccurate in our case, so we want 

to avoid using them as much as possible. At the same time, the 

mixture flow can be sufficient to give the machine learning al- 

gorithms additional insights about the qualitative behavior of the 

multiphase flow and improve prediction accuracy. Fig. 11 summa- 

rizes the adaptation of training and testing procedures shown in 

Fig. 3 for Virtual Flow Metering. 

3.3.2. Adaptation of method 2 - first principles model solutions and 

feature engineering 

In this method, we use solutions of Eqs. (12) and Eq. (15) trans- 

formed to the phase volumetric flowrates via multiplying it by 

the phase volumetric fractions pre-computed in a thermodynamic 

package. The obtained solutions are then subtracted from the true 

phase rate, such that we obtain the mismatch between the de- 

veloped model and the actual flow measurements from the field. 

Then, this error is used as a target variable for a machine learn- 

ing model. The procedure of training and testing the algorithms 

for Method 2 shown in Fig. 4 is adapted for Virtual Flow Metering 

in Fig. 12 . 

3.3.3. Adaptation of method 3 - first principles model solution and 

raw measurements 

As discussed before, Method 3 is similar to Method 2, while the 

main difference is that raw measurements are used as the input to 

the machine learning models with the aim to cover the mismatch 

between the first principles model solution and the target. When 

adapting this method to the Virtual Flow Metering example, pres- 

sure and temperature measurements along the systems are used 

as the input features to the machine learning models. Fig. 13 illus- 

trates the adaptation of the method to Virtual Flow Metering. 
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Table 3 

Summary of the considered case studies. 

Case study ML algorithm input 

First principles Training 

model solution target 

Case 1 P BH , T BH , P WHCU , not used Q true 
phase 

T WHCU , P WHCD , T WHCD 

Case 2.1 
P choke , 
T choke , Q 
choke 
mix 

not used Q true 
phase 

Case 2.2 
P choke , 
T choke Choke model mismatch = Q true 
phase 

− Q choke 
phase 

Q choke 
mix 

Q choke 
phase 

= Q choke 
mix 

αphase @ WH 

Case 2.3 P BH , T BH , P WHCU , Choke model mismatch = Q true 
phase 

− Q choke 
phase 

T WHCU , P WHCD , T WHCD Q choke 
phase 

= Q choke 
mix 

αphase @ WH 

Case 3.1 
P tubing , 
T tubing , Q 
tubing 
mix 

not used Q true 
phase 

Case 3.2 
P tubing , 
T tubing Tubing model mismatch = Q true 
phase 

− Q tubing 

phase 

Q tubing 
mix 

Q tubing 

phase 
= Q tubing 

mix 
αphase @ WH 

Case 3.3 P BH , T BH , P WHCU , Tubing model mismatch = Q true 
phase 

− Q tubing 

phase 

T WHCU , P WHCD , T WHCD Q tubing 

phase 
= Q tubing 

mix 
αphase @ WH 

Case 4.1 
P choke , 
T choke , Q 
choke 
mix 

not used Q true 
phase 


P tubing , 
T tubing , Q 
tubing 
mix 

not used 

Case 4.2 
P choke , 
T choke , Q 
choke 
mix 

Choke and tubing model mismatch = 

Q true 
phase 

− Q̄ choke/tubing 

phase 

P tubing , 
T tubing , Q 

tubing 
mix 

Q̄ choke/tubing 

phase 
= 

(Q choke 
ophase 

+ Q tubing 

phase 
) / 2 

Case 4.3 P BH , T BH , P WHCU , Choke and tubing model mismatch = 

Q true 
phase 

− Q̄ choke/tubing 

phase 
T WHCU , P WHCD , T WHCD Q̄ choke/tubing 

phase 
= 

(Q choke 
phase 

+ Q tubing 

phase 
) / 2 

Case 5 Q choke 
phase 

, Q tubing 

phase 
not used Q true 

phase 

Case 6 Q choke 
phase 

or Q tubing 

phase 
or not used Q true 

phase 

Q choke/tubing 

phase 
and Q Case 1 

phase 

Fig. 11. Method 1 (feature engineering) adapted for Virtual Flow Metering. 

Fig. 12. Method 2 (first principles model (choke and tubing) solutions and feature engineering) adapted for Virtual Flow Metering. 

3.3.4. Adaptation of method 4 - linear meta-model of models with 

created features 

In this method, we combine solutions from models created in 

Method 1 for the choke and tubing system parts and then sum the 

weighted predictions to get the final outcome. Fig. 14 shows the 

adaptation of the method to Virtual Flow Metering. 

3.3.5. Adaptation of method 5 - Linear meta-model of the selected 

model with created features and model with raw data 

In this model, any of the models (choke or tubing or choke 

and tubing) with created features can be used together with 

the model which uses raw measurements as the input. In this 

work, we use the model with both choke and tubing features. 

Fig. 15 shows how the method is applied for Virtual Flow Metering 

systems. 

4. Case studies 

This section provides an overview of the considered case stud- 

ies. The summary of the selected case studies, input features, used 

first principles models and training targets is shown in Table 3 . 
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Fig. 13. Method 3 (first principles model (choke and tubing) solution and raw measurements) adapted for Virtual Flow Metering. 

Fig. 14. Training and test procedures Method 4 - linear meta-model of models with created features. 

Fig. 15. Training and test procedures Method 5 - Linear meta-model of the selected model with created features and model with raw data. 

Case 1 is the base case which is used for comparison with all 

the other cases. In this case study, raw measurements are used as 

the input to the machine learning algorithms without any trans- 

formation. This is the approach which has been used in the data- 

driven Virtual Flow Meters in the literature so far and often used 

in estimation of parameters in process engineering systems using 

machine learning. This base case will be compared with the pro- 

posed approaches of combining machine learning with first princi- 

ples models. 

Case 2 considers methods 1, 2 and 3 applied to the production 

choke. More specifically, Case 2.1 considers using Method 1 (fea- 

ture engineering) applied for the choke, so that the inputs to the 

machine learning algorithms are 
P choke , 
T choke and Q 

choke 
mix 

. This 

case will show if the measurements related to the choke only can 

describe the flow accurately. 

In Case 2.2 , Method 2 (first principles model solution + feature 

engineering) is used such that the solution of the choke model 

for Q oil / gas is obtained and the mismatch between the solution and 

the true value is covered using an algorithm with choke features 


P choke , 
T choke and Q 

choke 
mix 

as inputs. 

In Case 2.3 , Method 3 (first principles model solutions + raw 

measurements) is used and raw measurements are used for the 

algorithm which is trained to cover the mismatch. Table 3 summa- 

rizes the used combinations for the cases. 

Case 3 is similar to Case 2, but it considers methods 1, 2 and 

3 applied to the production tubing. As such, Cases 3.1, 3.2 and 

3.3 are conceptually identical to Cases 2.1, 2.2 and 2.3, but in- 

stead of choke, tubing first principles model and features are used 

( Table 3 ). 

Case 3 considers method 1, 2 and 3 applied to choke and tubing 

combined. More specifically, Case 4.1 considers all the features for 

choke and tubing combined as the inputs to the machine learning 

model, so it again follows Method 1. 

In Case 4.2 , to use Method 2 we used averaged solution from 

the choke and tubing models for Q oil and then cover the mismatch 

using both tubing and choke features. 
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In Case 4.3 , we cover the mismatch by using the raw measure- 

ments as features. Again, the discussed case studies are summa- 

rized in Table 3 . 

Case 5 considers Method 4 - using a linear meta-model for the 

algorithms which are based on the engineered features. We con- 

sider this case only for the choke (Case 2.1) and tubing models 

(Case 3.1) combination. This is because this is the simplest yet ef- 

fective way to combine all the available models and measurements. 

Case 6 considers Method 5 - using a linear meta model which 

combines the selected model with engineered features (we se- 

lected the model from Case 4.1) with the model from Case 1 which 

uses the raw data as the input. 

Remarks on other possible case studies. It is possible to cre- 

ate a meta-model over the other cases, and even a meta-model on 

top of other two meta-models which combine, for instance, first 

principles models solution and mismatches. However, it will intro- 

duce additional unexplanability of the models as well as it leads 

to a tricky implementation without necessarily providing a better 

accuracy. 

5. Results and discussion 

In this section, we describe the estimation results for gradient 

boosting, MLP neural networks and LSTM and feature analysis for 

gradient boosting and MLP neural networks. First, we thoroughly 

describe the estimation results from gradient boosting including 

the estimation accuracy and transparency of the data-driven mod- 

els which is developed through combining first principles and ma- 

chine learning models. After that, we discuss the results of neural 

networks and LSTM mostly focusing on the differences between 

the results of these algorithms and gradient boosting to avoid rep- 

etition of similar conclusions. We also discuss the differences be- 

tween static algorithms (MLP neural network and gradient boost- 

ing) and dynamic algorithm (LSTM). Please note, that we do not 

provide a feature analysis of LSTM neural networks, because the 

current version of the feature analysis tool (Skater) does not pro- 

vide such capabilities due to its dependency on a particular feature 

in time. Nevertheless, we decided to include the estimation results 

of the LSTM, because they provide insights about the importance 

of considering past time steps data in estimating the current time 

target value. As such, it provides the basis for conclusions on the 

conditions at which dynamic methods should be preferred over the 

static ones. 

5.1. Analysis of gradient boosting results 

5.1.1. Overview of flowrate estimation results 

In this section, we analyze the results of oil and gas flowrate es- 

timation using gradient boosting based models. While the original 

time resolution of the data is 1 minute, for better visualization, the 

estimation results are averaged over the period of 5 minutes. This 

allows to see if the algorithm is able to capture the general multi- 

phase flow trends rather than occasional flowrate spikes which are 

not essential to capture. The results for oil and gas flow estimation 

using gradient boosting based models are shown in Fig. 16 . 

When to use feature engineering (Method 1) and when to use first 

principles-based models (Method 2 and 3)? 

The first observation in Fig. 16 is that in some cases, feature en- 

gineering methods outperform other methods while in other they 

do not. As feature engineering method is the simplest one in terms 

of construction cost, it is useful to know under which conditions it 

can be effectively applied which will allow to avoid constructing 

more complex combinations of first principles and machine learn- 

ing models. 

First, consider the oil rate estimation case ( Fig. 16 a) and com- 

pare the feature engineering-based methods with other proposed 

methods. The accuracy of these models in comparison with the 

base case is discussed in the next sections. 

We see that the cases with engineered features (Case 2.1, 3.1 

and 4.1) generally outperform all the other models using the pro- 

posed methods (Case 2.2 and 2.3, Case 3.2 and 3.3, Case 4.2 and 

4.3 respectively) except the meta-model approaches. However, in 

the gas flow estimation ( Fig. 16 b), when the first principles mod- 

els are combined with the raw measurements (Case 2.3, 3.3 and 

4.3), such models generally perform equally good or better than 

the feature engineering models. 

The major difference between the oil and gas flowrates is the 

complexity of the system behavior. From the test set representa- 

tion in Fig. 16 as well as from the entire dataset in Fig. 10 , we see 

that the oil rate behavior is much more unstable and does not have 

the same trend in the train and test sets, while the gas rate has 

much smaller fluctuations and the trend is observable. As such, we 

see that when the system behavior is relatively complex (in this 

case - oil rate behavior) and the constructed first principles mod- 

els are relatively simple as in this work, it is better to use feature 

engineering methods as a simple yet accurate solution. This is be- 

cause for a complex system behavior, simple first principles mod- 

els may not be accurate enough to accurately represent it. At the 

same time, well-engineered features may be well-correlated with 

the target variable (in this case - the oil flowrate), such that the 

model produces accurate results. 

When the system behavior has a moderate complexity, (in this 

case - gas rate behavior), so that even simple first principles mod- 

els are accurate enough, its combination with the raw data may be 

a good choice as it can be seen in Fig. 16 (Case 2.3, 3.3 and 4.3). 

As for the Method 2, when the first principles models are used 

together with the simple and complex first principles features, it 

does not improve the performance as we see from Fig. 16 (Case 

2.2, 3.2 and 4.2) for both oil and gas rates. The reason for this may 

be the fact that the features are better correlated with the origi- 

nal target variable and not the mismatch, while the first principles 

models solution may also not be very accurate, which in total de- 

teriorates the performance, as we see in Fig. 16 (Case 2.2, 3.2 and 

4.2), especially for the oil rate estimation. 

Influence of first principles models accuracy on estimation ac- 

curacy and on capturing physical effects The next important dis- 

cussion is related to the one in the section above with a particular 

focus on the influence of the accuracy of the first principles models 

on the estimation accuracy. 

Comparing the choke-based (Case 2.1, 2.2 and 2.3) and tubing- 

based (3.1, 3.2 and 3.3) machine learning models, we see that the 

proposed first principle choke model is not a solid basis to accu- 

rately represent the oil rate behavior, such that it has a lower accu- 

racy than the base case (Case 1) with just raw measurement input 

data. However, the choke-based machine learning models show a 

moderate accuracy for the gas estimation case and Case 2.3 even 

outperform the model in Case 1. 

At the same time, the first principles tubing model and related 

features are relatively accurate to represent the flow well. Even 

though the model may not be able to account for high oil flowrate 

fluctuations, the general flow behavior is accurately represented 

and all the constructed tubing-based machine learning models out- 

perform the model from Case 1. 

As such, we conclude that in order to be applied alone for oil 

rate estimation within machine learning VFM, the proposed first 

principles choke model must be improved for this specific case. 

One possibility to do that is to change the model type which re- 

solves the flow more accurately and accounts for more complex 

physics such as gas slip, as suggested by Schuller et al. (2006) , who 

found that by introducing the slip relationship, a choke model typ- 

ically produces more accurate estimates. Another possibility is to 

perform some pre-tuning of the model using simple linear regres- 
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Fig. 16. Oil and gas rates estimation by gradient boosting based models. The results are averaged over 5 minutes period, i.e. one point - 5 minute averaged rate. 

sion techniques and then use the model as the basis for the com- 

binations with machine learning algorithms as proposed in this 

work. 

Despite the fact that the first principles tubing model shows a 

reasonable accuracy, it can also be further improved. For instance, 

the model can be solved numerically for a small number of mesh 

points along the tubing and only then combined with machine 

learning, so that the model will provide a more accurate solution 

than the one presented here. We keep these investigations for fu- 

ture work. 

It is worth noting that despite the choke model alone is not ac- 

curate enough, it can still be used to further improve the accuracy 

of the tubing model results. We can see that Case 4.1 for both oil 

and gas rates produces one of the most accurate results, if not con- 

sidering the meta-models from Case 6. This is likely because the 

choke and tubing models in this case can be better at estimating 

different flow conditions. In fact, we see that for the oil rate pre- 

dictions, the choke model based algorithms (Case 2) follow a more 

transient behavior of the system, such that we see predictions of 

flowrate fluctuations with some occasional spikes which try to cap- 

ture even higher fluctuations, but often overestimating them. This 

is different from the cases with the tubing model based machine 

learning models (Case 3), where we see a more smooth flow. This 

behavior is physically meaningful because the choke model is a lo- 
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cal (static) model which means that any flow disturbance across 

the choke will suddenly be reflected in the change of pressures 

and temperatures taken at the inlet and outlet of the system. On 

the other hand, if a flow disturbance occurs at the bottomhole of 

the well, this will be reflected at the bottomhole measurements 

first and only after some time reach the wellhead measurements. 

For the gas flow cases, the behavior of both models is relatively 

similar due to low flow fluctuations. 

Improved model generalization One of the potential advantages 

in including physics information into machine learning models can 

potentially be improved model generalizability. This is the ability 

of the model perform well on the unseen data. In physical and 

process engineering systems, this can be exemplified if the ma- 

chine learning model is able to describe system under conditions, 

which have been barely seen in the training set. In our case, the 

model generalization is seen to be improved significantly for sev- 

eral cases. indeed, in Case 4.1, we see that by combining the first 

principles models as features, we are able to capture the rising 

oil rate trend at the end of the estimation period as well as the 

decreasing gas rate trend, while when using the pure data-driven 

models (Case 1), it is not possible. As such, by combining the mod- 

els, we can achieve improved machine learning model generaliza- 

tion and the overall improvement of the results. This strength- 

ens the fact that the combined approach of physics-based machine 

learning modelling may be able to significantly improve machine 

learning model generalization, especially compared to a pure data- 

driven approach. 

Meta-models performance 

The next important discussion concerns the meta-models per- 

formance. While the meta-models have the highest construction 

cost, they may not necessarily have the highest accuracy. For 

instance, we see that the accuracy of Case 6 for both oil and 

gas rates is the highest among the cases, while Case 5 meta- 

models are not as accurate. The reason for this is the accuracy 

of the sub-models used in the meta-models. Since the accuracy 

of the model with choke-based features (Cases 2.1) is not high, 

it deteriorates the results of the meta-model. As such, we con- 

clude that it is better to combine the models using engineered 

features within one algorithm (such as in Case 4.1), than in a 

meta-model (Case 5), if the performance of separate models is 

not accurate. However, if the models are accurate enough, the 

joint meta-model can further improve the performance, such as in 

Case 6. 

Also, we conclude that when using the raw data models within 

a meta-model, we can improve the performance of the physics- 

based machine learning models and, at the same time, keep the 

overall model explainable because the weight of the raw data 

model in the meta-model shows its contribution to the overall so- 

lution. As such, we are able to see which part of the process is 

resolved by the physics-aware algorithms and which part is still 

unresolved and covered using the raw data algorithm. A detailed 

analysis is shown in Section 5.1.2 . 

Advantages of comparing different physics-aware machine learning 

models using the proposed approach 

The observed results in the sections above emphasize one of 

the most important conclusions from this work: by analyzing and 

comparing the simulation results using the proposed approaches 

with physically meaningful features, separating the system into 

sub-parts and creating first principles models for each system part, 

it becomes possible to better understand the physical behavior of 

the system, make conclusions about the drawbacks of the applied 

models and propose solutions to create more accurate approaches. 

This is not the case when raw measurements are used directly. In 

that case, even if the solution is accurate, it is hard or impossible 

to comprehend if the solution is physically meaningful or not and 

propose future improvements. 

In Table 4 , we suggest possible cases which can be met by con- 

ducting simultaneous model analysis using Method 1 (feature engi- 

neering), Method 2 (first principles model solution + feature engi- 

neering) and Method 3 (first principles model solution + raw data). 

Here, we propose possible solutions to the problems which can 

arise during such analysis, so that the table can be used as an ini- 

tial reference when the proposed methods applied to any process 

engineering system. For instance, if we see that feature engineering 

method produces low accuracy, while the combinations of the first 

principles models with raw data has high accuracy and adding fea- 

tures to such model reduces the accuracy (the first raw in the ta- 

ble), it is evident that in this case the features are poorly designed. 

As such, to further improve the accuracy, the features should be 

re-designed. 

Of course, other situations may occur during the analysis which 

are not shown in Table 4 , for instance, the accuracy of two meth- 

ods are identically high or low, but using the logic in the table, it 

will be easy to comprehend the solution for any case. 

5.1.2. Feature analysis 

Apart from the potential of improving the accuracy of the mod- 

els, first principles-based algorithms allow to check if the model 

follows the expected physical behavior. Also, it can help to re- 

veal some additional patterns in the data. To explore these op- 

portunities, we perform a feature analysis of the constructed mod- 

els. Fig. 17 shows the feature importance while Fig. 18 shows the 

partial dependence plots for oil and gas rate (or oil and gas rate 

mismatch) prediction models based on the gradient boosting algo- 

rithm. As the values are standardized in model training and test- 

ing, they are removed from the partial dependencies plots because 

they do not add any value, while removing them allows a better vi- 

sualization. The plots are used to identify the qualitative behavior 

of the models. It is also worth noting that the partial dependence 

plots are not produced for Case 5 and Case 6, because in these 

cases the meta-models are considered, so that the partial depen- 

dence plots will be identical to the plots of the meta-model sub- 

models and the importance of sub-models is shown in Fig. 17 . 

Poor features identification 

The first interesting observation is that in the oil rate estima- 

tion case, the choke flow constructed feature has high importance 

when used in the separate choke model cases (Case 2.1 and 2.2), 

while when used with all the other features in Case 4.1, the feature 

has low importance. At the same time, the tubing mixture volume 

flow feature has high importance in both Case 3.1 and 4.1. From 

this observation, we conclude that the choke mixture flow feature 

is not representative enough to describe the flow behavior. This 

conclusion is supported by the rate estimation results shown in 

Fig. 16 a where we see that the accuracy of Case 2.1 and 2.2 is low. 

We observe that by relying on the choke mixture flow feature, the 

algorithm makes poor flow estimates. At the same time, the tubing 

mixture flow feature is better designed and this is again confirmed 

by the results from Fig. 16 a where the tubing based models are rel- 

atively accurate. When all the features are combined (Case 4.1 and 

4.2), the gradient boosting algorithm is capable to distinguish good 

features (tubing model related), make the full use of relatively poor 

features (choke model related) and improve the estimates. 

Transparency of meta-models 

As for the importance of the meta-models features, 

Fig. 17 shows the absolute values of the meta-model weights. 

We see that the meta-models rely on the more accurate models 

(tubing and tubing/choke) which is what we would like to have. 

We see that in the gas estimation case, the meta-model gives 

higher weights to the raw data model than in the oil case. This 

coincides with what we saw in the rate estimation section, where 

adding the raw data model to the first principles model improved 

gas rate estimation accuracy (Case 2.3, 3.3 and 4.3) while in the 
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Table 4 

Analysis of methods for combining first principles with machine learning and proposed problem solutions. 

Accuracy 

Feature engineering First principlesmodel 

solution + mismatch 

withfeature engineering 

First principlesmodel 

solution + mismatch 

withraw data 

Conclusion Solution 

low average high Accurate first principles model,but 

features are poorly designed(too simple) 

to describe the system. 

Re-design featuressuch that they 

describethe target more accurately 

low high average Accurate first principles model,features 

are somewhat correlated withmismatch 

but generally poorly designed 

Re-design existing features makingthem 

more complex andaccurate than the 

created ones 

average low high Inaccurate first principles modeland 

features, raw data betterdescribe the 

system behavior 

Entirely revise the modeland engineered 

features 

average high low Inaccurate first principles modelbut well 

designed features 

Revise the model to furtherimprove 

accuracy of the solution 

high low average Inaccurate first principles modeland 

features are not correlated withthe 

mismatch 

Revise the model, make itmore complex 

such that it betterdescribes the system 

behavior 

high average low Inaccurate first principles modelbut 

well-designed features 

Revise the model, make it morecomplex 

such that it betterdescribes the system 

behavior 

oil rate estimation, this does not improve the performance as sig- 

nificantly. As such, we can say that the constructed models which 

are based on the physics-based features (Case 4.1) are better in 

explaining the given dataset than the raw measurement models 

(Case 1), especially for estimation of the oil rate, because of its 

better performance and higher weight values in the meta-models. 

At the same time, there is still a potential in improving the created 

model accuracy which should increase importance of the physics- 

based machine learning model even further when combined in a 

linear meta-model with the raw measurement model. 

From the estimation and feature importance observations re- 

garding the meta-models, we conclude that, in addition to the im- 

proved estimation accuracy by using the linear meta-model struc- 

tures, we can also evaluate the potential of improving the physics- 

based machine learning models itself. For instance, in Case 5-type 

meta-models, these improvements consider separate models for 

each system part, i.e. we can check if, for instance, by introducing 

the slip relation into the choke model, the importance of the choke 

model in the meta-model increases or decreases and compare with 

the obtained estimation results. More importantly, the same can 

be said for the physics-based machine learning model of the entire 

system used in Case 6. That is, by creating different (more complex 

or less complex) physics-aware models and comparing their contri- 

bution in the meta-model with the raw data models, we can check 

if the new proposed model reduces the influence of the raw data 

based model. The higher the influence of the model, the better the 

model is, because in such a case, the new constructed model will 

better explain the data and reveal the patterns which were pre- 

viously unrevealed by a simpler model. Again, it is expected that 

the model with the higher importance will have higher estimation 

accuracy. 

Insights about physical behavior of the system 

In addition to the better explainability of the machine learning 

algorithms, we can get extract insights about the fluid behavior in 

the system using the constructed feature importance and partial 

dependencies plots. 

Temperature drop effect . Consider the partial dependence plots 

for Case 3.1 for both oil and gas predictions. We see that for the 

tubing case, the larger the temperature drop is, the higher oil 

flowrate is. This is the opposite to the gas case, where we see that 

with the rise of the temperature drop, the gas rate decreases. Such 

model behavior well corresponds to the thermodynamic behavior 

of a hydrocarbon mixture. That is, with the decrease of temper- 

ature of the mixture, more hydrocarbon mass starts being con- 

densed from the gas phase and accumulated in the liquid phase. 

By considering that the reservoir temperature is relatively constant, 

the decrease of the temperature of the fluid will be mainly caused 

by the heat transfer along the well tubing. As such, more hydrocar- 

bon will be observed in the liquid phase if the temperature drop 

along the tubing rises. Such behavior is more difficult to see for 

Case 4.1 because the algorithms rely less on the temperature drop 

feature, so that such partial dependence is less identifiable. 

Explanation of complex multiphase flow behavior . Another obser- 

vation for the tubing model is that with the increase of the mix- 

ture flow feature value, we see the increase of the gas rate and 

the decrease of the oil rate. As such, the model tells us that the 

increase of the mixture volumetric flowrate from the well will 

mainly correspond to the increase of the gas production and de- 

crease of the oil production. This is exactly the behavior of most 

wells at the late production stage, when we see the increase of 

the gas and/or water production and decrease of the oil produc- 

tion. The model captures this relation from the training set. 

At the same time, for the choke model in Case 2.1, we see 

that the increase of the constructed feature of the mixture flow 

and pressure drop corresponds to the increase of rates with some 

occasional non-linear fluctuations caused by the flow irregulari- 

ties and non-smooth solutions produced by gradient boosting algo- 

rithm. For the oil rate, however, this dependence is more difficult 

to see because of the low importance for the algorithm when esti- 

mating the flow, as we observed in Fig. 17 a. Such behavior gives us 

further insights about the system. In our case, the choke opening is 

almost always constant, so the increase of the pressure drop over 

the choke will correspond to the increase of the flowrate. As the 

mixture flowrate feature is also proportionally dependent on the 

pressure drop, it is positively correlated with the rates. The reason 

why the choke model behaves differently from the tubing model 

in terms of the increase/decrease of the phase rate when increas- 

ing the choke mixture rate is that the flowrate measurements are 

taking at the end of the tubing and before the choke ( Fig. 9 ), as 

such the degassing/liquid accumulation effects are considered in 

the tubing model through the fluid density change, while in the 

choke model such effect is not considered. 

Another observation is that the pressure related features such 

as pressure drop across the choke and tubing is generally more 

important for the gas estimation than for the oil estimation. This 

results is physically meaningful because the gas behavior is much 
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Fig. 17. Feature importance analysis for gradient boosting based estimation algorithms. 

more affected by the pressure changes due to its high compress- 

ibility. 

As such, through the provided analysis we see that it is possible 

to answer two questions: ”Can we trust the model?” and ”Can we 

get the new insights about the system?”. More specifically, when 

we observe that the model is able to describe even a simple sys- 

tem behavior in a correct way, the trust in the model increases. 

In addition, after getting deeper insights about the model behavior 

thorough the analysis, we can dig into a more complex physics, for 

instance, which we did not think of before the analysis, e.g., the 

local degassing effects of the multiphase flow in case of our work. 

Advantages of using the proposed feature analysis 

Generally, we can say that, in addition to the evaluation of the 

algorithms transparency, the evaluation of the feature importance 
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Fig. 18. Partial dependence plots for gradient boosting based models. The plots show the qualitative relationship between the features and the target variable. Occasional 

spikes are associated with flow irregularities and non-smooth solutions provided by the gradient boosting algorithm. 

and partial dependencies shows possible directions for improving 

the estimation capabilities of each particular model. This means 

that by taking the discussed evaluation into account, we can dis- 

tinguish which features and models behave non-physically, so that 

we can identify the bottlenecks and try to improve the models and 

features such that they better correspond to the expected physical 

behavior of the system. As a result, improvements of the estima- 

tion accuracy can be expected. 

All the discussed observations would be hard or impossible to 

recover from the plots related to Case 1 only. An importance of 

a particular measurement can tell us much less than a physically 

interpretable feature as well as a comparative study of combi- 

nations of the first principles with machine learning algorithms. 

However, analysis of raw measurements can still be useful to con- 

duct even for the model which uses raw measurements in order 

to see which measurements can be totally irrelevant and not in- 

cluded into the first principles features and models. For instance, 

in this case, this is the choke opening measurement in Case 1. This 

can be especially useful for modeling and analyzing of large scale 

systems. 

5.2. Analysis of neural network results 

5.2.1. Flowrate estimation results 

Results overview and similarities between MLP neural network and 

gradient boosting results Fig. 19 shows the estimation results of the 

oil and gas flowrates using MLP neural networks. Generally, we 

see that the behavior of the models corresponds to the results ob- 

tained using the gradient boosting based models, such that most of 

the trends observed in the gradient boosting case, can also be ob- 

served here. For instance, we see that the combinations of choke 

and tubing features are able to improve the performance and to re- 

construct the rising oil rate trend and decreasing gas rate trend at 

the end of the estimation period (Case 4.1). Apart from that, adding 

the raw data to the choke and tubing models in the gas estima- 

tion case boosts the performance (Case 2.3, 3.3 and 4.3). The same 

as with gradient boosting, the meta-model from Case 6 achieves 

the highest performance for both oil and gas rates. We will not go 

into detail about the neural networks behavior in cases where it is 

similar to the gradient boosting behavior, because these trends are 

well discussed in sections related to the gradient boosting results. 
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Fig. 19. Oil and gas rates estimation by MLP neural network based models. The results are averaged over 5 minutes period, i.e. one point - 5 minute averaged rate. 

Instead, we will focus on the differences between gradient boost- 

ing and neural networks. To compare the results between two al- 

gorithms closer, Tables 5 and 6 show the comparative summary of 

the estimation results. 

Differences between MLP neural network and gradient boosting re- 

sults 

The first difference between the results is that the neural net- 

works are not able to use the tubing model and related features 

(Case 3.1, 3.2 and 3.3) as efficiently as gradient boosting provid- 

ing less accurate results closer to the base case (Case 1) accuracy, 

while still more accurate. The reason for this may be the fact that, 

as will be shown in Section 5.2.2 , the neural networks rely very 

much on the ”Tubing mixture volume flow” feature and almost 

do not consider ”Tubing pressure drop” and ”Tubing temperature 

drop” features. However, the ”Tubing mixture volume flow” alone 

may be too simple to accurately describe the flow. At the same 

time, gradient boosting based models do consider pressure and 

temperature drop features ( Fig. 17 a) which is likely why it helps 

the algorithm to better estimate the flowrates. 

We also see that for the gas estimation cases, in each case the 

MLP neural networks outperform gradient boosting, which is not 

the same for the oil estimation. The exact reason for such behav- 

ior is unclear, but one explanation for such behavior may be that 

neural networks in general and MLP neural networks in particu- 
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Fig. 20. Feature importance analysis for MLP neural network. 

lar may be better at regression of more smooth values and sys- 

tem behavior (in this case - gas flow) because neural networks are 

typically better than gradient boosting in interpolation tasks. This 

is because gradient boosting with regression trees produces piece- 

wise constant predictions while neural networks produce smooth 

interpolation approximations. This hypothesis will also be checked 

and discussed later for LSTM neural networks. 

5.2.2. Feature analysis 

Feature analysis overview and similarities between MLP neural 

network and gradient boosting results 

Fig. 20 shows the feature analysis of the MLP neural networks 

based models. We see that for most of the cases with physics- 

based features, the feature importances are similar between the 

neural networks and gradient boosting. Some minor differences 
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Fig. 21. Partial dependence plots for MLP neural network based models. The plots show the qualitative relationship between the features and the target variable. The plots 

do not have non-convex spikes as in the gradient boosting case due to smooth solutions provided by neural networks. 

exist, but they are caused by differences in the algorithms na- 

ture. What is more important is that the partial dependencies plots 

shown in Fig. 21 produce similar trends in most of the cases be- 

tween neural networks and gradient boosting, except the fact that 

the plots produced by neural networks are more smooth. As such, 

we see that the algorithms interpret the physical behavior of the 

system in a similar way. This emphasizes that the consistent ap- 

proach for machine learning modeling with first principles pro- 

posed in this work allows to produce consistent results and re- 

veal the main structure of the data. It also emphasizes the fact 

that using a model-agnostic approach for feature evaluation can 

be more suitable and insightful than model-specific ones and gives 

the opportunity to better evaluate the validity of the produced 

estimates. 

Differences between MLP neural network and gradient boosting 

feature analysis results 

The major difference between MLP neural networks and gra- 

dient boosting partial dependencies plots is that the neural net- 

works estimate the decrease of the oil flow when the choke mix- 

ture flow increases when used in Case 2.1 and 2.2. This is dif- 

ferent from what gradient boosting suggests and what we would 

expect based on the physical understanding of the system. At the 

same time, when all the features are used together (Case 4.1 and 

4.2), the neural networks give a more similar behavior to the gra- 

dient boosting which we found to be physically meaningful. The 

reason why the neural network gives this unreasonable evaluation 

of the choke mixture flow feature when used in the choke model 

alone is hard to explain and kept for future investigations. Despite 

some small differences, we can still see the big advantage of us- 

ing physics-based features in terms of improved and consistent ex- 

plainability of different models and algorithms, when compared to 

the raw data models. 

5.3. Analysis of LSTM results 

5.3.1. Flowrate estimation results 

As discussed, for the LSTM neural network, only the estima- 

tion results are analyzed while the feature importance analysis is 

not conducted because the LSTM dependence on time step features 

which is not implemented in the Skater library used for the analy- 

sis. Despite the absence of feature importance analysis, we decided 

to include these results because it allows to analyze the depen- 
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Fig. 22. Oil and gas rates estimation by LSTM neural network. The results are averaged over 5 minutes period, i.e. one point - 5 minute averaged rate. 

dence of the results accuracy at the current time step on the data 

from the past time steps and compare it with the static approach 

used in MLP neural networks and gradient boosting. 

Results overview and similarities between LSTM and gradient 

boosting/MLP neural network results 

Fig. 22 shows the simulation results for the oil and gas flowrate 

estimation using LSTM neural networks. From the results we see 

some of the trends observed for gradient boosting and MLP neu- 

ral networks can also be observed here. For instance, for the oil 

flowrate estimation, the pure choke-based machine learning mod- 

els (Case 2.1, 2.2 and 2.3) do not perform well while try to capture 

dynamic behavior of the system which is represented by flowrate 

spike estimates. Also, similar to MLP neural networks and gradient 

boosting, the tubing-based machine learning models (Case 3.1, 3.2 

and 3.3) capture a more steady state behavior of the system pro- 

ducing smooth oil flow estimation results. We also see that, similar 

to MLP neural networks, LSTM neural networks produce better re- 

sults for gas rate estimation case, while in oil rate estimation cases 

gradient boosting is generally more accurate. This fact confirms the 

hypothesis, made for MLP neural networks previously, that the rea- 

son for such behavior is that neural network are generally better 

at predicting smooth regression trends due to their high interpola- 
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tion capabilities. However, trends with high fluctuations may be, in 

some cases, better described by piecewise constant approximations 

by gradient boosting. 

Differences between LSTM and gradient boosting/MLP neural net- 

work results 

The first difference between the algorithms to notice is that 

even when combining choke and tubing features in the oil case 

(Case 4.1), the rising trend at the end of the estimation period 

is not captured. So, we can see that, despite the LSTM network 

uses the previous measurements to predict the flow at the cur- 

rent time step, it does not necessarily help to produce an accurate 

estimate. In fact, we observed that the MLP neural network and 

gradient boosting, being totally different algorithms but both tak- 

ing only the current time step measurements, were able to esti- 

mate the increasing flowrate trend accurately. The LSTM, however, 

in Case 4.1, takes 15 past time step measurements to make a pre- 

diction. As such, we conclude that it is not always a good idea to 

take the past measurements into account in order to predict the 

target variable value at the current time step. For instance, in case 

of the oil flowrate, the flow behavior is irregular which makes it 

difficult for the LSTM network to accurately reconstruct the time 

dependent flow pattern. 

For the gas case, however, the LSTM generally performs much 

better than gradient boosting and MLP neural networks. We see 

that the gas flow behavior is much more stable, so that it is eas- 

ier for the LSTM to reconstruct the time dependent pattern of 

the flow. The average time window chosen by the LSTM networks 

among the cases for the gas rate estimation via Bayesian optimiza- 

tion is 10, however, the exact value is case dependent. 

When should we use LSTM in estimation of process system vari- 

ables? 

Summarizing all the results on LSTM and comparing it with 

static models of MLP neural networks and gradient boosting, we 

can conclude that using LSTM may be beneficial when the trend 

of the target variable is relatively smooth, but more importantly, 

assumed to have a time dependent pattern. In this work, the 

gas flowrate follows such a trend. This can be seen not only on 

the estimation result of the test data set show in Fig. 22 b, but 

also in Fig. 10 where the entire gas flowrate trend is shown. 

In fact, in Fig. 10 we see that despite the fluctuating behav- 

ior, the gas flowrate has a systematic decreasing trend in time. 

The oil flowrate, however, has many irregular ups and downs, 

such that it is nearly impossible for a machine learning algo- 

rithm to reconstruct such a behavior. Therefore, when an LSTM is 

used to estimate it, the algorithm may try to learn the trend in 

time which simply does not exist which leads to high estimation 

error. 

6. Results summary 

In this section, we summarize the results of 72 cases which 

consider 12 different case studies of combining machine learning 

with first principles using 3 different machine learning algorithms. 

First, using Fig. 23 , we describe how the reader can choose a suit- 

able method for combining first principles models with machine 

learning depending on the process system under consideration by 

following a step-by-step approach. In Table 5 , we summarize and 

average the RMSE for each algorithm and each flowrate. Such com- 

parison is intended to shown which algorithm was the most accu- 

rate on average over the case studies conducted in this work for 

different system behaviors (oil and gas rates). Table 6 shows the 

average error over the algorithms (MLP neural network, gradient 

boosting, LSTM) for each first principles model as well as the aver- 

aged meta-model results to give more insights about the accuracy 

of the proposed methods. Then, we discuss the overall applicability 

of each method and its potential improvements. 

How to choose the best method for your system? 

In this work, we extensively tested several methods which vary 

by their accuracy, construction cost and applicability to different 

system conditions. In Fig. 23 , we summarize the procedure of how 

all the proposed methods can be most effectively used when ap- 

plied to modeling of a new process engineering system. By follow- 

ing these guidelines, the reader will hopefully be able to quickly 

choose the method which satisfies the desired accuracy and the 

amount of time available for model construction. Below in this sec- 

tion, we summarize the results which we observed in this work 

and which became the basis for creating Fig. 23 with the proposed 

selection guidelines. 

Most accurate algorithms for oil and gas flowrates 

From Table 5 , we see that, among the algorithms, in the 

oil case, MLP neural network performs best on average (mean 

RMSE = 0.0458), while gradient boosting shows slightly worse mean 

RMSE and LSTM performs relatively poorly. However, for the gas 

flowrate, the mean RMSE of LSTM is much lower than for MLP 

neural network and gradient boosting. As such, we confirm so- 

called ”No Free Lunch” theorem ( Wolpert et al., 1997 ) which states 

that there is no single algorithm which fits best for all cases. In this 

particular case, since the oil flowrate fluctuations are highly irreg- 

ular, the time dependent pattern which LSTM is trying to find may 

not exist, so that the learning of the non-existing pattern deterio- 

rates the results. As such, the algorithms which use only one time 

step measurements (MLP neural network and gradient boosting) 

outperform LSTM and perform almost equally well. At the same 

time, when the flow fluctuations have a more regular behavior and 

may have a time dependent pattern as in the gas rate case, LSTM 

is able to fit the data much better by taking advantage of the pre- 

vious time step data. 

Superior accuracy of meta-models and applicability of feature en- 

gineering 

From Table 6 we see that in the meta-model which combines 

the model with all the created features for choke and tubing with 

the raw data model (Method 5) outperforms all the other meth- 

ods which results in the best averaged performance (RMSE = 0.0340 

and 0.0233). If choosing between the methods which do not con- 

sider meta-modeling, feature engineering (Method 1) shows the 

best performance (italic values). From this we conclude that if the 

goal of modeling is to achieve the highest performance, the lin- 

ear meta-models which combines most of the available informa- 

tion is a good choice. Such models are slightly more difficult to 

construct, but they still maintain the interpretable behavior and 

generally improve the performance. Otherwise, the feature engi- 

neering method is another possibility which is slightly easier to 

construct that the meta-models, less accurate but still shows a 

good performance. 

Applicability and future improvements of Methods 2 and 3 - com- 

binations of first principles model solutions and machine learning 

models 

As for the other methods of combining first principles and ma- 

chine learning (Method 2 and 3), in this case, they performed less 

accurately than other discussed methods. However, this does not 

mean that we should not consider them to apply for other cases. 

For instance, as we observed for the gas estimation case, the com- 

bination of the first principles models with raw data (Case 2.3, 3.3 

and 4.3) produced accurate performance. However, in the oil rate 

estimation case which has irregular behavior, the proposed models 

appear to be too simple to describe the system behavior accurately. 

As such, to be successfully applied, the models would need to be 

improved prior to modeling. 

One possibility to do this is to pre-solve the models numerically 

for a small number of mesh points while maintaining the compu- 

tational efficiency, so that the solution may not be very accurate, 

but still much better than one averaged over the entire system. An- 
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Fig. 23. Summary of the method selection for process system modeling by combining first principles and machine learning models. 

Table 5 

RMSE summary for the conducted case studies. Underlined values - lowest error 

within the algorithm for each flowrate, bold values - lowest error for each flowrate 

within all algorithms, italic bold values - lowest mean error for each flowrate for all 

cases. 

Case Oil rate Gas rate 

XGBoost MLP NN LSTM XGBoost MLP NN LSTM 

Case 1 0.044 0.052 0.043 0.040 0.035 0.033 

Case 2.1 0.056 0.054 0.060 0.045 0.041 0.038 

Case 2.2 0.060 0.063 0.062 0.048 0.042 0.042 

Case 2.3 0.064 0.040 0.061 0.035 0.031 0.030 

Case 3.1 0.038 0.048 0.041 0.038 0.034 0.025 

Case 3.2 0.042 0.047 0.043 0.036 0.031 0.023 

Case 3.3 0.040 0.043 0.040 0.031 0.030 0.021 

Case 4.1 0.037 0.038 0.045 0.028 0.027 0.020 

Case 4.2 0.057 0.038 0.053 0.037 0.035 0.021 

Case 4.3 0.047 0.045 0.040 0.030 0.028 0.023 

Case 5 0.041 0.050 0.042 0.048 0.036 0.037 

Case 6 0.030 0.031 0.041 0.024 0.023 0.020 

Mean error 0.0463 0.0458 0.0476 0.0367 0.0328 0.0278 

other possibility is to slightly pre-tune the model to the data, for 

instance, using a linear model, and then use in combination with 

machine learning. Finally, the complexity of the models can be in- 

creased, so that the model become able to better resolve the sys- 

tem behavior, for instance, in this case, this can be a slip model for 

the choke equation. However, still computational efficiency should 

be considered, so that the models should not become very com- 

plex. All these proposed improvements will lead to the fact that 

the solutions from the first principles model will be more accu- 

rate, as such the mismatch between the actual target value and 

the solution will be lower and easier to be covered by a machine 

learning algorithm. 
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Table 6 

Summary of RMSE averaged over the algorithms for each method and each flowrate, e.g. choke oil RMSE of 0.0566 = (0.056 + 0.054 + 0.060)/3. Underlined values - 

the lowest error within each method for each flowrate, italic values - the lowest error among the methods excluding meta-models, bold values - lowest error for each 

flowrate among all methods. 

Method 

Model Base method Method 1 Method 2 Method 3 Method 4 Method 5 

Raw data Feature First principles First principles Linear meta-model Linear meta-model of 

measurements engineering model solution + model solution + of models with selected model with created 

as features feature engineering raw data model created features features and raw data model 

(Case 2 and 3) (Case 4 and base case) 

Oil Gas Oil Gas Oil Gas Oil Gas Oil Gas Oil Gas 

Choke (Case 2) - - 0.0566 0.0413 0.0616 0.0440 0.0550 0.0320 0.0443 0.0403 - - 

Tubing (Case 3) - - 0.0423 0.0323 0.0440 0.0300 0.0410 0.0273 

Choke and - - 0.0400 0.0250 0.0467 0.0310 0.0440 0.0270 - - 0.0340 0.0223 

tubing (Case 4) 

Raw data 0.0463 0.0360 - - - - - - 

(base case) 

7. Conclusions 

In this paper, we propose and analyze several methods for com- 

bining first principles models with machine learning applied to 

multiphase flowrate estimation problem in petroleum production 

systems. For the machine learning algorithms, MLP and LSTM neu- 

ral networks and gradient boosting were chosen. The proposed 

methods for combining first principles with machine learning were 

applied to all the aforementioned algorithms. The algorithms were 

systematically tuned via a pipeline which is based on the Bayesian 

optimization approach which ensures fair and accurate model tun- 

ing and comparison. 

We found that by introducing first principles models into ma- 

chine learning algorithms, it becomes possible to improve the es- 

timation performance if compared to approaches when raw mea- 

surement data is used directly, as it has been done for the con- 

sidered problem in many other works reported in the literature. 

We found that for the irregular system behavior, it is better to 

use static models such as MLP neural networks or gradient boost- 

ing and not take past measurements into account. On the other 

hand, when the system behavior is less complex and has a time- 

dependent pattern, LSTM neural networks which consider the past 

measurements show the superior performance. 

We discovered that linear meta-models which combine physics- 

aware machine learning algorithms with raw measurement mod- 

els show the most accurate performance while maintaining good 

interpretability. Feature engineering method can also be a good 

choice to incorporate first principles into machine learning because 

it has lower development cost than linear meta-models while 

maintains a reasonable performance. The methods which combine 

first principles models solution with machine learning showed less 

accurate performance for complex system behavior than the meta- 

models and feature engineering approach, while in less complex 

system they were accurate enough. As such, to be applied for com- 

plex systems, the first principles models should be relatively accu- 

rate, such that they produce a reasonable solution and small mis- 

match between its solution and the true target value which can 

further be covered by machine learning algorithms. 

Another important finding is that by introducing physics-based 

features into machine learning algorithms, it is possible to create 

much more interpretable models than models which use raw data 

directly. We showed that by using model-agnostic feature impor- 

tance evaluation methods and revealing partial dependences be- 

tween the features and the target, it is possible not only to ensure 

that the obtained machine learning model behaves physically fea- 

sible, but also reveal additional insights about the complex system 

behavior, hidden patterns, physical phenomena and identify possi- 

ble directions for the model improvements. 

Overall, we conclude that to successfully apply machine learn- 

ing to complex process engineering systems in general and Virtual 

Flow Metering in particular, we need to incorporate first principles 

approaches into machine learning algorithms. This approach cre- 

ates more accurate and, more importantly, more transparent data- 

driven solutions which will develop more trust to these systems 

among the operating professionals and will further contribute to a 

more efficient and reliable systems operation. 
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3.4 Discussion of Paper III - Combining Machine Learning and
Process Engineering Physics Towards Enhanced Accuracy
and Explainability of Data-Driven Models

In Paper III, we considered a multiphase flow estimation problem as an applic-
ation example of the proposed framework of combining machine learning with
process engineering physics. At the same time, as emphasized in the introduction
of the paper, the main focus and contributions aimed to be delivered are the general
framework of hybrid modelling as well as an attempt to show how this approach
can make data-driven models more transparent. As such, deeper details of the
considered system are not thoroughly discussed. However, it is also possible that
features of the system and its behavior can be of interest for petroleum engineering
domain experts, so that it is important to discuss these features in more detail, so
this section is intended for this discussion.

3.4.1 Flow conditions discussion

As pointed out in Section 3.1 of the paper, all the data used for model training are
real, meaning that it was provided by one of the operators of an oil and gas field
on the Norwegian Continental Shelf. Since the data was not generated artificially
using a multiphase flow simulator, the exact conditions of the well production
behavior can only roughly be estimated, purely based on the provided data without
additional insights on the transient phenomena development along the well tubing
or the production choke. For instance, it is hard to determine if the considered
flowrates represent gravity or friction dominated flow conditions.

To deeper understand the challenges of the considered problem, we first analyze
dynamic conditions and its time scale for training, validation and test sets. To do
this, we use the steady state detection algorithm proposed by Dalheim and Steen
(2020). The idea behind the algorithm is that any process signal can be modeled as
a linear trend function within a specified time window and has the following form:

zt = b0 + b1t+ at (3.1)

where zt denotes the signal value, b0 - the intercept of the linear trend, b1 - the
trend slope, t - the time instance, at - the white noise.

In the method, the intercept and the slope are computed over the specified time
window and then the standard deviations of the noise and the slope are determined.
Then, the null hypothesis stating that the process signal is stationary about the time
window intercept b0 is tested against the two-tailed value of the Student’s statistic.
Within the algorithm, we assume that steady state is achieved when 90% of the
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Figure 3.4: Assessment of the used steady state detection algorithm using a 10 min time
window

points inside the time window is steady. Using this assumption, each point is
evaluated n times (equal to the window size) due to the sliding window approach.
Then, the number of times when each point is evaluated to be at steady state is
counted. Finally, again assuming that 90% of out n times the point is evaluated
to be at steady state, we assign the condition (steady state or transient) that is
determined for the particular point. As stated in Dalheim and Steen (2020), the
percentage at which the point should be considered to be at steady or transient
states highly depends on the application. In this case, several thresholds have been
tested for different time window lengths and 90% appeared to be a reasonable
value.

To exemplify the ability of this method to identify steady state regions of the
flowrates, pressure and temperature signals of the considered multiphase flow
problem using the assumed thresholds, a time segment of four days is selected
within the training set of the data. The window length of 10 points (10 minutes)
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Window length (min)
Dataset 5 10 15 30 60
Training 0% 55.4% 77.1% 91.6% 95.1%

Validation 0% 47.9% 73.1% 92.9% 96.9%
Test 0% 64.3% 91.9% 99.1% 99.6%

Whole dataset 0% 54.7% 79.2% 93.8% 96.8%

Table 3.1: Fraction of steady state conditions for the oil flowrate relative to the considered
dataset size and different window lengths

is selected for this initial assessment. Figure 3.4 shows the obtained results for oil
and gas flowrates as well as wellhead pressure and temperature measurements.

In the figure, we see that in most of the cases the steady state and transient re-
gions are very similar along the time axis for all the evaluated parameters. What
is also essential is the fact that the transient regions that can be assessed visually
are also evaluated as dynamic by the steady state detection algorithm. The steady
state regions are also reasonably well determined. Moreover, we see that between
the highly transient regions, steady state regions are also detected. This can be
well seen, for instance, in the range of 2000-3000 time points. This observation
additionally proves that the used algorithm with the made assumptions is adequate
in identifying the states of the system, because it does not overlook potentially
steady state conditions inside generally dynamic conditions. In some cases, poten-
tially transient regions are treated as steady state, but the general behavior of the
algorithm is considered as satisfactory.

To investigate the behavior of the system along the entire dataset, this algorithm is
applied for the oil and gas flowrates as an example within the whole dataset and
training, validation and test set separately. We compute the fraction of steady state
conditions for each case using different window lengths. The simulations results
for the oil flowrate are shown in Table 3.1

From the table, we can make several observations. First, we see that the test set
has larger steady state fractions for all window lengths if compared to the training
and validation sets. Secondly, at the window length of 30 min, for all the cases the
steady state fraction reaches 90% and higher which means that it can be said that
generally the system can be considered to be at steady state within the time scale
of 30 min. However, even at 15 min the fraction is almost 80% (and almost 92%
for the test case) which is also high and one can assume that the system is close to
steady state within the time scale of 15 min. Finally, we see that within the time
window of 5 min, none of the datasets reaches steady state conditions.
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Figure 3.5: Assessment of the used steady state detection algorithm for 30 min time
window

Window length (min)
Dataset 5 10 15 30 60
Training 0% 43.8% 61.6% 91.1% 91.5%

Validation 0% 37.9% 59.5% 91.5% 92.9%
Test 0% 63.9% 83.3% 94.4% 96.4%

Whole dataset 0% 46.3% 66.1% 92.1% 93.2%

Table 3.2: Fraction of steady state conditions for the gas flowrate relative to the considered
dataset size and different window lengths

Table 3.2 shows the same simulation results but for the gas flowrate. Within the
table we observe similar trends and the magnitude of values if compared to the oil
flowrate results. However, we see that the steady state fractions for the gas flowrate
are generally lower than for the oil flowrate for the same window lengths.
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Overall, based on the visual assessment and the simulations results shown in Table
3.1 and 3.2, we can conclude that the adequate timescale to describe the dynamics
of the system is somewhere in the range between 10 and 20 min, and 15 min can
be considered as a good average value. A smaller time scale, for instance, 5 min,
resulted in the fact that no steady state presents in the data, while in Figure 3.4 we
can clearly identify steady state regions which are similar for the flow, pressure
and temperature measurements. At the same time, the larger time scales overes-
timate the fraction of steady state conditions. This conclusion is made based on
the assessment of the same data range as in Figure 3.4 but for the time scale of
30 min. The results of the simulations are shown in Figure 3.5. In the figure we
see that some of the regions which are clearly unsteady are treated as steady, for
instance, around the 1000th time point and between the 3000th and 4000th time
points.

3.4.2 Additional discussion on simulation results by hybrid machine learn-
ing algorithms

Provided the new analysis of the flow conditions above, we would like to addition-
ally discuss some of the obtained simulation results to dig deeper into the abilities
of hybrid machine learning algorithms in estimating process engineering paramet-
ers. However, before this, it is important to mention the information about the fluid
and system characteristics that are not well-described in the paper. Despite the fact
that we considered only oil and gas flowrates for the flow estimation problem, the
water phase is also present in the multiphase flow. Based on the information on the
estimated flow by the multiphase flow meters, it has been determined that the aver-
age value of the local water cut (WC) at the multiphase flowrate conditions is 0.55
with standard deviation of 0.16. The Gas-Oil ratio (GOR) at standard conditions
is not known, but the average local gas volume fraction is 0.29 with standard devi-
ation of 0.05. Another point that is not well-mentioned in the paper but that most
likely has an impact on the result is the choke level information. The mean value
of the choke opening is 0.62 and during most of the operation time the choke pos-
ition is constant while the pressure drop over the choke can significantly fluctuate
around the mean value of 6.53 bar and the standard deviation of 3.1 bar.

Influence of flow conditions on choke model-based algorithms. As discussed in
the paper, the choke model-based models for all the cases and machine learning al-
gorithms perform worse when compared to the tubing-based models and combined
models with tubing and choke features together. One of the discussed points why
this can be the case was the fact that we used a simple choke model which does
not take into account more complex effects such as gas slip. Considering the fact
that the mean gas volume fraction is relatively high as discussed above, the can
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indeed affect the performance of the model. However, this assumption was not
tested in the paper and was left for future work. In the additional analysis, we have
checked this assumption and found that by introducing the slip effect through the
Chisholm slip model (Chisholm (1985)), no noticeable improvement is observed
and the feature of the mixture mass flow through the choke with and without slip
for the oil rate target has the Spearman correlation of 0.16 and the Pearson correl-
ation of 0.12. The difference between the models with and without the slip effect
in the correlation values was in the order of 0.001 which is negligible. As such,
it is not expected to have better predictive capabilities. Also, the correlation val-
ues themselves are small which additionally proves the obtained results with low
accuracy of choke-based models.

However, the main reason why the choke model does not work well is the fact that
the oil rate has very small correlation values of 0.02 relative to the pressure drop
over the choke and the liquid rate (oil + water) has the correlation values about 0.3
which is still not high. This, in turn, results in low correlation for the mixture mass
rate feature discussed above. In addition, we observed that the pressure across the
choke fluctuates quite significantly while the choke opening is constant. All these
facts result in a low accuracy of the choke-based machine learning models.

Influence of flow conditions on steady vs transient machine learning models.
As we discussed in the paper, for the oil rate, gradient boosting and feed-forward
neural networks showed a better predictive performance when compared to the
LSTM-based models while for the gas rate, LSTM neural networks were better.
Our visual assessment of the level of instabilities and dynamic conditions men-
tioned in the paper was wrong because it seemed that the oil rate fluctuations are
larger and more frequent. However, as we see in Table 3.1 and 3.2, the gas rate has
smaller fractions of steady state conditions along the dataset, and the difference is
noticeable for the window lengths that are concluded to be representable (10-15
min).

At the same time, the newly obtained results for the steady state detection al-
gorithm additionally prove the simulation results presented in the paper, meaning
that the LSTM neural networks should perform better in simulating a dynamic
system environment, since it is expected to track the influence of the past state
on the current state. Also, as mentioned in the paper, the window sizes selected
by the Bayesian Optimization algorithm were, in general, between 10 and 15 steps
(minutes) which seems reasonable based on the results obtained by the steady state
detection algorithm that also estimates the descriptive time scale of the system
within a similar range.

In addition to the time scale of the multiphase phenomena, we can also assess the
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Figure 3.6: Linear slopes of the oil and gas rates on the training and test sets

long time dependency for the training and test ranges of the dataset for both target
variables. In the paper, we did not consider such an analysis closely. In Figure 3.6,
we plot every 15th value for the training set and every 10th value for the test set of
the variables and the linear regression line that represents the time declining trend.
The downsampling is made for visualization purposes.

From the figure we see that the slope for the gas rate for both training and tests
are very similar (around 15% difference), while the long-term time trend of the oil
rate differs by more than 50%. Moreover, when de-trending the long-term time
flowrate dependency (i.e. subtracting the linearly regressed value from the data),
the distributions of the data for the gas rate are similar for the training and test
sets, while for the oil rate they are very different. The distributions are shown in
Figure 3.7. We see that none of the modes observed in the training set for the oil
rate is close to the mean/median observed in the test set. This means that if the
linear trend is well-captured by a machine learning model in the training for the
gas rate, it is relatively easy to make accurate regression on the test set, which
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Figure 3.7: Distributions of the flowrate data when the linear time trend is removed

is not the same for the oil rate. Since LSTM takes into account not only short,
but the long-term phenomena as well, it is capable to reconstruct the trend in the
test set for the gas rate well using choke and tubing models alone, as it can be
seen in Fig. 22 in the paper. The static algorithms, however, are not accurate in
such trend representing. As for the oil rate, all the algorithms have difficulties in
reconstructing the trends using only choke and tubing models alone, until more
complex models are made.

As such, we conclude that the results obtained in the paper are consistent with
what we observe when we digging deeper into different timescales of the system
behavior. We see that the window length selected by the Bayesian Optimization is
similar to the time scale of the system obtained through the evaluation of the data
by the steady state detection algorithm. We also revealed additional confirmations
why LSTM performed well for gas rate prediction and found out that this machine
learning algorithm is powerful in capturing short and long time scale phenomena
of process engineering systems provided that the system behavior is consistent in
time.

3.4.3 Discussion on PVT properties and its influence on the flowrate estim-
ates

As we discussed in the paper, the fluid composition was given to perform estim-
ation. However, the accuracy of this composition was under doubts, as such the
computed phase properties that are used for the first principles models that are
combined with machine learning algorithms are not expected to be accurate. On
the other hard, as we discussed in Section 2.1 of this thesis, multiphase flow meter
estimates also depend on accuracy of the PVT data. As such, it can be argued that
we fit our hybrid machine learning models to potentially wrong flowrates produced
by the multiphase flow meter.
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In principle, this is a valid argument, however, there are several reasons on why
we try to avoid using the provided fluid composition. First of all, since the data
considered for estimation in Paper III are real, the provider of the data was not
completely sure that the given PVT data is the one used for computing the volu-
metric flowrates by the multiphase flow meter. It was said that this fluid composi-
tion can be considered as a reasonable one, but there is no assurance that this exact
composition has been used for multiphase flow estimation by the MPFM, and also
the composition was taken long time ago. This is why we claimed that the PVT
properties that are computed using the given composition can be inaccurate.

Another interesting point is that, as we found out in Section 2.1 of this thesis, the
influence of errors in PVT properties can be more severe for Virtual Flow Meters
than for MPFMs. This analysis has been conducted after the paper was published,
but now it can be considered as an additional argument for avoiding the usage of
erroneous fluid properties for hybrid VFM models. Of course, in our approach in
Paper III, we consider a totally different VFM system if compared to the one used
in Section 2.1, and the conclusions obtained in the discussion in Section 2.1 cannot
be directly related to the models in Paper III. On the other hand, if we consider the
models in Eq. 13 and 15 of Paper III, the results are proportional to

√
rhomix. This

can lead to roughly 3% error, if assume that the densities are biased by 10%, as we
did in Section 2.1. If we would have multiplied it by a wrongly computed phase
fraction, we could introduced an additional error. Again, this analysis has not been
done in the paper, but can be considered as an additional argument for avoiding an
extensive use of potentially wrong PVT data for hybrid VFM systems.

The last but not the least, in the paper, we tried to consider a general framework
of hybrid machine learning modeling. This means that the Virtual Flow Metering
has been taken as an example for testing the proposed framework out. As such,
the example of uncertain PVT properties was also inspired by the fact that in many
process engineering systems the properties of the processed medium might not be
fully available. We are aware that such assumptions might seem slightly artificial
for the provided example of VFM since the target variable can also be influenced
by wrong fluid properties. However, if assuming that the flowrates are measured
relatively accurately, we proved that by using the models that reflect the general be-
havior of the system and avoiding unnecessary errors, it is possible to obtain good
estimation results in process engineering systems suing hybrid machine learning
models.
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Chapter 4

Estimation of Uncertainties of
First Principles Multiphase Flow
Models Using Sensitivities and
Bayesian Machine Learning

This chapter consists of two papers. Paper IV describes the sensitivity analysis
of a first principles-based Virtual Flow Meter with respect to the measurement
noise, drift and simplicity of heat transfer modeling of a well tubing. Paper V
describes applications of Bayesian Machine Learning for tuning first principles
models based on a case study of a three-phase pipe flow model.
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4.1 Statistical Analysis of Effect of Sensor Degradation and
Heat Transfer Modeling on Multiphase Flowrate Estimates
from a Virtual Flow Meter (Paper IV)

Paper IV describes the sensitivity analysis of a first principles-based Virtual Flow
Meter with respect to the measurement noise, drift and simplicity of heat transfer
modeling of a well tubing. It exemplifies the importance of model re-calibration
and the need for measurement drift handling in multiphase flowrate estimation sys-
tems. The main motivation for this paper was to see how the first principles-based
Virtual Flow Metering systems react to the uncertainties in measurements such as
noise and drift as it is usually present in real field applications, but such analysis
has not been conducted before. In addition, it was interesting to see which kind of
simplifications are possible to make for the first principles Virtual Flow Metering
systems in terms of heat transfer modeling because the rigorous approach requires
a lot of effort and simplifications of this process are desirable.

Bikmukhametov, T., Stanko, M., and Jäschke, J. (2018). Statistical Analysis of
Effect of Sensor Degradation and Heat Transfer Modeling on Multiphase Flowrate
Estimates from a Virtual Flow Meter. SPE Asia Pacific Oil and Gas Conference
and Exhibition. Society of Petroleum Engineers, doi.org/10.2118/191962-MS
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Abstract
Accurate flowrate measurements in petroleum production systems are important for optimization, fiscal
metering, and production allocation. Sometimes, Virtual Flow Meters (VFMs) are used for this purpose
instead of physical meters to reduce cost. These systems estimate the flowrates using a computational model
that represents accurately the production system of interest. Since VFM systems mostly rely on pressure and
temperature measurements, it is important to understand how accuracy and degradation of sensors influence
the VFM flowrate estimates.

In this work, a VFM system for a subsea oil well was created using a transient multiphase model built
in a commercial software and controlled from an external computational routine. A statistical analysis of
VFM simulation results was performed to quantify the effect of pressure sensors degradation on the VFM
flowrate estimates. In addition, the effect of temperature matching and a segmented approach to represent
the well heat transfer were evaluated.

The analysis showed that the sensor degradation effect should be considered in VFM systems carefully,
especially if a high estimation accuracy is required. Measurement drift was found to be the most critical
factor of the sensor degradation but high measurement noise can also cause considerable errors of the
flowrate estimates. In addition, it was found that a complex representation of the wellbore heat transfer is
not required to obtain accurate flowrate predictions and simplified models can be used instead.

Introduction
In oil and gas production, continuous information about oil, gas and water flowrates from each well is
important for production optimization, rate allocation and reservoir management (Falcone et al. 2001). In
offshore field developments, it is often the case that the field has shared licenses so that accurate estimates
of the produced volume of hydrocarbons are essential to determine partner share. This case also holds for
smaller subsea fields which are tied-in with the existing infrastructures.

In addition to the conventional approach of flowrate estimation using well test separators, physical
multiphase flow meters (MPFM) are used for this purpose (Falcone et al. 2009). The advantage of the
multiphase flow meters is the fact that they can measure flowrates without separating the oil, gas and water
streams first as it is typically performed in test separators. By mounting them inline on the wellhead, there
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is no need to re-route well production to perform the testing, thus, measurements can be often obtained in
real-time. On the other hand, these devices are expensive and exposed to failures and degradation which
requires costly interventions for repair or replacement of the meters (Patel et al. 2014).

Another alternative is Virtual Flow Metering. This technology uses measurements from sensors (typically
pressure and temperature) together with a numerical model of the system to estimate flowrates. Depending
on the extension and type of the model, it usually requires some information about physical parameters
of the system (e.g. pipe size, fluid properties, thermodynamic behavior and choke opening) as presented
by Holmås and Løvli (2011) and Melbø et al. (2003). By combining all this information, it is possible to
estimate the flowrates of oil, gas and water by modeling specific parts of the production system such as
wellbore, choke, near-well region or using a combination of these models (Haldipur and Metcalf 2008).
The discrepancies between the estimated and reference parameters can be minimized using an optimization
algorithm (Holmås and Løvli 2011).

Since Virtual Flow Meters rely on sensor readings for real-time flowrate estimation, it is important to
understand the influence of the sensors accuracy on the flowrate predictions. In general, sensors in oil
and gas wells are exposed to harsh conditions such as high pressure and temperature, sand erosion and
scaling. This is particularly true for downhole sensors. Such conditions cause mechanical degradation which
increases the measurement noise and drift. (Kikani et al. 1997). As such, one of the questions addressed in
this paper is how the sensor degradation impacts the VFM flowrate estimates. A somewhat similar question
was addressed by Tangen et al. (2017) and Lansangan (2012). In both cases, the authors introduced an
error to the measurements and estimated the VFM accuracy. However, in the analysis only extreme values
were considerd, i.e. only the maximum deviations of the flowrates were calculated for specific values of
the measurement errors.

In this paper, in addition to the extreme values, we estimate the entire probabilistic distribution of the
flowrates and compare the distribution parameters under various measurement errors to estimate the trend.
To do this, we performed multiple simulations under random measurement errors and evaluated the results
using statistical methods. The results of this analysis can contribute to a deeper understanding by VFM
customers about the effect of the measurement error on the flowrate estimates, such that they can evaluate
when this effect is important and should be considered during the field operation.

Another aspect which can influence the precision of the flowrate estimates is the fidelity of the applied
models. For example, in a VFM system we can assume that the heat transfer coefficient is constant along
the wellbore and then use it as a tuning parameter to fit a specific temperature at the wellhead. However, in
reality the heat transfer coefficient varies along the wellbore due to the mechanical structure of the well. In
this paper, we consider both constant and varying heat transfer coefficients for the heat transfer VFM part
to study the difference between the approaches. The results from this study can contribute to optimization
of VFM tuning strategies in terms of accuracy and computational time.

Well architecture and fluid properties
In this study, we consider a subsea oil well. The well consists of a conductor, surface, intermediate and
production casings, liner and tubing. Fig. 1 shows the well profile and the mechanical structure, fluid
properties and formation parameters. For the heat transfer modeling study, the well is divided into 5 sections
based on the number of layers in a particular section. The walls of the tubing pipes with thickness ωj are
shown in black color, cement is represented in grey and mud in yellow. All radial distances from the well
center line are shown as Rj.
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Figure 1—Well architecture, fluid properties and system parameters

The model employed in the VFM scheme considers only the flow in the tubing, so that we do not include
choke simulations. As such, we utilize the following measurements:

– Bottomhole pressure (Pwf)
– Bottomhole temperature (Twf)
– Wellhead pressure (Pwh)
– Wellhead temperature (Twh)

One of the most common fluid characterization software package was used to generate fluid properties
based on a given composition using an equation of state. The bottomhole temperature is assumed to be
equal to the reservoir temperature. The geothermal gradient is linearly interpolated from the reservoir to
the seabed conditions.

VFM system
The VFM system employed consists of two parts: a model of the physical system and an optimization
algorithm. The model is built in such a way that some of the parameters that are measured are an output,
and the flowrate is an input, thus the optimization solver is employed to obtain the flowrate that minimizes
the difference between measured and predicted values. To link the multiphase solver and the optimizer, we
use an OPC server. The main goal of this tool is to read signals from one software and transfer it to another
one. A schematic representation of the constructed VFM tool is shown in Fig. 2 on the left.
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Figure 2—Schematic representation of the VFM system (left) and computational procedure (right).
(To start the computational procedure, we introduce an initial guess of the flowrate to the multiphase

flow solver which computes the associated wellhead temperature and bottomhole pressure.
Then, these values go to the optimization solver which computes the finite difference gradients

and iteratively changes the flowrate value until the minimum of the cost function is reached.)

In the multiphase flow solver, for given pressures and temperatures we run transient multiphase flow
simulations until they reach a steady state. In the optimization routine, we use the interior-point numerical
optimization algorithm to find a flowrate that minimizes an objective function of the following form:

(1)

where Xmeas i denotes measured value, XVFM i- the predicted value, σi – the measurement uncertainty, i – the
measurement index.

The computational procedure is shown in Fig. 2 on the right. To initiate the procedure, we introduce an
initial guess in the mass source node. Then, the optimization solver iteratively computes finite difference
gradients and adjusts the flowrate until the cost converges to a minimum.

Methodology and case studies

Sensor degradation study

Problem description and simulation procedure.   Sensor degradation can result in an error growth and
possible sensor failure. Two typical measurement error types are noise and drift. In this work, we evaluate
quantitatively the effects these errors have on the estimation of flowrates when using a VFM scheme. This
was performed explicitly by randomly varying the measurement values within a pre-defined error band. In
addition, we study the effect of the sensors failure. As such, we consider the following case studies:

– Case 1: Effect of noise increase in pressure and temperature sensors
– Case 2: Effect of sensor drift in pressure and temperature sensors
– Case 3: Effect of the temperature sensors failure

The problem in all the cases is the fact that we never know the exact value of the measured quantity. Due
to noise, the measurement can have any value within the sensor accuracy. Thus, to evaluate the potential
spread of VFM flowrate estimates due to the measurement error, we evaluate the random combinations
of pressure and temperature measurement values within specified accuracy. Since each simulation takes
a considerable computational time due to the optimization routine, we cannot run a very large number of
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simulations. Therefore, it is decided to run 200 simulations for each sub-case (which are discussed in details
in the next section) and evaluate the flowrates' probability distributions using a statistical analysis.

Fig.3 shows the simulation procedure for the sensor degradation study. To generate a good initial guess
of the flowrate estimate, first, we compute the maximum and minimum possible values of pressures and
temperatures. These values are computed from the sensor accuracy range. For instance, if the actual pressure
value is 100 bar and the noise error is 1%, the minimum pressure value is 99 bar and the maximum value
is 101 bar. These values are used to estimate the maximum and minimum possible flowrates which are
averaged for the initial guess to the optimization algorithm. Starting from the initial guess, the system
iteratively finds the mass flowrate which makes the difference between the VFM predictions and the
wellhead temperature and bottomhole pressure to reach a minimum. The mass flowrate is used for tuning
instead of the volumetric flowrates due to the limitations in the commercial multiphase flow simulator
employed.

Figure 3—Simulation procedure for the sensor degradation study
(In the initialization phase, we compute the maximum and minimum measurement values from the

accuracy range which are used to estimate maximum and minimum possible flowrates. These flowrates
are averaged to generate a good initial guess of the flowrate for the estimation phase. In the estimation
phase, the flowrate is iteratively adjusted by the optimizer until the cost function reaches the minimum.)

Case 1 (Effect of measurement noise).   To study the effect of noise on the VFM estimates, we consider
three cases:

– Case 1.1: 0.5% noise error – base case
– Case 1.2: 1% noise error
– Case 1.3: 1.5% noise error

The value of the error (0.5%, 1% or 1.5%) represents the maximum possible error in the measurements.
For instance, if the actual pressure value is 100 bar and the noise error is 1%, the possible measurement
readings are within the interval of 99-101 bar. The noise error values depend on the sensors quality and
particular operation conditions, as such the selected values are chosen without any direct reference. The
main goal is to quantify the effect of the magnitude of the signal variation band on the flowrate predictions
and estimate the associated trend. Also, we do not consider noise filtering because even the filtered signal
will have the deviation error which can increase due to the degradation.

Case 1.1 is considered as the base case meaning that the sensors are newly installed and not affected by
the degradation. It is worth to mention that this case will be used in other case studies as a base line for
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comparison. The degradation effect is modeled in Cases 1.2 and 1.3. Fig. 4 shows an example of the signal
under the modeled noise error. The error is randomly introduced to pressure and temperature measurements
at the wellhead and bottomhole at the same time.

Figure 4—Example of the signal under the measurement error for Cases 1.x

Case 2 (Effect of measurement drift).   To model the effect of sensor drift, we consider the following cases:

– Case 2.1: 0.5% drift with 0.5% noise error
– Case 2.2: 1% drift with 0.5% noise error
– Case 2.3: 1.5% drift with 0.5% noise error

All the cases are compared with the Case 1.1 which considers the newly installed equipment. Fig. 5 shows
an example of the signal under the modeled drift error. The value of the drift (0.5%, 1% or 1.5%) represents
the relative difference of the sensor value to the actual measurement value. For instance, if the actual pressure
value is 100 bar and the drift error is 1%, the drifted measurement is 101 bar. In practice, the sensors may
have a drift of 0.5 bar/year at certain well conditions. As such, the considered drift values are representable
and the outcome of the study shows the possible error of flowrate estimation in case the sensors are not
calibrated. Due to the noise, the final value of measurement will be within the range of 100.5-101.5 bar. The
error is randomly introduced to pressure and temperature measurements at the wellhead and bottomhole at
the same time. Please note that we considered only the drift which increased the measurement values and
did not consider decreased values.

Figure 5—Example of the signal under the measurement error for Cases 2.x

Case 3 (Effect of temperature sensors failure).   In this case, we study the effect of the temperature sensors
failure, both at the bottomhole and the wellhead. We assume that at some point of the production time the
temperature sensors are degraded down to the state when the information from the sensors are unreliable or
no longer available. This is a difficult case from the operational point of view because it can be challenging
to identify that the sensor shows unreliable information. We do not consider the identification methods and
leave it for experienced operators. What we would like to consider is the effect of the broken sensor on
the VFM estimates.



SPE-191962-MS 7

When compositional model is used in the VFM system, we need to use temperature to compute the
multiphase flow. In case of the sensor failure, one solution can be using the last reliable value of the
temperature for the VFM system. In this case, two situations are possible:

– Case 3.1: The temperature sensors fail and the actual temperature does not change
– Case 3.2: The temperature sensors fail and the actual temperature changes

As we consider the cases when the information from the temperature sensors is absent or unreliable, we
exclude it from the cost function and use the last reliable value of the temperature in the inflow mass source.
As such, the cost function includes only the values of the measured bottomhole pressure. In Case 3.2, we
assume that the actual temperature drops by 5 °C, however, the VFM does not capture this because the
correct temperature measurement is not available. To quantify the effect of the sensors failure, we compare
these cases with Case 1.1 (no degradation).

Heat transfer modeling study

Theory and case study description.   In VFM systems, in addition to the flowrate, matching the temperature
measurements in the well can be achieved by adjusting the heat transfer coefficient. The overall heat transfer
coefficient U is a constant between the thermal flux and the temperature difference of two mediums which
can be expressed as:

(2)

where Q denotes the heat flux, A – the heat transfer area, Tf – fluid temperature, Tamb – ambient (formation)
temperature.

Considering the well structure in Fig.1, the heat transfer between the formation and the multiphase flow
for each well section can be written as:

(3)

where Rinner denotes the inner tubing radius, Rinner j – the inner radius of the j-th layer, Router j – the outer radius
of the j-th layer, hinner – the convective heat transfer coefficient, Tw – the wall temperature, Kj – the thermal
conductivity of the j-th layer, Lsec – the section length, Tcem – the cement temperature, Kform – the formation
thermal conductivity, TDsec – the dimensionless temperature of the section.

The terms in Eq.3 respectively represent the following heat transfer mechanisms:

– Convective heat transfer between the fluid and the tubing wall
– Heat conduction between the walls and mud (completion fluid)/cement
– Heat conduction between the outer casing wall and the formation

By substituting the left hand side of Eq.3 by Eq.2 taking into account the well mechanical structure of
each section from Fig.1 and solving it with respect to U, the following equations for can be obtained:

(4)

(5)



8 SPE-191962-MS

(6)

(7)

(8)

where Kcem denotes the thermal conductivity of the cement, Kmud – the thermal conductivity of the mud.
In VFM systems, the heat transfer coefficients are often used as one of the parameters to match a specific

temperature, e.g. at the wellhead. A reasonable strategy can be computing initial estimates for the heat
transfer coefficients using the equations above and then tune it until a satisfactory agreement between the
measured and predicted temperature values is reached. This is the first method used in this study.

On the other hand, it is interesting to see if it is possible to achieve the same accuracy as in the previous
case without a rigorous representation of the heat transfer. For instance, it might be assumed that the heat
transfer coefficient is constant along the wellbore. In this way, only one coefficient value is tuned in VFM
to reach the specific temperature. This is the second method used in this study.

As such, we consider two cases:

– Case 4.1: Tuning with multiple heat transfer coefficients
– Case 4.2: Tuning with one heat transfer coefficient

Simulation procedure.   As in the sensor degradation case, we randomly choose the pressure and
temperature measurement values within a specified sensor accuracy (0.5% noise error) and perform 200
simulations to compute flowrates probability distributions.

To compute the initial estimates of the heat transfer coefficients for each section in Case 4.1, we use
Eqs.4-8. First, we compute the heat conduction between the outer layer and formation for each section using
the last terms in Eqs.4-8. For calculating the dimensionless temperature TD, the correlation by Hasan and
Kabir (2012) is used:

(9)

(10)

where tD denotes the dimensional producing time, a – the formation heat diffusivity, t – producing time.
For the producing time t, we chose 100 days assuming that this is sufficient for the heat transfer between

the fluid and the formation to reach a steady state.
Secondly, we calculate the heat conduction between the casing walls and cement/mud. In each section, the

number of layers of the well structure varies which makes these values different from one section to another.
An order of magnitude analysis showed that the inner convection heat transfer between the multiphase

flow and the tubing has a little contribution to the heat transfer between the flow and formation. Therefore,
we do not include it into the final simulation procedure.

One important thing to mention is the fact that we keep the ratio between the heat transfer coefficients
constant when tuning the VFM and use it as constraints in the optimization procedure. This is because we
would like to achieve the original pattern of the heat transfer distribution along the wellbore. Otherwise,
there might be the case that the algorithm changes one coefficient more than the others, so that the actual
heat flux distribution will be changed to something less realistic.



SPE-191962-MS 9

The summary of the simulation procedure is shown in Fig. 6. In the initialization phase, the computed
values of the heat transfer coefficients from Eqs.4-8 used as an initial guess and tuned until a specific
wellhead temperature is matched. Then, the tuned coefficient values are used as an initial guess for the
simulation phase and further adjusted together with the mass source to fit specific pressure and temperature
values. The same procedure is used for the single heat transfer coefficient case except the fact that the initial
coefficient value is guessed rather than preliminary computed. The computational procedure for the single
heat transfer coefficient case is shown in Fig.7.

Figure 6—Schematic simulation procedure for Case 4.1 (multiple heat transfer coefficient tuning)
(In the initialization phase, we compute the initial values of the heat transfer coefficients using Eqs.4-8 and then
iteratively adjust these values until a good match of the wellhead temperature is reached. The obtained values

are used as a good initial guess for the estimation phase where the heat transfer coefficients are tuned together
with the mass flowrate to reach pressure and temperature values at the wellhead and bottomhole. The ratios

between the heat transfer coefficients are kept constant and specified as constraints in the optimization problem.)

Figure 7—Schematic simulation procedure for Case 4.2 (single heat transfer coefficient tuning)
(In the initialization phase, we make an assumption of the heat transfer coefficient and then iteratively adjust

this value using the optimizer until a good match of the wellhead temperature is reached. The obtained
value is used as a good initial guess for the estimation phase where the heat transfer coefficient is tuned

together with the mass flowrate to reach pressure and temperature values at the wellhead and bottomhole.)
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Statistical analysis
To analyze the simulations results, we perform a statistical analysis of the resulting flowrate distributions
taken from 200 simulations of each case. We use the following procedure:

1. Test data normality.
2. Compute appropriate parameters for statistical and practical significance evaluation (mean/median,

standard deviation (variance)/interquartile range).
3. Perform hypothesis testing to test the statistical significance of the results.
4. Evaluate the practical significance of the results.

In step 1, we test the data normality to select the appropriate strategy to compare the data samples. For
this purpose, we perform a visual analysis using Q-Q plots and use D'Agostino test to check the normality
formally. The Q-Q plot is a graphical method for checking the data normality by plotting quantiles of two
distributions in which one distribution is normal. D'Agostino test is a formal statistical test of the data
normality which was developed for sample sizes larger than 50 (D'Agostino 1971). In this study, we consider
the significance level to be 0.05 which is a common assumption in staistical analysis.

In step 2, when the normality test is completed, we compute the parameters for statistical and practical
significance evaluation of the samples. If the data is normally distributed, we select mean and variance for
statistical significance evaluation and mean and standard deviation for practical significance evaluation.
This is because the standard deviation has the units of the variable evaluated, so that it is easier to interpret
the results for practical purposes. If the data is non-normal, we compute median and interquartile range be
these parameters can be more representative than mean and standard deviation for this type of data.

In step 3, we perform hypothesis tests to check the statistical difference between the simulated cases.
These tests provide an opportunity to check if the differences between the statistical properties of the data
samples can be generalized over the populations from which these samples are taken. If the data is normally
distributed, we choose 1-sample t-test on paired data differences. The reason for selecting 1-sample test
instead of 2-samples test is because the samples are dependent. Indeed, initially we consider a system
without the degradation effect and then we consider the same system under the degradation. To compare the
variances, Bartlett's test is used (Snedecor and Cochran 1989). If the data is non-normal, we compare the
medians using 1-sample sign test on paired differences and variances using Levene's test (Levene 1960).

Finally, in step 4, if we find that the difference between the parameters is statistically significant, we
evaluate the practical significance of the obtained results. The evaluation of the practical significance will
depend on the case under consideration. In general, we will compare differences of the means or standard
deviations (or medians and interquartile ranges) as fractions of the mean estimate as well as the absolute
differences values. Fig. 8 summarizes the used statistical analysis.
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Figure 8—Schematic representation of the statistical analysis

Results

Sensor degradation

Case 1.   First, we analyze the case with the increased noise effect due to sensor degradation. Fig. 9 shows
the obtained oil and gas flowrate distributions.

Figure 9—Histograms of VFM flowrate predictions for Cases 1.x

From the figure we see that the respective oil and gas flowrates are represented by the same distribution.
This is expected because the volumetric flowrates are computed from the same mass flowrate source by
means of a linear transformation. From the figure we can also notice that data are not precisely normal even
though the input signals have white noise. The reason for this is the fact that the system is non-linear which
can make the output signals to have a different distribution. However, the data might still be considered
as normal and must be checked for normality to make valid conclusions. Also, the initial visual analysis
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shows that the increase of the noise make the distribution more spread, i.e. increases the data variability.
This result was expected. However, the main goal is to quantify this data variability growth and generalize
the conclusions for the populations from which the samples are taken.

To perform further analysis, we check the data normality. Fig. 10 shows the visual and formal analysis
represented by the Q-Q plots with corresponding p-values from the D'Agostino tests.

Figure 10—Normality testing of datasets from Cases 1.x

From the Q-Q plots we see that the majority of the data points follow the normal distribution pattern (red
line) except a few points. This confirms the visual observations from Fig. 9 that the data is close to normal.
By checking the normality formally by D'Agostino test, we cannot reject the null hypothesis that the data
is normal at the significance level of 0.05 which is in agreement with the visual analysis.

Since we conclude that the data can be considered as normal, we choose means and standard deviations
as measures for the central distribution value and data variability respectively. We also consider the total
variation of the flowrate estimates to compare the resulting distributions. Table 1 shows the values of these
data.

Table 1—Main statistical parameters of the simulation results of Cases 1.x
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From the table we see that the estimates of the means are similar while the variation of the standard
deviations is much larger. Now we need to test if these differences are statistically significant. Table 2 shows
the differences of means, standard deviations and total ranges between the cases as well as the results from
the hypothesis tests on the means and variances equalities.

Table 2—Hypothesis testing and comparison of statistical parameters of Cases 1.x

From the table we can make several conclusions. First, we see that based on this study we cannot reject the
null hypothesis about the means equalities at the significance level of 0.05. Thus, we conclude that there is
no statistically significant difference between the population means which, in turn, tells that the population
means can be considered as equal. This seems to be in agreement with the practical significance of the
results. The difference in the means varies from 5.1 to 15.87 bbl/day which in practice can be neglected.
Therefore, for practical purposes, we can say that if the sensor degradation affects the noise level only, the
means of the flowrates estimates are not affected significantly. We see an opposite situation for the data
variability. Comparing the statistical significance of the variance differences (Bartlett's test), we see that the
null hypothesis is strongly rejected, which means that the populations variances are certainly different.

To estimate the practical significance of variance differences, we compare the absolute and relative values
of the standard deviations and total ranges. The relative values are scaled with respect to the means. Fig.11
and Table 2 show that the increase of the measurement error by 0.5% causes the increase of the standard
deviation and the total range by approximately 76 bbl/day and 366 bbl/day respectively. These values can be
considered as significant. However, as Fig. 11 shows, these values correspond approximately to 0.5% and
2.5% of the mean flowrate value respectively. In certain VFM applications this error might be neglected,
however, if the desired accuracy of the flowrate estimation is high, the increase of the measurement noise
can cause problems in meeting the aimed accuracy specification. Moreover, the considered measurement
error is relatively small, so that for larger measurement variations the associated error can be noticeable.
As such, we conclude that the found standard deviation difference is practically significant if the desired
accuracy of VFM is high or the noise error is relatively large but can be neglected in other situations. This
is because the obtained absolute values are small when scaled with respect to the mean value estimate. The
same conclusions can be drawn for the gas rates because we observed that its distribution pattern is the
same as for the oil rates.
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Figure 11—Comparison of standard deviations and total ranges for Cases 1.x
(The left part of the figure visualizes the increase of the data variability depending on the increase of the noise level. The

figures on the right quantify this data variability increase. We can see that even though the increase of the standard deviation
and total range is relatively big from Case 1.1 to Case 1.2 and Case 1.3, these values may be neglected in many practical
applications since they are small fractions of the mean flowrate estimate unless the noise level becomes relatively large.)

Case 2.   As the next step, we analyze the effect of measurement drift on the flowrate estimates from the
VFM. Fig. 12 shows the oil and gas flowrate distributions. As in the previous case, the respective oil and gas
flow rates are represented by the same distribution. As expected, we see a similar data variability between
the cases but the migration of the mean value. This is because the noise level is kept the same for all the
cases while the mean measurement value is different. Now the task is to evaluate the mean differences from
statistical and practical points of view.
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Figure 12—Histograms of VFM flowrate predictions for Cases 2.x and Case 1.1

First, we check the datasets normality. Fig. 13 shows the visual and formal analysis represented by the
Q-Q plots with corresponding p-values from the D'Agostino tests. As in the previous case, we see that the
majority of the data points follow the normal distribution pattern (red line) except a few points. This suggests
that the data is close to normal. By checking the normality formally with D'Agostino test, we cannot reject
the null hypothesis that the data is normal at the significance level of 0.05 and assume that the data can
be treated as normal.

Figure 13—Normality testing of datasets from Cases 2.x
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The next step is to compute the means, standard deviations and total ranges of the estimates. Table 3
shows the values of these parameters. From the table we see that the computed standard deviations are
similar while the means vary considerably. This is in agreement with what we observed in Fig.12. Table 4
shows the differences of means, standard deviations and total ranges between the cases as well as the results
from the hypothesis tests on the means and variances equalities.

Table 3—Main statistical parameters of the simulation results of Cases 2.x

Table 4—Hypothesis testing and comparison of statistical parameters in Cases 2.x

From the table we see that the hypothesis of the equal mean values is strongly rejected, thus we conclude
that the population means are certainly different. As for the variances, the hypothesis of its equalities cannot
be rejected which means that the variances of the populations are not statistically different at the significance
level of 0.05. As such, from the analysis we see that only the means are affected by the measurement drift
and the next objective is to estimate the practical importance of the means differences. Fig.14 shows the
comparison of the means differences relative to the mean of Case 1.1.
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Figure 14—Comparison of the means from Cases 2.x with the mean from Case 1.1
(The left figure visualizes the drift of the mean estimates depending on the drift measurement

error. The right figure quantifies the differences in mean estimates depending on the drift error.)

From the figure we see almost a linear relationship between the relative error of the means and the
measurement error which is similar to what we previously observed for the standard deviations comparison.
More specifically, the increase of the measurement error by 0.5% causes approximately 0.5% increase of
the bias of the mean relative to the mean value. However, the error of the means is more critical than the
error in standard deviations. This is because the probability of having a significant error of the flowrate
estimates increases considerably. It can be seen in Fig.15 where the green shaded area shows the range of the
flowrates from Case 1.1 (no degradation) which can be covered by the VFM under the degradation effect.
In the left figure, we see that the entire range of the flowrates of Case 1.1 is almost within the standard
deviations of Case 1.3. On the other hand, only 50% of the Case 1.1 flowrates is within 50% predictions
from Case 2.3. Thus, we conclude that the sensor drift causes more serious flowrate estimation errors and
should be carefully considered in VFM systems.

Figure 15—Comparison of the noise and drift degradation effects
(The left figure shows that 1.5% noise error introduces the high spread of the flowrate estimations, however,
the entire flowrate range of the case with no degradation is almost within the standard deviation of the case
with high noise error. The right figure shows that the drift error causes significant estimation error because
only 50% of the no drift case can be covered by 50% of the outcomes from the case with 1.5% drift error.)

Case 3.   In this section, we compare the cases with a detected temperature sensor failure with Case 1.1 (no
degradation effect). Fig.16 shows the comparison of the flowrate distributions of these cases. From the figure
we see that the absence of the temperature measurements almost does not change the flowrate distribution.
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However, if the actual flow temperature value changes and the VFM does not take it into account, the mean
of the flowrate distribution changes considerably.

Figure 16—Comparison of flowrate distributions for Cases 3.x and Case 1.1

To quantify this change, again, first, we test the data normality. Fig. 17 shows the visual and formal
analysis represented by the Q-Q plots with corresponding p-values from the D'Agostino tests. Similarly to
the previous cases, the analysis shows that the data can be considered as normal.

Figure 17—Normality testing of datasets from Cases 3.x

The next step is to compute the means, standard deviations and total ranges of the estimates. Table 5
shows the values of these parameters.
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Table 5—Main statistical parameters of the simulation results of Cases 3.x

From the table we see that the computed standard deviations are similar to the ones in Case 1.1. On the
other hand, the mean value of Case 3.2 varies considerably from Case 1.1 and Case 3.1. Table 6 shows
the differences of means and standard deviations and its statistical significance as well as the total ranges
differences.

Table 6—Hypothesis testing and comparison of statistical parameters in Cases 3.x

From the table we see that for Case 3.1 the hypothesis of equal population means cannot be rejected while
for Case 3.2 it is strongly rejected. At the same time, for both cases the hypothesis about the population
variances equalities cannot be rejected. This shows that only the means difference between Case 3.2 and
Case 1.1 is statistically significant.

For practical applications, the importance of this difference depends on the desired accuracy of the VFM
system. As before, we evaluate the practical significance as a fraction of the mean estimate. In this particular
case, the temperature drop of 5 °C causes the mean estimate error 260.3 bbl/day which is 1.7% relative to the
mean value. This is a relatively high value and for many practical cases the consequences of such an error
can be critical. Since the VFM might have other factors which cause errors (e.g. noise and drift in pressure
sensors), the absence of the correct temperature value can play a crucial role. Overall, we conclude that if the
actual fluid temperature changes and the VFM system does not capture this change, it can result in relatively
high errors of the flowrate estimations. This fact should be taken into account if there is a probability of the
reservoir temperature change in a particular field development case (e.g. water breakthrough) or a transient
heating up of the well.

Heat transfer study
As in the sensor degradation study, we plot the flowrate distributions for the initial visual analysis of the
simulation results. Fig. 18 shows the oil and gas flowrate distributions.
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Figure 18—Histograms of VFM flowrate predictions for Cases 4.x

We see that the flowrate distributions in both cases are relatively similar with some occasional differences
in frequency values and may follow the normal distribution pattern. Fig.19 confirms this observation. As
in all the previous cases, except for a few points, the data samples are on the red line which represents
the normal distribution. The normality assumption is also supported by D'Agostino test. Even though
the flowrate distributions are relatively similar, we quantify the possible differences and evaluate if this
difference is practically important for VFM systems.

Figure 19—Normality testing of datasets from Cases 4.x

Table 7 shows the statistical parameters and hypothesis tests of Case 4.1 and Case 4.2. From the table
we see that the difference between the standard deviations is small and can be considered as statistically
insignificant. On the other hand, we can reject the hypothesis about the population means equality at the
significance level of 0.05. Thus, this difference is considered as statistically significant. However, we can
see that this difference is only 0.45% of the mean value and can be considered as practically insignificant.
In the sensor degradation case (Case 2), we observed that the increase of the 0.5% drift measurement
error introduced approximately 0.5% growth of the error of the mean estimate and we concluded that this
difference was practically important. However, in that case we clearly observed the trend between the
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measurement drift and the estimates. In this case, there error caused by a different tuning strategy most
likely will not significantly exceed the error of 0.45% which was computed for this particular case. The
deviation may slightly change because of different initial guesses of the heat transfer coefficient values,
however, there is not a clear evidence that this difference will increase considerably. Moreover, we observed
that the difference of variances even statistically insignificant which also strengthens the point the applied
tuning strategies practically give the same result.

Table 7—Main statistical parameters and hypothesis tests of the simulation results of Cases 4.x

Since we found that the strategies produce very similar results in terms of accuracy, we conclude that
the approach with only one tuning heat transfer coefficient is more efficient for practical applications.
This is because this approach significantly reduces the computational time for tuning and estimation. In
this particular case, the computational time was reduced by a factor of 3. Moreover, computing good
initial guesses of the heat transfer coefficients using the physics behind can also take the time. In contrast,
initializing a good initial guess of one heat transfer coefficient value is relatively easy and requires only
one additional simulation. Therefore, we conclude that the tuning strategy with one heat transfer coefficient
along the wellbore is accurate enough and suits better for practical applications than the strategy with
multiple heat transfer coefficient values.

Conclusions
In this paper, we constructed a Virtual Flow Meter using a multiphase pipe model and an optimization
routine from commercial packages and considered two case studies: the effect of the sensor degradation
and two different tuning strategies on the VFM estimates. The sensor degradation effect was modeled as
the measurement noise increase, measurement drift and sensors failure. As for the tuning strategies, the use
of one versus multiple heat transfer coefficients along the tubing was compared. In addition, we applied a
method for a statistical analysis approach of case sensitivity studies which evaluates the distribution of the
possible outcomes rather than only critical values for specific boundary conditions.

From the sensor degradation study we found that the noise increase introduces the increase of the flowrate
estimates variances and observed close to a linear trend between the noise error and growth of the standard
deviation. The quantification of the estimation error growth showed that if the measurement noise becomes
relatively large, the associated error should be taken into account. However, if the required VFM accuracy is
not high, this error can be neglected in practical applications. On the other hand, the measurement drift can
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cause more serious estimation deviations since there is almost a linear dependency of the mean estimation
value change and the drift measurement error. Thus, it is advisable either to calibrate the sensors (which
is hard in practice) or validate the relationship of the VFM predictions and the sensor readings. This can
be done by well tests or any other reliable flowrate measurements and preferably carried out more often
than a severe sensor drift occurs.

As for the temperature sensor failure, it can be disregarded in case the actual flow temperature does not
change. On the other hand, if the actual temperature changes and it is not captured by the VFM, the flowrate
predictions can deviate from the correct predictions considerably. This fact should be taken into account if
there is a probability of reservoir temperature change.

The case study on different tuning strategies showed that it is not necessary to use a complicated
mechanical representation of the well and associated heat transfer coefficients to predict the flowrates
accurately. The assumption about the constant heat transfer coefficient along the wellbore gives almost
identical results, but can reduce the simulation time substantially. Thus, for practical applications the tuning
of a constant heat transfer coefficient along the wellbore is a solid approach.
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4.2 Discussion of Paper IV - Statistical Analysis of Effect of
Sensor Degradation and Heat Transfer Modeling on Mul-
tiphase Flowrate Estimates from a Virtual Flow Meter

In Paper IV, we considered a multiphase flow estimation problem subject to sensor
degradation and heat transfer modeling simplifications. Despite aiming a thorough
discussion on influence of the aforementioned factors on the accuracy of mul-
tiphase flow estimates, there are several points that we would like to additionally
emphasize and elaborate to make better supported conclusions.

Considered flow conditions. First, we would like to point out that the presented
results are achieved for a steady state flow. Despite we run a transient multiphase
flow simulator, the gradients computed by the optimization solver are taken when
the system is at steady state. This means that when the solver sends a new sugges-
ted value of the manipulated variable (the mixture mass flowrate), the simulation
is run with this value until no change in pressures and temperatures is detected
for both bottomhole and wellhead. The main reason for such a simulating pro-
cedure is the fact that it makes easier for the optimization solver to find a local
minimum, because, if perturbing a transient flow, the values of the gradients for
the same value of the manipulated variable within the transient period will be most
likely different which means that the minimum is hardly likely to be found. One
potential solution to this problem is to perform dynamic optimization by using,
for instance, Moving Horizon Estimation (MHE) approach. However, in general,
MHE is relatively expensive in terms of computing cost even if a mathematical
model is available together with analytical expressions of the gradients. In our
case, however, we use the simulator as a black-box model, as such, the gradients
are computed by finite differences, and also the computational time of the model
itself is relatively long. As such, the overall computational cost makes dynamic
optimization to be an infeasible solution.

We also would like to emphasize that the results shown in the paper are made for
artificially generated data, so no data from a real field are used in the simulations.
As such, the noise and drift errors are assumed to represent a real sensor behavior,
but the values of the errors and the estimated flowrates are not taken from any
real field production data. The goal of the simulations is to test a "what-if" case
meaning that, if we have noise and drift of a discussed magnitude, what will be the
influence on the estimation accuracy.

Additional sensitivity studies for GOR and WC. Despite the fact that we only
presented the results for oil and gas phases, the simulations have actually been
performed for a three-phase flow. As we state in Figure 1 of the paper, the water
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Figure 4.1: Case 1 - Sensitivity of wellhead GOR and WC with respect to 5% error in
TBH (WC=15% [@TBH = 70])

cut (WC) for the considered flow is 30% at standard conditions and GOR is 153
Sm3

Sm3 . As such, the results obtained in the simulations should be treated as the
results obtained for a three-phase flow, but not for a two-phase flow. The main
reason why the water phase was not considered is the fact that we assumed that the
water phase will behave similarly to the oil phase, while the oil phase is typically
of a higher interest for petroleum engineers. At the same time, since the water cut
along well will not be constant, the paper would benefit from presenting the results
for the water phase too. However, the results presented for the oil phase are still
valid, as it is simulated within a three-phase flow.

As we presented the sensitivity of only oil and gas rates with respect to noise in
measurements and heat transfer modelling, we, in principle, showed how the local
Gas-Oil-Ratio at the wellhead changes with respect to these parameters. To check
our assumption that the water phase would behave similarly to the oil phase, we
conducted additional studies to see the dependency of water cut (WC) with respect
to heat transfer processes in a well. Unfortunately, by the time of conducting such
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Figure 4.2: Case 2 - Sensitivity of wellhead GOR and WC with respect to 5% error in
TBH (WC=30% [@TBH = 70])

studies, the licenses of the software used in the paper (OLGA) are not available
to us. However, since in any case we considered the results from steady state
simulations, we used a steady state model implemented in HYSYS and developed
at Tulsa University (Zheng et al. (2016)). As in OLGA, the model also considers
heat transfer modeling in a three-phase flow, as such the results can be compared
qualitatively.

We consider a vertical well of 1000 m with the same hydrocarbon components as
in Paper IV, with the bottomhole pressure of 100 bar and bottomhole temperature
of 70◦C and the constant heat transfer coefficient of 40 kJ

hm2C
. To test the effect of

the temperature drop on WC, we study three case. For all the cases we consider
a three-phase flow. In the flow, the inlet flowrates are fixed while other paramet-
ers are perturbed. In Case 1, for the given flowrates and bottomhole conditions,
the wellhead water cut is equal to 15%, and we study how perturbations of the
bottomhole temperature by 5% influence the wellhead values of GOR and WC. In
Case 2, the same procedure is does as in Case 1, but for the flow with the wellhead
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Figure 4.3: Case 3 - Sensitivity of wellhead GOR and WC with respect to heat transfer
coefficient

water cut of 30%. By conducting this case, we see if the sensitivity of water cut
with respect to the temperature drop noticeably changes with the water cut value
itself. In Case 3, instead of fixing the heat transfer coefficient at 40 kJ

hm2C
, we take

samples from a uniformly distributed values from the range of 20-60 kJ
hm2C

. In this
way, we test how sensitive WC is to significant changes of the temperature drop
along the well. To evaluate the sensitivity, we use the absolute change in values of
WC and GOR relative to their means as follows:

Sensitivity = 100%

(
ymax − ymin

ymean

)
(4.1)

Figure 4.1 shows the results for Case 1. From the figure we see that the WC value
indeed changes with the change of the inlet temperature, but the change is very
small and, in fact, smaller than for GOR. The GOR sensitivity is 1.34%, while
the WC sensitivity is 0.09%. Similar results are obtained in Case 2 shown in
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Figure 4.2. In this case, the GOR sensitivity is 1.28%, while the WC sensitivity
is 0.07%. This means that for very different values of WC we see that its local
value does not depend on temperature gradient modeling which means that we can
relate the results obtained in Paper IV to the water flowrates as well. The results
obtained in Case 3 (Figure 4.3) also agree with Case 1 and 2. We see a very small
influence of the heat transfer coefficient on the water cut change at the wellhead.

While we see that the results presented in Paper IV can be, in general, transferred
for the water flowrates and water cut, we believe that some other general conclu-
sions in the paper can be improved. First of all, it is important to note that the
simulations have been performed for a three-phase flow with the fixed composi-
tion. This means that the conclusions about the effect of drift and noise in sensor
values are expected to be similar for similar flow conditions and fluid composi-
tion, while for a different flow composition the results might vary. For instance, in
a case with a multiphase flow with a high GOR, we typically observe a stronger
influence of temperatures on modeling results which can be caused by the high
dependencies of gas densities on temperature. This means that more care might
need to be taken for such wells when fitting a first principles VFM to the measured
temperature values. As such, we would like to emphasize that more investiga-
tions are required for specific flow conditions and fluid properties while some of
the approaches presented in the paper can be taken as guidelines to perform new
evaluation studies of VFM.
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4.3 Uncertainty Estimation of Mechanistic First Principles Mod-
els and Digital Twins Using Bayesian Machine Learning
(Paper V)

Paper V describes applications of Bayesian Machine Learning for tuning first prin-
ciples models based on a case study of a three-phase (oil, gas and water) pipe
flow. The paper describes a method of quantifying the uncertainty of the tuned first
principles models based on the uncertainties of the parameters of Bayesian Neural
Networks. The main motivation for this paper was the fact that even complex first
principles models are almost never sufficiently accurate to describe the real pro-
cess due to complexity of modeled phenomena, as such they need to be tuned. The
authors wanted to investigate capabilities of Bayesian Neural Networks for this
task because such models allow to estimate the uncertainty of the tuned model.
This can be very useful in practice, for instance, when the model starts deviating
from the process measurements and the reason for this is not clear. In this case,
the model uncertainty quantification might help to understand the need for model
or sensor re-calibration. Apart from that, when the model predicts a certain para-
meter, it is, in general, useful for operators to know how certain the model is about
its predictions to make accurate decisions to operate the process in a safe and
reliable manner.

Bikmukhametov, T., and Jäschke, J. Uncertainty Estimation of Mechanistic First
Principles Models and Digital Twins Using Bayesian Machine Learning. Submit-
ted to Engineering Applications of Artificial Intelligence, 2020
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Abstract

To operate process engineering systems in a safe and reliable manner, predictive models
are often used in decision making. In many cases, these are mechanistic first principles
models which aim to accurately describe the process. In practice, the parameters of these
models need to be tuned to the process conditions at hand. If the conditions change,
which is common in practice, the model becomes inaccurate and needs to be re-tuned.
In this paper, we propose a framework which allows to tune first principles models to
process conditions using two different types of Bayesian Neural Networks. Our approach
estimates the expected values of the first principles model parameters but also quantify
the uncertainty of these estimates. As an example, we chose a multiphase pipe flow
process for which we constructed a three-phase steady state model based on the drift-flux
approach which can be used for modeling of pipe and well flow behavior in oil and gas
production fields with or without the neural network tuning.

Keywords:
Bayesian Neural Networks, Uncertainty Quantification, Machine Learning, First
Principles Model, Digital Twins, Drift-flux model, Multiphase Flow

1. Introduction

Today, process operation decisions are increasingly made on the basis of process mod-
els. Traditionally, process models are derived from first principles such as mass, momen-
tum and energy conservation laws. This approach is called first principles or mechanistic
modeling (Pantelides and Renfro (2013)). The main advantage of these models is that
they are built based on knowledge about the system and are understandable to the knowl-
edgeable user. A conceptually different approach is based on using process date to learn a
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model of the process (Rasheed et al. (2019)). Data-driven approaches of this kind become
increasingly popular due to the progress in data handling, analytics and machine learning
techniques.

In the recent years, mechanistic models of process plants and equipment together with
machine learning and virtual reality technologies have formed the Digital Twin frame-
work which may be used for monitoring of process conditions, equipment health and
plant efficiency, and support critical decisions on plant operation quickly and effectively
with minimal human intervention (Rasheed et al. (2019)). Digital Twins offer significant
potential in operating cost reduction, however, they require in-time automatic or semi-
automatic model recalibration to be successfully used in industrial systems (Rasheed et al.
(2019)).

In all but the most trivial cases, first principles model parameters need to be tuned,
such that the model predictions accurately match the plant. Such tuning can be conducted
in experimental laboratories, onsite at a process plant or, in many cases, both options
are required (Pantelides and Renfro (2013)). During operation, the predictive accuracy of
the obtained models will depend on several factors. One factor is the measurement accu-
racy. Process measurements may drift over time, as such the model calculates its outputs
based on wrong inputs, and the model accuracy drifts accordingly (Bikmukhametov et al.
(2018)). Another important factor is that process conditions such as material or fluid
properties may change over time and differ from the tuning conditions which may lead
to inaccurate predictions and economic loss (Mazzour and Hodouin (2008), Amjad and
Al-Duwaish (2003)). In addition, equipment in process plants often degrades over time
which makes the predictive model of the equipment behavior inaccurate (Gorjian et al.
(2010)). As such, it is very important to identify under which conditions the tuned mech-
anistic model becomes unreliable to use and needs recalibration, and this is the topic of
the present paper.

One promising method to estimate the need for model recalibration and understanding
its predictive capabilities is to quantify uncertainty and bias of model predictions. If the
prediction uncertainty and/or bias is high, then the model recalibration or restructuring
is required, because the produced estimates cannot be trusted.

In the literature, there are different contributions which report methods to quantify
uncertainty of first principles models. One approach relies on checking sensitivities of
model predictions with respect to the change in model parameters, typically referred as
Sensitivity Analysis (Ratto et al. (2007), DiGiano and Zhang (2004)). In this approach,
selected parameters are perturbed, the change of the model output is recorded and then
the ratio of the output change to the parameter change is computed. Although easy
to implement, this method does not consider the uncertainty of the data and model.
Therefore, it estimates the sensitivity of the model with respect to the input parameters.
The main result from such sensitivity analysis is the conclusion about the parameters to
which the fitted mechanistic model is the most sensitive to, but not in general about how
well the model matches the process.

A more informative approach about model uncertainty is based on the Bayesian frame-
work. In this approach, the uncertainty of parameters is estimated based on the tuned
model to the data using various methods. One approach is to use Markov Chain Monte
Carlo (MCMC) method which computes the probability of the parameters via a poste-
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rior parameter distribution over the proposed parameters’ priors (Aldebert and Stouffer
(2018), Leil (2014)). MCMC is a powerful concept of estimating unbiased posterior dis-
tributions, however, it may be very slow for many practical applications and accelerating
MCMC methods is an active field of research (Robert et al. (2018)). When applied to
parametric uncertainty estimation of mechanistic first principles models, this can be an
issue, if, for instance, the mechanistic model needs a time consuming iterative procedure
to be solved. Shrestha et al. (2009) addressed this problem by approximating MCMC
results using neural networks, however, in this case, MCMC simulations still need to be
performed.

In this paper, we propose to tune the parameters of the first principles model using
Bayesian Neural Networks (BNNs). This is done by, first, learning the distribution of
the neural network parameter values from the process data and then propagating this
distribution through the first principles model to give a distribution of the model output.
This is then used to quantify the first principles model uncertainty. As such, the main
idea is to utilize uncertainty quantification capabilities of Bayesian Neural Networks when
estimating first principles model parameters.

Previously in the literature, authors have adapted maximum likelihood neural net-
works for model parameter tuning, see the works by Psichogios and Ungar (1992), Ah-
madi and Chen (2018), Anifowose et al. (2017), Klyuchnikov et al. (2019), Onwuchekwa
et al. (2018), Kanin et al. (2019). However, using the maximum likelihood approach, it
is not possible to estimate the uncertainty of the first principles model parameters, while
our approach allows doing so.

For the training of BNNs, we build upon work by Blundell et al. (2015) who used
variational approximations for Bayesian learning of neural networks and work by Gal
and Ghahramani (2015) who introduced the concept of Markov Chain (MC) Dropout
techniques for deep neural networks. We compare the performance of both approaches
and give recommendations on the conditions for combining each type of Bayesian Neural
Networks with first principles models.

As an example of the first principles model, we create a complex, space discretized
model of a three-phase (oil, gas and water) flow in pipes which considers the slip effect
and mass transfer between the gas and liquid phases. We show how the friction coefficient
of this model can be tuned using a Bayesian Neural Network and how uncertainty of these
estimates can be quantified using this approach. As the approach is scalable, it can be
applied to systems of any size which is advantageous for Digital Twin technology which
typically considers process plants of a large scale.

As such, the main contribution of this work is that we provide and exemplify a new
flexible framework for uncertainty estimation of complex mechanistic first principles mod-
els. In addition, we discuss how the obtained results can be interpreted for the purpose
of model/Digital Twins recalibration.

The paper is organized as follows. Section 2.1 introduces the proposed concept of tun-
ing first principles models parameters by means of Bayesian Neural Networks. Section 3
describes the multiphase flow model which is used as the example of the first principles
model to be tuned by BNNs and shows adaptation of the concept described in Section 2.1
for this model. In Section 5, we provide the simulation results and discuss them. In
Section 6, we make conclusions from our work.
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Figure 1: Training Bayesian Neural Networks for first principles models tuning

2. Proposed concept of parameter estimation of first principles models using
Bayesian Neural Networks

2.1. General description of the proposed concept

The main idea of the proposed framework is similar to any first principles model tuning
to data - select parameters to be tuned or introduce coefficients which are adjusted to
get an accurate fit to the data. A schematic representation of this process is shown in
Figure 1. The main difference between the maximum likelihood tuning is that we learn the
distribution of weights and biases represented by the approximate variational distributions
instead of single point estimates. We do this by two BNN models that are described in
Section 2.3.2 and 2.3.3 below.

At the prediction (test) stage, shown in Figure 2, the test features are fed into the
trained Bayesian Neural Network. Then, a specified number of samples from the trained
distribution of weights and biases is taken. These sampled parameters produce distribu-
tions of the tuned first principles model parameters. As a result, a distribution of the
modeled output by a mechanistic first principles model is obtained. From the distribu-
tion, the mean and variance can be calculated. The mean value will correspond to the
maximum a posterior estimate of the variable while the variance will correspond to the
prediction uncertainty.

It is important to note that the proposed approach considers the uncertainty of model
parameters based on the training data and does not account for the uncertainty of the
model structure. As such we assume that in order to apply this method, one should
consider the model which is structurally correct such that it describes the general plant
behavior well while may not consider all the complexities of the modeled phenomenon.

2.2. General form of first principles models

To describe the proposed framework of estimating parameters of first principles models
in more detail, first, we define the general mathematical form of a steady state first
principles model as:
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f(Ω, B) = 0 (1)

where Ω = [ω1, ω2, ..., ωn]T denotes a vector of states of the process which is described
by the model (e.g. pressure, temperature, fluid properties, etc.) and B = [β1, β2, ..., βn]T

denotes a vector of the first principles model parameters. Also, user dependent and known
input variables will typically be present in the model, but we do not include them explicitly
to keep the notation simple.

Let us further denote ymeas as a vector of process measurements. We assume that given
a set of parameters B, a first principles model can produce an estimate of the process
measurement ymeas when solved with respect to it, i.e.:

ŷf.p. = g(Ω, B) (2)

where ŷf.p. is an estimate of ymeas obtained by solving the first principles model f(Ω, B)
for Ω and evaluating the output equation g(Ω, B).

In case when the mechanistic model describes the process accurately, ŷ ' ymeas. This
can be the case when the model structure is correct and the model parameters B are ac-
curately tuned to the process data. In this work, we do not discuss the general framework
of how to construct an accurate representation of the mechanistic first principles model.
Instead, given a sequence of steady state process data X = [(x(1), y(1)), (x(2), y(1))..., (x(n),
y(n))], we want to estimate the values of the parameters vector B and the uncertainty of
the predictions based on the data.

2.3. Bayesian Neural Networks

2.3.1. Bayesian Learning Framework

Bayesian Neural Networks is a family of artificial neural networks whose weights are
represented by distributions rather than by point estimates as in the conventional maxi-
mum likelihood approach (Neal (2012)). These distributions represent our beliefs about
the values of the parameters. Bayesian learning of neural networks (and any other ma-
chine learning models) starts with defining prior distributions P (W ) of neural network
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parameters, i.e. weights and biases. The prior distributions express our prior beliefs about
the neural network parameters before we fit it to any data (Neal (2012)). In the learning
process, the model parameters are updated according to the Bayes’ rule:

P (W |X) =
P (X|W )P (W )

P (X)
(3)

where X denotes the vector of observed data and the associated target variable (in case of
this paper - measurement) [(x(1), y(1)), (x(2), y(1))..., (x(n), y(n))]T and W denotes the vector
of neural network parameters (weights and biases).

In Eq. 3, P (W |X) is the posterior distribution of the model parameters which is a
result of the update of our prior beliefs about them represented by P (W ) after fitting
the model to the data. P (X|W ) is called a likelihood function which represents neural
network predictions for a given set of parameters (weights and biases). P (X) is the
normalizing constant which ensures that the probability sums to one.

From the Bayes’ rule we see that the learning process of model parameters is done
in a natural way, such that we propose our beliefs about how the model should look like
and then update it according to the observed data. Also, the main advantage of Bayesian
learning is that, in addition to the maximum likelihood (or maximum a posterior) point
estimate of the model parameters, we get uncertainty of model parameters. As the result,
we are be able to estimate uncertainty of the target (modeled) variable during inference
as the following:

P (y(n+1)|x(n+1), (x(1), y(1)), ..., (x(n), y(n)))

=

∫
P (y(n+1)|x(n+1),W )P (W |(x(1), y(1)), ..., (x(n), y(n)))dW

(4)

where (x(1), y(1)), (x(2), y(1))..., (x(n), y(n)) denote the observed data points and x(n+1) de-
notes the point for which the target variable is estimated.

The main disadvantage of the Bayesian approach for neural networks learning is that
the probability distribution P (X) is high dimensional and analytically intractable (Bishop
(1997)). For this reason, various approximations of posterior parameter distributions
P (X|W ) are used. In this work, we use variational inference (Blundell et al. (2015)) and
Markov Chain (MC) Dropout (Gal and Ghahramani (2015)) approaches as approxima-
tions of the posterior distribution, which are described in the next sections in more detail.
The main reason why these methods have been chosen is the fact that they can be used for
big data sets in the context of process engineering systems, as such the methods proposed
in this paper can be applied to many systems of interests.

2.3.2. Bayes by Backprop

One popular approach to approximate the exact posterior distribution of neural net-
work parameters P (W |X) is to use a variational approximation of it, as proposed by
Hinton and Van Camp (1993) and further developed Graves (2011). The main idea is to
use a variational distribution q(W |θ) on the weights parameterized by θ and find such
parameters θ of the approximate distribution q(W ) which minimize the Kullback-Leibler
(KL) divergence (which is a measure of distributions similarity), with respect to the exact
posterior distribution P (W |X) (Blundell et al. (2015)):
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θ? = arg min
θ

KL[q(W |θ)||P (W |X)] = arg minKL[q(W |θ)||P (W )]

−Eq(W |θ)[logP (X|W )]
(5)

From Eq. 5, the resulting cost to be minimized is:

J(X,W, θ) = KL[q(W |θ)||P (W |X)]− Eq(W |θ)[logP (X|W )] (6)

where cost function J(X,W, θ) is called a variational free energy (Blundell et al. (2015)).
Blundell et al. (2015) showed that the cost J(X,W, θ) can be approximated as:

J(X,W, θ) ≈
n∑

i=1

q(w(i)|θ)− logP (w(i))− logP (X|w(i)) (7)

where w(i) denotes a weight sample from the variational posterior distribution q(w(i)|θ).
This approach of training Bayesian Neural Networks is called the Bayes by Back-

prop (BBP) algorithm. At the inference stage of BBP, weight samples are drawn from
the variational posterior distribution q(W |θ) which substitutes the exact posterior dis-
tribution P (W |X) in Eq. 4. As a result, the mean estimate of the target variable
as well as the uncertainty are estimated from the resulting approximated distribution
P (y(n+1)|x(n+1), (x(1), y(1)), ..., (x(n), y(n))).

2.3.3. Markov Chain (MC) Dropout

The second approach to approximate the posterior distribution of the neural net-
work parameters is Markov Chain Dropout. The theoretical foundation of Markov Chain
Dropout is based on the fact that neural networks with applied dropout for each weight
layer is mathematically equivalent to variational inference in the deep Gaussian Process.
The derivation of the method is outside the scope of this paper and the interested reader
is referred to the original article by Gal and Ghahramani (2015) and the appendix of the
referred paper.

The outcome of Gal and Ghahramani (2015) derivations is that the exact posterior
distribution of weights P (W |X) can be approximated by an approximate variational dis-
tribution q(W |θ) via minimizing the following objective function:

J(X,W, pmc) = − 1

N

N∑

i=1

logP (x(i)|w(i)) +
1− pmc

2N
‖W‖2 (8)

where pmc denotes the MC Dropout probability, w(i) denotes the sample drawn from the
variational distribution q(W |θ).

The advantage of this method is that the loss expressed in Eq. 8 is the same as we
would have had during training of a traditional maximum likelihood neural network using
dropout.

At the inference time, the dropout probability is kept, as such we obtain the mean
and the variance of the posterior distribution P (y(n+1)|x(n+1), (x(1), y(1)), ..., (x(n), y(n)) as
the following:
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E(y) ≈ 1

T

T∑

t=1

P (x(i)|w(i)) (9)

var(y) ≈ σ2 +
1

T

T∑

t=1

P (x(i)|w(i))P (x(i)|w(i))− E(y)TE(y) (10)

where T denotes the number of stochastic passes through the neural network,E(y) - the
expected value of the target variable, var(y) - the variance of the produced estimates of
the target variable, σ2 - the data noise (irreducible error).

The part of Eq. 10 excluding σ2 represent model (or epistemic) uncertainty which can
be reduced if more data is collected and used for training, while σ2 is the irreducible error
and called aleatoric uncertainty.

3. First principles model description and solution method.

3.1. System description.

We consider a problem of pressure drop tuning of multiphase flows in pipes. More
specifically, we study a three-phase multiphase flow model which aims to replicate a
steady state multiphase flow behavior in oil and gas production systems. This is a complex
phenomenon and has been an important research topic since 1950’s. The first attempt to
model multiphase flow pressure drop in pipes was based on empirical correlations proposed
by Lockhart and Martinelli (1949). Nowadays, the research and industrial standard of
modeling this phenomenon is based on first principles such as mass, momentum and
energy equations supported by some lab or field correlations to close the mathematical
set of equations. The mechanistic approach allows a much more accurate description of
complex flow phenomena including dynamic flow situations such as severe slugging (Taitel
(1986)).

Due to the complexity of multiphase flow phenomena, it is difficult to create such
closure laws and empirical relations at the lab which accurately hold at field conditions.
We consider OLGA (Bendiksen et al. (1991)) simulation results as the ”true” field con-
ditions. OLGA is the industrial standard of multiphase flow simulations, and we use it
as a reference for data generation. The three-phase flow model developed in this work is
used as the model which we would like to adjust to the ”true” plant data generated by
OLGA. Our first goal is to build a first principles model which produces relatively accu-
rate results. However, it will not be able to exactly match the ”true” plant data generated
by OLGA due to different model formulation and different way of computing phase and
mixture densities and viscosities which influence the friction loss values. To account for
this inaccuracy between OLGA and our model, we use Bayesian Neural Networks which
adjust the constructed model parameters and also estimate the uncertainty of the tuned
predictions.

We selected a relatively simple plant setup to keep the discussion of the simulated
phenomena under control. We model a straight horizontal pipe flow (see Fig. 3), such
that pressure drop in the pipe is caused only by friction. Table 1 shows all the required
boundary conditions which are constant in the training and test sets. We consider a
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Qgas

Qliq

Pin Pout

Tin Tout

Figure 3: Straight pipeline plant setup used for case studies. The goal is to predict Pin given the following
boundary conditions: Qgas, Qliq, Tin, Pout, Tout. When Pin is predicted, other parameters such as phase
velocities or flow regimes can be identified.

Parameter Value
Pipe length 1000 m
Pipe diameter (Dpipe) 0.2 m
Hydraulic roughness (ε) 3e−5 m
Outlet pressure (Pout) 10 bar
Outlet temperature (Tout) 25 ◦C
Inlet temperature (Tout) 25 ◦C
Gas-oil ratio (GOR) 50 Sm3/Sm3

Water cut (WC) 0.3
Bubble point pressure (Pbp) 50 bar
Bubble point temperature (Tbp) 20 ◦C
Standard oil density (ρō) 867 kg/m3

Standard water density (ρw̄) 1020 kg/m3

Standard gas density (ρḡ) 0.997 kg/m3

Table 1: Fluid properties, boundary conditions and pipe dimensions use for case studies in the training
and test sets

relatively short pipeline of 1000 m with small pipe diameter of 0.2 m to get a high pressure
drop using high flowrate values. This allows avoiding long simulations during the training
and tuning process and larger error between OLGA simulations and our model but does
not affect the application procedure of the proposed concept.

In this work, the inlet and outlet temperatures are assumed to be equal, so the fluid
flow is assumed to be isothermal. The outlet pressure is required to get the solution of
the drift-flux model using SIMPLE integration scheme (Wang et al. (2016), Spesivtsev
et al. (2013)) which we later discuss in the paper and the value for this pressure is kept at
10 bar. The fluid has a relatively low Gas-Oil-Ratio (GOR) and Water Cut (WC) values
and typical values of standard gas, oil and water densities as well as bubble point pressure
value.

3.2. The first principles model

In this section, we introduce the main part of the first principles model which is used
as the example of the model to be tuned by Bayesian Neural Networks.
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Fluid property Correlation
Critical pressure (Pcrit) McCain Jr et al. (1991)
Critical temperature (Tcrit) McCain Jr et al. (1991)
Oil formation volume factor (Bo) McCain Jr et al. (1991)
Water formation volume factor (Bw) McCain Jr et al. (1991)
Gas compressibility factor (z) Dranchuk et al. (1975)
Dead oil viscosity (µdoil) Egbogah and Ng (1990)
Saturated oil viscosity (µloil) Beggs et al. (1975)
Gas viscosity (µgas) Lee et al. (1966)
Water viscosity (µwater) McCain Jr et al. (1991)
Oil-gas surface tension (σo−g) Abdul-Majeed and Al-Soof (2000)

Table 2: Fluid properties correlations using within the Black Oil formulation

3.2.1. Fluid properties model

In order to model multiphase fluid flow motion in pipes, first, a model of the fluid
properties at different conditions have to be created. There are two main approaches to
model fluid properties of a petroleum liquid: compositional model and Black Oil (BO)
model. In the compositional formulation, mass or molar fractions of the petroleum com-
ponents are specified and then Equations of State are solved to compute the required
fluid properties (Whitson et al. (2000)). In the Black Oil formulation, oil and gas are con-
sidered separately and their properties are computed using correlations which are based
on several model properties such as solution gas-oil ratio, water cut, etc (Whitson et al.
(2000)). The compositional approach can be generally more accurate and should be con-
sidered when a fluid composition is available. However, this is typically not the case and
often only Black Oil properties are measured in the lab for petroleum calculations.

In this work, we use Standing Black Oil correlations (Standing et al. (1947)) for solu-
tion gas-oil ratio Rso and bubble point pressure Pbp. Standing correlations are suitable for
the conditions we use in our problem, but in practice, other correlations which are more
suitable for the conditions at hand can also be used and this will not change neither the
solving procedure of the first principles models nor the tuning part using Bayesian Neural
Networks.

Since we would like to achieve the results which are relatively close to OLGA simula-
tion outcomes, we use fluid properties correlations of the OLGA Black Oil model which
are mainly based on the work by McCain Jr et al. (1991). The summary of the used
correlations are shown in Table 2.

Apart from that, we compute some of the properties based on the material balance.
In particular, the formation liquid volume factor is computed as:

Bl = Bo

(
1

1 +WOR

)
+Bw

(
WOR

1 +WOR

)
(11)

where Bl denotes the formation liquid volume factor and WOR - the water-oil ratio which
is computed as WC

1−WC
where WC denotes the water cut.

Densities of oil, gas and water are also computed from the material balance:
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ρo,g,w =
ρō,ḡ,w̄
Bo,g,w

(12)

where ρo,g,w denotes the oil, gas and water density respectively at local conditions, ρō,ḡ,w̄
- the oil, gas and water density respectively at standard conditions, Bo,g,w - the oil, gas
and water formation volume factor respectively at local conditions.

Mixture density and viscosity are computed based on the volumetric basis:

ρmix = αgρgas + (1− αg)ρliq (13)

where ρmix denotes the mixture density and αg - the gas volume fraction.

µmix = αgµgas + (1− αg)µliq (14)

where µmix denotes the mixture viscosity.
The solution gas-liquid ratio Rsl is computed as:

Rsl = Rso

(
1

1 +WOR

)
(15)

where Rso denotes the solution gas-oil ratio at local conditions.
Having computed the solution gas-liquid ratio Rsl, we can compute the liquid density

based on the material balance:

ρliq =
ρḡRsl + ρ ¯liq

Bl

(16)

where ρg denotes the gas density at local conditions, ρḡ - the water density at standard
conditions, Bg - the gas formation volume factor at local conditions.

The described properties are used in computing mass and momentum balances for the
multiphase flow mixture for given pressure and temperature conditions along the pipe.

Important note on densities and viscosities computation. As discussed above,
the densities are computed based on the material balances. In OLGA, the software that
simulates the true plant, the densities are computed differently.

In addition to the densities, we compute the mixture viscosity based on the volumetric
balance, assuming homogeneous mixing between the phases. In OLGA, however, there
are advanced options for computing the emulsion viscosities which are not based on the
homogeneous mixing assumption. This influences the viscosity values which results in
deviations of the friction losses values.

In this work, these simplifications are done intentionally in order to introduce addi-
tional error into computations which is then minimized by Bayesian Neural Networks and
to mimic the real case, where the ”true” model does not exist. To get a more accurate
multiphase flow model, one may consider to compute densities and viscosities differently.

3.2.2. Mass and momentum balance formulation and discretization

There are two main approaches for modeling multiphase flows in pipes (Nydal (2012)):
a two-fluid (or multi-fluid) model and drift-flux model. The two-fluid formulation is a more
complex approach and considers mass and momentum equations for each fluid field such
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as gas, oil and water separately. In addition, liquid droplets can also be considered as a
separate fluid medium. Two leading commercial multiphase flow simulators in the oil and
gas industry, OLGA and LedaFlow, use this approach (Bendiksen et al. (1991), Goldszal
et al. (2007)).

The drift-flux formulation treats the multiphase flow fluid as a mixture which simplifies
the modeling process. This results in one momentum equation for the mixture while the
mass conservation equations are typically written separately for the gas and liquid fields
(Holmås et al. (2011)). In our work, we consider the drift-flux model and then tune the
model parameters such that the modeling outcomes are close to the ones produced by the
two-fluid model from OLGA.

System of equations. We consider a steady state model, as such we do not include
time derivatives into the equations. However, we do consider the mass transfer from the
oil phase to the gas phase because gas bubbles out from oil when pressure decreases along
the pipe. The mass transfer term is adopted from Andreolli et al. (2017). The resulting
mass and mixture momentum balances are:

d(αgρgug)

dx
= −Qsc

o ρg
dRso

dx
(17)

d
(
(1− αg)ρliquliq

)

dx
= Qsc

o ρg
dRso

dx
(18)

dP

dx
=

2ξmixρmixu
2
mix

Dpipe

+ ρmixgsin(ψ) (19)

where αg denotes the gas volume fraction, ug - the gas phase velocity, Rso - the solution gas-
oil ratio, uliq - the liquid phase velocity, Qsc

o - the oil flowrate at standard conditions, P -
the fluid pressure, umix - the mixture velocity, ξmix - the friction factor coefficient computed
using mixture properties, Dpipe - the pipe diameter, g - the acceleration constant, ψ - the
angle of the pipe relative to the horizontal plane.

To compute the system we need the following boundary conditions:

• inlet: liquid flowrate (Qliq), inlet temperature (Tin) [in our case Tin = Tout because
we assume isothermal flow]

• outlet: outlet pressure (Pout), outlet temperature (Tout)

In order to close the system of equations, the void fraction correlation is required
which is used to compute the difference between the gas and liquid phase velocities and
also linked with computing the local gas volume fraction (void fraction) in the pipe within
the mass balance. In this work, we use a comprehensive flow pattern independent corre-
lation by Bhagwat and Ghajar (2014) which shows an accurate performance for various
conditions, flow regimes and fluid types. However, the model is not restricted to appli-
cation of this correlation and other correlations can be used in search of a more accurate
solution. Since in this paper our goal is to get a robust and physically feasible solution of
the model and adjust it to the plant data, the solution accuracy is not essential. As such,
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Figure 4: Staggered grid discretization scheme used to solve the system of equations of the drift-flux
model

it is out of the scope of this paper to compare the performance of this correlation with
other ones.

In order to compute the friction factor, we use the Colebrook equation with the mixture
properties (Colebrook et al. (1939)):

1√
ξmix

= −4log10

(
1.256

Remix
√
ξmix

+
ε

3.7Dh

)
(20)

where Remix denotes the mixture Reynolds number ε - the hydraulic roughness, Dh - the
hydraulic diameter (in our case Dh = Dpipe ).

The Reynolds number in Eq. 20 is computed as follows:

Remix =
ρmixumixDpipe

µmix
(21)

3.2.3. Discretization and numerical scheme.

Equations 17, 18, 19 are discretized using the control volume approach in a mesh
with staggered grid. The discretization scheme is shown in Figure 4. The mass balances
are solved within the black control volumes while the momentum balances are solved in
control volumes shifted from the mass control volumes by half a mass control volume cell
(shown in red). The scalar variables such as pressure, density, etc are computed in the
middle of the control volumes (or at the faces of the momentum control volumes) while
the velocity components computed at the at the mass control volume faces. This helps
to avoid undesirable oscillating behavior of the solution of the pressure field as well as
gives an opportunity to evaluate the velocities at the faces where they needed to compute
advection terms of the equations, for example, αgρgug term (Yang et al. (2010)).

3.3. Model solving procedure

To solve Equations 17, 18, 19 within the staggered grid framework, we use Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE) with the first order upwind
scheme for the advection terms of the mass conservation equations (Wang et al. (2016),
Spesivtsev et al. (2013)). The general solution procedure is as follows:
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Figure 5: Training a Bayesian Neural Network for pressure drop tuning of multiphase flow in a pipe using
measured inlet and outlet conditions

1. Initialize the pressure and temperature fields.

2. Compute required fluid properties at the initialized conditions.

3. Solve the mass balance equations.

4. Compute the velocity field.

5. Solve the momentum balance equation.

6. Compute the pressure field.

7. Compute the error between the newly computed pressure field and the guessed
pressures.

8. If the pressure error is acceptable, solution is converged, if not - assign the new
pressure field as the guessed pressure field (possibly with some relaxation factor)
and start from Step 1.

4. Case study setup

4.1. Using Bayesian Neural Networks for tuning first principles model parameter to data

The training part of the tuning concept adaptation for the considered problem is shown
in Figure 5. We selected the friction factor ξmix as the parameter to be tuned. To tune
the friction factor, we divide the pipe into 10 control volumes and take the calculated
Remix as features from each control volume. We selected Reynolds numbers Remix for
the features because the friction factor ξmix was selected as a tunable parameter. From
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Figure 6: Prediction stage of Bayesian Neural Networks for predicting the mean and variance of the
modeled variable

Eq. 20 we see that the friction factor is a function of Remix, as such we will try to find
almost the direct correction mapping for the friction factor ξmix.

The computed friction factors from the BNNs are then inserted back to the first
principles model to compute the pressure at the inlet of the pipe. The computed pressure
is compared with the plant measurement produced by OLGA, and the neural networks
weights and biases distributions are adjusted via backpropagation.

The reason why inlet pressure is selected to be the target variable used for BNNs tuning
is the fact that in oil and gas production systems inlet and outlet pressures are typically
measured using sensors, such that we can use it for first principles model adjustment. In
our case, we use the outlet pressure as the boundary condition of the multiphase first
principles model, while the inlet pressure is used as the tuning reference.

Figure 6 shows the inference stage of the trained BNN at the prediction (test) time.
Here, the computed Remix at test conditions are inserted into the trained BNN, which
produces distributions of the friction factors. Based on these distributions, the distribution
of the inlet pressure is computed.

4.2. Case studies

Training set. One of the main goals of this work is to see if BNNs are able to
estimate uncertainty correctly under different process conditions. To do that, we control
the distribution of the conditions in the training and test sets such that we know when the
test set is within the distribution of the training set and when it is not. For the process
conditions to be changed, we selected the inlet liquid flowrates. We assume of 1440
training points available to us. These points are split unequally such as 90% correspond
to high flowrate range values (between 0.15 and 0.25 m3/s) and 10% correspond to low
flowrate values (between 0.05 and 0.15 m3/s). This is done in order to see if Bayesian
Neural Networks produce different level of uncertainty for different flowrate ranges in the
test set depending on the training set size of each range.
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Parameter Value/value range Number of samples
Training set

Inlet liquid flowrate (Qliq)
10% - [0.05 - 0.15] m3/s 144
90% - [0.15 - 0.25] m3/s 1296
Test set, Case 1

Inlet liquid flowrate (Qliq)
50% - [0.05 - 0.15] m3/s 25
50% - [0.15 - 0.25] m3/s 25
Test set, Case 2

Inlet liquid flowrate (Qliq)
50% - [0.05 - 0.15] m3/s 25
50% - [0.25 - 0.30] m3/s 25

Table 3: Process conditions in the training and test sets

Test case studies. We consider two case studies and each case study is performed
with two types of Bayesian Neural Network: trained by MC Dropout and by Bayes by
Backprop. Table 3 shows the conditions for each case study together with the training
set flowrate ranges.

In Case 1, we consider the same conditions in the training and test sets. We split
the data of flowrate range equally between the ranges which are used in training: 50% for
Qliq = [0.05-0.15] m3/s and 50% for Qliq = [0.15-0.25] m3/s. The values for training are
taken from the uniform distribution within the specified ranges.

We test the model for 50 test points, 25 points per flowrate range (high and low). The
values of the flowrates are taken randomly from the specified ranges. For each value the
simulation is run 5 times. It is done in this way because it produces better visualization
of the results while does not deteriorate any conclusions from it.

The idea of this case study is to test capabilities of BNNs to quantify uncertainty
based on the amount of information in the training set. Since we have only 10% of the
training set in the range of [0.05− 0.15]m3/s, our hypothesis is that the BNN will give a
higher uncertainty when predicting the target variable. It is also interesting to see how
in general a BNN behaves under the conditions which are within the training range.

In Case 2, we increase the high flowrate range from 0.25 up to 0.3 m3/s in the test
set data. We introduce the new range to the model, but we do not re-train it to update
the BNNs parameters. This is done to see what is the bias and uncertainty levels of the
predictions for these new conditions. Table 3 shows all the values important for the case
studies to consider.

5. Results and Discussion

5.1. Case 1 results and discussion

In Case 1, the range of the inlet flowrates was the same as in the training set and the
main idea behind this case was to see how BNNs quantify the uncertainty of the inlet
pressure for high and low flowrate values with different number of training points for each
flowrate range.
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Figure 7: Estimated mean and 95% confidence interval of the corrected multiphase flow model using MC
Dropout Bayesian Neural Network for Case 1.
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Figure 8: Estimated mean and 95% confidence interval of the corrected multiphase flow model using
Bayes by Backprop Bayesian Neural Network Case 1.

Mean and uncertainty estimates. Fig. 7 and Fig. 8 show the results of the first
principles model tuning process by BNNs in Case 1. We see that both BNN types are
able to tune the first principles model such that the mean estimates of the inlet pressure
produced by the hybrid (first principles + BNN) models are close to the plant (OLGA)
pressures. This holds for both high inlet flowrates (high pressure values) and low inlet
flowrates (low pressure values). However, the Bayes by Backprop BNN shows slightly
worse performance in terms of the mean estimates on the low pressure values where the
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Model
MAPE error

High flowrates Low flowrates Entire set
Untuned model 15.65% 10.10% 12.88 %

Model tuned with
MC Dropout

1.79% 4.39% 3.09%

Model tuned with
Bayes by Backprop

2.81% 8.84% 5.83%

Table 4: Mean absolute percentage errors between the model mean outcomes and the plant pressure
values in Case 1

Model
95% confidence interval [in bar]

High flowrates Low flowrates Entire set
Model tuned with

MC Dropout
3.52 5.27 4.40

Model tuned with
Bayes by Backprop

4.26 6.95 5.61

Table 5: 95% confidence intervals produced by hybrid Bayesian models in Case 1

number of data points is small. Due to the small number of training points in that
region, the guessed priors may not have been accurate enough to obtain good posterior
estimates, so that it was difficult to tune the model in that region and in some cases the
tuned model works worse than the untuned version. Table 4 shows the mean absolute
percentage errors (MAPEs), computed using Eq. 22, produced by the untuned and tuned
models for all flowrate ranges in Case 1. From the table we see that the errors within the
high flowrate range values are smaller than for the low flowrate range for both BNNs.

MAPE =
1

N

N∑

n=1

∣∣∣∣
yplant − ŷplant

yplant

∣∣∣∣ (22)

where N denotes the number of test points, yplant - plant values of the measurement (in
our case - OLGA inlet pressure), ŷplant - estimated mean of the plant value by hybrid
(first principles + BNN) or the untuned first principles model.

As for the uncertainty estimates level, in Fig. 7 and Fig. 8 we observe that the average
uncertainty estimates for the low pressures are higher, than for the high pressure values.
The values of the 95% confidence intervals are shown in Table 5. We see that the estimates
of the confidence intervals produced by the different types of BNNs are quite similar,
however, the BNN trained Bayes by Backprop produce higher uncertainty levels.

18



5.2. Discussion of Case 1 results
Our observations of the simulation results have been hypothesized prior to the train-

ing and confirmed at the results stage. For instance, the results confirmed that both
BNN types are able to correctly qualitatively identify the uncertainty levels of the first
principles models parameters (friction factors) based on the training size distributions.
The distribution of the friction factors have been then introduced into the first principles
models which resulted in the uncertainty level estimates of the inlet pressure values. The
results also show that in the regions where BNNs have less prior information, they have
less accurate interpolating capabilities, which resulted in less accurate mean estimates
and larger uncertainty. On the other hand, we see that in most of the cases even a small
training set was enough for the neural networks to adjust the first principles models to the
plant conditions. However, this is mainly caused by the fact that no noise was introduced
into the data. This has been done intentionally to prove the concept of tuning parameters
by BNNs, rather than additionally challenge them to fit the data at hand. In general,
more noisy data would result in the need of more tuning data.

Training difficulties of Bayes by Backprop algorithm. In general, the success
of neural network training depends on the parameters (weights and biases) initialization.
This is especially important for Bayesian Neural Networks because the poor prior distri-
bution of the parameters will usually result in poor posterior, which in turn results in
inaccurate and uncertain predictions.

Since the training procedure of the MC Dropout network is similar to conventional
training, in this work we used the initialization procedure by He et al. (2015) which has
been proven as a robust initialization technique. As for the Bayes by Backprop, we used
the normally distributed priors of the neural network weights as suggested in the original
paper by Blundell et al. (2015). However, in practice we observed that guessing a good
prior is difficult and we met problems trying to find a suitable prior which results in a
robust tuning, meaning that the guess prior had been leading to bad posteriors and poor
simulation results.

To overcome the obstacles with tuning the Bayes by Backprop BNN, we initialized
the priors close to the weights distributions produced by the tuned MC Dropout BNNs.
This resulted in a relatively robust tuning procedure. However, to make it even more
robust, we performed 3 samples of the weights per epoch to compute the approximated
cost shown in Eq. 7, which resulted in a less stochastic behavior of the cost function and
more robust tuning. Therefore, as a result of our investigations, we suggest a similar
approach for guessing a good initial prior when performing first principles model tuning
using the Bayes by Backprop algorithm.

One could argue that there is no point in creating a hybrid (first principles + BNN)
model using the Bayes by Backprop algorithm if the MC Dropout is more robust in
tuning. However, this may not always be the case and in the literature there are various
examples when MC Dropout underestimated the uncertainties if compared to the Bayes
by Backprop algorithm (Blundell et al. (2015)). In fact this is what we also observe in
our case. Despite that the estimated uncertainty levels for both BNNs types are quite
similar, the levels produced by Bayes by Backprop are larger (see Table 5) and in fact
may be more accurate. As such, when the level of the hybrid model uncertainty is critical
for the problem at hand, for instance for the subsequent use in robust optimization of
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the process, one may consider using the Bayes by Backprop algorithm rather than MC
Dropout.

Data noise and overfitting. One more important fact to discuss here is that we
assumed that the plant measurements do not have noise which made it easier for the
BNNs to tune the first principles model to the plant conditions. In real operation, this
is typically not the case. This will most likely result in the fact that more measurement
data will be required to tune the models accurately. Moreover, the tuning itself will
be more difficult because data noise may cause overfitting. At the same time, a strong
feature of Bayesian Neural Networks is the fact that they are less prone to overfitting than
conventional maximum likelihood neural networks due to model parameter averaging. In
addition, the data noise can be learned from the data. This can be done via selecting the
noise level as the learnable BNN’s parameter. This will result in the fact that the noise
will be accounted when making mean and uncertainty estimates of the target variable.

5.3. Case 2 results and discussion

In Case 2, the range of the inlet flowrate was not the same as in the training set
for the high flowrate range. As such, the main idea behind this case was to see how
BNNs estimates the model bias and uncertainty when the plant process conditions change.
In this case, the inlet flowrate is outside the training set, however, since we use the
Reynolds numbers as the features, the feature distribution is not necessarily fully outside
the training set.

Mean and uncertainty estimates. Fig. 9, Fig. 10, Table 6 and Table 7 show the
results of the first principles model tuning process by BNNs in Case 2. From the figures
and tables we see that where the process conditions do not change (low pressure values),
the uncertainty level and the mean predictions error are low and in fact the same as in
the Case 1 because the conditions are the same. This is not the same as for the high
flowrate case. We see that in addition to the bias, the uncertainty level of predictions are
several times larger than for the low flowrate cases and even worse than for the untuned
model. This is true for both BNNs types.

Such results have been expected since the flowrate values which correspond to the high
pressure values in Case 2 are outside the training range. This resulted to the fact that the
difference between the mean estimates and the actuate plant values are high. But what
is more important, we can see that the both BNNs types are able to correctly estimate
the qualitative uncertainty levels depending on how far the test data points are from the
training set, as we see that for the highest pressure value is uncertainty is the largest for
both BNNs types. We discuss the usefulness and practical applicability of the obtained
results in the next subsection.

5.4. Discussion of Case 2 results

Importance of uncertainty levels for monitoring of process system plants.
Process measurement drift/Non-observable process conditions change
The obtained results lead to very important conclusions from the process operations

point of view. In many cases, the process measurements drift over time which is very
difficult to identify in practice. Let us assume that the inlet pressure drifts over time and
we are not aware of this situation. Having uncertainty estimates about our predictions
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Figure 9: Estimated mean and 95% confidence interval of the corrected multiphase flow model using MC
Dropout Bayesian Neural Network for Case 2.
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Figure 10: Estimated mean and 95% confidence interval of the corrected multiphase flow model using
Bayes by Backprop Bayesian Neural Network Case 2.

will help us to identify the measurement drift. This is because, assuming that we know
the inlet flow conditions, we know that the flow conditions have not change and for any
particular point in time we get high confidence in our predictions (low uncertainty levels).
At the same time, we see that the inlet pressure estimates deviates from the measurements.
This will be a most likely caused by the fact that the process measurement drifted over
time.

In addition, we may be able to identify other process condition changes. For instance,
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Model
MAPE error

High flowrates Low flowrates Entire set
Untuned model 15.65% 10.10% 12.88 %

Model tuned with
MC Dropout

22.58% 4.39% 13.48%

Model tuned with
Bayes by Backprop

27.88% 8.84% 18.36%

Table 6: Mean absolute percentage errors between the model outcomes and the plant pressure values in
Case 2

Model
95% confidence interval [in bar]

High flowrates Low flowrates Entire set
Model tuned with

MC Dropout
13.49 5.27 9.38

Model tuned with
Bayes by Backprop

17.6 6.95 12.28

Table 7: 95% confidence intervals produced by hybrid Bayesian models in Case 2

again, assuming the known flowrate measurements, we may see the deviation between the
mean estimates of the proposed model and measurements. Knowing that the observed
conditions have not changed, there is a possibility that non-observable process condi-
tions change. In the multiphase flow pipeline, this can be for instance, wax and hydrate
depositions which increased the friction loss and caused additional pressure drop. As
such, hazardous situation can be avoided using the proposed methods with a much higher
confidence that using just untuned non-bayesian first principles models.

The need for model recalibration There are less hazardous situations when Bayesian
First Principles models can be effectively used. This is when we know that the observable
process conditions changed over time and the bias and uncertainty levels of the models
increased. This is the exact situation which we have provided in our work. We changed
the inlet flowrate and observed that the difference between the referenced pressures and
produced mean estimates became high for the high flowrate values and this difference has
been also confirmed by the high uncertainty levels. This is a clear situation when the
model needs recalibration, because the deviations and high uncertainties are caused by
the fact that the model has not seen such process conditions before because the plant has
ot been operated around this point. After recalibration the model can be used successfully
again for the new conditions.
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6. Conclusions

In this paper, we propose the general framework of tuning first principles models using
Bayesian Neural Networks and show applications of such a framework based on tuning
a steady state three-phase multiphase flow model. For the Bayesian Neural Networks
training, we used variational approximation methods such as MC Dropout and Bayes by
Backprop. The multiphase flow model consists of two main parts: fluid properties model
represented by the Black Oil approach and the hydrodynamic drift-flux model solved by
the SIMPLE numerical integration scheme over the staggered numerical grid.

We found that by tuning the first principles model using Bayesian Neural Networks,
it is possible to adjust them to the seen process conditions such that the tuned model
correctly represent the process. As such, the Bayesian Neural Networks were found to
be a good tool for tuning the first principles models despite a relatively small dataset
size. The main advantage of using the Bayesian Neural Networks was found to be the
ability to correctly estimate the uncertainty level of predictions depending on the number
of available training data points, such that for a smaller part of the training distributions,
the produced level of uncertainties were higher. We also found that Bayesian Neural
Networks are able to correctly identify the level of uncertainty when when the process
conditions become outside the training range.

In addition, we discussed how the proposed method can be used to identify the mea-
surement drift in a process plant, change of non-observable process conditions or when
the model recalibration is needed. We found that the proposed methods can be of a great
importance when making decisions during the monitoring of process engineering systems.

As for the difference between the Bayesian Neural Networks, we found that the ones
trained with Bayes by Backprop algorithm produce larger uncertainty levels, slightly less
accurate in terms of the mean estimates and are much harder to fit than the BNNs trained
with MC Dropout algorithm. As an ad-hoc training approach, we proposed to first train
an MC Dropout BNN, sample the weights and use it as a prior to the weights for Bayes
by Backprop training.

In general, we believe that the first principles models tuned by Bayesian Neural Net-
works will become a great, robust and highly usable tool in the near future in process
conditions monitoring. This is because the computational power increases over time which
allows training deep Bayesian Neural Networks for any process at hand. In addition, such
an approach will provide more degrees of freedom when making correct decisions to either
change the measurement sensors, perform additional maintenance check and operation,
for instance, pigging, or perform recalibration of Digital Twins models which represent a
real time process plant behavior.
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Chapter 5

Concluding remarks and
recommendations for future work

5.1 Concluding remarks
The main objectives of this PhD work were to review the current methods of mul-
tiphase flowrate estimation, develop new approaches in this area and contribute
to general approaches of combining machine learning and first principles models
with a focus on oil and gas production systems and uncertainty estimation.

As the first step, a comprehensive literature review on multiphase flowrate estim-
ation methods was performed. In the review, the following main points have been
found:

• Currently, first principles-based approaches for multiphase flowrate estim-
ation take the leading role, however, machine learning methods have a big
potential to enhance, be combined or even replace them depending on the
data availability.

• The current estimation methods still have a room for improvement because
they still struggle with handling uncertainties in data used for model tuning,
sensor measurements and model structures. This has to be addressed in
research and development to make robust and accurate solutions.

• The general trend of the multiphase flowrate estimation methods develop-
ment is positive and such approaches have the potential to replace physical
multiphase flow meters in the near future. Currently, they can be success-
fully applied as a back-up system to hardware installations.
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158 Concluding remarks and recommendations for future work

A major focus of this PhD work was concentrated on applications of machine
learning methods and their combinations with first principles models towards ac-
curate data-driven multiphase flowrate estimation solutions. Different approaches
of combining machine learning with petroleum production physics have been tested
together with various machine learning algorithms, e.g. neural network-based and
regression tree-based ones. Based on the obtained results and many discussions
with industrial experts, the following conclusions have been made:

• Machine learning models are very promising for multiphase flowrate estim-
ation applications. This is particularly true for hybrid (machine learning +
first principles) models.

• Even simple physical models introduced to machine learning models might
enhance accuracy and explainability of the resulting data-driven solutions.

• Meta-modeling which combines different hybrid machine learning mod-
els creates the most accurate results among other combinations of machine
learning models in case of multiphase flowrate estimation systems.

Finally, regarding the general applications of hybrid (machine learning + first prin-
ciples) models with a focus on oil and gas systems and uncertainty estimation, two
main approaches have been considered: sensitivity analysis of first principles mod-
els and Bayesian Machine Learning applied to first principles models. Different
case studies have been considered such as increased measurement noise and drift,
change in process conditions and unbalanced historical data for training Bayesian
Machine Learning models. Based on these investigations, the following conclu-
sions have been made:

• Accuracy of first principles multiphase flowrate estimation tools are very
sensitive to measurement drift and relatively sensitive to measurement noise,
while some simplifications can be made during the modeling process, for
instance, in the thermodynamic part. As such, robust re-tuning process has
to be performed regularly when measurement drift exists in the production
system measurements.

• Bayesian Neural Networks are good tools for tuning first principles mul-
tiphase flow models to different process conditions and able to estimate un-
certainties correctly depending on the historical distribution and the size of
the data.
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• Bayesian Neural Networks can be successfully used under changing process
conditions of engineering systems in order to understand when there is a
need to recalibrate the model or when there is a need to perform condition
maintenance of the system.

Overall, throughout all the conducted work, we can see that accurate and phys-
ically meaningful combinations of machine learning and first principles models
which also account for model uncertainties can create robust tools for multiphase
flowrate estimation systems in oil and gas production fields. However, one needs
to carefully select the right first principles models and machine learning algorithms
depending on the data at hand as well as perform consistent tuning of the resulting
hybrid models to achieve the best estimation results.

5.2 Recommendations for future work
Based on the conducted research work and the current research activity in the com-
munity of process and petroleum engineering, the following research directions
can extend the work presented in this thesis:

• Considering dynamic Bayesian recurrent neural networks together with dy-
namic multiphase flow models. With this approach, it is potentially possible
to accurately describe dynamic multiphase flow behavior using unsteady
production data. This will allow to get valuable insights on how to oper-
ate the field in challenging dynamic conditions and estimate uncertainties of
the resulting predictions.

• Extending the work conducted on Bayesian Neural Networks for tuning
multiphase flow pipe models to the entire production system and invest-
igate formal criteria under which model recalibration is required or when
non-observable process conditions change and there is a need for condition
maintenance.

• Extending the work on combining non-Bayesian machine learning meth-
ods and physics of process engineering systems and investigate how these
models can be used under limited data criteria and how to perform transfer
learning in such regression problems, such that the model from one well can
be applied to another well with minimal model re-training.
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